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ABSTRACT

Mixup and its variants have promoted a surge of interest due to their capability of
boosting the accuracy of deep models. For a random sample pair, such approaches
generate a set of synthetic samples through interpolating both the inputs and their
corresponding one-hot labels. Current methods either interpolate random features
from an input pair or learn to mix salient features from the pair. Nevertheless,
the former methods can create misleading synthetic samples or remove important
features from the given inputs, and the latter strategies incur significant computation
cost for selecting descriptive input regions. In this paper, we show that the effort
needed for the input mixing can be bypassed. For a given sample pair, averaging
the features from the two inputs and then assigning it with a set of soft labels can
effectively regularize the training. We empirically show that the proposed approach
performs on par with state-of-the-art strategies in terms of predictive accuracy.

1 INTRODUCTION

Deep neural networks have demonstrated their profound successes in many challenging real-world
applications, including image classification (Krizhevsky et al., 2012), speech recognition (Graves
et al., 2013), and machine translation (Bahdanau et al., 2015; Sutskever et al., 2014). One key factor
attributing to such successes is the deployment of effective model regularization techniques, which
empower the learning to avoid overfitting the training data and to generalize well to unseen samples.
This is because current deep models typically embrace high modeling freedom with a very large
number of parameters. To this end, many regularizers for deep models have been introduced, including
weight decay (Hanson & Pratt, 1988), dropout (Srivastava et al., 2014), stochastic depth (Huang et al.,
2016), batch normalization (Ioffe & Szegedy, 2015), and data augmentation schemes (Cubuk et al.,
2019; Hendrycks et al., 2020; Inoue, 2018; Lecun et al., 1998; Simard et al., 1998).
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Figure 1: Illustration of the proposed method. The mixed input is the
average of the two inputs; the training target for the averaged input is the
combination of the local soft label (average of the two one-hot targets)
and the global soft label (dynamically generated during training).

Among those effective reg-
ularizers, Mixup (Zhang
et al., 2018) is a sim-
ple and yet effective, data-
augmentation based regu-
larizer for enhancing the
deep classification models.
Through linearly interpo-
lating random input pairs
and their training targets
in one-hot representation,
Mixup generates a set of
synthetic examples with
soft labels to regularize the
training. Such pairwise,
label-variant data augmen-
tation techniques (Guo,
2020; Guo et al., 2019;
Kim et al., 2020; Li et al.,
2020a; Tokozume et al., 2018a;b; Verma et al., 2019; Yun et al., 2019; Zhang et al., 2018) have
attracted a surge of interest and shown their effectiveness on boosting the accuracy of deep networks.
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Nevertheless, unlike label-preserving data augmentation such as rotation, flip, and crop, there is
still limited knowledge about how to design better mixing policies for sample pairs for effective
label-variant regularization. Current Mixup-based approaches either mix a pair of inputs using
random mixing coefficients (Guo, 2020; Guo et al., 2019; Summers & Dinneen, 2019; Tokozume
et al., 2018b; Verma et al., 2019; Yun et al., 2019; Zhang et al., 2018) or learn to mix salient features
from the given pair (Dabouei et al., 2020; Kim et al., 2020; Li et al., 2020b; Walawalkar et al., 2020)
to create a set of synthetic samples. Nonetheless, the former methods may create misleading synthetic
samples (Guo et al., 2019) or remove important features from the given inputs (Kim et al., 2020)
and the latter strategies can incur significant computation cost for identifying and selecting the most
descriptive input regions (Kim et al., 2020; Walawalkar et al., 2020).

In this paper, we show that the effort needed for the input mixing with a range of mixing ratios can be
bypassed. For a given input pair, one can average the features from the two inputs, and then assign it
with a set of soft labels. These soft labels are adaptively learned during training to incorporate class
information beyond the provided label pair as well as the evolving states of the training. The method
is illustrated in Figure 1, where the mixed input is the pixel-wise average of features from the two
inputs and its training target is the combination of the local soft label, which is the average of the two
one-hot targets, and the global soft label, which is generated by the networks during training.

