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ABSTRACT

The vector quantization is a widely used method to map continuous representa-
tion to discrete space and has important application in tokenization for generative
mode, bottlenecking information and many other tasks in machine learning. Vec-
tor Quantized Variational Autoencoder (VQ-VAE) is a type of variational autoen-
coder using discrete embedding as latent. We generalize the technique further,
enriching the probabilistic framework with a Gaussian mixture as the underly-
ing generative model. This framework leverages a codebook of latent means and
adaptive variances to capture complex data distributions. This principled frame-
work avoids various heuristics and strong assumptions that are needed with the
VQ-VAE to address training instability and to improve codebook utilization. This
approach integrates the benefits of both discrete and continuous representations
within a variational Bayesian framework. Furthermore, by introducing the Aggre-
gated Categorical Posterior Evidence Lower Bound (ALBO), we offer a princi-
pled alternative optimization objective that aligns variational distributions with the
generative model. Our experiments demonstrate that GM-VQ improves codebook
utilization and reduces information loss without relying on handcrafted heuristics.

1 INTRODUCTION

Variational autoencoders (VAEs) (Kingma & Welling, 2013) were originally designed for modeling
continuous representations; however, applying them to discrete latent variable models is challenging
due to non-differentiability. A common solution is to use gradient estimators tailored for discrete
latent variables. The REINFORCE estimator (Williams, 1992) is an early example, providing an
unbiased estimate of the gradient but suffering from high variance. Alternatively, methods such
as the Gumbel-Softmax reparameterization trick (Jang et al., 2017; Maddison et al., 2017) allow
for a continuous relaxation of categorical distributions. While these methods introduce bias into the
gradient estimation, they offer the benefit of significantly lower variance, thereby improving training
stability.

Vector Quantized Variational Autoencoders (VQ-VAEs) (Van Den Oord et al., 2017) extend the
VAE framework to discrete latent spaces by discretizing continuous representations through a code-
book via straight-through estimator (STE) (Bengio et al., 2013). Beyond the inherent variance-bias
tradeoff in gradient estimation, VQ-VAEs are known to suffer from codebook collapse, wherein
all encodings converge to a limited set of embedding vectors, resulting in the underutilization of
many vectors in the codebook. This phenomenon diminishes the information capacity of the bot-
tleneck. Takida et al. (2022); Williams et al. (2020) hypothesized that deterministic quantization is
the cause of codebook collapse and introduced stochastic sampling, leading to a entropy term in the
log-likelihood lower bound. While high entropy is generally beneficial, it is inherently incompatible
with Gumbel-Softmax gradient estimation. Various handcrafted heuristics have been proposed to
mitigate this issue, including batch data-dependent k-means (Łańcucki et al., 2020), replacement
policies (Zeghidour et al., 2021; Dhariwal et al., 2020), affine parameterization with alternate op-
timization (Huh et al., 2023), and entropy penalties (Yu et al., 2023). However, as these heuristics
do not derive from the evidence lower Bound (ELBO), they cannot be unified within the variational
Bayesian framework, rendering them ad-hoc solutions lacking a coherent foundation in variational
inference.
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Figure 1: Overview of GM-VQ. First, the encoder deterministically maps the input to proxy latents,
which are then used to retrieve corresponding codewords from the codebook and generate noise. The
codewords and noise are then combined to form the continuous latents. Finally, these continuous
latents are passed through the decoder to produce the final output.

In our work, we propose a Gaussian mixture prior based on VQ-VAE within a variational Bayesian
framework, namely Gaussian Mixture Vector Quantization (GM-VQ, see Figure 1), combining the
benefits of both discrete and continuous representations while avoiding handcrafted heuristics and
strong assumptions. Additionally, to optimize the model and ensure compatibility with the gradient
estimation errors inherent to Gumbel-Softmax, we modify the ELBO by replacing the conditional
categorical posterior with an aggregated categorical posterior, resulting in an novel lower bound,
the Aggregated Categorical Posterior Evidence Lower Bound (ALBO), which minimizes estimation
error while preserving codebook utilization. Concretely, our contributions are as follows:

• To the best of our knowledge, we are the first to apply the Gaussian mixture prior formula-
tion on VQ-VAE with strict adherence to the variational Bayesian framework.

