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Abstract

Neural Operators that directly learn mappings be-
tween function spaces, such as Deep Operator
Networks (DONSs) and Fourier Neural Operators
(FNOs), have received considerable attention. De-
spite the universal approximation guarantees for
DONSs and FNOs, there is currently no optimiza-
tion convergence guarantee for learning such net-
works using gradient descent (GD). In this paper,
we address this open problem by presenting a uni-
fied framework for optimization based on GD and
applying it to establish convergence guarantees
for both DONs and FNOs. In particular, we show
that the losses associated with both of these neu-
ral operators satisfy two conditions—restricted
strong convexity (RSC) and smoothness—that
guarantee a decrease on their loss values due to
GD. Remarkably, these two conditions are sat-
isfied for each neural operator due to different
reasons associated with the architectural differ-
ences of the respective models. One takeaway that
emerges from the theory is that wider networks
benefit optimization convergence guarantees for
both DONs and FNOs. We present empirical re-
sults on canonical operator learning problems to
support our theoretical results and find that larger
widths benefit training.

1. Introduction

Replicating the success of deep learning in scientific com-
puting such as developing neural partial differential equation
(PDE) solvers, constructing surrogate models, and devel-
oping hybrid numerical solvers, has recently captured the
interest of the broader scientific community (Kutz & Brun-
ton, 2024; Kovachki et al., 2023). In relevant applications
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to scientific computing, we often need to learn mappings
between input and output function spaces. Neural operators
have emerged as the prominent class of deep learning mod-
els used to learn such mappings (Lu et al., 2021). They have
become a natural choice for learning solution operators of
parametric PDEs and of inverse problems where multiple
evaluations are needed under different parameters of the
problem. Two of the arguably most widely adopted neural
operators are Deep Operator Networks (DONs) (Lu et al.,
2021; Wang et al., 2021b) and Fourier Neural Operators
(FNOs) (Li et al., 2021a;b).

The fundamental idea of a neural operator is to parameterize
mappings between function spaces with deep neural net-
works and proceed with its learning, i.e., optimization, as in
a standard supervised learning setup. However, contrary to
a classical supervised learning setting where we learn map-
pings between two finite-dimensional vector spaces, here
we learn mappings between infinite-dimensional function
spaces. While there exist results on the universal approxi-
mation properties of DONs and FNOs (Deng et al., 2022;
Kovachki et al., 2021), to the best of our knowledge, there
are no formal optimization convergence results for the train-
ing of these two popular neural operator models.

To address this open problem, in this paper, we establish
formal optimization convergence guarantees for learn-
ing DONs and FNOs with gradient descent (GD). To
achieve this, we first propose a general framework that
ensures the optimization of any loss using GD as long as
two conditions are satisfied across iterations. The first
condition is based on restricted strong convexity (RSC), a
recently introduced alternative (Banerjee et al., 2023a) to the
widely used neural tangent kernel (NTK) analysis (Liu et al.,
2021a; 2022b; Allen-Zhu et al., 2019). The second condi-
tion is based on a smoothness property of the loss function.
For feedforward neural networks, the RSC condition relies
on the second-order Taylor expansion of the loss (Baner-
jee et al., 2023a; Cisneros-Velarde et al., 2025), using the
Hessian of the neural network (i.e., second order structure),
whereas the NTK approach relies on a kernel approximation
of the training dynamics (Jacot et al., 2018), using the gradi-
ent of the network (i.e., first order structure). For a specific
model such as neural operators, the technical challenge in
using our optimization framework is to establish suitable
properties of the loss, its gradient, and its Hessian in order
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to show that the RSC and smoothness conditions are indeed
satisfied. We point out that convexity of the loss is not one
of the required conditions, so we are not attempting to show
that the Hessian of the loss is positive semi-definite, as that
will not be true for most neural models, including neural
operators.

Having defined a general optimization framework based on
RSC and smoothness conditions, the key novelty of our
current work is showing that the losses for DONs and
FNOs provably satisfy these two conditions when the
neural operators are wide, despite the substantial differ-
ences in their architectures and mathematical analyses.
For both DONs and FNOs, we need to bound the Hessian of
their respective empirical losses and of the neural operator
models themselves in order to determine whether the RSC
and smoothness properties are satisfied.

The challenge in the analysis of DONSs stems from the fact
that the output of this neural operator is the inner product of
two neural networks. This greatly complicates the Hessian
structure of the loss compared to standard neural networks.
Indeed, the Hessian now contains cross-interaction terms
between two neural networks which have to be carefully
analyzed and which require a more complex definition of
the restricted set over which the RSC property is defined
compared to standard neural networks.

The challenge in the analysis of FNOs stems from the
fact that it contains, inside their neural network structure,
learnable weights that define transformations in the Fourier
domain—something absent in standard neural networks.
This complicates the Hessian structure of the FNO since
it contains parameters both in the data domain and trans-
formed Fourier domain leading to cross-derivatives between
parameters from both domains. Thus, a more involved anal-
ysis than of standard neural networks is required.

Remarkably, we find that the widths of both neural op-
erator models benefit our optimization guarantees in
similar ways. First, the widths appear in the RSC condition
such that larger widths make this condition less restrictive.
Second, larger widths enlarge the neighborhood around the
initialization point where our optimization guarantees hold.
Similar benefits from larger widths were found for stan-
dard neural networks by Banerjee et al. (2023a), despite the
substantial differences between our analyses and theirs (as
mentioned in the challenges above).

Finally, to complement our theoretical results, we present
empirical evaluations of DONs and FNOs and show the
benefits of width on learning three popular operators in the
literature (Li et al., 2021a; Lu et al., 2021): antiderivative,
diffusion-reaction, and Burgers’ equation. Our experiments
show that increasing the width leads to lower training losses
and generally leads to faster convergence.

Paper Organization. Section 2 presents related literature.
Section 3 outlines the architectures and learning problems
for DONs and FNOs. Section 4 establishes our general opti-
mization framework, and Section 5 and Section 6 establish
convergence guarantees using this framework for DONs
and FNOs respectively, highlighting the benefits of width.
Section 7 compares our results and known ones for standard
neural networks. Section 8 presents empirical evaluations
on the benefits of width. Section 9 is the conclusion.

Notation. || - || denotes the Ly-norm or the induced matrix
Lo-norm when the argument is a vector or a matrix, respec-
tively. Given an operator/function f, ran(f) and dom(f)
denote the range and domain of f, respectively.

2. Related Work

We only present a brief overview of the literature related
to our work and provide a more extensive treatment in Ap-
pendix A. In the case of DONs, approximation (Lu et al.,
2021) and generalization (Kontolati et al., 2022) proper-
ties have been formally studied, as well as several appli-
cations (Goswami et al., 2022; Wang & Perdikaris, 2021;
Diab & Al Kobaisi, 2024; Centofanti et al., 2024; Sun et al.,
2023). Nevertheless, optimization guarantees for DONSs is
an open problem. Approximation properties for FNOs have
been formally studied (Kovachki et al., 2021), and diverse
applications of FNOs and various Fourier-based operators
have been formulated (Li et al., 2020a; Liu et al., 2022a;
Wen et al., 2022; Pathak et al., 2022; Centofanti et al., 2024,
Li et al., 2023; Yang et al., 2023; Harder et al., 2023). Nev-
ertheless, optimization guarantees for DONS is also an open
problem. Though formal optimization guarantees for neural
operators are largely absent, there is a more established liter-
ature on such guarantees for neural networks. We highlight
two particular approaches for optimization analysis: based
on the NTK approach (Jacot et al., 2018; Liu et al., 2021a;
Banerjee et al., 2023b; Du et al., 2019; Allen-Zhu et al.,
2019) and on the RSC approach (Banerjee et al., 2023a;
Cisneros-Velarde et al., 2025)—our work is related to the
latter.

3. Learning Neural Operators

A neural operator (Li et al., 2021a; 2020b; Lu et al., 2021)
is a parametric model based on neural networks that aims to
best approximate a mapping between two function spaces,
which can be linear, such as the antiderivative or integral
operator, or nonlinear such as the solution operator of a
nonlinear PDE. Thus, letting G denote the ground-truth
operator we are trying to approximate and Gg denote the
neural operator parameterized by the parameter vector 6, the
objective is to learn 0 such that, given an input function wu,
we have Gg(u) ~ G (u). Such learning is done by solving
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an optimization problem using data samples consisting of
tuples of input and output function values of G*. This
optimization problem is analogous to the notion of learning
in finite dimensions, which is precisely the setup for which
classical deep learning is used.

We now introduce DONs and FNOs. More information
about neural operators and the schematics of both DONs
and FNOs are found in Appendix B.

3.1. Learning Deep Operator Networks (DONs)

The DON model (Lu et al., 2021) is defined as the inner
product of two deep feedforward neural networks, each one
with K output neurons. Given the branch net f = {f; }<
and the trunk net g = {g; }/_,, the DON is

=

Go(u)(y) =Y frl(Or;u)gr(0y;y) , 0

k=1

where the input function w has ran(u) C R% and y €
dom(Gg(u)) C R% is the output location on which the
operator is evaluated. The training data is composed of n
input functions {«("}?_, and ¢; output locations for each

Gt(u®), ie., {{yy)}g;l ™, with yy) € R% denoting
the j-th output location for G (u(?). Each u(® is repre-
sented in R locations {z,}% | so that u()(x,) € R%,
r € [R]. The entire set of learnable parameters is 8 =
[0; 6,]" € RP/tPs, where 6 € RP/ and 6, € RPs are
the parameter vectors of f and g respectively.

We only consider scalar input functions, i.e., d,, = 1. For
each i € [n], we stack {u(¥)(z,)}%2_, as an input vector to
f, thus, f : R — RE. Note that g : R% — RX. Then,
the DON learning problem is the minimization:

GZdon) € argmin E(GQ,GT) )
96Rpf+p9
where
L (Ge,G")
1 n 1 qi ) ) ) B 2
_ 2t - @Y (2, _ (0, (1)) (4,()
n;qi;(cew ") - GTu)())
3

is the empirical loss function that measures the approxi-
mation between Gg and G, and where Gg(u(i))(y](-l)) =

Soiea fi (055 {uD (@)} ) g (99; ya())

Note that the ground truth operator G can either be explicit,
e.g., integral of a function, or implicit, e.g., the solution to a
nonlinear PDE.

3.2. Learning Fourier Neural Operators (FNOs)

The FNO model (Li et al., 2021a) is defined as follows:
Go(u)(x) := f(0; ) with

o) (@) = P(u;6,)(x)
aV(x) = FY(aD(x);0p0), le[L+1] &
F(6;2) = Qo™+ ,)(x)

where the input function w has ran(u) C R%, Gg(u)(x) €
R is the output of the FNO evaluated at output location
z € Ré, {FO}A! are nonlinear transformations with
learnable parameters Op = [0]),...,0/,.,)]" € RF
and which may contain operations in the Fourier domain,
P is an encoder that maps v and « to an ambient space of
dimension d and has parameter vector 8, € R?, and @ is
a decoder that maps the output from the block a(“*1 ()
to a scalar output with parameter vector 8, € R?. The
entire set of parameters for the FNO can be written as 8 =

[0;— 0; 0;—] T. With a slight abuse of notation, the FNO
is simply written as Gg(u)(x) = f(0;x) in (4) when the
input function u is known by the context.

The training data is composed of n input-output pairs
{(u®, G (u)}, and a computational grid of eval-
uations {x,} ;. We let f(V(8;x,) denote the FNO
model (4) with input function u') and evaluated at .
Then, the FNO learning problem is the minimization:

Oano) € argmin L£(Gg,GT) 5)

OcRp+F+aq
with empirical loss function

L(Gg,GT)
R

1 n 1 - - , (6)
= o3 w2 (o)) ~ ¢ ) @)
=1 r=1
and where Go(u?)(x,) = £0)(8: )

4. Optimization Convergence Framework

We now establish two conditions—Conditions 1 and 2
below—for the convergence of gradient descent (GD) when
minimizing a loss function £. We show that as long as these
two conditions are satisfied, the loss will decrease in value.
In the following sections we show how the empirical losses
used for training DONs (Section 5) and FNOs (Section 6),
as in (3) and (6) respectively, satisfy these two conditions.

We consider 6 — £(6) to be continuously differentiable.
Let 8 € RP be a suitable initialization point and {6, };>1
be the sequence of iterates obtained by GD on loss £ for
some step-size 1, > 0, i.e.,

0111 =06, —1n,VoLl(6,). @)
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We consider a non-empty set 5(6p) C RP around and in-
cluding 6.

Assumption 1 (Iterates inside B(6y)). All iterates {0, },>1
Sollow GD as in (7) and are inside the set B(0y).

The first condition is based on the concept of Restricted
Strong Convexity (RSC) being satisfied for L.

Definition 1 (Restricted strong convexity (RSC)). A func-
tion L is said to satisfy a-restricted strong convexity («-
RSC) w.r.t. the tuple (S, 0) if for any 0’ € S C RP and
some fixed 0 € RP, we have

L(0) = L(O)+(0' —6,0L(0)) + 5 6" 0] ,
®)

with o > 0.

Condition 1 (RSC). Consider Assumption 1. At step t,
there exists a non-empty set Ny such that:

(a) Ny C B(6o);
(b) one of these two conditions hold:
(b.1) 0,1 € N; with either 0, ¢ N, or L(0;) #
infeen, £(0),
(b.2) there exists some 0 € Ny such that L(0") <
L(0y);

(c) L satisfies a-RSC w.rit. (N, ;) for some ay > 0.

Note that £ need not be convex for it to satisfy «;-RSC.

The second condition is based on the smoothness of L.
Condition 2 (Smoothness). The function L is 3-smooth
in B(0y), i.e., for any 0’,0 € B(0y), we have L(0") <
L(8)+ (6" —0,VeL(0)) + 20 — 0|3, with 3> 0.

As long as Conditions 1 and 2 are satisfied at step ¢ of the
GD update in (7), the loss is guaranteed to decrease with a
suitable step-size choice.

Theorem 1 (Global loss reduction). Consider Assump-

tion 1 and Conditions 1 and 2 with oy < [ at step t

of the GD update (7) with step-size n; = % for some

wy € (0,2). If £L(6:) # inf L(0), then we have
0cB(80)

inf £(0)— inf L(0)
OEN 6cB(6p)

0 <7 '= ~Zz@)= Tt @y < Land
0cB(6))
7] — inf 0
L(64+41) GGIBH(GO)E( )
Oétwt(lf%) .
<{1l—- ——(2— 0.) — f 0
< (1- 2220 ) o) -, it £0)
)

Theorem 1’s proof is found in Appendix C. We note that if

the infimum loss inside B(0y) is attained at time ¢, i.e.,

L£(6,) = inf L£(0), then there is nothing to prove
0cB(0y)

hence the conditional in the second sentence of Theorem 1.