We empirically show that the proposed approach performs on par with state-of-the-art methods with
random input mixing policy or learning to mixing strategy, in terms of predictive accuracy. We also
demonstrate that the synthetic samples created by our method keep tuning the networks long after
the training error on the original training set is minimal, encouraging the learning to generate, for
each class of the training samples, tight representation clusters. Also, the Class Activation Mapping
(CAM) (Zhou et al., 2016) visualization suggests that our method tends to focus on narrower regions
of an image for classification.

2 BYPASSING THE INPUT MIXING IN MIXUP

2.1 MIXUP-BASED DATA AUGMENTATION

For a standard classification setting with a training data set (X;Y ), the objective of the task is to
develop a classifier which assigns every input x ∈ X a label y ∈ Y . Instead of using the provided
training set (X;Y ), Mixup (Zhang et al., 2018) generates synthetic samples with soft labels for
training. For a pair of random training samples (xi; yi) and (xj ; yj), where x is the input and y the
one-hot encoding of the corresponding class, Mixup creates a synthetic sample as follows.

x̃ijλ = λxi + (1− λ)xj , (1)

ỹijλ = λyi + (1− λ)yj , (2)

where λ is a scalar mixing policy for mixing both the inputs and the modeling targets of the sample
pair. λ is sampled from a Beta(α, α) distribution with a hyper-parameter α. The generated samples
(x̃ijλ , ỹ

ij
λ ) are then fed into the model for training to minimize the cross-entropy loss function.

Current variants of Mixup focus on the introduction of a representation function ψ for input mixing:

x̃ijλ = ψ(xi|xj , λ) + ψ(xj |xi, 1− λ). (3)

The state-of-the-art random input mixing variant CutMix (Yun et al., 2019) defines the ψ function
to form a binary rectangular mask applying to a randomly chosen rectangle covering λ proportion
of the input image. PuzzleMix (Kim et al., 2020) is the state-of-the-art learning to mixing variant.
This method defines the ψ function to compute the saliency map of the input pair, find the optimal
mask, and optimize the transport plans for generating the mixed example. This is to ensure that the
mixed image contain sufficient target class information corresponding to the mixing ratio λ while
preserving the local statistics of each input.

2.2 FORMING THE TRAINING INPUT

Similar to Mixup and its variants, our method also creates mixed samples from a random sample
pair, but for a given sample pair our method does not generate a set of inputs with different features.
Instead, for a range of mixing ratios λs, our approach uses the same mixed input, invariant to the
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mixing ratios provided. We term our method Label driven Mixup (denoted as LaMix). To this end,
the mixed input x̃ij in LaMix has two forms. For the random input mixing methods such as Mixup
and CutMix, it is formed by pixel-wise average of the raw features of the input pair (xi, xj):

x̃ij = 0.5xi + 0.5xj . (4)
For the learning to mixing methods such as PuzzleMix, the mixed input is formed by pixel-wise
average of the saliency features computed with λ value as 0.5:

x̃ij = ψ(xi|xj , λ = 0.5) + ψ(xj |xi, λ = 0.5). (5)
The newly resulting input x̃ij is then used for training, by passing through a neural network model
fϕ (parameterized with ϕ) to generate the m-dimensional input embedding Sij ∈ Rm:

Sij = fϕ(x̃
ij). (6)

Next, the resulting Sij is then fed into a linear fullyconnected layer Wl ∈ Rc×m to produce the
predicted classification distribution over the c classification target classes:

y
ij
= Softmax(WlS

ij). (7)

The error of the training is computed by comparing the prediction yij and the training target of the
input x̃ij , which is discussed next.

2.3 FORMING THE TRAINING TARGET

For the same mixed input x̃ij created from a random input pair ( xi, xj), LaMix associates it with
various soft target label ÿij , which is learned by the networks with two steps: 1) obtaining global soft
label and 2) integrating with local soft label. In detail, the dynamically assigned soft target label ÿij
is a function of (xi, xj , yi, yj , λ), as follows.