• We introduce Aggregated Categorical Posterior Evidence Lower Bound (ALBO), which is
explicitly designed to be compatible with Gumbel-Softmax gradient estimation.

• We conduct experiments demonstrating improved codebook utilization and reduced infor-
mation loss without relying on handcrafted heuristics.

2 PRELIMINARIES

2.1 DETERMINISTIC VQ-VAE

The VQ-VAE (Van Den Oord et al., 2017), based on the VAE framework (Kingma & Welling,
2013), learns discrete latent representations via vector quantization (Gray, 1984). For simplicity, we
represent discrete latents with a single random variable ẑ here, though in practice, we extract latent
features of various dimensions.

Given an encoder output ẑ from a high-dimensional input x and a latent embedding space (code-
book) M ∈ RC×L, composed of C row vectors µi ∈ RL, selects the discrete latent variable (code-
word) as j = argmini ∥ẑ− µi∥, yielding the approximate posterior distribution q(c | x) ∈ RC :

q(c | x) = [1i=j]
C
i=1 =

{
1, if i = argmini ∥ẑ− µi∥,
0, otherwise.

(1)

Based on the one-hot distribution q(c | x), we have query vector cq = q(c | x) for codebook, the
quantized latent representation is expressed as zc = cTq M = µj ∈ RL.

To handle the non-differentiability of the quantization process, the straight-through estimator (STE)
(Bengio et al., 2013) is applied, with the assumption ∂zc

∂ẑ = I to allow gradient flow. This assump-
tion holds reasonably well when zc does not deviate significantly from ẑ; however, greater devia-
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tions introduce increased bias. To mitigate this issue and enhance gradient estimation, an additional
discretization loss was introduced:

Ldiscretization(ẑ, zc) = ∥ẑ− sg[zc]∥2 + α · ∥sg[ẑ]− zc∥2. (2)

Here, sg[·] represents the stop-gradient operator, and α adjusts the balance between minimizing the
discrepancies between ẑ and zq .

2.2 STOCHASTIC VQ-VAE

One problem of VQ-VAE is that the learned discrete representation uses only a fraction of the
full capacity of the codebook, a problem known as codebook collapse. To solve this problem,
stochastic sampling was introduced by modifying the approximate posterior , shifting from a one-
hot representation to a distribution proportional to the negative squared distance between the encoder
output ẑ and the codewords µc(Roy et al. (2018); Sønderby et al. (2017); Shu & Nakayama (2017)):

q(c | x) = Softmax

(
−∥ẑ− µc∥2

2σ2

)
. (3)

To estimate gradients, the Gumbel-Softmax trick (Jang et al., 2017; Maddison et al., 2017) approx-
imates the categorical distribution as qg(c | x) = Softmaxτ (log qi(c | x) + gi), where gi are
independent and identically distributed (i.i.d.) samples from Gumbel(0,1). The index j is selected
as j = argmaxi q

g
i (c | x), resulting in the quantized representation cq = [1i=j ]

C
i=1.

In this framework, the gradient assumption shifts from ∂zc

∂ẑ = I to ∂cq

∂qg(c|x) = I . This gradient esti-
mation requires a low entropy in q(c | x) to be accurate . When entropy q(c | x) has a higher entropy
the output distribution becomes more uniform. In this scenario, the Gumbel-Softmax trick outputs
values that are less peaked, leading to noisy estimates for gradient-based optimization because the
model becomes less certain about which category is the most likely. This uncertainty increases the
inaccuracy in the gradient estimates. Thus, with a fixed temperature, high entropy in q(c | x) leads
to gradient estimation errors. However, this leads to a problem.

Assuming a uniform prior, the variational bound is:
− log p(x) ≤ Ec∼q(c|x) [− log p(x | c)]−H(q(c | x)) + logC, (4)

which introduces a negative entropy loss that promotes a high-entropy posterior distribution, con-
flicting with low entropy requirement in Gumbel-Softmax trick and resulting in incompatible high
gradient estimation bias.

