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Abstract001

Language comprehension relies on integrat-002
ing information across both local words and003
broader context. We propose a method to quan-004
tify the information integration window of large005
language models (LLMs) and examine how sen-006
tence and clause boundaries constrain this win-007
dow. Specifically, LLMs are required to predict008
a target word based on either a local window009
(local prediction) or the full context (global pre-010
diction), and we use Jensen-Shannon (JS) di-011
vergence to measure the information loss from012
relying solely on the local window, termed the013
local-prediction deficit. Results show that inte-014
gration windows of both humans and LLMs015
are strongly modulated by sentence bound-016
aries, and predictions primarily rely on words017
within the same sentence or clause: The local-018
prediction deficit follows a power-law decay as019
the window length increases and drops sharply020
at the sentence boundary. This boundary effect021
is primarily attributed to linguistic structural022
markers, e.g., punctuation, rather than implicit023
syntactic or semantic cues. Together, these re-024
sults indicate that LLMs rely on explicit struc-025
tural cues to guide their information integration026
strategy.027

1 Introduction028

Information in human language is hierarchically029

distributed across multiple scales, including words,030

sentences, and discourse (Chomsky, 1957; Phillips,031

2003; Berwick et al., 2013). Evidence from cog-032

nitive science has demonstrated that information033

integration in human language processing is con-034

strained by the multi-scale structure of language,035

which is thought to be central to hierarchical orga-036

nization of the human brain (Hickok and Poeppel,037

2007; Lerner et al., 2011; Friederici et al., 2017;038

Regev et al., 2024). How to integrate informa-039

tion across these time scales of language is also a040

central consideration when designing and evaluat-041

ing large language models (LLMs). For instance,042

transformer-based LLMs can more effectively in- 043

tegrate over words than recurrent neural networks 044

(Vaswani et al., 2017; Devlin et al., 2019; Raffel 045

et al., 2020; Touvron et al., 2023). However, it 046

remains unclear how LLMs integrate multi-scale 047

information despite having theoretical access to 048

all input tokens (Clark et al., 2019; Tenney et al., 049

2019). One possibility is that, like humans, LLMs 050

may dynamically adjust their information integra- 051

tion according to language structures. Here, we 052

examine whether the information integration win- 053

dows of LLMs are modulated by a key structure of 054

language, i.e., sentence boundary. 055

The information integration window is a well- 056

established concept for studying human cognition, 057

including human language comprehension (Poep- 058

pel, 2003; Hasson et al., 2008; Ding et al., 2016; 059

Norman-Haignere et al., 2022), and is recently in- 060

troduced to characterize information integration be- 061

havior of LLMs (Keshishian et al., 2021; Skrill and 062

Norman-Haignere, 2023). For example, Skrill and 063

Norman-Haignere (2023) examine the information 064

integration window by analyzing how a perturba- 065

tion influences the internal representations within 066

an LLM and reveals a dynamically changing inte- 067

gration window across different layers. Here, we 068

propose a method to characterize the information 069

integration window purely based on model behav- 070

ior, so that (1) the method can be easily applied to 071

both humans and LLMs, and facilitate comparisons 072

between LLMs and between LLM and human; (2) 073

the method avoids analyzing a large number of in- 074

ternal nodes within an LLM, which may or may 075

not directly contribute to model behavior. 076

In human studies, the information integration 077

window is shown to be gated by structural bound- 078

aries in language. One example is the sentence 079

wrap-up effect, in which the reading time is much 080

longer for the final word of a sentence compared 081

with non-sentence-final words (Rayner et al., 1989; 082

Hirotani et al., 2006; Stowe et al., 2018). No- 083
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Figure 1: Demonstration of the windowed prediction test. Models are required to predict the next word based on
either a local window or the full context. Predictions based on the local window are compared with predictions
when the full context is available (normal condition).