ÿijλ = τ(xi, xj , λ, yi, yj). (8)

As illustrated in Figure 1, LaMix implements the τ(·) function through adding an additional fullycon-
nected layer Wt ∈ Rc×m to the original networks. That is, for the given input x̃ij with λ, LaMix
first computes its probabilities over the c classification targets, denoted as pijλ :

pijλ = Softmax(σ(WtS
ij)), (9)

where σ denotes the Sigmoid function, and Sij is the same input embedding as that in Equation 7.
In other words, the two predictions (i.e., Equations 7 and 9) share the same networks except for
the last layer. Because the predictions pijλ are about all the c target classes of the given data, such
predictions thus reflect the class information beyond the provided local label pair, namely (yi, yj).
For description purpose, we term pijλ global soft label. The Sigmoid function here will provide the
probability of associating the input to a particular label.

After having the global soft label pijλ , we then integrate it with the local label of the given sample
pair, i.e., ỹijλ as described in Equation 2, as follows:

ÿijλ = βỹijλ + (1− β)pijλ , (10)

where β is a scalar coefficient between [0,1]. Doing so, we enable the synthetic sample (x̃ij , ÿijλ )
to have information from both the local labels of the provided sample pair (i.e., ỹijλ ) and the class
information beyond the labels of the given pair (i.e., pijλ ). This process is also illustrated in Figure 1.

2.4 PARAMETER OPTIMIZATION

For training, LaMix minimize, with gradient descent, the cross entropy loss E between the assigned
training soft target ÿijλ and the network’s predicted classification distribution yij :

E = ÿijλ logy
ij (11)

During training, we also need to prevent LaMix from assigning target soft labels too far away from
the gold labels in the original training set. To attain this goal, we alternatively feed samples to the
networks with either a mini-batch with original inputs, i.e., x̃ii, or a mini-batch from the mixed
inputs, i.e., x̃ij . Note that, when training with the former, the networks still need to learn to assign
the training target ÿiiλ to the sample x̃ii.
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MNIST Fashion SVHN Cifar10 Cifar100

PreAct ResNet-18

Vanilla 0.62±0.05 4.78±0.19 3.64±0.42 5.19±0.30 24.19±1.27
Mixup 0.56±0.01 4.18±0.02 3.37±0.49 3.88±0.32 21.10±0.21
CutMix 0.59±0.06 4.06±0.06 2.82±0.22 4.09± 0.44 19.77±0.26
LaMix 0.50±0.04 4.03±0.09 2.69±0.08 3.82±0.18 19.38±0.16

ResNet-50

Vanilla 0.61±0.05 4.55±0.14 3.22±0.05 4.83±0.30 23.10±0.62
Mixup 0.57±0.03 4.31±0.05 2.85±0.07 4.29±0.28 19.48±0.48
CutMix 0.49±0.03 4.11±0.11 2.61±0.08 4.57±0.31 18.98±0.37
LaMix 0.47±0.04 4.10±0.07 2.39±0.06 3.60±0.24 18.60±0.69

Table 1: Error rate (%) of methods with PreAct ResNet-18 and ResNet-50 as baselines. We report
mean scores over 5 runs with standard deviations (denoted ±). Best results highlighted in Bold.

3 EXPERIMENTS
We compare our method with both random input mixing and learning to mixing Mixup variants.

3.1 COMPARE WITH RANDOM INPUT MIXING METHODS

We use five image classification tasks. MNIST is a digit (1-10) recognition dataset with 60,000
training and 10,000 test gray-level, 28x28-dimensional images. Fashion is an image recognition
dataset having the same scale as MNIST, containing 10 classes of fashion product pictures. SVHN
is the Google street view house numbers recognition data set with 73,257 digits, 32x32 color images
for training, 26,032 for testing, and 531,131 additional, easier samples. We did not use the additional
images. Cifar10 is an image classification task with 10 classes with 50,000 training and 10,000 test
samples. Cifar100 is similar to Cifar10 but with 100 classes and 600 images each.

We experimented using networks PreAct ResNet-18 (He et al., 2016) and ResNet-50 (He et al., 2016)
(denoted as Vanilla model). To fit the MNIST and Fashion data into the same convolutional network
architecture, we just simply resize the 28x28 image to 32x32 as that of Cifar10, Cifar100, and SVHN.
Each reported value (accuracy or error rate) is the mean of five runs, on a NVIDIA GTX TitanX GPU
with 12GB memory. The β as discussed in Equation 10 was set as 0.5 unless otherwise specified.