3 GM-VQ: GAUSSIAN MIXTURE VECTOR QUANTIZATION

To solve the problem mentioned above, we propose a stochastic vector quantization method using
using Gaussian mixture distribution, which we refer to as Gaussian Mixture Vector Quantization
(GM-VQ), with the following encoding and decoding process:

x
Eθ−−→ ẑ

M−→ c ε−→ z
Dϕ−−→ x̃ (5)

In our framework, GM-VQ comprises an encoder Eθ and a decoder Dϕ, parameterized by the deep
neural network weights θ and ϕ, respectively, and interconnected via a codebook M, which contains
the means of Gaussian mixtures. The term ε denotes the Gaussian noise introduced into the process.

Unlike previous works adapted VQ-VAE with Gaussian mixture priors (Takida et al., 2022; Williams
et al., 2020), which directly transmit categorical representations to the decoder, our method explicitly
adds noise to the categorical variables during training, feeding continuous latent variables into the
decoder. While Liu et al. (2021) theoretically demonstrate that discrete representations can enhance
generalization and robustness during evaluation, the codewords in our codebook are continuously
updated throughout training, leading to a non-static categorical representation. By explicitly intro-
ducing noise, our method allows the decoder to adapt in parallel with the evolving codebook.
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Figure 2: Probabilistic Graphical Model depicting the Gaussian Mixture Vector Quantization (GM-
VQ) for the generative model (left) and the inference model (right). The codebook M plays a dual
role, being shared between both the generative and inference models.

3.1 GENERATIVE MODEL

The generative model is defined by the joint distribution:

p(x, z, c) = p(x | z) p(z | c) p(c), (6)

where x ∈ RD represents the observed data, z ∈ RL is a continuous latent variable, and c ∈
{1, 2, . . . , C} is a discrete latent variable indicating the mixture component. The latent variable z
follows a Gaussian mixture distribution, with the means stored in a codebook M ∈ RC×L, where
each row µc represents a codeword for component c.

First, the discrete variable c is sampled from a categorical distribution, where π represents the prior
probabilities of the mixture components, typically assumed to be uniformly distributed. Then, given
c, the continuous latent variable z is drawn from a multivariate Gaussian distribution with mean µc

and isotropic covariance matrix σ2
zI . As σ2

z approaches zero, this setup converges to deterministic
quantization, similar to VQ-VAE.

Finally, the observed data x is generated conditionally on z, where the decoder Dθ maps the contin-
uous latents z to the mean of the observation distribution, modeled as a Gaussian with fixed variance
σ2

xI .

3.2 VARIATIONAL INFERENCE AND POSTERIOR ESTIMATION

To approximate the intractable posterior p(c, z | x), we employ a variational posterior q(c, z | x)
following standard variational autoencoder methods. Without simplifying assumptions, we employ
variational inference with an approximate posterior. We use the chain rule to factorize the posterior:

q(c, z | x) = q(c | x)q(z | x, c), (7)

allowing for conditional dependencies between z and c given x. To achieve this, we introduce the
following variational distributions:

1. Variational Distribution over c:

q(c | x) = Categorical
(
π(x)

)
, (8)

where π(x) = (π1(x),π2(x), . . . ,πC(x)) are the posterior probabilities over the mixture
components, parameterized by an encoder Eθ and codebook M .

2. Variational Distribution over z:
We model q(z | x, c) as a multivariate Gaussian distribution centered at the codeword µc,
with a covariance Σc(x) that depends on x:

q(z | x, c) = N
(
z;µc,Σc(x)

)
, (9)

where Σc(x) = σ2
c (x)I is an isotropic covariance matrix.
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Given a non-linear network, unnormal-
ized logits corresponding to varying en-
tropy levels are fed into the model, and
the bias between Gumbel-Softmax gra-
dient estimation and the exact gradient
was calculated. A strong Pearson corre-
lation (ρ = 0.77, p ≤ 0.001∗∗∗) shows
that gradient estimation errors increase
with rising entropy. For more imple-
mentation details, Appendix A.1.