Remark 1 (The RSC to smoothness ratio). Theorem 1 re-
quires /8 < 1, which needs to be proved for the particular
function £ being considered. O
Remark 2 (RSC and local strong convexity). If equation (8)
were to hold for any 6,0’ € B(6)), then £ would be a
locally strongly convex function in the set B(6y) (Boyd &
Vandenberghe, 2004). This is a stronger condition on £
which makes « in (8) independent from the choice of @ (in
the context of Theorem 1, a; would be independent from ¢).
Moreover, it satisfies o/ < 1. O

Our analysis is inspired by the recent works (Banerjee et al.,
2023a) and (Cisneros-Velarde et al., 2025), where optimiza-
tion guarantees were done for feedforward networks and
normalization. We abstract out from those special cases, and
demonstrate that our analysis works for any losses satisfying
Conditions 1 and 2—indeed, (Cisneros-Velarde et al., 2025)
particularly satisfies Condition 1(b.1) and (Banerjee et al.,
2023a) satisfies Condition 1(b.2). Thus, in the context of
our paper, the largest effort in establishing optimization
guarantees for DONs and FNOs is to show these two
models satisfy Conditions 1 and 2 with «; /5 < 1.

5. Optimization Analysis for DON

We consider, analogous to (Liu et al., 2021b), the branch net
as a fully connected feedforward neural network:

(0)

oy’ =u(z)
W) _ LR HOBN(EEY _
o —qb( mef o >,ZE[L 1] (10)
N0 B e A BN )
f=a; = \/m—fo o
where with some abuse of notation wu(x) :=
[u(zxy),...,u(xg)]" is the vector of all scalar evalu-

ations of u at each of the R locations, ¢ is a pointwise

smooth activation function, a}l)

[ € [L], and the weight matrices are W}l) € Rms>*f and
Wj(.l) € Rms>™s atlayer ] € {2,...,L — 1}. The branch
net has width m (all hidden layers have the same width).

Similarly, the trunk net is a fully connected feedforward
network:

is the output at layer

ago) =y
1
W _ (1) oy (1-1) _
a, —qb< mgwg ag ),ZE[L 1] (an

g=al =1 Wb ol
/Mg
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where y € R% is the output location, and the weight ma-
trices are W;l) € R™s*dy and Wél) € R™s*™s at layer
l € {2,...,L — 1}. The trunk net has width m, (all hid-
den layers have the same width). Finally, we recall that we
have K outputs on each network, i.e., W;L) € RExmy

and W\") € REXXms_ Given | € [L], we denote by

(wy (l) )| and (w, (l) )| the k-th row of the matrices W(l)

and Wél) respectlvely, and by w( ), and w((]li ; their re-

spective ij-entry. Using the notatlon in Section 3.1, the

set of trainable parameters is 8 = [0 6]]T € RP/TPo,
. 1 L

with 67 = [vec(W; NT .,vec(W}E NTIT and 6, =

vec(WSN) T, vec(WSE)T]T. Let 6, be the parame-

ter vector at initialization and 6, be it at time step ¢.

We make the following assumptions for our analysis:
Assumption 2 (Activation functions). The activation func-
tion ¢ of the DON is 1-Lipschitz and f34-smooth (i.e. ¢" <
Be) for some By > 0.

Assumption 3 (Initialization of weights). All weights of
the branch and trunk nets are initialized independently as
follows: (i) w}? , ~ N, 0% ) and wgo 5 ~N(0,02,)

ﬁ”ew_umm””zizﬁiﬂwnp:
PR
Vi %0 > Of(”)zvmi:andlnmi, ke [K],
1/2'»')'1,‘(]

are random vectors with unit norms, i.e.,

Hw((]i)k llo = 1. Further, we assume the input to the branches
are normalized as ||u(z)||2 = VR and ||y||2 = \/d,.

For a given parameter vector 6 = [67,0,] € RP/ P, we
introduce the neighborhood set BEUC( ) ={0 € RP/ “’q :

PiP1
W = WPlla < o, [Wa? = WPll2 < p 1€ [L—
—@5ll2 < pr, k € [K]}

1, g =@ §Rll2 < pa [y
for radii p, p; > 0. We say that an element of B¢ (6) is
strictly inside BE" ¢ () when it satisfies every inequality in
the set’s definition without equality. We also define B}"“(6)
as an Euclidean ball around @ with radius p > 0.

The following is an assumption analogous to the general
Assumption 1.

Assumption 4 (Iterates inside BEE‘;(GO)). All iterates
{6:}1>1 follow GD as in (7) and are strictly inside the
set BE"C (6y) for fixed p, py > 0.

We now focus on showing that the two conditions needed for
optimization using GD as discussed in Section 4 are indeed
satisfied by DONs. We start with the definition of a set Q?,
parameterized by x € (0, 1), which will help construct the
set V; in Condition 1 for RSC. Due to the interaction of two
neural networks (branch and trunk), the definition of Q¢
looks seemingly involved. However, note that Q¢ is only

needed for establishing the RSC condition for the analysis
and does not change the computation of the optimization
algorithm, which is simply GD run over all the branch and
trunk network parameters.

Definition 2 (Q! sets for DONs). For an iterate 6, =
[0% 0,,]" and k € (0,1), we define the set:

t / )T o T, T +p
Q,:=10"=[0; 0, ] cRVTPs:

|cos(6' — 0:,VeG:)| > &,

0,7 (z zi]zveffk”v gg,;f>
Jj=1

X (9.:] _ggvt) 2 07

K
(07 —05.4)" <Z Ve, £\ Ve qu(f)]T>

k=1

x%—%nsqunwen@,

(12)
where VoG; = 121 1;1 ql VeGet( )(y]())
lij = (Go,(u)(y}") — G () y i) and both
Ve, f,g and Vg gk)] are evaluated on 6.

We now prove the RSC and smoothness conditions (corre-
sponding to Conditions 1 and 2, respectively). Using the
nomenclature of Section 4, the set B} () corresponds to
B(6y), and B. := Q! N BE‘;‘; (60)N BE;C(&) with p2 > 0
corresponds to N;.

Theorem 2 (RSC for DONs). Consider Assumptions 2, 3,
and 4, and Q. as in Definition 2 with ||V ¢G¢||2 # 0. Then,
the set B, := Q. N BF(6o) N BE(6,) is a non-empty
set that satisfies Condition I(a) and (b) for suitable ps and
sufficiently small k. € (O 1). Moreover, with probability at
least 1 — 2KL(— + —) at step t of GD, the DON loss
L (3) satisfies equation (8) with

_ 1 1
= 2K 2K — 13
a1 = 262V Cull? — e (ﬁw+wm> (13)

where VoG, = L3 | ql 1 VoG, (u ))(y](i)), and
for some constant c1 >0 which depends polynomially on
the depth L, and the radii p, p1, and ps whenever gy <
1- pmax{\/}nif, ﬁ} Thus, the loss L satisﬁis RSC
w.rt (BL, 0y), i.e., Condition 1(c), whenever ||VoG||3 =
U7 + 7))

Theorem 3 (Smoothness for DONs). Under Assumptions 2
and 3, with probability at least 1 — 2KL(— + —) the

DON loss L (3) is B-smooth in BE}‘;’i (6o) wnh 8= 02K2
where co > 0 is a constant which depends polynomially

on the depth L, and the radii p, p1, and ps whenever oy <
1 1
1- pmax{m, m}
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Remark 3 (Ensuring that «;/5 < 1). As mentioned in
Remark 2, in order to use the optimization framework from
Section 4, the statement of Theorem 1 requires o /3 <
1. We prove that this condition is satisfied with a strict
inequality for DONSs in Proposition 1 in Appendix D. [

Optimization Under Gradient Descent for DONs. We
have that Theorem 2 satisfies Condition 1 and Theorem 3
satisfies Condition 2. We also proved that oy /3 < 1. Thus,

when ||VoG 3 = (\/t—&—\/t) ie., a; > 0, adecrease

on the loss functlon by GD is ensured with probability at
least 1 — 2K L(— w7+ —L) towards its minimum value taken
Mg

within the set B} (6) due to Theorem 1.

Remark 4 (The benefit of over-parameterization for the

RSC property). According to (13), |[VeG¢||2 = Q(\/Tle +

) is needed to ensure that oz > 0, i.e., to ensure that

1
mg . . . .

the empirical loss L satisfies the RSC property at time ¢.

Thus, as both widths m; and m, increase, £ attains the

RSC property at a lower value of | VoG, ||3. O

Remark 5 (Over-parameterization allows for a larger neigh-
borhood around initialization). The condition gg < 1 —
pmax{—= Nk \/7} (required for obtaining a polynomial
dependence on L for both RSC and smoothness parameters)
implies p < mm{ﬁ f14/Mg } since o must be positive.
Thus, it is possible to increase the radius p as we increase
both m; and m,. Thus, we can enlarge the neighborhood
around the initialization point where our guarantees hold as
the widths increase. O

6. Optimization Analysis for FNO

As in the case of DONs, we also focus on scalar input
functions u. To pass the input function u, we discretize it by
sampling it on R locations, forming a vector of dimension R.
Thus, the encoder P(u; 6),)(x) in equation (4) takes a vector
of dimension R+ d,, (R from the sampled u and d,, from the
output location where we evaluate the operator on). For our
purposes, we consider a fixed (not trainable) encoder with
output dimension d: P(u;0,)(z) = P(u)(x) € R% and a
linear decoder Q(a!F*Y); 0,)(x) = \/Lv a(LH)( ) €
R with 8, = v € R™ assuming a(*+1) () € R™. Thus,
following (Li et al., 2021a), the FNO model is:

= P(u)(x)
1
=¢ (W a®
vm
1 1
) — WOt F*RO pat-1)
“ Q% * T Um )
le{2,....L+1}
1
f0:2) = —vTallth

m

where ¢ is a pointwise smooth activation function, F'
is the discrete Fourier transform kernel (as a matrix)
with F'* being its conjugate transpose, the weight ma-
trices are W) e Rmxd ) ¢ Rmxm gnd RO ¢
R™>™ for layer | € {2,...,L + 1} (all hidden lay-
ers have the same width m). The ij-entries of W)

and RY) are w(l) and rfj), respectively, for an appropri-

ate [. With some abuse of notation, we denote the en-
tire set of trainable parameters by 8 = [0, 67]T, with
0, = [vec(WINT .. vec(WUEHNT vT]T and 6, =

[vec(R®)T, ... vec(RE+1D)T]T, We denote the number
of parameters by p,, + p,, where 6,, € RPv and 6, € RPr.
Let 6y be the parameter vector at initialization and 6, be it
at time step .

We remark that our model uses an m x m Discrete
Fourier Transform kernel F, whose kj-entry is Fy; =
e~ % (h=1D(G~1) with , representing the imaginary unit.
Assumption 5 (Activation functions). The activation func-
tion ¢ of the FNO is 1-Lipschitz and B4-smooth (i.e. ¢] <
Be) for some By > 0.
Assumption 6 (Initialization of weights). All weights
of the FNO are initialized independently as follows: (i)
wo i~ N(0,07, ) and r(()l’)ij ~ N (0,03 ) for every appro-
_ T1,w — T1,r
priate l, where 0, = 72(”@) and og 72(1+@)
with 01 4, 01, > 0; (ii) the decoder parameter v is a ran-
dom vector with unit norm ||v||s = 1. Further, we assume
the encoder output satisfies || a9 || = V/d.

For a given parameter vector ? € RP»+Pr we introduce the
neighborhood set BF, | (6) = {0 € RPw+Pr - W ® —
WOl < gL € L+ 1L RO ~ ROJa < pr, L €
{2,...,L+ 1}, [[v—v[2 < p1} for radii py, pr, p1 > 0.
We say that an element of BF™, () is strictly inside
Euc N . . . . N
Pusprp1 (0) when it sa.tlsﬁes every inequality in the set’s
definition without equality.
The following assumption is analogous to Assumption 1.
Assumption 7 (Iterates inside B;?chpr o1 (00)). All iterates
{0:}>1 follow GD as in (7) and are strictly inside the set

B,EB,CpT,m (00) for fixed py,, pr, p1 > 0.

We also introduce the following auxiliary set.

Definition 3 (Q?, sets for FNOs). For an iterate 0;, let
VoG, = 13" £ Zle VoGe, (uV)(x;). For k €
(0,1), define QF, := {0 € RP=*Pr | | cos(0—8;, VoGy)| >
K}

Note that unlike DONSs, the Qi sets for FNOs are relatively
simpler due to a single network architecture.

Next, we prove the RSC and smoothness conditions (cor-
responding to Conditions 1 and 2, respectively). Using

the nomenclature of Section 4, the set Bfucp 1 (o) corre-
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sponds to B(6y), and Bf. := QL.nBF™,
with p, > 0 corresponds to ;.

Theorem 4 (RSC for FNOs). Consider Assumptions 5, 6,
and 7, and Q. as in Definition 3 with |V ¢G4||2 # 0. Then,
the set Bl := Q! N By™,  (680) N B;Y(6,) is a non-
empty set that satisfies Condition 1(a) and (b) for suitable
p2. Moreover, with probability at least 1 — % at step t

of GD, the FNO loss L (6) satisfies equation (8) with

(60)NBE™(8,)

C1

T

where VoG = %Z?:1 % Zle VoGo, (u(i))(xj), and
for some constant ¢y > 0 which depends polynomially on
the depth L, and the radii p., p., p1, and ps whenever
Olw+o1, <1-— %. Thus, the loss L£(0) satisfies RSC

w.r.t (B, 6,), i.e., Condition 1(c), whenever |VoG||3 =
1

(L),

ap = 262V G5 — (14)

Theorem 5 (Smoothness for FNOs). Under Assumptions 5
and 6, with probability at least 1 — 2(67:2), the FNO loss
L (6) is p-smooth in Bgff’prpl (80) with (8 being a positive
constant which depends polynomially on the depth L, and

.. wt+pPr
the radii p, pr, and p1 whenever o1 4, +01, < 1— %.

Remark 6 (Ensuring that a; /5 < 1). Similar to our discus-
sion in Remark 3, we prove that a; /8 < 1 in Proposition 3
from Appendix E, satisfying the condition required in the
statement of Theorem 1. O

Optimization Under Gradient Descent for FNOs. We
have that Theorem 4 satisfies Condition 1 and Theorem 5
satisfies Condition 2. We also proved that oz /3 < 1. Thus,
when ||[VG |2 = Q(ﬁ), i.e., a; > 0, a decrease on the
loss function by GD is ensured with probability at least
1-— w towards its minimum value taken within the set

BF<, . (60) due to Theorem 1.