tably, this effect diminishes when the sentence-final084

period is removed (Warren et al., 2009). Simi-085

larly, in the brain, a closure positive shift (CPS)086

EEG response typically occurs at the end of an087

intonation phrase in speech, and can be elicited088

by a comma during text reading (Steinhauer and089

Friederici, 2001). It has been hypothesized that090

punctuation is a structural marker that guide in-091

formation integration across words (Rayner et al.,092

2000; Steinhauer, 2003; Moore, 2016). A main093

goal of the current study is to investigate whether094

structural boundaries modulate the information in-095

tegration windows of LLMs, using a novel win-096

dowed prediction test to characterize the informa-097

tion integration window.098

The windowed prediction test requires LLMs to099

predict the next word based on either a local win-100

dow (local prediction) or the full context (global101

prediction). By systematically varying the window102

length, we characterize the integration windows103

of LLMs using the JS divergence between the pre-104

dicted distributions under local and global condi-105

tions. Based on the windowed prediction test, we106

conduct a series of experiments based on GPT-2107

(Radford et al., 2019) and Qwen2.5 (Qwen et al.,108

2025), and compare the results with human par-109

ticipants. It is found that the integration windows110

of both humans and LLMs are gated by sentence 111

boundaries. Furthermore, the boundary-gating ef- 112

fect is primarily driven by overt structural markers, 113

i.e., punctuation, rather than syntactic or semantic 114

cues. The contributions of our study include: (1) 115

introducing the windowed prediction test to charac- 116

terize the information integration windows of both 117

humans and LLMs, and (2) demonstrating that the 118

windows are gated by linguistic structural markers. 119

2 Data construction 120

2.1 Tasks 121

In a windowed prediction test, LLMs are required 122

to predict the next word based on the model input, 123

which is divided into two parts: the local window 124

and the broader context (Fig. 1). The total length of 125

the local window and the broader context is always 126

100 words (see Appendix B for an extended length 127

setting), while the window length is systematically 128

varied. Words in the window remain unchanged 129

across conditions, whereas the context is either 130

intact (the normal condition) or transformed into 131

one of three manipulated conditions: 132

1. window-only: The broader context is re- 133

moved and the model input only consists of 134

the window. 135
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2. shuffled words: The order of words in the136

broader context is randomly shuffled.137

3. random words: Each word in the broader138

context is replaced by a random word.139

These conditions are designed to test the model’s140

ability to utilize partial or degraded context, rang-141

ing from relying solely on local input (window-142

only), to integrating shuffled distal context143

(shuffled words), to remaining undistracted by ir-144

relevant distal context (random words). Model145

predictions under each manipulated condition are146

compared with predictions based on the full context147

(normal).148

2.2 Test Materials149

For both Chinese and English, the test materials150

are articles sourced from three distinct domains:151

Wikipedia, news, and books (Koupaee and Wang,152

2018; Cui et al., 2019; Kryściński et al., 2021). All153

articles are publicly available and distributed under154

the CC-BY-SA 3.0 license. We exclude articles that155

contain characters from other languages (i.e., non-156

Chinese or non-English), as well as those shorter157

than 300 characters (for Chinese) or 300 words (for158

English). Finally, for each language, we retain a159

total of 7,500 articles, with 2,500 articles from each160

domain.161

2.3 Window Length and Distance to Sentence162

Onset163

We define two parameters, the window length and164

the distance to sentence onset, to examine the in-165

formation integration window at different positions166

within a sentence. The distance to sentence onset167

refers to the number of words between the target168

word (i.e., the word to be predicted) and the first169

word of the same sentence. The window length170

refers to the number of words included in the win-171

dow (Fig. 1). When the distance to sentence onset172

exceeds the window length, the window contains a173

sentence fragment. In contrast, when the distance174

to sentence onset is less than or equal to the window175

length, the window contains a complete sentence.176

3 Experiment 1: Modulation by Sentence177

Boundary178

3.1 Experimental setup179

In Experiment 1, we examined whether sentence180

boundaries modulate the information integration181

windows of both humans and LLMs. For LLMs,182

we tested the base version of GPT-2 and Qwen2.5- 183

1.5B on Chinese and English articles. For GPT-2, 184

we used separate Chinese and English model vari- 185

ants for testing. In contrast, since Qwen2.5-1.5B 186

was a multilingual model (Qwen et al., 2025), we 187

used the same model variant for both languages. 188

Both models were only pretrained without any task- 189

specific fine-tuning, and were required to predict 190

the next word based on the input. We varied the 191

distance to sentence onset from 1 to 20 words. For 192

each distance to sentence onset, we sampled 1,000 193

articles and truncated the articles to meet the cri- 194

teria. For each article, the window length was in- 195

creased from 1 to 20 words, starting from the final 196

word in the article. No linguistic structural markers 197

(e.g., dots and commas) occurred within the win- 198

dow. The context outside the window was trans- 199

formed into one of the four different conditions 200

described previously. In total, we constructed 20 × 201

1,000 × 20 × 4 tests for each model and language. 202

All experiments were repeated across 10 different 203

random seeds. 204

We used Jensen-Shannon (JS) divergence to mea-
sure the information loss from relying solely on a
local window instead of the full context, referred
to as the local-prediction deficit:

Deficit(w, d) = JS(Nw,d,Mw,d)

where w denotes the window length and d denotes 205

the distance to sentence onset. Nw,d and Mw,d rep- 206

resent the output probability distributions under the 207

normal and manipulated conditions, respectively, 208

for an input constructed based on a given w and d. 209

We utilized the local-prediction deficits to construct 210

a two-dimensional deficit matrix (Fig. 2a), where 211

each element in the matrix represented the average 212

local-prediction deficit for a specific window length 213

and distance to sentence onset. We hypothesized 214

that words outside sentence boundaries would have 215

less impact on model predictions than words within 216

the boundary. Therefore, the diagonal of the deficit 217

matrix was expected to be salient since the window 218

exceeded the sentence boundary on the diagonal. 219

To quantify this boundary effect, we first performed 220

a regression analysis to control the confounding 221

effects of the window length and distance to sen- 222

tence onset (see Appendix A for more details). The 223

strength of boundary effect was then quantified as 224

the difference in residual deficits between adjacent 225

positions on either side of the diagonal, averaged 226

across all distances to sentence onset. 227
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Figure 2: Divergence between predictions based on the full context and predictions based on a local window in
Experiment 1. a. Example of the deficit matrices. In tests above the diagonal, the local window does not cover
the current sentence. In tests below the diagonal, the local window exceeds the current sentence. The sentence
boundary is highlighted. b. Deficit matrices for GPT-2 across conditions and languages. See the results of Qwen2.5
in Appendix Fig. 1.

We conducted the human experiment using the228

Chinese version of Experiment 1. To control the229

experiment time, we fixed the distance to sentence230

onset at 10 words, and varied the window length231

from 8 to 12 words. Fifty articles that met the crite-232

ria were sampled. The boarder context of each arti-233

cle was either unchanged (normal) or replaced by234

randomly selected words (random words). A total235

of 100 participants were recruited, with each partic-236

ipant receiving 50 tests. In each test, the participant237

was shown an article and instructed to continue the238

article by writing 1 to 6 Chinese character(s). Test239

assignments were counter-balanced, with each par-240

ticipant receiving 10 tests per window length and241

25 tests per condition. All participants provided242

written consent and were paid. Human responses 243

were pooled to compute the output distribution of 244

the first continued character. JS divergence was 245

then calculated between the output distributions 246

under the normal and random words conditions. 247

3.2 Result 248

The results of GPT-2 are shown in Fig. 2b, with 249

the full set of results presented in Appendix Fig. 1. 250

For both Chinese and English, the local-prediction 251

deficits decreased as the window length increased, 252

showing a sharp drop when the window crossed the 253

sentence boundary and then stabilized. This pattern 254

resulted in a salient diagonal in the deficit matrices 255

for GPT-2, indicating that the model predictions 256
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Figure 3: The boundary effect in the local-prediction deficits. a. Local-prediction deficits in the English version of
Experiment 1, under the shuffled words condition. The sentence boundary is marked with a star. b. The strength
of boundary effect for each model, i.e., GPT-2, Qwen2.5, and GPT-2 with randomly initialized weights. Each
dot represents data from a single model run under a different random seed. Error bars represent 95% confidence
intervals (CIs) of the mean across runs, estimated using bootstrap. c. Comparison between humans and models in
the Chinese version of Experiment 1, under the random words condition.