Figure 3: Gradient Bias vs. Entropy Relationship

3.3 TRAINING OBJECTIVE AND OPTIMIZATION

To train the model, we typically maximize the ELBO using Gumbel-Softmax gradient estimation.
However, the presence of entropy in ELBO leads to poor Gumbel-Softmax gradient estimation(see
Figure 3). Given that entropy can be particularly detrimental to Gumbel-Softmax gradient estima-
tion, it is critical to mitigate its impact during training.

To resolve this, Yu et al. (2023) introduced two contrasting entropy measures derived from mutual
information (Krause et al., 2010):

Lentropy = H(q(c | x))−H(Ex∼p(x)q(c | x)). (10)

In the context of vector quantization, the first term of this loss reduces uncertainty when mapping
observed data x to c and the second term encourages more discrete latent variables to be used, which
decreases the codebook collapse problem.

However, this approach remains an additional heuristic that cannot be fully incorporated into the
variational Bayesian framework. To address this limitation, we propose an alternative ELBO formu-
lation.

3.3.1 AGGREGATED CATEGORICAL POSTERIOR EVIDENCE LOWER BOUND

We introduce the Aggregated Categorical Posterior Evidence Lower Bound (ALBO) as an alterna-
tive to the traditional ELBO:

EALBO(x) = Eq(c) q(z|x)

[
log

p(x, z, c)
q(c)

]
≤ log p(x). (11)

The ALBO provides a lower bound on the log-likelihood log p(x) (for derivation, see Appendix
A.2).

Here, q(c) represents the marginal distribution over c, induced by the data distribution p(x) and the
approximate posterior q(c | x), defined as q(c) =

∫
q(c | x)p(x) dx. However, since the true data

distribution p(x) is not accessible in practice, we have to rely on a finite dataset instead. To balance
computational complexity and accuracy, we use a mini-batch approximation. For a mini-batch B
of size |B|, the marginal distribution q(c) is approximated as:

q(B)(c) =
1

|B|
∑
x∈B

q(c | x). (12)

This mini-batch approximation is computationally efficient and well-suited for stochastic optimiza-
tion in deep learning.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For simplicity, σ2
x and σ2

z are typically fixed and not treated as learnable parameters. Thus, the
objective function is constructed by minimizing the negative ALBO, resulting in the GM-VQ loss
LGM-VQ(x):

LGM-VQ(x) = Eq(z|x)∥x−Dθ(z)∥2 + γ · Lreg(x), (13)

where the regularization term Lreg(x) is defined as:

Lreg(x) = Eq(c)q(z|x)∥z− µc∥2 + β ·DKL(q(c)∥p(c)), (14)

with β and γ as non-negative hyperparameters controlling the balance between reconstruction and
regularization. Detailed derivation can be found in Appendix A.3.

This loss function consists of three main components:

• Eq(z|x)∥x−Dθ(z)∥2: Reconstruction loss, standard in autoencoder frameworks.

• Eq(c)q(z|x)∥z−µc∥2: Latent regularization, ensures alignment between the latent variables
and the learned codewords µc.

• DKL(q(c)∥p(c)): Entropy term, enhances overall codebook utilization and prevents indi-
vidual q(c | x) from drifting towards high entropy, thereby reducing gradient estimation
errors.

3.3.2 PARAMETERIZATION OF THE VARIATIONAL DISTRIBUTIONS

Variational Categorical Distribution q(c | x) To compute q(c | x), we use the encoder Eϕ to
generate a proxy representation ẑ(x) ∈ RL and raw weights r̂(x) ∈ RL, which are then activated
into positive weights ŵ(x) using the Softplus function ζ(·):

ẑ(x), r̂(x) = Eϕ(x), ŵ(x) = ζ
(
r̂(x)

)
. (15)

The unnormalized log probabilities lc(x) are then computed based on the Mahalanobis-like distance
between ẑ(x) and each codeword µc:

lc(x) = −1

2
(ẑ(x)− µc)

⊤ diag(ŵ(x)) (ẑ(x)− µc)

= −1

2

L∑
i=1

ŵi(x) (ẑi(x)− µc,i)
2
.

(16)

The posterior probabilities πc(x) are obtained via softmax:

πc(x) = Softmax
(
lc(x)

)
=

exp
(
lc(x)

)∑C
c′=1 exp

(
lc′(x)

) . (17)

This formulation ensures that components with codewords closer to ẑ(x) have higher posterior prob-
abilities.