Remark 7 (The effects of over-parameterization for FNOs).
Similar observations to Remarks 4 and 5 hold for FNOs, i.e.,
that over-parameterization ensures (i) a better condition for
ensuring the RSC property, and (ii) a larger neighborhood
around the initialization point over which our guarantees
hold. Item (ii) follows from the relationship p,, + p, <
\/m obtained when choosing o1 ,, and o7, to ensure a
polynomial dependence as in Theorems 4 and 5.

7. Comparison between Neural Operators and
Feedforward Neural Networks

Our presented analysis provides sufficient conditions that
guarantee the optimization of DONs and FNOs under gradi-
ent descent (GD). It is non-trivial that GD should converge
for neural operators in a similar way to how it converges for

feedforward neural networks (FFNs), i.e., by being partic-
ular instances of the general optimization framework from
Section 4. Indeed, as indicated in Table 1, there exist simi-
larities and differences between our derivations for neural
operators and the ones for FFNs.

The challenge in the analysis of DONs. The fact that the
output of a DON is an inner product of two FFNs (1)—the
branch and trunk networks—makes the mathematical anal-
ysis of the RSC and smoothness properties more involved
than the analysis associated to a single FFN. Indeed, the
appearance of cross-interaction terms between the two FFNs
complicates the Hessian structure of the empirical loss £
and requires a more complex definition of the Q*. set com-
pared to the one used for FFNs or FNOs. On the other hand,
since the branch and trunk networks are individually FFNs,
their individual Hessian and gradient bounds are known.

The challenge in the analysis of FNOs. The fact that
FNOs—unlike FFNs—include a series of learnable trans-
formations in the Fourier domain makes the mathematical
analyses of their Hessian and gradient bounds more involved
than the ones for FFNs. Indeed, these Fourier transforma-
tions introduce cross-derivatives between weights in data
and Fourier domains in the Hessian that need to be carefully
taken into account. On the other hand, since FNOs are com-
posed of a single network, their in set is similar to FFNs,
as well as their RSC and smoothness analyses.

8. Experiments

We present experiments on the effect of over-
parameterization on the training performance of DONs and
FNOs, as measured by the empirical risk over a mini-batch
of the training dataset using the Adam optimizer. We
consider three prototypical operator learning problems in
the literature (Li et al., 2021a; Lu et al., 2021): (a) the an-
tiderivative (or integral) operator, (b) the diffusion-reaction
operator, and (c) Burgers’ equation. We do not consider
vector-valued problems (e.g., Navier-Stokes) because
they are not covered by our theoretical framework. For
definiteness, we consider the branch and trunk nets to have
the same width m (i.e., my = my = m) for the DON,
and the same width m for the FNO. In all experiments,
we increase the width from m = 10 to m = 500. For
all networks, we use the Scaled Exponential Linear Unit
(SELU) (Klambauer et al., 2017) as their smooth activation
function. We monitor the training process over 80,000
training epochs and report the resulting average loss. Note
that the objective of this section is to show the effect of
over-parameterization on the neural operator training and
not to present any kind of comparison between the two
neural operators.
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Deep Operator Network  Fourier Neural Operator
QF set More Complex Similar
Hessian and gradient bounds of the neural operator model Similar* More Complex
RSC and Smoothness characterization; computing the Hessian of £ More Complex Similar

Table 1: We indicate whether a specific neural operator (DON or FNO) has a similar or a more complex derivation of
specific mathematical objects or properties compared to a feedforward neural network (as in (Banerjee et al., 2023a)). *The
similarity is with respect to each individual network of the DON.

— m =200 — m=10 — m =200 — m=10 — m =200

— m =500 { 1% m =50
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(a) Antiderivative (b) Diffusion-Reaction (c) Burgers’ Equation
Figure 1: Training progress of DONs as measured by the empirical loss (2) over 80,000 epochs. The y-axis is plotted on a
log-scale and the x-axis denotes the training epochs % 100 (i.e., the loss is stored at every 100" epoch). Wider networks

typically lead to lower loss for all three problems.
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Figure 2: Training progress of FNOs as measured by the empirical loss (5) over 80,000 epochs. The setting of the plots is
similar to Figure 1. Wider networks typically lead to lower loss for all three problems.

The results for DONs (Figure 1) and FNOs (Figure 2) clearly
show that both neural operators benefit from an increasing
width m since it leads to overall lower training losses for
all three learning problems and it generally leads to faster
optimization convergence. The Antiderivative operator is
a linear operator and therefore is learned very accurately,
especially for wider DONs and FNOs where the loss is
around 102 and 1075 respectively. The diffusion-reaction
equation demonstrates lower loss with increasing width less
markedly than the antiderivative operator for DONs and
more markedly for FNOs. This could be attributed in part
to the fact that the operator is inherently nonlinear. Finally,
regarding Burgers’ equation, lower training losses and faster
convergence is more markedly for FNOs than for DONs as
the width increases.

Additional information on the experimental settings and
additional experiments are found in Appendix F.

9. Conclusion

We present novel optimization guarantees for gradient de-
scent for neural operators with smooth activations: Deep
Operator Networks and Fourier Neural Operators. Our guar-
antees are based on the restricted strong convexity and
smoothness of the loss, thus providing an encompassing
framework to neural operator optimization. We argue that
increasing the width of the neural operators benefits our the-
oretical guarantees. We also present empirical evaluations
on prototypical operator learning problems to complement
our theory.
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A. Related Work

Learning Operators. Constructing operator networks for ordinary differential equations using learning-based approaches
was first studied in (Chen & Chen, 1995), where a neural network with a single hidden layer was shown to approximate a
nonlinear continuous functional. This was, in essence, akin to the Universal Approximation Theorem for classical neural
networks (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991; Lu et al., 2017). While this theorem only guaranteed the
existence of a neural architecture, it was not practically realized until (Lu et al., 2021) provided an extension of the theorem
to DONSs. Since then, several works have pursued applications of DONs to different problems, e.g., (Goswami et al., 2022;
Wang & Perdikaris, 2021; Diab & Al Kobaisi, 2024; Centofanti et al., 2024; Sun et al., 2023), as well as improved the
DON model itself, e.g., (Wang et al., 2021b; Qiu et al., 2024). From a standpoint of generalization, Kontolati et al. (2022)
studied the effects of over-parameterization on the generalization properties of DONs in the context of dynamical systems.
Nonetheless, an optimization analysis of DONs is an open problem.

The operator learning paradigm has also been explored in parallel by other works seeking to directly parameterize the integral
kernel in the Fourier domain using a deep network (Bhattacharya et al., 2021b;a; Li et al., 2021a; 2020b; 2021b). Several
subsequent extensions explored different architectures for Fourier-based operators tailored to specific problems (Li et al.,
2020a; Liu et al., 2022a; Wen et al., 2022; Pathak et al., 2022; Centofanti et al., 2024). Other notable techniques include the
use of a factorized spectral representation (Tran et al., 2021) and employing FNOs in latent space in an encoder-decoder
framework (Li et al., 2023). We also mention that Qin et al. (2024) noticed that FNOs have good performance for learning
low-frequency information from PDE data, but are less effective on high-frequency information. Thus, they proposed using
an FNO ensemble that induces the neural operator to focus on learning the latter. Recently, FNOs were used to accelerate
simulations in climate science (Yang et al., 2023; Harder et al., 2023). Nevertheless, while significant progress has been
made for FNOs from an applied perspective, their formal optimization analysis is an open problem.

Optimization Analysis of Neural Networks. Optimization of over-parameterized deep neural networks has been studied
extensively, e.g., (Du et al., 2019; Arora et al., 2019b;a; Allen-Zhu et al., 2019; Liu et al., 2021a). In particular, Jacot et al.
(2018) showed that the NTK of a deep network converges to an explicit kernel in the limit of infinite network width and
stays constant during training. Liu et al. (2021a) showed that this constancy arises due to the scaling properties of the
Hessian of the predictor as a function of network width. Banerjee et al. (2023b) showed that a deep network whose width is
effectively linear on the sample size can ensure convergence under appropriate initialization. Du et al. (2019) and Allen-Zhu
et al. (2019) showed that GD converges to zero training error in polynomial time for deep over-parameterized models such
as ResNets and CNNs. Karimi et al. (2016) showed that the Polyak-Lojasiewicz (PL) condition, a weaker condition than
strong convexity, can be used to explain the linear convergence of gradient-based methods. Banerjee et al. (2023a) showed
convergence of GD for feedforward networks using RSC, which leads to a variant of the PL condition. Cisneros-Velarde
et al. (2025) used RSC to prove the optimization of networks with weight normalization using GD.

B. Additional Information on Neural Operators
B.1. Learning Operators

We briefly outline the notion of learning for neural operators (Li et al., 2021a; 2020b; Lu et al., 2021). Consider two
separable Banach spaces, the input space / and the output space V), and a possibly nonlinear operator G : ¢/ — V.

The standard operator learning problem seeks to approximate G by a parametric operator Gg : ¢ — V that depends on
the parameter vector 8 € © defined over some parameter space ©. This is done by proposing an optimization framework
where we learn a vector 87 € © that “best” approximates G in some sense. Given observations {u(/ )};‘:1 € U and

{GT(u(j))}?zl €V where u) ~ i, j = 1,...,n,is an i.i.d sequence from the probability measure ;. supported on I, we
take @' as the solution of the minimization problem

6" = argming.g Eu~y [C (Go(u), G (u))] , (15)

where C is a suitable cost functional that measures the discrepancy on the approximation between the operators G () and
G'(u) for a given u € Y. This optimization problem is analogous to the notion of learning in finite dimensions, which is
precisely the setup for which classical deep learning is used.

12
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B.2. DON Architecture

The schematic for the Deep Operator Network’s architecture is presented in Figure 3.

Branch Net: f(0;u)

m, width of the branch net
Input Functions

mg width of the trunk net

=5
escsene
cecseccee

@ a0} ) ( ) “inner product”
d 2 9, | l |
& 5 . K
im Go(u)(y) = Y _ fu(85; u)gi(0,5w)
—>|e %. =1
o :
Rdy s " -, . 5 E 0
ve {{yj };:l},:1 : 0= 17 0; cR”
Output Locations . ; -------
p 3 %‘QK 0, 0, cRP

Trunk Net: 9(0,;y)

Figure 3: A schematic of the DON architecture by Lu et al. (2021) used in our study. We refer to the notation used in our
paper. Note that the input functions need not be sampled on a structured grid of points.

B.3. FNO Architecture

A schematic for the Fourier Neural Operator’s architecture is presented in Figure 4.

Input Functions

-

o) Sampled u) on
u R locations for i € [n] Encoder

(6) Fourier Blocks Decoder

(0,)

Spec. conv Spec. conv pec. conv
(7 (1) ()

@ @ @
Bypass conv Bypass conv Bypass conv
(D) (w®) ()

Spec. conv (Spectral Convolution) Bypass convolution
F*R(Z)Fa(l—l) W(l)a(l_l)

Figure 4: A schematic of the FNO architecture by Li et al. (2021a) used in our study. We refer to the notation used in our

paper. “Spectral convolution” and “bypass convolution” are terms used in the FNO literature to denote the effect of the
linear mappings in the spectral and spatial domain, respectively.
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C. Optimization Convergence Analysis for Section 4

We establish relevant results for Section 4. Our analysis follows very closely the recent work by Banerjee et al. (2023a) and
generalizes it. We now provide all the relevant proofs.

We start with the following lemma which shows that Condition 1 implies a form of restricted PL condition.

Lemma 1 (Restricted PL). Assume Condition 1 is satisfied. Then, L satisfies a restricted form of the Polyak-Lojasiewicz
(PL) condition w.r.t. (N, 6;):

. 1 )
£(6,) — jnf £(6) < Tatl\veﬁ(t‘h)llz : (16)

Proof. Define
A «
Lo,(0) := L(8:) + (8 — 0, VoL(8:)) + [0 — i3

By the o;-RSC property of Condition 1(c), V8’ € N, we have
L(0') > Lo, (') . (17)

Further, note that Lg . () is minimized at ét+1 :=0; — VgL(0;)/ay and the minimum value is:

o . 1
9151{17 Lo,(0) = Lo, (0:11) = L(0;) — EIWeﬁ(et)H% .

Then, we have that

o . 1 2
> = —
Jnf L0,(0) > inf Lo,(0) = £(8,) — 5 VoL(B))]3 (18)

This means that that LA'gt (+) is lower bounded by the expression on the right-hand side of (18) and so we can take the infimum
over V; on both sides of (17) and obtain

inf £(0) > inf Le,(0). 1
OeN; £(0) 2 OEN; Lo.(6) (19)
Finally, we obtain the expression in (16) by using both inequalities in (18) and (19) and rearranging terms. ]

Next, we show that the restricted PL condition on AV; in Lemma 1 along with smoothness (Condition 2) can be used to show
a loss reduction on N;.

Lemma 2 (Local loss reduction). Assume Conditions 1 and 2 with o, < [ at step t of the GD update as in (7) with
step-size ny = % Sor some wy € (0,2). Then, we have

QW

B

£(0r41) — jnf £(0) < <1 - (2—wt)> (£(8:) — inf. £(0)). (20)

Proof. Since L is S-smooth by Condition 2, we have
L(O0ir) < L0 + O — 0, VoL(0) + 2001 — 0,13

2

= £(6:) — ml| Vo L®)]3 + 22

2
=200~ (1= ) V0O .

VoL(6:)]3 21)

Since a; > 0 by assumption, from Lemma 1 we obtain

~IV6L(0:) 3 < ~204(£(8,) — jnf. £(6)) .

14
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Hence
: Bn
£(0) ~ jnf £(6) < £(6,) ~ jnf. £(6) ~ i (1= 711 ) IV0L(60)12

Y L6 — inf £®) —m (1 @ 204 (£(8,) — inf L£(8))

- 0eN; 0eN;

= (1-2am (1~ 5")) (£(6,) — jnf. £(6)
where (a) follows for any 7, < 2 because this implies 1 — > 0. Choosing 1; = %, w; € (0,2),

. Qg .
— <(1- - — .
L(6:11) 91€n/&£(0) < <1 (2 wt)> (L£(6y) elenj\f/tﬁ(g))

This completes the proof. O

Finally, we show that the local loss reduction result in A; from Lemma 2 can be extended to show loss reduction in 5(6;),
which is the main optimization result.