We compare with Mixup (Zhang et al., 2018) and the state-of-the-art random input mixing method
CutMix (Yun et al., 2019). For Mixup, we use the code from Facebook at 1. For CutMix, we
use the authors’ implementation in 2. For LaMix, the added fully connected layer is the same as
the fullyconnected layer of the original network with a Softmax function on the top. For all the
comparison baselines, the mixing ratio λ is sampled uniformly between [0,1]. All models are trained
using mini-batched (128 examples) backprop, as specified in (Zhang et al., 2018) and with the exact
settings as in the Facebook codes, for 400 epochs.

3.1.1 PREDICTIVE ACCURACY

Figure 2: Average values (y-axis) of the top five
soft targets (x-axis) used by LaMix for training
on Cifar100 (green bars) and Cifar10 (red bars).

The predictive error rates obtained by the Vanilla,
Mixup, CutMix, and LaMix with PreAct ResNet-
18 and ResNet-50 as baselines are in Table 1.

Table 1 shows that LaMix performed on par with or
outperformed the comparison models on all the five
datasets. Results also indicate that the performance
of CutMix and Mixup was sensitive to the datasets
used: CutMix outperformed Mixup on some cases,
but loss on some other datasets. This may due to
the noisy mixed samples these two methods gen-
erated during training. For example, on Cifar10
and MNIST with PreAct ResNet-18 or ResNet-50,
CutMix obtained lower accuracy than Mixup. But
on Cifar100 and SVHN with PreAct ResNet-18, CutMix outperformed Mixup with a large margin.
In contrast, LaMix performed consistently better than CutMix and Mixup on all the cases.

These results suggest that, although using the same mixed image for a wide range of mixing ratios,
LaMix is able to assign a set of appropriate soft labels to the same image, so that they can effectively

1https://github.com/facebookresearch/mixup-cifar10
2https://github.com/clovaai/CutMix-PyTorch

4



Under review as a conference paper at ICLR 2021

regularize the training to achieve regularization effect as effective as that of random input mixing
methods, which rely on mixing different features from a given image pair to form a set of images.

3.1.2 EVOLVING SOFT TRAINING TARGETS

Figure 3: Soft targets used for training (left subfigure) and the global
soft labels generated (right subfigure) for a batch of training samples over
400 epochs. The x-axis depicts the soft target values and the y-axis is the
distribution mass over the 400 training epochs (from top to down).

In Figure 2, we visual-
ize the top five largest
training targets used by
LaMix. We provide
the average values of
the top targets during
training for both Ci-
far100 (left) and Ci-
far10 (right). Results
in Figure 2 indicate that
LaMix re-distributes a
large portion of the one-
hot distribution to the
other classes. For both
Cifar100 and Cifar10,
half of the one-hot dis-
tribution mass is re-assigned to the other targets. For example, as shown in Figure 2, the second
largest targets for the Cifar100 and Cifar10 are 0.14 and 0.25, respectively.

Figure 4: Accuracy (%) obtained by LaMix
while varying the weight ratio β on Cifar100.

In Figure 3, we also visualize the assigned soft
labels of a random mini-batch of training samples
in LaMix with PreAct ResNet-18 on Cifar10 across
the 400 epochs of training. The left depicts the
soft targets used for training by LaMix, and the
right shows the learned global soft labels. In these
figures, the x-axis depicts the soft target values and
the y-axis is the distribution mass over different
training epochs (from top to bottom).

Results in the left subfigure of Figure 3 indicate that
the soft target labels assigned to the same batch of
training samples keep changing during the training
over the 400 epochs (from top to bottom), with the
largest soft target training signals laying between
0.55 and 0.65. The right subfigure suggests that the
learned global targets for the batch of training samples tend to have small values, containing a large
group with values between 0.14 to 0.18, during the early phases of training (top) and then having
more values laying between 0.18 and 0.20 as the training progresses (bottom of the figure).

Figure 5: Training loss (right y-axis) and vali-
dation accuracy (left y-axis) of LaMix, Mixup,
and CutMix across 2K training epochs.