Variational Continuous Distribution q(z | x, c) The variance σ2
c (x) in q(z | x, c) reflects the

uncertainty in assigning x to component c. It is parameterized based on the squared distance between
the encoder’s output ẑ(x) and the codeword µc:

σ2
c (x) =

∥ẑ(x)− µc∥2/L
2σ2

, (18)

where σ2 is the scalar variance from the generative model and L is the latent dimensionality.
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This parameterization allows q(z | x, c) to adapt its variance based on the distance between ẑ(x) and
µc, ensuring a flexible representation of uncertainty. As proxy latent ẑ(x) approaches µc, the vari-
ance σ2

c (x) decreases, indicating higher confidence in the assignment to component c. Conversely,
when the distance increases, the variance grows, signaling greater uncertainty.

Reparameterization and Codebook Update To enable backpropagation through the discrete
sampling of c, we use the Gumbel-Softmax reparameterization trick. The discrete latent variable
c is computed as j = argmax Softmaxτ (log q(c | x)+g), where g are i.i.d. Gumbel(0,1) samples,
yielding the quantized representation cq = [1i=j ]

C
i=1.

For the continuous latent variable z, we apply the standard VAE reparameterization: z = µc +
σc(x) ⊙ ϵ, with ϵ ∼ N (0, I). In the ALBO framework, we sample from q(z | x), combining the
quantized codeword and noise as z = cTq M+ σc(x)⊙ ϵ.

This formulation ensures that all codewords µc are naturally updated during optimization, prevent-
ing the codebook collapse problem without the need for additional commitment loss functions or
exponential moving averages. It enables the model to manage deviations from the codewords in a
controlled and efficient manner.

4 RELATED WORK

Variational Autoencoders (VAEs) (Kingma & Welling, 2013) comprise a generative model and a
recognition model, bridged by a latent variable typically modeled with a multivariate Gaussian prior.
While the generative component is well-known, the recognition model effectively learns continuous
representations from data (Zhang et al., 2022; Yang et al., 2021; Zhao et al., 2017; Higgins et al.,
2017).

To address discrete representation learning, Vector Quantized VAE (VQ-VAE) (Razavi et al., 2019;
Van Den Oord et al., 2017) employs vector quantization (Gray, 1984) to discretize latent embed-
dings under a uniform prior. Since the quantization process is non-differentiable, techniques like
the straight-through estimator (Bengio et al., 2013) are used to approximate gradients, introducing
potential bias. VQ-VAE also incorporates a discretization loss to mitigate these issues, but chal-
lenges such as codebook underutilization and information loss remain. Sønderby et al. (2017); Shu
& Nakayama (2017) introduced stochastic sampling based on the negative distance and applied
Gumbel-Softmax for gradient estimation. Later, Karpathy (2021); Esser et al. (2021) proposed an
encoder that directly outputs the posterior, applying Gumbel-Softmax without conditioning on the
codebook.

While many existing VAEs utilize Gaussian mixture priors (Liu et al., 2023; Bai et al., 2022; Falck
et al., 2021; Guo et al., 2020; Jiang et al., 2016; Dilokthanakul et al., 2016; Nalisnick et al., 2016),
our approach is distinct in its close connection with vector quantization. Specifically, we reuse
the means from the codebook, whereas in other GMM-based models, the posterior means are typi-
cally learned transiently, conditioned on different components or networks. Although Takida et al.
(2022); Williams et al. (2020) also explore Gaussian mixture priors in VQ-VAE, they modify the
reconstruction loss and feed discrete latents directly into the decoder, deviating from strict adher-
ence to the ELBO. Furthermore, prior works often rely on simplifying assumptions on variational
posterior, such as mean-field (Liu et al., 2023; Falck et al., 2021; Figueroa, 2017; Jiang et al., 2016)
or Markovian assumptions (Takida et al., 2022; Williams et al., 2020).

Previous works (Tomczak & Welling, 2018; Hoffman & Johnson, 2016; Makhzani et al., 2015) have
attempted to modify the ELBO framework by averaging the objective over data distribution, but they
retain the original variational conditional distribution, leaving the entropy term of the conditional
posterior it intact. In contrast, our approach is specifically motivated by the gradient estimation
error in categorical latents by using an aggregated categorical posterior instead of the conditional
categorical posterior.