Theorem 1 (Global loss reduction). Consider Assumption 1 and Conditions 1 and 2 with oy < [ at step t of the
GD update (7) with step-size 1y = 4 for some wy € (0,2). If L(6;) # 0 ié‘l(fe )E(H), then we have 0 < ~, :=
€ 0

ol £(0)= inf  L£(6)

ENt €B(8y

L= mr Loy < land
0cB(0g)

£(0t+1) - inf E(G)

0cB(6y)
9)
apwi (1 — ) . (
<l[1l-—2-w L(0;)— inf L(O
(1- 28200 ci6) -, gt £0)
infoc, £(6)=, inf £(6)
Proof. We start by showing ~; = T CAETS:; c?e) satisfies 0 < ~; < 1. First of all, we note that this quantity is
60)

well-defined because we are assuming that £(6;) # o iBn(fe )E(B), i.e., that the current iterate does not attain the minimum
S 0
loss. The fact that ; > 0 follows immediately from inf £(0) < £(0;)and inf L£(6) < inf £(0) since N; C B(6y)
0cB(6o) 0cB(0o) 0eN,

by Condition 1(a). Now, there are two ways to prove that 7, < 1 depending on whether we consider Condition 1(b.1) or
Condition 1(b.2).

We start by considering Condition 1(b.1) and prove by contradiction that 4 < 1. Assume that v; > 1, i.e., gin/f/ L(6) >
€Ny
L(6;). Then, we note that

(a) (b)
it £0) € £0c) < 20— (122 V020013 2 o, £0) -~ (1- 5 ) 1Wacionl. @2

0N,

where (a) follows from 6,1 € N, (b) from (21), and (c) from y; > 1. Then, comparing the leftmost and rightmost

inequalities in (22), we must have |V £(0,)]|2 = 0 since n; (1 — %) > 0 because of 7, = % with w; € (0,2). Now,

when considering Condition 1(b.1), we either assume that 6 ¢ N; or that £(0,) # ginjff L(0); thus, we analyze both cases.
€Ny

(i) Assuming 6 ¢ N;: Note that ||V L(6;)||2 = 0 implies VoL£(6,) = 0, (i.e., the gradient evaluated at 8 is the zero
vector), which then, due to GD in (7), implies 8; = 6, 1. Since we had 8,1 € N, this then means that 6, € N;—a
contradiction to our assumption.

(ii) Assuming L£(0;) # eiélj\f/ L(60): Note that ||V L(6;)||2 = 0 implies that all the inequalities in (22) are also equalities.
t

This then implies that £(6;) = ein/f/ L(0)—a contradiction to our assumption.
€N
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In either case (i) or (ii), our proof by contradiction finally shows that v; < 1.

We now consider Condition 1(b.2) with the element 8’ € N; as described in the condition’s statement. We immediately
have that 8’ satisfies Oinj\f[ L£(0) < L(0") < L(6;), which then implies v, < 1.
EN

Having shown that 7, < 1 according to Condition 1(b), we now proceed to prove equation (9). We consider two cases: (A)
~v¢ > 0 and (B) v = 0.

We start by considering Case (A), which holds if and only if inf £(6) > inf L£(6). We now define 6, :=
0EN, 0cB(80)

% and note that ¢; € (0, 1) since §; = 1 — ~y;. Now, with w; € (0, 2), we have
7 8eB(8g)

— inf = — inf inf — inf
L) =, Jnb L(0) = L(Ouy1) — finf L(6) + inf L(6) - inf L(6)

< (l—at“t@—m)) (£(8:) — jnf. £(6)) + (inf £(8) ~ inf £(6))

ﬁ 6cN, 6cB(6o)
_ (1 _ tﬁt(g —wt)> S(L(8) — inf £(8)+ (1= 8)(L(6,) ~ inf L(0))
® (1 _ atﬁwt (2 —w)(1— %)> (£(0) ~ , dnf £(0)).

which is (9), and where (a) follows from Lemma 2 and (b) follows from

QWi QWi

<1O‘t8wt(2wt)>5t+(15t)_1

We now consider Case (B), i.e., 7+ = 0, which holds if and only if inf £(0) = inf L(8). Then, we have
0EN, 0cB(6,)

L(Bri) — , inf £(8) = L(8,11) — jnf £(0)

@ (1 _ atﬂwt (2- wt)> (£(8:) — jnf £(9))

- (1 -ty —w) (200~ nf. £6),

which is (9) when 7, = 0, and where (a) follows from Lemma 2. This completes the proof. O]

D. Analysis for Deep Operator Networks

D.1. Bounds on the Hessian, Gradients and the Predictor

The convergence analysis makes use of the gradients and Hessians of the empirical loss with respect to the parameters 6,
namely,

VoL(0) = [Vo, LT Vo, 7], and V3£<0)=H(0>:[§” gfg}, 23)
gf 99

where Vg, L£(0) = 0L(0)/00; € RP/ and Vg, L(0) = 0L(0)/00, € RPs. Note that we make use of the notation Vg (-)
to denote the derivative with respect to the parameters 6 and this is not a functional gradient. Similarly, the individual
blocks in the 2 x 2 block Hessian H (0) are given by

9*L 0*L

He; =V L= —= =
If vaE aefQ’ fg 80faeg7

0*L
Hyy =V L=——1, (24)
99 9 (9092

0*L

.
Hor = Hy0 = 56,96,

where Hyy € RPF¥Ps Hy, € RPs¥Po, Hyo € RPF¥Ps Hoy € RP9*PS and the argument 6 is ignored for clarity of
exposition. Using (3) and rewriting the derivatives in (23) and (24), recalling that ¢; ; = (Gg(u(i))(yj(-l)) - GT(u(i))(y](-Z)))Q,
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we get
n

3[: i i oL 1
26, Z Zf S 00,10 ana 50, 0 Ly, Zf;i)v 0,951 (25)
=1 " j=1 i=1 ** j=1

k=1

o’L e i i) (i i i
ang:*Z >, a0+ Z Z S el o, 1090, 587
=17 j=1 k=1

k,k'=1
0%L > i) ¢(3) (@) @)1
/ % % % i
9602 *Z Z%ka Vb, 90+ 5 Z Z > K hVe,0 Ve, 00T 26)
g9 = vj=1 J ki k=1

’ K . . A )
5‘96f§09 :72 ZE/,JZVfok)V 0,00, + Z ZW > G fi Ve £'Vo,g0,507 |
= j 1 J

k=1

for the individual blocks of the Hessian (23) where we make use of the notation f,gi) = fu(0y; u()) and g( - = gi(0g; yj(l))

In the rest of the paper, with some abuse of notation, we also make use of the implicit notation f,g (0f) = fk(B s u()) and
9(8,) = 905393,
In order to prove the RSC and smoothness properties of the empirical loss £, we need to upper bound the spectral norm of

its Hessian. As can be seen above, the gradient and Hessian of the predictors (i.e., the branch f,g and trunk g( R networks,
k € [K].j € g i € [n]) appear in the Hessian of £, and thus, we will eventually need the upper bound of their norms. For
this, we will make use of the next lemma.

Lemma 3 (Bounds on the predictors). Under Assumptions 2 and 3, and for 6 € B;];:,%i (60), with probability at least
1-2KL (%, + %)’ we have for every k € [K], i € [n], j € [¢i],

. )] ) (9)
[v3,67] < = ana | v3,60)] < .
/mf g7uR,] My
i i 27
Hveffgg )H <o) and Hvegg( <o, @7
2

91 < M\, and \ng <o,

where c(f), 0(9), Q(f), g(g), A1, and \g are suitable constants that depend on oy, the depth L and the radii p, p1. The depen-
dence of the constants reduces to the depth and the radii and becomes polynomial whenever o9 <1 — p max{\/%, \/%}

Proof. The proof follows from a direct adaptation of Theorem 4.1 and of both the statement and proof of Lemma 4.1
in (Banerjee et al., 2023a) to our setting. Indeed, these results show that f ), g(f ), and \; depend on oy, the depth L and the
radii p, p1; and that such dependence reduces to the depth and the radii and becomes polynomial whenever oy < 1 — \/%Tf
A similar dependence is obtained for the constants c(g) Q(g) and Ao whenever og < 1 — \/? The last statement in
Lemma 27 follows immediately. Finally, since the bound for a single branch network output holds with probability at least
1 — 2L and for a single trunk network output holds with probability at least 1 — —q then in order for these bounds to hold

for the K outputs of all predictors, we obtain the overall probability using De Morgan’s law and a union bound. O

D.2. RSC and Smoothness Results

Using the results from the previous section, we derive the RSC and smoothness results.

Theorem 2 (RSC for DONs). Consider Assumptions 2, 3, and 4, and QY. as in Definition 2 with |V eG||2 # 0. Then,

the set Bl := QL N By (6y) N B}"(6,) is a non-empty set that satisfies Condition I(a) and (b) for suitable py and
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sufficiently small k € (0, 1). Moreover, with probability at least 1 — 2KL(mif + -L), at step t of GD, the DON loss L (3)
g
satisfies equation (8) with

_ 1 1

ar = 267||VeGy|l3 — c1 K* < - ) (13)
Vs VMg

where VoGy = £ 31 | q ;11:1 VeGo, (u(i))(yj(-i)), and for some constant ¢c; > 0 which depends polynomially on the

depth L, and the radu p, p1, and py whenever og < 1 — pmax{ﬁ, ﬁ} Thus, the loss L satisfies RSC w.r.t (Bt 6,),

i.e., Condition I(c), whenever |VoGy |3 = Q(\/% + \/}T)

Proof. We start by proving the first part of the theorem’s statement. Since B!, C BE% (689), we satisfy Condition 1(a). We

now need to satisfy Condition 1(b). We particularly focus on Condition l(b.2). For this, we first show the existence of an
element 8’ € B?. For such @', it must be true that 8’ € Q* . From Definition 2, 6’ needs to satisfy three conditions:

|cos(@ — 6;,VeG:)| >k (cosine similarity condition)

i=1

(0% —0:0)" | = Z Zﬁ’d Z Vo, i)Vggg,(f’z. T (8, —6,.:) >0 (average condition) ,
gt

(9} — Bf,t)T (Z Ve, f,gi)Vggg,(;)j T) (0; —0,.) <0,Vi € [n],Vj€[g;] (outputcondition).
k=1

Let Vg, Gy be the first p; components of VoG, and let Vg, G, be the last p, components of VG, .

We start by assuming that ||V, G¢||2 # 0. Then, let us consider 8’ = [B}T G’QT]T, where 0, € RP/ will be specified later
and 0; = 6, . Then, belonging to the Q, set conveniently reduces to the feasibility of the cosine similarity condition as
follows:

|cos(0' — 6;,VeGy)| > k. (28)

Now, let ¢; be defined as ||VgGy|2 = ct|| Ve ; G'||2. We immediately notice that ¢; > 0. Moreover,

T _ T ~
_ o’ _eft Vo Gt 1 0 _aft Vo Gt
cos(0' — 0;,VeGy)| = ! . ( " ) = — ! ’ < = ) ;o (29)
| cos(8" — 61, VoG <||0} _af,tHz) INoGills )|~ e |\ 116} —074l2 ) \]Vo,Cull2

and thus, we immediately have that (28) can be expressed as

|cos(9 Bft,ngGt)| > ik . (30)

We now choose x > 0 sufficiently small so that c;x < 1.

With all of this in mind, we proceed to show the existence of an element 8’ € B’ of the form 8’ = [G’fT 0,:"]" satisfying
condition (30) and the following two conditions:

Veo,L(6; —(cir)?
2]V, £( >22\/1 C . nd

Condition (A): [0 — 6,|l2 = € for some € <

Condition (B): the angle 1" between (6 — 0y ;) and —Vg, L(6;) is acute, so that cos(v') > 0.
To show the existence of such element 8’ € B!, we propose two possible constructions:

Choice (A): If the points 8,441, Vo, Gt + Oy, and 0, are not collinear, then they define a hyperplane P that contains
the vectors Vg, G and —Vg, L(6;) (recall that 05 ;1 — 607, = —Vg,L(0;) by gradient descent). We choose
0} such that the vector 0} — 0, lies in P with cos(@} — 07+, Ve, Gt) = ¢tk (i.e., it satisfies condition (30)
with equality) while simultaneously satisfying Condition (B). If the points 8711, Vg, G,+6 r,t>and B 4 are
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collinear, we choose 0} such that it is not collinear with these points, thus defining a hyperplane P with these

other three points, and such that 0} is also taken so that cos(@} — 074, Ve, G) = ¢4k while simultaneously
satisfying Condition (B).

Thus far we have only defined angle (or direction) conditions on the vector 0} — 64, and so there could be an
infinite number of values for 0} satisfying such angle conditions without 8’ belonging to the set BE‘;? (6p) nor
0} satisfying Condition (A). To determine the feasible values for 0}, we observe that 0, is strictly inside the
set B} (6p) by Assumption 4, and so 8 can be taken arbitrarily close to 6 ; so that 8’ € B2 (6,) and
Condition (A) is satisfied.

We remark that, regardless of the collinearity of the points 07 ;1+1, Ve, G, +6 r,t>» and 8¢, hyperplane P
contains the vectors 0} — 07+, Vo,Gy, and —Vg L(6;), all sharing its origin at 6 ; € P.

Choice (B): We choose 6’ as in Choice (A) but with Ve, G| replaced by —Ve, Gy.

We immediately notice that 6’ defined by either Choice (A) or Choice (B) satisfies 8’ € Q% N BE‘;? (6p). To make 8’ belong
to the set Bf,, we need to find a radius p, such that 8’ € BF"“(6,), or, equivalently, such that 0’ € BEY€(8y,4) due to our
construction of ’. Such p is found by taking ps > € with € as in Condition (A). Finally, it is straightforward to verify that
such @' € B! defined by either Choice (A) or Choice (B) will always exist, by considering the following cases for the angle

v between Vg, Gy and —Vg, L(0;):

(i) If v € [0,7/2] or v € [37/2,27], then Choice (A) will be true, since —Vg,L(8;) is in the positive half space' of
Ve, Gy; and

(i) if v € [7/2,7] or v € [, 37 /2], then Choice (B) will be true, since —Vg,L(8;) is in the positive half space of
—ng Gt.

Now, let us assume we are in the case of item (i) above, so that 8’ is constructed according to Choice (A) (the rest of the
proof can be adapted to the case of Choice (B) and to item (ii) by using a symmetrical argument and so it is omitted). Let v
be the angle between 0} — 0y and Vg, Gy, so that cos(v1) = ¢k according to Choice (A). Then, we have that

|cos(V))| = | cos(v — 11)| > |cos(m/2 — v1)| = | sin(v1)] = /1 — cos2(r1) = /1 — (e15)2 .