relied more on words within the sentence bound-257

aries than on words outside the boundaries across258

all conditions. Additionally, the local-prediction259

deficits exhibited a non-linear decay as the window260

length increased (Fig. 3a). We fitted multiple lin-261

ear and nonlinear functions to the deficit matrices262

for each model, and found that a power-law func-263

tion provided the best fit (see Appendix Fig. 2).264

Based on the residuals obtained after fitting, we265

quantified the strength of boundary effect to assess266

how sentence boundaries modulated the windows.267

As shown in Fig. 3b, GPT-2 and Qwen2.5 exhib-268

ited a significant boundary effect in both languages,269

whereas no boundary effect was observed in the270

model without language training (i.e., GPT-2 with271

randomly initialized weights). For both GPT-2 and272

Qwen2.5, the shuffled words and random words273

conditions consistently elicited stronger boundary274

effects compared to the window-only condition.275

The results indicated that sentence boundaries sig-276

nificantly gated the contribution of distal context277

beyond the current sentence, and this boundary-278

gating effect strengthened when degraded context279

was provided. 280

The results of the human experiment are shown 281

in Fig. 3c. A boundary effect was also observed in 282

human responses, though the strength was weaker 283

than that in GPT-2 and Qwen2.5. This discrepancy 284

might reflect that humans could implicitly infer 285

sentence boundaries from the context – The local- 286

prediction deficits of humans decreased sharply be- 287

fore the sentence boundary (i.e., at a window length 288

of 9 words; see Appendix Fig. 3). In contrast, lan- 289

guage models might rely more heavily on explicit 290

cues (e.g., punctuation) to identify the boundary. 291

Altogether, these results demonstrated that the in- 292

formation integration windows of both humans and 293

LLMs were gated by sentence boundaries, and such 294

boundary-gating effect might arise from language 295

training. Experiment 1 was also conducted on a 296

larger language model (i.e., Qwen2.5-72B) and 297

with a longer context (context length + window 298

length = 1000 words) to examine the generalizabil- 299

ity of our results. The results remained consistent 300

(see Appendix B and Appendix Fig. 4). 301
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Figure 4: Results of models in Experiment 2. a. Experimental setup of Experiment 2. We separately construct the
sentences without punctuation and meaningless sentences for testing. b. The strength of boundary effect for each
model when structural markers are removed. c. The strength of boundary effect for each model when semantic cues
are disrupted.

4 Experiment 2: Dependence on Different302

Boundary Cues303

4.1 Experimental setup304

As suggested in Experiment 1, LLMs used sentence305

boundaries to modulate the integration windows.306

However, sentence boundaries can manifest based307

on various cues, including implicit syntactic bound-308

aries, semantic coherence, and linguistic structural309

markers such as punctuation. Experiment 2 aimed310

to disentangle the contributions of different bound-311

ary cues by selectively removing structural markers312

and semantic cues from the model input. We tested313

GPT-2 and Qwen2.5-1.5B on inputs where either314

structural markers or semantic cues were removed.315

To remove structural markers, we eliminated the316

last punctuation from the model input (Fig. 4a).317

To disrupt semantic cues, we constructed meaning-318

less sentences by randomly substituting nouns and319

verbs with other words of the same part of speech. 320

All other experimental setups were consistent with 321

those of Experiment 1. 322

4.2 Result 323

The strength of boundary effect in Experiment 2 324

is shown in Figs. 4b and 4c. When structural 325

markers were removed, the boundary effect nearly 326

disappeared (Fig. 4b), indicating that GPT-2 and 327

Qwen2.5 failed to utilize implicit syntactic cues to 328

modulate the integration window. For the meaning- 329

less sentences, where semantic cues were disrupted, 330

the boundary effect diminished compared to Exper- 331

iment 1 but was still retained (Fig. 4c). These 332

results suggested that both GPT-2 and Qwen2.5 333

primarily relied on linguistic structural markers, 334

rather than implicit syntactic and semantic cues, to 335

gate the information integration. 336
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Figure 5: Results of models in Experiment 3. a. Experimental setup of Experiment 3. We focus on comma-
conjunction pairs as structural markers. b. The strength of boundary effect for each model when both commas and
conjunctions are retained. c. The strength of boundary effect for each model when only conjunctions are retained.