Beyond these theoretical advancements, vector quantization (VQ) and its related concepts have also
seen extensive applications across various domains. Here, we highlight some recent works. Uni-
MoT (Zhang et al., 2024) introduces a VQ-driven tokenizer that converts molecules into molecular
token sequences, while VQSynergy (Wu et al., 2024) integrates VQ for drug synergy prediction. In
image and video generation, MAGVIT-v2 (Yu et al., 2023) applies VQ-VAE to achieve high-fidelity
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reconstructions, and VAR (Tian et al., 2024) leverages VQ to advance visual autoregressive learn-
ing. These studies demonstrate the pivotal role of VQ in both theoretical advancements and practical
applications.

5 EXPERIMENTS

In this section, we provide a comprehensive analysis of our experiments using the proposed GM-
VQ model, focusing on its performance in image reconstruction tasks across two benchmark datasets
CIFAR10 and CelebA.

5.1 EXPERIMENTAL SETUP

We use Gumbel-Softmax for gradient estimation throughout our experiments, adopting an annealing
schedule similar to Takida et al. (2022); Jang et al. (2017). The temperature starts at 2.0 and is
gradually reduced to 0.1 during training.

Our architecture and hyperparameters closely follow the setup in Huh et al. (2023). For the CI-
FAR10 dataset (32x32 image size), we use a compact architecture consisting of convolutional layers
followed by vector quantization, similar to standard autoencoders. For CelebA (resized to 128x128),
a deeper network is employed to manage the higher resolution. Both architectures incorporate a VQ
layer to quantize the latent representations into discrete codes.

Models are trained for 100 epochs on both datasets, using a batch size of 256. We employ AdamW
(Loshchilov, 2017) as the optimizer, with a maximum learning rate of 1e-2 for CIFAR10 and 1e-4
for CelebA. The learning rate follows a cosine decay schedule with linear warmup as in Huh et al.
(2023), with 10 epochs of warmup starting at a factor of 0.2, followed by 90 epochs of cosine decay.
All models are initialized using K-means clustering for codebook initialization, following Esser
et al. (2021). We use 1024 codes with a latent dimension of 64 across all experiments, applying the
same weight decay to both the encoder-decoder and the codebook. During evaluation, no noise is
added to the reconstructed x for maximum likelihood estimation, and latents z are directly sampled
from the codebook M without extra noise.

We report Mean Squared Error (MSE) as the metric for reconstruction quality, which measures the
mean pixel-wise difference between the original and reconstructed images. Additionally, we report
perplexity, defined as 2H(q), to evaluate the diversity of codebook usage. Higher perplexity indicates
a more balanced use of the available codes. Notably, this perplexity is not based on the entropy of
individual codes q(c | x) but on the average entropy across a batch of categorical distributions
q(B)(c), with perplexity computed per batch and then averaged across all batches.

We compare our GM-VQ model against several baseline methods commonly used in vector
quantization-based image reconstruction. The primary baseline is the standard VQ-VAE (Van
Den Oord et al., 2017). Variants include VQ-VAE + l2 (Yu et al., 2021), which stabilizes training
through l2 normalization, and VQ-VAE + replace (Zeghidour et al., 2021; Dhariwal et al., 2020),
which replaces unused code vectors with random embeddings to avoid codebook collapse. SQ-VAE
(Takida et al., 2022) introduces stochastic quantization for improved code diversity, while Gumbel-
VQVAE (Karpathy, 2021; Esser et al., 2021) employs Gumbel-softmax for smoother gradient up-
dates. Lastly, VQ-VAE + affine + OPT (Huh et al., 2023) addresses codebook covariate shift with
affine parameterization and alternating training. Our primary model, GM-VQ, was tuned by fixing
β = 1 and selecting the best γ, while the variant GM-VQ + Entropy was tuned with higher entropy
regularization (β > 1) and the fixed γ, promoting more balanced codebook usage.