Further, by the construction in Condition (B), cos(v’) > 0, which implies cos(v’) > /1 — (¢;k)? > 0. Now, by the
smoothness property of the empirical loss £ we have

£(O) < L)~ (6~ 6,.-VoL(©:)) + 216~ 6,3
B
= £(8) ~ 10 ~ O50llll Vo, £z cos(!) + 5118 — 65,13

= [,(et) — 6||V9f£(0t)‘|2 COS(}/) + §€2

< £(6,) ~ €V, L)1/ T~ (@n P + 5

_ (o) - B <2vef.c(0t)||;m 6)

< L(6) .

where the last inequality follows by the construction of e in Condition (A). Thus, we have £(0") < £(0;), which implies
that the constructed 0’ is as described in Condition 1(b.2). This finishes the proof for the first part of the theorem’s statement.

So far, we have assumed that || Vg, G¢|l2 # 0 in order to prove Condition 1(b.2). If, instead, we assume that Ve, Gill2 # 0,

then the whole proof for Condition 1(b.2) is done symmetrically: we start by taking 8’ = [6 f,tT B_ZJT]T and then characterize
0, € Rps.
g

'We say vector a is in the positive half-space of vector bifa' b > 0.
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We now proceed to prove the second part of the proof. For any 8’ € BY, by the second order Taylor expansion of the DON
loss with respect to iterate 8;, we have

1 /o T82£(0~)
2(0 Bt) 962

L(0) = L(0:) + (0" —0:,VoLl(6:)) + (0 —6),

where 6 = £0' + (1 — £)0; for some ¢ € [0, 1]. To establish a;-RSC of the loss with «; as in (13), it suffices to focus on
the quadratic form of the Hessian and show

02L(6
@ 00" 200 0> a0 - 03 61
Note that the Hessian, by chain rule, is given by
H(6) = 392 = Z Z (gﬁ VoGg( )(y](-i))VevG@(u(i))(y](-i))T + @JVQGé(u(i))(yJ(-i))) )

where (; ; = (G (u(l))( ) Gt (u® )(y; (e )))2. Given the 2 x 2 block structure of the Hessian as in (23), denoting
06 := @' — 0, for compactness the quadratlc form on the Hessian is given by

50T H (0)50 = 60 Hy(0)60; + 2607 Hyy(60)50,+ 06, Hyy(6)56, . (32)

T1 T2 TS

Focusing on 7' and using the exact form of H f(é) as in (26), we have
K . ~ . ~
SR PLACA WY > L3 LSS 0,)50] 5,100y o
, — — j f
(a) 2 A\2 (2K M Ag + E)Aacf
Z 3 (50, %0, Gatu ) )~ PN LN e
i =1 Vi

where (a) follows from ¢, = 2 and the different bounds in Lemma 3 since 6 € BE(60), so that |£];] < 2K A\ Xp + ¢ with

¢ = MaX;c[n) je[q \GT(U( ))( )| Similarly, for T3 we get

qi

2~ 1 oo 02 (2K A 4 E)Agcl®)
Ty > =373 (06, Vo, Gau) (")) - PRAA A ONCE 5 13,

i=1 455 Vg
Then,
(@21 & _ A2 . A2
L+Ts = ﬁZgZ <<509’V99Gé(“(1))(y§))> +<59f,VefGé(u())(y§))> )
i=1 1" j=1

(9)
— (2K A A + ©) (Alc 42! ) 15612

n qq )
- iZ - >~ ({300 Vo, Gt 65")) + (365,V0,Gou) "))
1= ]:
n qi ] _ ]
-2 2 = D (00,,V0,Ga(u®) (")) (667, Vo, Galu) ("))
1= ]:
QKM +0) (M(g) n AZcm) 1563

Vg g

where (a) follows from ||0¢||2, [|04]|2 < |62
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Focusing on 75 and using the exact form as in (26), we have

T, =200} 72 Ze Zvejfk (6)Ve,9:(8,)7 | 66,
= 1 k=1

j=1

Ien 1 & i N A
+200] | L3>, (nggvg,fk )(Z £'%e,91);(6,) ) 56,
i=1 1" j=1

k'=1

(a) 1 1 A
200; fz Zz ngffk (0f)veg L(6,)7 | 56,
= 1 k=1

] 1

I

n qi .
% Z l Z <5097 veg Got (U(’L) ) (yj(l))> <50‘f’ v91" Get (u(i) ) (yj(l) )> )

6 =
where (a) follows from ¢/ ;=2

For I; our goal is to first transfer the dependence of the gradient terms on 6 to 6,, so that we can use properties of the
restricted set QY. which is based on 8, to simplify the analysis. Towards that end, note that

1 T T
5_Il = 59f ﬁz Z€ kZlVfok CA f)VG 9 (at 9) 66,

— ] 1

=

1 1 i) (G i i) (A
+507 Z Z@ > (Vo (60) = Vo, 17(61.)) Vo, 58,) | 98,

+56] Z Ze ngffk (601 (Vo,00)(0,) ~ Vo,0(01)) | 56,

0_ Wiq ZHVeffk (65) = Vo, /i (8:.5) HQHVGQQI(:;;‘(ég) )

16011121166, ||2

_RMA D) 1§§vaffk 0.0, [To,68,8) — To,6f5,0.,)] 150512150,

11 j=1k=1

LS 93,50 @0), 185 0011 [ 0,08 156, 16, .

’LJ 1

(b) 2K)\1 Ao + C

Z
2K/\1)\2+ &

LY LSS Ve, s @), V5,000, 16, — 0060512106, 1

=1

vi=1k=1

Y @K DAV 50,1210, — KA 0N 150,110, 2
2 ~ i ~
& (20 +0) (e ) 1981210, — R -+2) (2= ) 10s o0,
(d) (9) o) (9) o(f) )
S 2K\ Ag + ) <C AR )60”%

VI VI

@) 9 o)

(2K>\1)\2+c)p2< e )Ilf%’ll%,

Vg Vi

where (a) follows from the definition of Q! set (Definition 12) since 6’ € Bff/b C QL ; (b) follows from the generalized mean
value theorem with 65 = &6 + (1 — &1)0; ¢ for some & € [0,1] and 8, = &0, + (1 — &)8, 4 for some & € [0,1];
(c) follows from the results in Lemma 3 since [0} 6] € B} (), and the fact that |87 — 0|2 < [|66y]|> and

z PP1
18, — 64 .¢]|2 < ||00y]|2; and (d) follows from [|60¢||2, ||60,]|2 < ||66)]|2.
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Replacing I; back in 75 and then combining the bounds on 77 + 75 and 75, we have

56T H(0)06 > > Z Z(<509,vegaé<u<i>><y§»”>>+<50f,VefG<“)(”>>)

M@ AoelD)
_(2K)\1>\2+&)< 17 | 220 >||59||2
ﬂ/mg ,/m

ROP RO N
n )ncsen%

— 22K\ A2 + &)p2 < NI
72 Z<50vgc (u)(y! )>2

M@ AoelD
_(2K)\1)\2+5)< 17 A >||59||§
‘/mg ,/mf
n )néen%

— 22K M As + &)po ( et
n Z Z ({56, VoGo, (@) (w")) + ({36, VoGg(u) (")) — (88, VoG, (u)(y

I

"))

A cl9) )\
— (2K M2 +0) ( ¢ 2t ) 15612
N

c(g)Q(f) C(Q)Q(f)
( ) 15613
(33)

— 2(2K)\1/\2 + C

Then,
D)(y") ~ VaGo, (u)("))

n qi
( >)>2 +3 q% 3 <59, VoGyg(u
i=1 ' j=1

D) ")) (56, VoGa(u®) (") ~ Voo, (u)(y") )

2~ 1
== ; o JZ (86, VoG, (u?

>+Z Z<50WG (W) w") - VoG, ) (y"))’

PR
>,
)
<
o)
Q
@
/—\

(50,9060, ) ")) ((60) V36 )@ - 0,)
(34)
2
-1 455
Fo3 (08, VoG, () (")) ((60) V3G, (u) (y")(6 - 6))
225 LS (6.VoGe, ) ™))

— 46K (g + X0 66, Zqzlée V3G () (") (58)|

i=1

where (a) follows from the generalized mean value theorem and has 0 € &30 + (1 — &3)0; for some &5 € [0, 1]; and (b)
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follows from the fact that @ — 8, = £3(0' — 0’) and

HV@Get(u(i))(y]('i))H sHveGot(u(”)(yf))H +HV9 Gm(u“’)(@/ﬁi))H2

00(£(0,))

Z Bt veffk; t

k=

2 2

K
< S 19 0)NIVe, 117 (6:) ||2+Z| £2(00)[I1Ve,9.:(8,)]2
k=1

< KXo + KX 09

where the last inequality follows from Lemma 3.

Now, we have that

K ~ K ~
(60)"V5G5(u => (56" g,” C )vgf )(8,)(56;) )+ > (56 ef)vg g,“(e )(68,)
k=1 k=1
K . ~ o~
+ 22 (60,)" (Vo, 91 (8,)(Ve, f1”(87)) 7 (565)
=1
(a) /\ clg N E N,z
< K( : ) 16613 +23(66,)T (V.o (B (Va, £° B (660))
k=1
I3
(35)

where (a) follows from Lemma 3 since 6 € BJY(6o).
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1 T

T

Now, for I3,

] =

Vo fé”(et,fweggéii-wt,g)T) 56,

b
Il

1

M=

(veff,i%é) Vo, I\ (6..1)) Vo,91")(6,)7 )wq

Il
—

Mw

.
+66]

gae}(

+2Hv9ff;><5f>—veffé“wtf [, 70,980 15051121564 12
k=1

Vo, £ 01) (Vo,93(8,) — Vo, wtg))T)aeg

1

HMNw &

Ve fk Btf Vo gk](etg) )599

-3V, 10600, | Vo, B) — T, 00,)] 190512150,
k=1

(@) i i i
< 56} (Z Vo, f ><et,f>vegg£,;(0t,gf> 5,

k=1

D @) , £(9) o) ,
+ K (S ) 190,818, 1o + €568 (2 ) 190, 110,
g9

< 59f <Z Vof (9t )V, 9 (at 9) ) 660,

k=1
(9) ,(f) () ,(9)
K (S + 2 sol:
,/mf \/m79
K
<o6] (Z Vo, f,i”<et,f>vegg,i’,}<0t,gf> 36,
k=1
. <<g> oD C(f)g()>|60”
+ K po + 5,
Vg g

where (a) follows from the generalized mean value theorem, from || —8; ¢|lo = (€30 + (1 —&3)0; f — 6y ¢l = £3£]/0" —

0, |2 = £3€]|66]|2, and from the results in Lemma 3 since 6 € B} (60y); and (b) follows from [0 ||z, [|6,l2 < [|6]]2
and &3¢ < 1.

Replacing the bound on I3 back to (35), we obtain

k=1
(D (X + 20 (F (N + 209
+K(1+P2)<c i +207) | e + 20 )>||59§ (36)
,/mg ,/mf
9 (N + 200 (Mg +2009)
R e T
Vg N

(60)TV3G; (u™)(y")(36) < 56] (Zveffk (64.1)Ve, 95 (Bt.4) )609

where the last inequality follows from the fact that 8’ € Q! using the properties of the restricted set Q. in Definition 12.
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Replacing (36) back to I in (34), we obtain

21 & : A\ 2
> 3 D90,V (u) )
i=1 " j=1
@D (N + 20 (N + 209
—4€3K(>\29(f)+)\1Q(g))||50|2><K(1+,02)<C (\1/%9 )4 ¢ (\2/%@ )>||50||§
g f
2 n 1 qi ) (z) 2
= EZEZ<507VGGG,5(U(1))(% )>
i=1 1 j=1

— 46 K2(1 + p2)p2(ha0P) + i 0@) <

(37)

VALY VAL 2

Replacing this lower bound (37) back to the Hessian expression in (38),

50T H(6)30 > = Z Z<50V0Ge M)

4&K%1+mmxbdﬁ+Aw@><

c(g)()\1 + QQ(f)) N C(f)()\2 + 29(9))) ||§0||2
Vg Vs ?

M@ Ay
(2KA1>\2+6)< e’ A )5o||§
VMg valT

o) ) Q(f)) 15612 (38)
v ymg )
_ 1 1
2(30.%aCn,)” - uic? ) 16012
VI /My

(b) _ 1 1
2 262 VeGio, |2156]12 — 1 K ( ; ) 15612
VAl \/ Mg

— 2(2K>\1)\2 + 6)[)2 (

= o613 ,

where (a) follows from Jensen’s inequality with Go = 13" | ql q" L Go(ull ))( (@ )); where (b) follows from the
fact that ' € Q' and using the properties of the restricted set QF. in Deﬁnltlon 12; and where o, = 2k2||VoGol|3 —
1 K? (mf + —) Note that adding all the constants from the second to the fourth line in (38) define the constant ¢4,

and so ¢; depends on o7, the depth L, and the radii p, p;, and ps due to Lemma 3. As in the statement of Lemma 3, this

.o . 1 1 .
dependence reduces to the depth and the radii and becomes polynomial whenever g < 1 — p max{ﬁ, \/TT} This
completes the proof.

Theorem 3 (Smoothness for DONs). Under Assumptions 2 and 3, with probability at least 1 — 2K L(— + —) the DON

loss L (3) is B-smooth in BE‘;f (0o) with 3 = co K2, where 02 > 0 is a constant which depends polynomlally on the depth

L, and the radii p, p1, and ps whenever oy < 1 — pmax{—— Nk W}

Proof. By the second order Taylor expansion of £(6’) about the point § with 8’,6 € BF' (), we have L(0') =
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L(0)+ (0 —6,VoL(0))+ 1(0' — é)Tai)‘;(f) (0’ — 6), where 8 = €0’ + (1 — £)0 for some £ € [0,1]. Then,

(0/ _ é)T (92[:(@) (0/ _ é) _ (9/ _ ( Z ZEU VGG )(yj(i))veGé(u(i))(y;i))T

V) y ”))(e o)

n qi
DDA CEIAZHRIRY
i=1 1 j=1
I

*Z Zf’,]’ 0)TV3G(uV)(y)(6' - 0),

2

I

where /; ; = (Gg(u(i))(ygi)) - GT(U(i))(y](‘i)))2~

Now, note that

n qi -
- 2 ql 2.4 (0~ 0.90G5 ()5 )

Z ZH%G )| e~ 63
v =
(b)

< 4K%(M20Y) + X109)20" - 62,

(a) 2

where (a) follows by the Cauchy-Schwartz inequality and (b) from Lemma 3 as follows
IV6G(u™)(y")ll2 < Z (Il955(85)V o, £ @p)ll2 + 17 (87)V6,9,(6,)12) < K (Ao + Asel),

since 6 € BEu(6y).