These results imply that for the same mixed image,
the LaMix is able to assign it with different soft
targets, thus increasing the size of the training set
but bypassing the efforts needed for input mixing.

3.1.3 RE-WEIGHT
THE LOCAL AND GLOBAL SOFT LABELS

We here evaluate the impact of different weight
factors for β as discussed in Equation 10 for the
two soft labels, by varying it from 0.1 to 0.9. The
results obtained by LaMix using PreAct ResNet-18
on Cifar100 are in Figure 4.

The results in Figure 4 suggest that averaging the
two sets of soft labels provides better accuracy than
other weighting ratios for this dataset. Also, the
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LaMix obtained similar accuracy when the β fell
into the region between [0.3, 0.8].

Network Architecture Vanilla Mixup CutMix LaMix
LeNet 58.9±2.88 56.4±1.42 62.5±3.09 56.3±1.82
WideResNet-28-10 19.9±0.41 17.8±0.31 17.9±0.30 17.2±0.26
DenseNet-121 19.5±0.34 17.3±0.13 17.3±0.52 16.9±0.09

Table 2: Error rate (%) of LaMix, Mixup, and CutMix with LeNet, WideResNet28-10 and DenseNet-
121 on Cifar100. We report mean scores over 5 runs with standard deviations (denoted ±).

3.1.4 TRAINING CHARACTERISTICS
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Figure 6: Accuracy (%) of label smoothing with
various smoothing factors on PreAct ResNet-18.

In Figure 5, we plot the training loss and valida-
tion accuracy across an extended training period,
namely 2k training epochs, of LaMix, Mixup,
and CutMix with PreAct ResNet-18 on Cifar100.

Figure 5 shows that the training loss of LaMix
(thin red curve) maintains a relatively higher
level than the other two methods, allowing the
model to keep tuning the networks. Promisingly,
as shown by the accuracy curve (wide red), even
training for a long time, LaMix is not overfitting
the training set.

3.1.5 PERFORMANCE ON SHALLOWER,
DEEPER, AND WIDER NETWORKS

We also test LaMix using different network ar-
chitectures on Cifar100, including a shallow network LeNet (Lecun et al., 1998), a wider network
WideResNet-28-10 (Zagoruyko & Komodakis, 2016), and the 121 layers deep network DenseNet-
121 (Huang et al., 2017). For these networks, we use the implementation from Facebook 3.

Similar to that of using PreAct ResNet-18 and ResNet-50, LaMix performed consistently on par with
or superior to the comparison models on these three additional network architectures.

3.1.6 COMPARISON WITH LABEL SMOOTHING TECHNIQUE

Figure 7: Left: two classes of Cifar10 testing
images; The right three depict the visualized CAMs
of LaMix, Mixup, and CutMix, respectively.

We also compare our method LaMix with label
smoothing techniques as presented in (Müller
et al., 2019; Pereyra et al., 2017; Szegedy et al.,
2016). These techniques train models with soft
targets that are a weighted average of the hard
targets and the uniform distribution over labels
with a smoothing factor, aiming at preventing
the network from becoming over-confident. We
varies the smoothing factor from 0.1 to 0.9 on
PreAct ResNet-18 for Cifar100. Accuracy re-
sults are presented in Figure 6.

Results in Figure 6 show that label smoothing
can improve the predictive accuracy of PreAct ResNet-18 if the smoothing factor being tuned properly,
but even the best accuracy obtained is still far below that achieved by LaMix. For example, the best
accuracy 78.47% obtained by PreAct ResNet-18 is with label smoothing factor of 0.2, which is still
below the 80.62% achieved by LaMix.

3.1.7 CLASS ACTIVATION MAPPING (CAM) VISUALIZATION

After the 400 training epochs, we, in Figure 7, depict the CAM maps (Zhou et al., 2016) of two
classes (bird and frog) using testing samples from Cifar10. The test images are on the left, and the

3https://github.com/facebookresearch/mixup-cifar10/blob/master/models/
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visualization CAMs created by LaMix, Mixup, and CutMix are depicted on the second left, second
right, and the right, respectively. One can see from Figure 7 that, LaMix tends to focus on narrower
discriminative regions of the images than Mixup and CutMix.