5.2 PERFORMANCE COMPARISON

We evaluate the performance of GM-VQ on the CIFAR10 and CelebA datasets, comparing it against
several baseline methods. Table 1 presents the results, using MSE for reconstruction accuracy and
perplexity metrics.

In the CIFAR10 dataset, GM-VQ achieves an MSE of 3.13, a significant improvement over the
standard VQVAE (MSE 5.65) and variants like VQVAE + l2 (MSE 3.21) and VQVAE + replace
(MSE 4.07). In terms of codebook utilization, GM-VQ achieves a perplexity of 731.9, considerably
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Method CIFAR10 CELEBA
MSE (10−3) ↓ Perplexity ↑ MSE (10−3) ↓ Perplexity ↑

VQVAE 5.65 14.0 10.02 16.2
VQVAE + l2 3.21 57.0 6.49 188.7
VQVAE + replace 4.07 109.8 4.77 676.4
VQVAE + l2 + replace 3.24 115.6 4.93 861.7
VQVAE + Affine 5.15 69.5 7.47 112.6
VQVAE + OPT 4.73 15.5 7.78 30.5
VQVAE + Affine + OPT 4.00 79.3 6.60 186.6
SQVAE 3.36 769.3 9.17 769.1
Gumbel-VQVAE 6.16 20.3 7.34 96.7

GM-VQ 3.13 731.9 1.38 338.6
GM-VQ + Entropy 3.11 878.7 0.97 831.0

Table 1: Comparison of methods on CIFAR10 and CELEBA datasets using MSE and Perplexity
metrics.

Figure 4: Box plots showing the impact of entropy regularization on reconstruction quality (MSE)
and codebook utilization (Perplexity) for the GM-VQ model. The left panel demonstrates the general
trend of decreasing MSE with increasing entropy, the right pane shows the rise in perplexity with
higher perplexity.

higher than VQ-VAE + replace (perplexity 109.8), indicating more efficient and diverse code usage.
This highlights GM-VQ’s ability to mitigate codebook collapse and ensure robust code assignments.

On the CelebA dataset, GM-VQ excels with an MSE of 1.38, significantly outperforming the base-
line VQVAE (MSE 10.02) and VQVAE + replace (MSE 4.77). GM-VQ also maintains strong
codebook diversity with a perplexity score of 338.6. The GM-VQ + Entropy variant further en-
hances performance, achieving the lowest MSE of 0.97 and a perplexity of 831.0. This shows that
entropy regularization effectively promotes balanced codebook usage without sacrificing reconstruc-
tion quality.

In summary, across both datasets, GM-VQ and GM-VQ + Entropy consistently outperform all base-
line models in terms of both reconstruction accuracy and codebook utilization. These results demon-
strate the model’s robustness and its ability to maintain a balance between reconstruction fidelity and
efficient code usage.

5.3 IMPACT OF ENTROPY REGULARIZATION

To further demonstrate the compatibility of the aggregated posterior with increased entropy, we
conducted experiments across different entropy regularization levels using GM-VQ on the CIFAR10
dataset.

The box plots in Figure 4 provide a summary of how changes in entropy affect both Mean Squared
Error (MSE) and Perplexity. In the left panel, we observe a general trend where MSE decreases
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as entropy increases, indicating a tendency toward improved reconstruction quality, though not uni-
formly across all entropy levels. Meanwhile, the right panel shows that higher entropy promotes
more effective codebook usage, with perplexity rising as entropy grows, reflecting more balanced
code assignments.

This trend suggests that while increased entropy yields better codebook utilization (higher perplex-
ity), it also drives improvements in reconstruction accuracy (lower MSE).

6 CONCLUSION

In summary, the GM-VQ framework extends the traditional VQ-VAE by incorporating a proba-
bilistic structure grounded in a Gaussian mixture model. By employing the ALBO objective, we
ensure optimization is well-suited to Gumbel-Softmax gradient estimation. Our empirical results
demonstrate the effectiveness of GM-VQ, highlighting its ability to achieve a strong balance be-
tween reconstruction quality and codebook diversity.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF ENTROPY BIAS

To investigate the relationship between entropy and the bias in Gumbel-Softmax gradient estimation,
we conducted targeted experiments.