Now, for I,

0’ — 0)"V2G5(u®)(yS")(0' — 0)|

Z Z G

a)
< (2KM\ X2 +©) (Kg(f)g@ + K (1+ p2) (

O+ P D ut Q(g)))) o |2

2
Mg VALY

with ¢ = max;c () je[q |G (u?) (yj(l) )|, and where (a) follows from modifying the result in equation (36) from Theorem 2

according to our setting.

Putting the upper bounds on I; and I back, we have

+9%L(9)

-6 062

@ —0) < [4K2()\gg(f) 4 A\ 0@)?

@ (A 4 oD) P (ny 4 0@
F2EMAs +©) (Kg(f)g(g)+K(l+p2)(c At o) | e to )>)]

,/mg ,/mf
x |6~ 8|3 .

Note that all the constants on the right-hand side of the inequality above form an expression that depends on K and on o1,
the depth L, and the radii p, p1, and p2 due to Lemma 3. As in the statement of Lemma 3, the dependence of such expression
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reduces to the depth and the radii and becomes polynomial whenever g < 1 — p max{\/%Tf, \/%} This completes the
g9
proof. O

Proposition 1 (RSC to smoothness ratio). Under the same conditions as in Theorems 2 and 3, we have that o /8 < 1
with probability at least 1 — 2LK (- + —)

m f

Proof. From the proofs of both Theorems 2 and 3, a; < 2k2||Vg,G]|3 < 262K 2 (Moo 4 X1 0(9))? < 4K?(A\g0!) +

A109)? < B, and so <L O

E. Analysis for Fourier Neural Operators

‘We recall the FNO model
a9 = P(u)(x)
1
(1) D u0)
al? <o (W a)
1 1 (39
W= —=wbal=Y 4 —_F*ROFa~Y le{2,...,.L+1
a6 (=Wl )+ P ROFaD) | T 2 1)
1

f(0;%x) = ol = ——vTalth

m

where W, RO € R™*™ for | € {2,..., L+ 1}, W) ¢ Rmx4,

E.1. Bounds on the Hessian, Gradients and the Predictor

Lemma 4 (Bounds on the Predictor). Under Assumptions 5 and 6 and for 6 € BEE,CPT o1 (80) we have with probability at

least 1 — 2EX2) ypgy for any input function u and evaluation point  as in Section 6,
m

IVasll < 7= (40)
IVeflz < e, (1)
<A, (42)

where c, o, X are suitable constants that depend on o1 4, 01, the depth L, and the radii p.,, p,, and p,. The dependence
of the constants reduces to depth and the radii and becomes polynomial whenever o , + 01, <1 — %.

In this section we will prove all the bounds in Lemma 4.

Lemma 5 (Initialization of the Parameters). Under Assumption 6,with probability at least 1 — % we have
W llz < o1y, and |[B|l2 < o1/, (43)
Proof. The proof follows directly from Lemma A.1 in (Banerjee et al., 2023a).

Proposition 2 (Layer-wise matrices). Under Assumption 6, for 0 € BESfpr o1 (00), with probability at least 1 — % we have

HW(”H2 < <ol,w + 5%) Vm, le[L+1] and HR<”H2 < (o—”+ W) Vm, L2, L+1} (44

Proof. By the triangle inequality and Lemma 5,

WOy < WPl + WO = WPl < 01,0 v/m + pu,
IROl2 < [BY 2+ [RD = R [l2 < o1,0v/m + pr -
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We now bound the norm of the output o) at the layer [ € [L + 1].

Lemma 6 (Norm of the [-th layer output). For | € [L + 1], under Assumptions 5 and 6 for 0 € B, (), with
probability at least 1 — %l we have

i=1

|| <vm (m + J%)l +Vm le <a1 + \;%) [6(0)] = (vl +16(0)] iv) Vm, o (49)

where,
01=01w+01yr, p=pwtpr, and =01+ L

Jm

Proof. We prove the result using induction (e.g., see Lemma A.2 in (Banerjee et al., 2023a)). First, note that for the first
hidden layer, using the fact that ¢ is 1-Lipschitz,
IR TTCO PN

()t (o) o <[

where 0 denotes the zero vector of appropriate size. This in turn gives, using ||a(9||; = Vd,

(46)
2

2

Ha“>H2=H¢( W”@“”) wa<la<° RACOIE
< 2= W, o], + 61w
< (o1 L2 ) v+ o) vim
< (1 b one 4 22 i 4 o)V

Now, consider also the output at layer 2, namely,

b

2

1
« (2) H(b < W(2 __F* R(2 1)>
a2 = t

which gives,

1
(2) oM @ g
“¢( Whe+ R R >

< H¢ (ﬁW@)a(l) + \/lmF*R(Q)Fa(l)) — ¢(0)

= l#(0)]l2

)

2

1 1
<||l— W@V + —F*R@ Fa)
H NG o+ Jm a

2

and, in turn,

1 1
@], < HWm)a(l) + L @ pe®
A /m A/

m

+ l9(0)]2
2

1
< 7M/(2) (1)
- Hm °

1
—— F*R@ pa®
i Hﬁ @

2

+[6(0)[vm

) 1 1
< ﬁHW(2)||2||a(l)||2 + ﬁHR@)HzHa(l)HQ + \/EIQS(O)\

< (al,w SRTR ) laD 5 + v/l6(0)]

v o
gm@ﬁ\/’%) +(1+<01+\F)>W¢( ),
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where (a) follows from the fact that the operator F' is a unitary matrix. Now, for the inductive step, consider that the output
at layer [ — 1 satisfies

ot < v (s o) S (k) o

Finally, at layer [, we have

1
= ([, v .
[, = . ] 1V 4 Vilo(o) )
< (1 o1+ 22 oDl + ilof0) )
p ! ! o\l
N G = Iy Sl (R N O “9)
Vi 2\ 7w
Introducing v = 01 + %, we can write
l .
laVly < v/m (vl + |6(0)] Zv“l> : (50)
i=1
This completes the proof. O

From now on, we will use the notation p, 1, and v as defined in Lemma 6.

Lemma 7. Forl € {2,..., L+ 1}, under Assumptions 5 and 6 for 6 € BEL‘)CPTPI (60), with probability at least 1 — 2, we
have

<. (51)

H da®
L

Oa(l—1)

Proof. We first note that

dall) 1 ~(1—1 (1) * (1
bwwhzﬁﬁ@ )+ 1 RO FL

Now, from the definition || Allz = supj,,—; | Av||2 we have,

aa(l) ]. ’ 1 1
———|| = sup —(qﬁ (W()+F*R()F> ’UH )
H@Oé(l 1) 2 lv]l2=1 \/ﬁ 2
(a) 1
< sup —= ([WOvlly + [ F* RO Fol, )
[vllz=1 VT
(®) 1 0) 0]
= sup — ([|[WWv|2+ [|RY Fol|2 (52)
Iolla=1 V™ ( )
() 1
< sup —= (WO s]v]l2 + RO 2]|v]|2
lv]l2= m ( )
_ 1

= = (IOl + 1R)2)

where (a) follows from the fact that ¢ is 1-Lipchitz and by using the triangle inequality, and (b) and (c) follow from the
fact that F'* and F' are isometries with respect to the Lo-norm, i.e. ||[Fv|2 = ||v||2 and ||F*v|2 = ||v||2 for v € R™. This
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finally gives
0o ‘ L p p
20| = (190 1) < (s ) + (0 22)
H a1, =~ /m | 2+ |l || 1 Jm 1, N
=7,
where we used Proposition 2. This completes the proof. O

We make use of the Einstein summation convention, i.e. repeated indices imply summation, unless explicitly stated. We also
use the notation vec(-) to denote the vectorization of the matrix argument according to some fixed manner (e.g., row-wise
vectorization).

Lemma 8. Under Assumptions 5 and 6 and for 6 € Bg‘:qu‘pl (89), with probability at least 1 — E’

da®

da®
|5, |

ow® 9

‘ < ( =14 16(0) \va )
2

where, w\) = vec(WW) forl € [L + 1), and vV = vec(RW) forl € {2,...,L + 1},

Proof. We can index the vectors w®) and r(") according to their matrix form W](jQ and R( ),, respectively, with the indices
j€[m],and j' € [d] when! =1orj" € [m] when! € {2,..., L + 1}. Therefore,

da® _ (& (l)) a(l 5o 1 i=3j '
ow® i \F 0ij o 0 otherwise
Now, forl € {2,..., L + 1}, we can write the Lo-norm of the matrices as follows

2
da®)
|5

2 m m
1 Z ~(1 Z -
= sup —_— (ZS/ (ai )> a;-/ 1)574‘7‘/JJ/

—_1m
2 |IVlr=1 i=1 G.'=1

1
< sup — Va7V

IVIr=1T

< sup *||V||2H )3
IVie=1m

(a) 1 -
< sup —| V[l
IV]p=1m

1 _
= a3

2
® 1

-1 2
- [m<vl-1+|¢(0>|§jvi—lﬂ = ( T [e(0 |Z¢ 1) :
=1

where (a) follows from the fact that ||V'||2 < ||V||r and (b) from Lemma 6. The | = 1 case follows in a similar fashion:
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Similarly, forl € {2,...,L + 1},

- S ) i)

Haa(l)
HVHF 1mi=

or()

< s PVl
IVile=1

< sup *IIF VE[3]lel D3

[VIp=1T7

S‘ sup *IIF*H IVIEIEI e 13

Vir=1

(a) 1 ~
< sup —|[V[[E[a)3
IVip=1m

1
—Jlat"D3

®) 1

<m[\/ﬁ< e \Zvl 1)

where (a) follows again by ||V||2 < ||V||F and the fact that F* and F are unitary matrices, and (b) from Lemma 6. This
completes the proof. O

2 I—1 2
= (vl—l +16(0)] ZW) 7

i=1

Hessians. We now focus on bounding the Hessian of the predictor f in equation (39). Note that the FNO model can be
considered as having L + 1 layers, with Layer 1 being a feedforward single layer encoder on top of the encoder P, the
L layers from Layer 2 to Layer L + 1 being FNO hidden layers, and Layer L + 2 being the output of the linear decoder.
Likewise, we decompose the Hessian matrix H of the FNO in three different blocks corresponding to the aforementioned
encoder, FNO hidden layers, and decoder, respectively.

Firstly, the Hessian blocks associated to the hidden FNO layers are:

(U1, 12) o o f

* the L x L sub-blocks corresponding to Hy, = m forly,lo € {2,..., L+ 1},

e the L x L sub-blocks corresponding to gt W forly,ly € {2,...,L+ 1}, and

* the cross blocks have terms of the form H(ll’lz) = m forly,lo €{2,...,L +1}.

Secondly, the Hessian blocks corresponding to the single layer encoder, i.e., with respect to weight T (1):

¢ diagonal block H(1 R o

aw(1>z s

* off-diagonal blocks " = % and HY for 1y € {2,...,L+1},and

* off-diagonal blocks Hf,,l,;«lz) : % ans Hﬁff,;l) forly € {2,...,L+1}.

Finally, the Hessian blocks corresponding to the decoder, i.e., with respect to weight v:

e diagonal block H, 3 2 , which is the zero matrix 0,,, %,
* off-diagonal block Hfflv) = awa(i);av and Hf,lh,) forl; € {1,...,L+ 1}, and
* off-diagonal block H,(lf,) = 81‘22{8 and HSE) forly € {2,...,L+1}.
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First, we note that due to the symmetry of the Hessian matrix of the FNO model H:

L+1 L+1 L+1 L+1 L+1 L+1
[H[2 < Y [HS D o+ Y0 [H D o +2 > [HIE o +2 ) ([ H o +2 ) [[HZ |2 (53)
I ,la=1 I 1o =2 Lhi=11y=2 =1 lo=2
We define
of
Qmﬁf—éﬁm‘aa”‘7
) PO
(w,r) _ (84 (84
o) = e, 5w |, | 3w )
wr 2?all2) o) 9%all2)
Qé,z’,l)(f) (= _max HM () (I2=1) gp(i2) ’
égféﬁ ow\2)Or 991 ||OW 5 || 0 or 2.2.1
3<U3<L41
da(h) 2?all2) dal) dal2) ?alls)
H Or(1) ‘ Oall2—1) w(l2) ow(l) or2) (8a(l3—1))2 991 ’
W (p ax {H al) Do) 92aule)
2,2,1\/) == I (1) ’ () (12—1) gy (i) ’
1Shst owlh))2 ||y, | 0w O ow2) |, 5
3ZU5<L+1
o) Hal2) 92alls)
Haw(ll) o || Ow(t2) ‘2 H(aa(l?’l))z 2,2,1 7
r 0?allt) oalr) ?all2)
Qfy1(f) = _max - :
2 a<h<rt1 || (@ran)2 Or(l) dalle=1) gr(i2)
351,041 22,1
FE AR
Gy oall2) alls)
or) Or(l2) 804(13 1) 01 ’

(54)
where, for an order-3 tensor 7' € R91*92%ds we define the operator ||-||2 2.1 as follows,

ds di  d2

[Tl2,2,1 == DS Tijraib;| , ac R beR®. (55)

lla Hz Hbl\z L=t li=1 j=1

Note that it seems from (54) that we need the depth L of the FNO to be L > 3. However, the bounds presented in Lemma 4
also hold for FNOS with depth L < 3: indeed, the upper bounds we derive in this section for an FNO with depth L will
trivially hold for FNOS with depths L — 1,..., 1.