3.1.8 REGULARIZATION EFFECT OF THE SYNTHETIC SAMPLES

We also visualize the impact of the synthetic samples created by LaMix. We present the results of
three classes (i.e., Cat, Dog, and Deer) in Cifar10 with a 2D bottleneck hidden representation in
the middle of the network. In specific, following the 512 filters generated by the PreAct ResNet-18
(namely the layer before the Softmax layer), we use a fully-connected Tanh layer of 2 units as a
bottleneck layer, followed by two fully-connected Tanh layers with 100 and 512 units respectively.
We visualize the 2D bottleneck representation for the original input samples at the 100th, 400th,
700th, and 1kth training epoch. For the last three, the training errors were 100%. Figure 8 depicts the
results, with different colors for the three classes.

Figure 8: 2D data embeddings of three classes in Cifar10 at the 100th, 400th, 700th, and 1kth epoch.

Results in Figure 8 show that, as the learning progresses, the embeddings for the training samples are
tuned gradually towards separating the three classes and the model achieves 100% accuracy at the
400th epoch (second left). On the right two subfigures (with training accuracy of 100%), the network
keeps tuning using the newly created samples. At the 1000th epoch (right), the input embeddings are
separated into three tight clusters with distance far away than that of the 400th epoch (second left).
These results suggest that the synthetic samples help LaMix create tight representation cluster for
training samples in each class and widen the gap between these clusters. These turnings happened
long after the training accuracy on the original training set was not able to further increase.

3.2 COMPARE WITH LEARNING TO MIXING METHOD

In this section, we compared LaMix with the state-of-the-art learning to mixing variant of Mixup,
namely the PuzzleMix (Kim et al., 2020). We use the authors’ code published at 4. We trained the
networks for 600 epochs as implemented in the provided source codes, and kept all the settings in
the codes. Each reported error is the mean of five runs, on a NVIDIA GTX TitanX GPU with 12GB
memory. In this set of experiments, the β in LaMix was set as 1.0 unless otherwise specified.

MNIST Fashion SVHN Cifar10 Cifar100

PreAct ResNet-18
Vanilla 0.62±0.05 4.78±0.19 3.64±0.42 5.19±0.30 24.19±1.27
Puzzle 0.57±0.04 4.18±0.06 2.80±0.04 3.16±0.09 19.56±0.30
LaMix 0.56±0.14 4.12±0.04 2.92±0.09 3.17±0.10 19.91±0.28

ResNet-50
Vanilla 0.61±0.05 4.55±0.14 3.22±0.05 4.83±0.30 23.10±0.62
Puzzle 0.49±0.02 3.99±0.07 2.44±0.04 2.55±0.13 16.75±0.22
LaMix 0.51±0.02 3.99±0.05 2.33±0.04 2.80±0.02 16.69±0.17

Table 3: Error rate (%) of the testing methods with PreAct ResNet-18 and ResNet-50 as baselines.
We report mean scores over 5 runs with standard deviations (denoted ±).

Results on the five testing datasets as used to evaluate the random input mixing methods in Section 3.1
are presented in Tables 3. Tables 3 shows that LaMix performed on par with the PuzzleMix in terms
of accuracy obtained. As shown in the table, LaMix obtained very similar accuracy on all the testing
cases as the PuzzleMix method, except for the ResNet-50 on the Cifar10 dataset, which PuzzleMix
slightly outperformed LaMix with 0.25%. These results suggest that mixing the input features with a
range of mixing ratios λs in PuzzleMix can be bypassed without degrading the predictive accuracy.

4https://github.com/snu-mllab/PuzzleMix
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3.2.1 EXPERIMENTS ON TINY-IMAGENET

Tiny-ImageNet

PreAct ResNet-18 PuzzleMix 36.38±0.23
LaMix 36.32±0.36

ResNet-50 PuzzleMix 30.73±0.22
LaMix 30.68±0.24

Table 4: Error rate (%) on Tiny-ImageNet.