We used a multi-layer perceptron (MLP) with hidden layers of size [50, 5], where the input consists
of 10 possible actions and the output is a scalar. To obtain the exact gradients, we pass each categor-
ical one-hot action through the non-linear decoder. For the Gumbel-Softmax gradient estimation,
we repeated the experiment 50 times to compute the empirical average of the estimated gradients.

To assess the impact of entropy on bias, we varied the input entropy by applying softmax with
different temperature (τ ) values to a fixed set of unnormalized logits, which determined the input
probabilities for the MLP. This setup allowed us to analyze how changes in entropy influence the
bias in Gumbel-Softmax gradient estimation.

A.2 DERIVATION OF ALBO

The Aggregated Categorical Posterior Evidence Lower Bound (ALBO) provides a lower bound on
the log-likelihood log p(x), similar in structure to the Evidence Lower Bound (ELBO) commonly
used in variational inference. This bound is derived through the application of Jensen’s inequality,
as shown below:

log p(x) = logEq(c)q(z|x)

[
p(x, z, c)

q(c)q(z | x)

]
≥ Eq(c)q(z|x)

[
log

p(x, z, c)
q(c)q(z | x)

]
(by Jensen’s inequality)

= Eq(c)q(z|x)

[
log

p(x, z, c)
q(c)

]
− Eq(z|x) [log q(z | x)]

≥ Eq(c)q(z|x)

[
log

p(x, z, c)
q(c)

]
(since Eq(z|x) [log q(z | x)] ≤ 0)

= EALBO(x).

(19)

By applying Jensen’s inequality, the logarithm is moved inside the expectation, yielding a tractable
lower bound. The term Eq(z|x) [log q(z | x)] represents the entropy of the posterior over z. Since
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entropy is non-positive, it further tightens the bound, ensuring that EALBO(x) provides a meaningful
approximation.

Thus, EALBO(x) serves as a valid lower bound on log p(x), similar to the ELBO in traditional vari-
ational inference. The key difference is in the aggregation of the categorical posterior over c, which
offers better compatibility with probability-based gradient estimation.

A.3 DERIVATION OF GM-VQ LOSS

Minimizing LGM-VQ(x) ensures that the model effectively reconstructs the data while regularizing
the latent distributions to align with the priors, thereby improving generalization. Below, we provide
the detailed derivation of the GM-VQ loss.

We start by maximizing the EALBO(x):

argmax
θ,ϕ,M

EALBO(x)

= argmin
θ,ϕ,M

− EALBO(x)

= argmin
θ,ϕ,M

− Eq(c)q(z|x)

[
log

p(x, z, c)
q(c)

]
= argmin

θ,ϕ,M
Eq(c)q(z|x)

[
− log

p(x | z) p(z | c) p(c)
q(c)

]
= argmin

θ,ϕ,M
Eq(z|x) [− log p(x | z)] + Eq(c)q(z|x) [− log p(z | c)] +DKL(q(c)∥p(c))

= argmin
θ,ϕ,M

Eq(z|x)

[
∥x−Dθ(z)∥2

2σ2
x

]
+ Eq(c)q(z|x)

[
∥z− µc∥2

2σ2
z

]
+DKL(q(c)∥p(c))

= argmin
θ,ϕ,M

Eq(z|x)∥x−Dθ(z)∥2 +
σ2
x

σ2
z

·
(
Eq(c)q(z|x)∥z− µc∥2 + 2σ2

z ·DKL(q(c)∥p(c))
)

(20)

Given variance terms σ2
x and σ2

z are fixed, we can replace them with positive hyperparameters β and
γ, respectively, to simplify this expression, where:

1. γ =
σ2
x

σ2
z

controls the balance between reconstruction and latent regularization.

2. β = 2σ2
z modulates the strength of the KL divergence regularization.

Thus, the GM-VQ loss can be rewritten as:

LGM-VQ(x) = Eq(z|x)∥x−Dθ(z)∥2 + γ ·
(
Eq(c)q(z|x)∥z− µc∥2 + β ·DKL(q(c)∥p(c))

)
(21)

This formulation, with hyperparameters β and γ, balances the reconstruction fidelity and the regu-
larization of the latent space.
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