Lemma 9. Under Assumptions 5 and 6 for 6 € BEEpr o1 (680), the following inequalities hold with probability at least
1252 forly e [L+ 1),

52al)
H(awa(l))Q < Be(L+97)*(1+ LIg(0))?* (56)
2,2,1

and forly € {2,...,L + 1},

> all?) L\2 2
|| S Be(1 AL+ LIGO)))? (57
2,2,1
0?all2)
e <2847, (58)
H(aa(l'z D)2 2,2,1
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?all2)
———— < Bp(L+75)2(1+ (L+ LIp(0)])*) + 1, (59)
Haa(l2 Dowll2) 2,21
H P < Bs(L+4M)?(1+ 1+ L|¢(0)))?) + 1, and (60)
_ = Po v , an
D= Dar® |, , |
P all2) LN\2 2
| Gt |, < Pt +"20 + i) (1)

Proof. We first begin by proving (57). Note that from (39) we have

82a(.l2) 1 ~ lo— % _
m = EQSN (a(l2)) . a§/2 1)5z_] ika/qa((JIQ 1),
3i" = kk!

where we make use of the Einstein notation. Now,

ol
Owl2) gr =)
22,1
|1 1~ (l2)y,  (l2—1) * (Ia—1)
= sup —¢"(a; a0 F Fiqo Ve, Va,
IVillp=1,]Vallp=1 =3 | (@) SRR 39T
m | s ()
(;5”(0(» ) ( (l2—1) * (12—1)
= sup —_—t ‘/11..,(1,, )( i ‘/2 /Fk' o’ )
Wille=Livale=m1 | ™ " R TR

. (62)
< sup @Z‘(Vla(l2_1))1»((F*1/'2F)a(12_1))i‘
IVillp=1,Vallp=1 T i

(a) ) ,
S (i S Tl ¥
IVillp=1,|| V2|l F=1 2m 5 ,

2

®) /Bqﬁ (Ia—1) 2 (Ia—1) 2 Io—1 = 1
< =2 2— 2— < 2— 11—
< g (e et ) < 0 (3 1001 )

where (a) follows from the quadratic expression; where (b) follows from ||[Via(2=V |y < |[Vi|l2]@ =D |y, |[Vi]le <
Vil [IVallz < [[Vallp, [F*VaFal="V]y = [VaFa>" Dy < |[Val2| Fal>"V]ly = [[Va]l]le> V]2 due to F
being a unitary operator; and where the last inequality follows from (50). Finally, we can upper bound the last quantity
above as in (57) and complete the proof.

For proving (58), again note from (39) that

2 (l2) 1
[(ffl)z} = —0"(@) (W 4 FLRUDFy ) - (WEY + FLLR(D Fur )
all2— ik

m
¢ (63)
= S \WIWE + WD FL R Pt i RUD WA 4 Fy RU Fyy R Fo
Tl T2 T3 T4

Then, we can write

H ?all2) e [ 2?altt) }

_ = sup -5 V1,02, -

9a==02l351  orfe=1,fvalz=1 S [ Lo -D? ], 5 "
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Let us consider the notation 7y,, = 071 4, + £ f and vy, = 01, + f

m i |¢//‘ m (12) (12)
sup —T, 01,02, | = — sup ‘(VVZ»»2 1)1) (Wl * vy )‘
loslle=1loallo=1 i<y [0 m uvluFl,umuFl; T e
B
<2t s (W BB+ WO Bleal3) 64
M lv1]l2=1,||lvz]l2=1
o\
o 22 it
sup S KHT%M%U% _ 19"l sup i‘((F*R(lz)F)ij’Ulj) . ((F*R(lz)F)ik02k>
lvill2=1,]Jwall2=1 ;=7 | T ' o fla=1,|lvzll2=1 51
B * *
<zt s (IFRFBodl3 + 1P R F|vs)3)
M |y [l2=1,||lvz]l2=1 (65)
= %) pt) )
m
Bs
< 2RO < By
m " 7"
sup ﬂTz,-,km v, | = _ "] Z‘ W(l2) 1) - (F*RF) g,
lvillz=1,]lwalla=1 ;=7 | T Moy f|la= 1HU2H2 1
Bs ) « ol
<2t swp (Wil + [ F RFIFes)3) 66
M v [2=1,|lvz]l2=1
< Do (Jw 3+ |RD3) < 22 (32 4 42).
= o9m 2 2) = 9 w T
Similarly, for the term corresponding to 75 we obtain
- " Bs ( 2 2)
sup — T3, 01,02, | < — (Vo T ) - (67)
o llo=Lflvslla=1 =y |0 7" T2
Putting together (64), (65), (66) and (67), we get
Pal>) |* 2, .2 2 | .2 2
PNV < 285 (Yo +97) < 28 (vo + %7 + 2707) = 287" (68)
Oal2=17 |5 51

This completes the proof for (58).
We now look at the proof for (60). First note that

62a(-l2) 1 17 (12) 1
S S 5. « pllz) p (l2—1) (12) *
8(1,(6[271)61‘(432,) - m¢ (@) (Wik + FZPR:DQ )F Ee 'qQq + \/m(b( )F ik
J
B ¢// W(lz)F*F (lo—1) ¢ I R(12 F F, (I3—1) 1 = (I) F*F
o ik Figtia% ipftoq Farlij Fjrqtg + ﬁﬁb (a;”)
Th T2 T
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Again, we analyze each of the terms separately

HTli.jj’,k - sup (W 'U(lz)F*V'Q p an(l21))’
221 Joille=1,|Vallr=1 =7 |

B \ _

< 2o (IWoy |3 + | FVeFal=—D|3) )
B lo—1 2

<o (712_1 +10(0)] Y vH)

i=1
HT2ijj/k = sup ¢N< szpl;)F k?vlkF V2 S an(l2 1)))
T2 ey fla=1, | Vellp=1 {21 | T
< sp (i Repe s v Eat))
s [l =1, [[Va | p=1 2

B¢' * p(l2) )2 2 * 20 (l2—1) |2 (70)
< s PR (IFROFRi 3+ PR 3lal 0 3)
lo1|l2=1,||Va||r=1 4T

(@ By (I2) ]2 (la—1) 2 Bo [ o 2t =
< 5o (IR B+ a7 D3) < 22 [ 42+ (471 +10(0) DI

2

where (a) follows, again, by exploiting the isometry of F* and F' with respect to the Ly norm, and using || V2|2 < ||V2||F.
Finally,

m QS/
Ts, = sup V2 oo
H 233’k 2,2,1 HU1H2:1,HV2HF:1; \/ﬁ k
m
< — sup |(F*VaFvy);]
\/m Hv1H2:17HVZ‘|F:1; ! (71)
< sup | F*VaF vy |2
lvill2=1,[| V2]l =1
< sup [IVall2]|lvill2 =1.

[lvill2=1,]|V2|| =1
Combining (69), (70) and (71), we get

?all2)
H daz=1)gr(l2)

lo—1 2
< ﬂ; (V2 +2) + By ( R4 16(0) Zv“) +1

7,;1 (72)

lo—1
<By |7+ <vl21 +16(0)] Y v“) +1,
i=1

2,21

and finally we can upper bound the last quantity above as in (60) and complete the proof.

For proving (59) consider the following

GPalt) @) ) vy 91@) !
_ 2 2— * p(l2) (I2—1) (o 2NS. Sy
[8a(12—1)3w(12)LH/ . - m — Wy (220 dij + m szqu2 qka dij | + \/RQS (@27)6;50k;
s T T3
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Then analyzing each term separately, we get

HTlijj/k = sup il W(Ii2)v V a(lz Y
o221 ”'UIH2:1;HV2”F:17; 1
< s P (e + vallat)3) )
o1 lla=1,[[Va | p=1 27
8 8 Y
= DL (I3 + a0 3) < 22 (42 + (4271 + (0 DI NE
2m 2
HTg = sup | Fe r Fyoy Va,, o™
i,337, 7 k it
30k 2,21 uvlua:l,uvzuF:li 7 [m K
< swp D (IR Fu + [Vaal D R)
lv1ll2=1,[|Vallp=1 <17
S T (e Ol PR VAT %)
lvill2=1,[|Vall =1
Do (117 R FI3 + o 3)
3 -1 2
S%’ v+ (711_1+¢(0)|27"1> :
i=1
and, finally,
m /
T3, ., = sup Vo, V1,
H 220 oy o=t Vel e=1 S (VM T
< [v1ll2([Va,, . |2
forlam L Vall = 1Z\F (75)
< sup V2,113
IVallp=1 ;
—1.
Hence, we have
2
92al2) 2 Bo l h—1
- 1—1
Haaﬂz—l)aw(lz) 221< 2 (v + ) + B (77 + 1000 |Zy
” (76)

li—1 2
<Bs |+ (7111 +16(0)] Y 7”) +1,
=1

and finally we can upper bound the last quantity above as in (59).

We now focus on proving (56). Note that from (39) we have

820{“1) 1 /! — —
TR = = S0 L =D (=1 ¢ o
|:(8w(ll))2:|zjj/ kk’ N me (a ' ) aj/ ak' 6’-75"k
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Now,
82 (l]
H(aw(ll)) 221
1
_ sup ¢//(~(ll )V a(ll 1)V (l1 1)
HV1||F:1;HV2HF:11- 11m

< sup Z‘ (ViaB=DY, (Va1 D), ‘ (77)

IVillr=1,IVallp=1 ™ ;=

S Y (o Oy
IVilr=L,[Val r=1 2

3 ) L1 \?
< 2l <, <7l11 + o)1 Y W) .
i=1

Finally, we can upper bound the last quantity above as in (56) and complete the proof.

Now, the last result to prove is (61). Note that from (39) we have

2?all2) 1,
= —— ~ (02) * (I2—1) g (12 1)
[(31.@2))2} o = m¢ (a ) F Fjpay, F Fqo )

where we make use of the Einstein notation. Now,

?all2)
"(ar(lz))Z 2,21
| L <) e (la—1) (Ia—1)
= sup —¢"(a; ) F5Vi Fipag* VL Vo, Flrogog?
Vill=1,[Vall =1 =5 m 3 V150 kk a="q
< sw |(FVAF)al= D) (V2 F)al> 1) 78
IVillp=1,]|Vallp=1 T ; (78)
< sup (HFV Fale- 1>H n HFV Fal==b H >
WValle=LlVall =1 2
2
Bo H a 71>H2 a1
< r 2 < 2—
<l , < Bo |77 +10(0) \Zv
Finally, we can upper bound the last quantity above as in (61) and complete the proof. O
Now we upper bound the terms in equation (54). Thus, we obtain that, with probability at least 1 — w
of (a) 1 A 1 L
wo(f) = — 1 < —A 1 , 79
Q (f) L+1] 8a(l) ‘ — lE[Laj»(l] \/7 ( +p1) — \/TT'L( +7 )( erl) ( )
o4"(1) < max |Zv’ Y < (14 95)(1 + LIB(0)) (50)
2 - le[L+1] ’
and ©
§55 (1), Q851 (1), Q821 (f) < 286(1+7")2(1+9)(L+ (1 + LIB(0))*) + 1, (81)

where (a) follows from a direct adaptation of the results from Section A.6 in (Banerjee et al., 2023a), (b) follows from
Lemma 8, and (c) follows from Lemma 9.

We now proceed to analyze the Hessian. We also recall that max;e (o, 141} H w

‘ < 7~y from Lemma 7.
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We introduce some notation. Given an order-3 tensor 7' € R%1 *d2Xds e have that its first dimension has d; entries, the
second has d entries, and the third has ds entries. Consider the matrices X € R¥1xd1 Y ¢ Rk2xd2 and Z € Rks*ds,
We use the notation (X)(Y)7T'(Z) € RF1*k2xks o denote X multiplying A long its first dimension, Y along its second
dimension, and Z along its third dimension. We use the notation (X)T'(Z) € R*1*42Xks (o denote X multiplying A long
its first dimension and Z along its third dimension.

Off-Diagonal Blocks. For the off-diagonal blocks, we focus on bounding ||H§Jl,1r’l2) ||2 for (Case 1.A) I < lo, (Case 1.B)
Iy < ;. Further, we bound (Case 2.A) ||H{") || and (Case 2.B) || HS2) .

Case 1.A: 2 < [y <y < L + 1. By building on the form of the gradient, we have

2al)  of dalt)

dall 2?all2) af
(l1,l2) — I |
Hy,% Ow () or() da i) =10 + 1, <t (5“,(11) P 8a(l’1>> da(lz—1) 9r(l2) (3(1(12))
=t

E (a2 ga) dalz) 'L 9al) 9?a of
1<) Z aw () z 13a(zu1) ar(zz) H a1 | (9al—D)2 <8a(l)>'

=t r=h+ =l2+1
Then,
?alh) of
(l 7l)
HH 1,62 ||2 S Haw(ll)ar(ll) 991 8a(ll) ‘Ool[ll_lg]
1 “90‘”” B ga®) H 92all2) of ‘
<) || 50D — — =
bl ow® 2024 dal'—1) , oa>=Dar®) ||, , | [|9al=) ||
S ([lee™ |l || 9e® o) l Lol ga®
+1[l1<12] Z Haw(ll) H 8(1([/ 1 H 8[-(12 W
l=la+1 2[’:l1+1 l2+1 ,
el . ol
da=0)2 [, o1 [[0a® ||
62()([ ) 8f 1
Ow (1) orla) daln) . [l1=l2]
da) 92al2) 9
I PO e “ _of
ow () dal=Darla) ||, [|dal=) ||
L+1 . . l
ST Sl e ] o [ e Y i I P
Ow(la) or(2) (aa(l 1))2 9a®
=241 22,1 .

Then, based on the definitions in (54), we have

IHS 2 o < (L +1)(1+ 971 Q857 (£) Quc ()
(a)
< W(l + )2 (2B(1+ 452 (1 +9)?(1+ (1 + L|g(0)))*) + 1),
m
where for (a) we used equations (79) and (81).

Case 1.B: 2 <[, <[y < L + 1. By building on the form of the gradient, we have

gils) _ 2all2) of 1 1 dolz) 1=l 5al) 2al) of
wr Iwi2)or(a) gt Hh=tel T <l | By 1 90D ) 9ati=Daw) \ 9ol
=l2

I

U (eal) L 9a®) daln) = ) 2a® of
Tl D =) | dal=1 | \ owh) H aau' D | (9al-1)2 (aaa)) '

1=l +1 =ly+1
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Then,
92al2) of
(I1,l2)
Her ”2 < Haw(lz)ar(l2) bor 9a(l2) ‘Ool[h—b]

1 ool || |l aa®) 92ah) af
+ Ly, ’ar(lz) 20 i da’—1) Haa(lll)aw(ll) 221 Ha(l) LO

1 L“ Haa(lz) S ga®) Haa(ll l PG
+ 1p,< 7 A=

[l2 1]l 11+1 or(z2) - 12+1 Ja-1) own) 2 11+1 da’'—1) ,

of

804“ 1 2aW ||

92al2) of 1

Ow(2)or(2) oa =) [l =lz]

3 (I2) 92alr) 0
+ 1[12<11]7l17l271 a(l ) a j) ) % ‘
Or(l dahi=bowl) ||, , | || 0alit) ||
L+1
dall2) dal) 52a® o
+ 1, <y Z yHhl2 = - a, /
or(2) owl) (Oall—1))2 Oa®)
1=l +1 2,2,1 0o

Then, the upper bound is similar to the case Case 1.A,

IHG2) [ < (L+ 1)1+~ Q857 () Qoo (f)

< (UW“ + 422285 (1 + 7E)2(1 +7)2(1 + (14 LIg(0))2) + 1) .