The authors’ codes for PuzzleMix also in-
clude settings for running PuzzleMix on
Tiny-ImageNet (Chrabaszcz et al., 2017),
so here we also evaluated LaMix us-
ing this dataset. This dataset has 200
classes, each with 500 training and 50
test 64x64x3 images. We presented the
results in Table 4.

Results in Table 4 show that LaMix ob-
tained similar error rates when compared
with PuzzleMix on this dataset. For both testing network architectures, namely PreAct ResNet-18
and ResNet-50, the accuracy difference between LaMix and PuzzleMix is marginal. These results
further indicate that the input mixing effort with a range of mixing ratios λs in the learning to mixing
variant PuzzleMix can be bypassed to conduct effective model regularization.

4 RELATED WORK

Various variants of the Mixup (Zhang et al., 2018) method have been introduced, devoting to creating
a set of mixed inputs by either randomly mixing the inputs (Guo, 2020; Guo et al., 2019; Tokozume
et al., 2018a;b; Verma et al., 2019; Yun et al., 2019; Zhang et al., 2018) or learning to mixing the
informative features from an input pair (Dabouei et al., 2020; Kim et al., 2020; Li et al., 2020a;b;
Walawalkar et al., 2020). In the former category, Mixup (Zhang et al., 2018) mixes all the input
features with a random mixing ratio. CutMix (Yun et al., 2019) creates a mixed input by copying
a box of pixels from one image and pasted it to the other image. The second family of approaches
aim to learn to mixing important input features (Dabouei et al., 2020; Kim et al., 2020; Li et al.,
2020a;b; Walawalkar et al., 2020). For example, the recent method PuzzleMix (Kim et al., 2020)
leverages the optimal transport to combine the identified salient features from the inputs. There is
also a method called Manifold Mixup (Verma et al., 2019), which conducts feature interpolation in
addition to mixing the input pair. This approach performs feature mixing on a randomly selected
layer of the networks. Unlike these methods which generate a set of mixed inputs from a sample pair,
our strategy creates only one mixed input by averaging the features from a given sample pair.

Our method also relates to the label smoothing techniques, which regularize the output distribution of
neural models to penalize high-confidence softmax distributions (Müller et al., 2019; Pereyra et al.,
2017; Szegedy et al., 2016). These techniques train models with soft targets that are a weighted
average of the hard targets and the uniform distribution over labels with a smoothing factor. These
smoothing methods, however, do not relate the smooth labels with the associated features but utilize
uniform label smoothing. Our approach learns to form soft targets based on the features of the input
pair and the states of the evolving networks.

The generation of the global soft labels in LaMix is also related to how the training targets generated
by self-distillation methods (Ahn et al., 2019; Furlanello et al., 2018; Hinton et al., 2015; Mobahi
et al., 2020; Yang et al., 2019). However, self-distillation treats the final predictions as target labels for
a new round of training, and the teacher and student architectures are identical (Mobahi et al., 2020).
In LaMix, the classifier network and the network for the global soft label have different architectures,
and the training targets for the classification model are augmented by the global soft labels.

5 CONCLUSION AND FUTURE WORK

We contributed a finding that one can bypass the effort needed for input mixing with a range of mixing
ratios in Mixup-based approaches to conduct effective pairwise, label-variant model regularization.
Consequently, one can mitigate creating noisy synthetic samples from the given inputs or reduce the
computation cost required for selecting salient regions from the inputs.

Our observation may shed light on how one may conduct label-variant data augmentation in domains
that are expensive to perform input mixing with a range of mixing ratios.
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6 ADDITIONAL EXPERIMENTS

6.1 MIXUP PLUS LABEL SMOOTHING

We conducted experiments of stacking uniform label smoothing (with coefficients of 0.1, 0.2, 0.3
and 0.4) on top of Mixup, using PreAct ResNet-18 and ResNet-50 on Tiny ImageNet, Cifar100 and
Cifar10. We presented the results in Table 5.