5 Experiment 3: Modulation by Different337

Structural Makers338

5.1 Experimental setup339

Experiments 1 and 2 demonstrated that the integra-340

tion windows of LLMs were primarily modulated341

by linguistic structural markers. In Experiment342

3, we investigated how different types of markers343

modulated the integration windows. Specifically,344

we focused on comma-conjunction pairs (e.g., “,345

and”, “, or”, “, but”) as structural markers (Fig. 5a),346

and calculated a revised distance to sentence onset347

based on these markers (i.e., the number of words348

between the target word and the comma). The re-349

vised distance was used to select the articles for350

testing. The comma was either retained or removed351

to isolate the effect of commas and conjunctions.352

We tested GPT-2 and Qwen2.5 in Experiment 3,353

and all other experimental setups were consistent354

with those in Experiment 1.355

5.2 Result356

The strength of boundary effect in Experiment 3 is357

shown in Figs. 5b and 5c. When both commas and358

conjunctions were retained, a significant bound-359

ary effect was observed in GPT-2 and Qwen2.5360

in Chinese (Fig. 5b). However, in English, the361

boundary effect was relatively weak for Qwen2.5362

and absent for GPT-2. One possible explanation 363

for this cross-linguistic pattern was that Chinese 364

generally contained fewer complex relative clauses 365

than English (Li and Thompson, 1989; Lin, 2011). 366

In Chinese, a comma was typically followed by a 367

complete sentence rather than a dependent clause, 368

which might lead to stronger sentence boundary 369

cues being associated with the comma. Language 370

models might capture the cross-linguistic differ- 371

ence, and therefore rely more heavily on commas 372

to modulate the integration window in Chinese than 373

in English. 374

When commas were removed (Fig. 5c), the 375

strength of boundary effect declined across all mod- 376

els and languages. However, a residual effect re- 377

mained for Qwen2.5 in Chinese. The results sug- 378

gested that more extensive language training might 379

allow the model to utilize more structural markers 380

to modulate the integration window, and therefore 381

Qwen2.5 appeared to rely not only on commas, 382

but also on conjunctions to guide its information 383

integration. 384

6 Related work 385

Recent advancements in LLMs have increasingly 386

focused on enabling language comprehension over 387

extremely long context. While it is crucial for 388
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LLMs to extract relevant information from such389

extended sequences, there is growing evidence390

that LLMs prioritize information within a lim-391

ited span of preceding context (Keshishian et al.,392

2021; Skrill and Norman-Haignere, 2023). This393

phenomenon parallels findings from cognitive sci-394

ence, which suggest that humans integrate informa-395

tion within constrained temporal windows during396

language comprehension (Poeppel, 2003; Hasson397

et al., 2008; Norman-Haignere et al., 2022). In-398

spired by these findings, recent studies have at-399

tempted to characterize information integration400

windows of LLMs by analyzing internal represen-401

tations such as activations of hidden states. For402

instance, Keshishian et al. (2021) have explored403

the integration windows of deep speech models404

using the temporal context invariance paradigm,405

while Skrill and Norman-Haignere (2023) have406

developed a word-swap procedure that reveals a407

dynamically changing integration window across408

different layers in LLMs. However, prior work409

has predominantly focused on a large number of410

internal nodes within LLMs, which cannot intu-411

itively inform how these integration windows may412

contribute to model behavior. Our study aims to413

directly analyze information integration in terms of414

model behavior and compare it with that of humans415

under the same experimental paradigm. Further-416

more, we focus on whether the integration windows417

are gated by sentence boundaries, examining the418

effects of different boundary cues in a multilingual419

setting.420

The structure of language can manifest based on421

various cues, including implicit syntactic bound-422

aries and semantic coherence. Researchers have423

explored the encoding of structured sentence repre-424

sentations (e.g., dependency and constituency) in425

LLMs. Such representations can be reconstructed426

from internal activations (Hewitt and Manning,427

2019; Arps et al., 2022) or model behavior (Cao428

et al., 2020; Liu et al., 2024), and can influence429

the processing dynamics of LLMs (Kovaleva et al.,430

2019; Wu et al., 2020). Our study contributes to431

this body of literature, and further demonstrates432

that explicit linguistic structural markers can also433

gate the information integration in LLMs. One434

of the interesting findings of our study is that the435

boundary-gating effect disappears when the linguis-436

tic structural markers are removed, which echoes437

the sentence wrap-up effect observed in human438

reading. The sentence wrap-up effect refers to in-439

creased reading times at sentence-final words, and440

this effect diminishes when the sentence-final mark- 441

ers are removed (Warren et al., 2009; Stowe et al., 442

2018). It has been argued that the wrap-up effect 443

reflects the low-level reaction to visual cues (Hill 444

and Murray, 2000). Our results show that a simi- 445

lar effect of markers arises in LLMs, even though 446

these models lack any visual modality. This sug- 447

gests that the wrap-up effect may not merely reflect 448

a hesitation response to visual stimuli, but instead 449

emerges as a general information integration strat- 450

egy—one that facilitates structural integration near 451

sentence boundaries across both biological and ar- 452

tificial systems. 453

In addition, processing long context imposes sig- 454

nificant computational and memory costs due to the 455

quadratic complexity of attention in transformer- 456

based architectures (Vaswani et al., 2017; Du- 457

man Keles et al., 2023). To address this, some 458

researchers have proposed hybrid architectures that 459

combine sliding window mechanisms with retrieval 460

modules (Beltagy et al., 2020; Xiao et al., 2024; 461

Yuan et al., 2025). Our findings suggest that LLMs 462

may already implicitly adopt a sliding-window-like 463

mechanism during prediction, independent of ex- 464

plicit architectural designs. We provide behavioral 465

evidence that LLMs prioritize information within 466

sentence boundaries, informing the development of 467

more efficient architectures, such as by dynamically 468

adjusting sliding windows based on language struc- 469

tures. Overall, our study not only offers insights 470

into the internal information integration strategies 471

of current LLMs, but also suggests pathways for 472

improving long-context processing in a more lin- 473

guistically grounded manner. 474

7 Conclusion 475

In summary, our study examines whether infor- 476

mation integration in LLMs is gated by sentence 477

boundaries. Using the windowed prediction test, 478

we show that, for both humans and LLMs, next 479

word prediction relies more on words within the 480

same sentence or clause than on words beyond 481

the sentence or clause boundary. This boundary- 482

gating phenomenon is not observed in a randomly 483

initialized model. Furthermore, the effect of sen- 484

tence/clause boundaries is primarily attributed to 485

linguistic structural markers, rather than syntactic 486

and semantic cues. These results indicate LLMs 487

rely on structural markers to guide their informa- 488

tion integration strategies. 489
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Limitations490

Although our study systematically examined the491

information integration windows of LLMs, we did492

not investigate how such windows emerged. The493

differences between the initialized and pretrained494

models suggested that the structured integration495

window might arise from language training, but the496

specific linguistic features responsible for these497

windows remained unclear. Future work could498

explore the integration windows across different499

model sizes and amounts of training data, or ana-500

lyze how the windows evolve over the course of501

pretraining.502

Our study focused on sentence boundaries as a503

key structure of language, since sentence bound-504

aries represented a relatively well-defined language505

structure. However, natural language is hierarchi-506

cally structured at many scales. Future research507

could explore whether information integration in508

LLMs exhibits hierarchical organization across lin-509

guistic scales, from phrases to discourse.510
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A Regression Analysis753

We fit the deficit matrices from humans and lan-754

guage models using the window length and dis-755

tance to sentence onset, and then calculated the756

strength of boundary effect based on the residuals757

after fitting. All matrices were normalized by the758

maximum value before regression. We used three759

functions to fit the deficit matrices:760

1. linear: D(w, d) = −x1 · w − x2 · d+ x3761

2. exponential: D(w, d) = e−x1·w+e−x2·d+x3762

3. power-law: D(w, d) = w−x1 + d−x2 + x3 763

where w denotes the window length, and d denotes 764

the distance to sentence onset. x1, x2, and x3 are 765

fitting parameters. Since the power-law function 766

yielded the best fit in most cases (Appendix Fig. 767

2), it was selected for subsequent analyses. The 768

strength of boundary effect was calculated based 769

on the residuals of the fitted power-law function. 770

B Generalizability to Longer Context and 771

Larger Model 772

We extended Experiment 1 with longer context and 773

larger language models to assess the generalizabil- 774

ity of our results. Long-context articles were ob- 775

tained from Loogle (Li et al., 2024), with only those 776

exceeding 10,000 words retained. For the context 777

length extension, we replicated the English version 778

of Experiment 1 using Qwen2.5-1.5B, with the to- 779

tal length of the context and window set to 1,000 780

words. For model size extension, we conducted the 781

English version of Experiment 1 using Qwen2.5- 782

72B. For the experiment with Qwen2.5-72B, we 783

sampled only 100 articles for each distance to sen- 784

tence onset to reduce computational cost. The re- 785

sults indicated that neither context length nor model 786

size significantly affected the strength of boundary 787

effect (see Appendix Figure 4). 788
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Appendix Figure 1. Deficit matrices for Qwen2.5 across conditions and languages in Experiment 1.

Appendix Figure 2. The regression performance when fitting the deficit matrices. Each dot represents a deficit
matrix under a random seed for GPT-2 or Qwen2.5 in Experiment 1.

Appendix Figure 3. Local-prediction deficits for humans and LLMs in the Chinese version of Experiment 1, under
the random words condition.
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Appendix Figure 4. The strength of boundary effect for Qwen2.5 in the English version of Experiment 1, tested
across two combined context and window lengths (100 vs. 1000 words) and two model sizes (1.5B vs. 72B). The
boundary effect remains generally consistent across different context lengths and model sizes.
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