Dataset network LaMix Mixup Mixup+ULS0.1 Mixup+ULS0.2 Mixup+ULS0.3 Mixup+ULS0.4

TinyImageNet ResNet18 34.40±0.26 41.68±0.35 42.31 ±0.34 45.19±0.68 60.58±0.59 78.48±0.53
ResNet50 28.85±0.15 39.09±0.28 42.58 ±0.39 59.25±0.91 81.06±0.24 91.82±0.37

Cifar100 ResNet18 19.38±0.16 21.10±0.21 21.51±0.51 21.41±0.55 20.94±0.49 20.95±0.49
ResNet50 18.60±0.69 19.48±0.48 21.58 ±0.86 20.87±0.51 21.64±0.41 21.18 ±0.58

Cifar10 ResNet18 3.82±0.18 3.88±0.32 4.00±0.17 3.95±0.13 4.06±0.04 4.06±0.03
ResNet50 3.60±0.24 4.29±0.28 4.02±0.27 4.09±0.10 4.19±0.18 4.68±0.79

Table 5: Error rate (%) of the testing methods with PreAct ResNet-18 and ResNet-50 as baselines.
We report mean scores over 5 runs with standard deviations (denoted ±).

These results show that label smoothing degraded the accuracy of vanilla Mixup in the cases of
Cifar100, Cifar10, and Tiny ImageNet. Such accuracy degradation is due to the two layers of label
smoothing in Mixup. Research has shown that the mixing label in the original Mixup has the effect
of label smoothing (Carratino et al., 2020). In this sense, adding another label smoothing regularizer
on top of the vanilla Mixup means that the Mixup will have two layers of label smoothing regularizer,
which may mess up the regularization effect, thus degrading the accuracy as shown in the results
above.

6.2 RANDOM INPUT MIXING IN TINY IMAGENET

We conducted additional experiments of random input mixing on Tiny ImageNet, and present the
results in Table 6. Similar to that in Table 1, results here again suggest that, although using the same
mixed image for a wide range of mixing ratios, LaMix is able to assign a set of appropriate soft labels
to the same image, so that they can effectively regularize the training to achieve regularization effect
as effective as that of random input mixing methods, which rely on mixing different features from a
given image pair to form a set of images.

Tiny ImageNet Vanilla Mixup CutMix LaMix
PreAct ResNet18 42.61±0.41 41.68±0.35 43.01 ±0.36 34.40±0.26
ResNet50 40.89±0.36 39.09±0.28 41.36±0.44 28.85±0.15

Table 6: Error rate (%) of the testing methods with PreAct ResNet-18 and ResNet-50 as baselines on
Tiny ImageNet. We report mean scores over 5 runs with standard deviations (denoted ±).

6.3 WITHOUT ORIGINAL TRAINING SAMPLES

Without the original samples, the LaMix method significantly degraded its accuracy. We conducted
the experiments and provided the results in Table 7.

Dataset Network LaMix LaMix w/o original samples

Cifar100 PreAct ResNet18 19.38 ±0.16 25.74±0.43
ResNet50 18.60±0.69 25.57±0.36

Cifar10 PreAct ResNet18 3.82±0.18 5.90±0.31
ResNet50 3.60±0.24 6.39±0.59

Table 7: Error rate (%) of the testing methods with PreAct ResNet-18 and ResNet-50 as baselines.
We report mean scores over 5 runs with standard deviations (denoted ±).

The reason here is that, without the original training samples, the training samples could be very
different from the testing samples. Also, it is interesting to see that ResNet50 obtained inferior results
than PreAct ResNet18 in some cases when removing the original training samples. This indeed
suggests that Resnet50 fits the mixed training samples better due to its expressive power, but those
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mixed training samples may be far from the testing samples due to the lack of the original training
samples.

6.4 WITHOUT GLOBAL SOFT LABEL

Without the global soft label, namely pij , the LaMix model significantly degraded the accuracy. We
conducted the experiments and provided the results in Table 8

Dataset Network LaMix LaMix w/o global soft label

Cifar100 PreAct ResNet10 19.38±0.16 23.03±0.35
ResNet50 18.60±0.69 21.34±0.70

Cifar10 PreAct ResNet10 3.82±0.18 5.07± 0.38
ResNet50 3.60±0.24 4.78±0.14

Table 8: Error rate (%) of the testing methods with PreAct ResNet-18 and ResNet-50 as baselines.
We report mean scores over 5 runs with standard deviations (denoted ±).
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