Case 2.A: 1 <y < L + 1. For Hessian terms involving (w, v), since gf % oLt we have

g _ L 9amD 1 (9ol S 9a®)
wo 74 1) ﬁ ow(l) sah a1
Then,
dal) || |l ga) 1 @ 1
(ll,L+1 4L (wr) L L L
|Gl < fHawul 5a= | <t A S ot et Lo

where (a) follows from equation (80).

Case 2.B: 2 < [, < L + 1. For Hessian terms involving (r, v), since gf = \/%a(L‘H), we have

o _ L 9a™ 1 (9al T 9al)
r T Um orta | Jm \ or) pok, 91
Then,
oall2) Ll dal) (@) 1
V)], < ‘ | S =+ LIGO)]),
Vi [[ore) ||y 2L 0at=1 | y/m

where (a) follows from equation (80).
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Diagonal Blocks. For the diagonal blocks, we focus only on bounding (Case 3.A) ||H1(Ul 1:l2) |l2 and (Case 3.B) ||H£l1’l2) Il
for l; < I, since the case [y < [; is just symmetrical and will have the same bounds.

Case3.A: 1 <[y <y < L+ 1. By building on the form of the gradient, we have

) = 0% 0f 1 dat) B gal) Pall of
v T w2 gam =t TRkl Gamy 1 5600 ) et aw ) \ Ga®
=l1

L+l o) =L 900 gal) =1 9a) 92a® of
+ 1<) Z 6W(l1) /H a1 ow(i2) y lz_[+1 a1 (30[(171))2 (3a(l)> :
=l2

l=l2+1
Then,
2at) of
(l1,l2) grar _of
HHw H2 S H (8W(l1))2 221 804(11) ‘OO 1[11:l2]
8a(ll) l2—1 8a(l/) 62a(lz) af
+ L1y <t] ‘aw(h) 204 dal'—1) Haa(12—1)aw(52) - WL
) L+1 ( dallt) l 1 o) o) 1_1 N
+ 11, <1y H : H 0al
o I=la+1 Jwli) 2p= 11+1 a1 dwll2) 2= l2+1 Bal=1) 2
0l of ‘
(8a(l—1))2 ol EYN0) N
2allr) af .
W 991 m - [l1=l2]
et 92al2) of
+1[l1<12]712 e 1 a1 1 EYWiY
Ow () Oall2—1) w(l2) Jal2) N
S U—lo—l1—2 dal) dal2) 2al)
1<ty HZ;AV ow (1) Ow =) (9al-D)2 EP0)
—t2

Then, based on the definitions in (54), we have

IEG ], < (L + 1)1 +777) 5%, (F) Qe (F)

@ (L+1)(1+p)

— (1+7*5)2(285(1 +75)* (1 +7)° (1 + (1 + LIg(0)])*) + 1) ,

where for (a) we used equations (79) and (81).

Case 3.B: 2 < [; <l < L+ 1. By building on the form of the gradient, we have

)~ O o) of +1 o' lﬁl da') 92al2) of
' (Or)2 g =t + <l | Gy AL 9o | GalTor)  fad)
=l

L1 9a) =1 9q0) dallz) =L a®) 2a) of
+ 1<) Z 8r(l1) H aa(w 1) ar(lg) H 3a =1 ] (dal-1)2 (aa(l))'

I=lo+1

Then, we can obtain prove the following upper bound in a similar way to Case 3.A based on the definitions in (54),

1) < <L +1)(1+429)08) 1 (F) Qo (f)

9 (L+ 1)+ p1)

< i (14+7*5)2(285(1 +75)*(1 + ) (1 + (1 + LIg(0)])*) + 1) ,

40



Optimization for Neural Operators can Benefit from Width

where for (a) we used equations (79) and (81).

Putting all the shown results back in (53), we prove equation (40). We also note that all the constants in the Hessian bound
depend on 01 4, 01, the depth L, and the radii p,,, pr, p1, and p2. This dependence of this bound reduces to the depth and
the radii and becomes polynomial whenever v < 1, which is equivalent to o1, + 01, <1 — ”1“7\;{7.

Now, we focus on proving the rest of equations in Lemma 4, namely, equations (41) and (42).

. . (1) 1/ 41)
Gradient and predictor bounds. We observe that for [ € [L], % = % (Hl, _ aga(l/ ) %, and so

dalV) e || _9f
Owd) dal+D) |,
da® L_141 1
Hawu) ’ ivritacl
1
< L_—

where the last inequality follows from Lemma 8.

We also have that

Ha(L+1) of
H Ow(L+1) ’ H Ow(L+1) Ha(L+1) ’
daLHD)
H v, [t
(1++5)(1+ L|¢(0)I)T(1 +p1) -
Similarly, we can obtain for lo € {2,..., L},
of ’ L 1
< (1+~7)(1+ Llp(0 — 1+,
g, = a+m0+ psoDrE o)
and
af 1
Harwﬂ) L < (T+A")(1+ LWO)DT@ +p1) -
Using all these derivations,
L+1 2 L+l 2
of of
2 __
||V9fH2 Z ow + Z or®
=1 1=2
2
< (LD + Y2+ LIg(0)])(1 + p1)?

which finishes the proof for equation (41).

Now,

/= |jﬁvTa<L+l>

1
< ﬁll\f\\zlla(ul)llz

< (L+p)X+45) A+ Lg(0)])
which finishes the proof for equation (42). Again, we notice that all these bounds have a polynomial dependence on the

depth L, and the radii py,, pr, p1, and pa whenever v < 1, i.e., whenever o1 4, + 01, <1 — %.

Thus, we finish the proof for Lemma 4.
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E.2. RSC and Smoothness Results
Using the results from the previous section, we immediately obtain the RSC and smoothness results.

Theorem 4 (RSC for FNOs). Consider Assumptions 5, 6, and 7, and Q. as in Definition 3 with |V eG||2 # 0. Then, the

set BE := QL. N BF™,  (60) N BF™(6,) is a non-empty set that satisfies Condition 1(a) and (b) for suitable ps. Moreover,

with probability at least 1 — 2E2) g step t of GD, the FNO loss L (6) satisfies equation (8) with

_ c1
ar = 267 ||VeGyl|3 — Nk (14)
where VoG = % S % Zle VeGo, (u(i))(xj), and for some constant ¢; > 0 which depends polynomially on the
depth L, and the radii p, pr, p1, and ps whenever 014, + 01, < 1 — %. Thus, the loss L(0) satisfies RSC w.r.t

(B, 0,), i.e., Condition 1(c), whenever ||V G¢||2 = Q(\/lm)

Proof. We start by proving the first part of the theorem’s statement. We immediately see that, since B! C BEL‘;T . (60),

we satisfy Condition 1(a). We now need to satisfy Condition 1(b). We particularly focus on Condition 1(b.2). For this, we
proceed to show the existence of an element 6’ € B,’; that is an element of the set in as in Definition 3, i.e., satisfies
|cos(0' — 0;,VeGy)| >k, (82)

and that also satisfies the following two conditions:

Condition (A): ||0’ — 6;||2 = € for some € < QIW"“O};I‘Z VIZA2 . and

Condition (B): the angle v/ between (60’ — ;) and —VL(6;) is acute, so that cos(v') > 0.
To show the existence of such element 8’ € B, we propose two possible constructions:

Choice (A): If the points 8,1, VgG; + 6;, and 6, are not collinear, then they define a hyperplane P that contains the
vectors VoG and —VgL(0;) (recall that 8, — 8; = —V¢L(0;) by gradient descent). We choose 6’ such
that the vector 8 — 8, lies in P with cos(8’ — 0;,V¢G;) = & (i.e., it satisfies condition (82) with equality)
while simultaneously satisfying Condition (B). If the points 0;1, Vg Gt + 0, and 6, are collinear, we choose
@’ such that it is not collinear with these points, thus defining a hyperplane P with these other three points, and
such that @’ is also taken so that cos(0” — 6;, VoG}) = x while simultaneously satisfying Condition (B).

Thus far we have only defined angle (or direction) conditions on the vector 8’ — 6y, and so there could be an
infinite number of values for 0'; satisfying such angle conditions without 6" belonging to the set Bgrfpm 1 (80)
nor @’ satisfying Condition (A). To determine the feasible values for ', we observe that 0 is strictly inside the
set BEu‘ffpm o1 (00) by Assumption 7, and so ' can be taken arbitrarily close to 6 so that 8" € BEue (0)

WL . . Pw,Pr,P1
and Condition (A) is satisfied.

We remark that, regardless of the collinearity of the points ;+1, Vg Gy + 0;, and 6, hyperplane P contains
the vectors 8’ — 6,, VoG, and —V¢L(6;), all sharing its origin at 6 € P.

Choice (B): We choose 6’ as in Choice (A) but with VG replaced by —VoG.

We immediately notice that 6’ defined by either Choice (A) or Choice (B) satisfies 8’ € Q% N Bfwufp“ o1 (80). To make 6’

belong to the set B, we need to find a radius p; such that @' € BF", o1 (80), which is done by taking p2 > € with € as in

Condition (A). Finally, it is straightforward to verify that such 8’ € B¢ deﬁfled by either Choice (A) or Choice (B) will
always exist, by considering the following cases for the angle v between VoG, and —VoL(6;):

() If v € [0,7/2] or v € [37/2,27], then Choice (A) will be true, since —Vg,L(8;) is in the positive half space” of
VoGy; and

*We say a is in the positive half-space of b if (a, b) > 0.
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(i) if v € [7/2,7] or v € [, 37 /2], then Choice (B) will be true, since —Vg,L(8;) is in the positive half space of
—VoG,.

Now, let us assume we are in the case of item (i) above, so that 8’ is constructed according to Choice (A) (the rest of the
proof can be adapted to the case of Choice (B) and to item (ii) by using a symmetrical argument and so it is omitted). Let /4
be the angle between 8’ — 0, and V¢ G}, so that cos(v1) = & according to Choice (A). Then, we have that

|cos(v')| = | cos(v — )| = |cos(m/2 — 1) = |sin(11)]| = V1 — cos?(v1) = V1 — k2.

Further, by the construction in Condition (B), cos(v') > 0, which implies cos(v') > /1 — k2 > 0. Now, by the smoothness
property of the empirical loss £ we have

£(O') < £(0) (O — 0, ~VoL(B) + 210 0,3
= £(8) — 60— 0] VoL (812 cos() + 510" ~ 013
= L(0;) — €||VoL(0)]|2 cos(v') + §e2

< L(8:) — €] Vo, L(6,)]- 1_,{2+§€2

oy (AT )

g
< L(6y) .

where the last inequality follows by the construction of € in Condition (A). Thus, we have £(8’) < £(6;), which implies
that the constructed 0’ is as described in Condition 1(b.2). This finishes the proof for the first part of the theorem’s statement.

The second part of the proof, i.e., the RSC condition over the non-empty set Bt, follows from a direct adaptation of
Theorem 5.1 in (Banerjee et al., 2023a) using Lemma 4. Since we are using Lemma 4, the condition for polynomial
dependence on the bounds carries on. O

Theorem 5 (Smoothness for FNOs). Under Assumptions 5 and 6, with probability at least 1 — % the FNO loss L (6)
is B-smooth in BEU¢ ' (0) with 3 being a positive constant which depends polynomially on the depth L, and the radii p.,,

Pw,PrP1 +
Pwtp
pr, and p1 whenever o1, + 01, <1 — u\l/mr'

Proof. The proof follows from a direct adaptation of the proof of Theorem 5.2 in (Banerjee et al., 2023a) using Lemma 4,

where it can be shown that 3 = 20° + \/%L for some positive constant ¢ which inherits the dependence on the constants

O1,w»> 01,r, the depth L and the radii p,,, p,, and p; from Lemma 4. O
Proposition 3 (RSC to smoothness ratio). Under the same conditions as in Theorems 4 and 5, we have that o, /8 < 1
with probability at least 1 — %

Proof. From the direct adaptation of the proof of Theorem 5.2 in (Banerjee et al., 2023a) using Lemma 4, we can obtain
~ (a) ~ (b)
[VoGil|3 < 02 Then, oy < 2x%||VeGy|3 < 2k20% < 20% < 3, where (a) follows from (14) and (b) from Theorem 5.

This result shows that % < 1. O

F. Supplementary Information for the Experiments

In this section we expand on the mathematical description of each operator learning problem studied in Section 8. We also
present further results on how the accuracy of each neural operator model improves as the width m increases. Finally, we
provide details about the hyperparameters and datasets used in the training of the corresponding models.

The associated code for the experiments in Section § and the ones presented in this appendix are found in https:
//github.com/bhaveshshrimali/neuralop_optimization.

43


https://github.com/bhaveshshrimali/neuralop_optimization
https://github.com/bhaveshshrimali/neuralop_optimization

Optimization for Neural Operators can Benefit from Width

m =10 m = 50 m = 500
0.8F' T s 0.8F' T s 0.8F T =
pred / pred [ I pred [ 1
w 0.6 ——- data J 4 o 06F ——- data £ 1o, 06L ——- data P
= i l = I 1= i /]
< i J w i ] w2 i /]
s 04r [ 1 3 04f 1.3 04f ]
8 o r | 8 o r 18 o 3 1
[ J i ] i ]
I 0.2r / 1 02 1 1 02F ) ]
ol Ol g 15 71 / ]
\03/ L 4 \UD/ L I B TID/ L I/ 4
0.0F+ ] 0.0F, J ] 0.01 / ]
[ Sw 4 ] [ S V4 ] [ N / ]
[ _\___,o’ ] [ \_\_-_‘,/ ] [ \_‘ -,/ ]
026 L1 —0.2EL . L 1 092k . . TV 1]
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

x x T

Figure 5: Sample solutions obtained for the Antiderivative operator for DONs for m € {10, 50,500} at the end of the
training process (80,000 epochs) for a randomly chosen input function. The “data” refers to the ground truth (obtained by a
standard numerical solver) and “pred” corresponds to the learned operator.

We remark that all experiments with widths m € {10, 50} were run on a personal computer with one NVIDIA Quadro GPU,
while the rest of widths were on Google Colab with single NVIDIA L4 and A100 GPUs.

F.1. Antiderivative Operator

We consider a simple one-dimensional Antiderivative or Integral operator given by

s(z) - (83)

Glu)(z) = /0 Cw©de,  zefo].

Note that G(u) is a linear operator and therefore learnable up to high accuracy. This is evident from the training loss in
Figure 1 as well as from the sample solutions presented in Figure 5 for DONs and in Figure 6 for FNOs. We observe that
overall an increase in the width m leads to higher training accuracy and lower training loss.

The sample size of the training data is n = 2000, with every input function u(?), i € [n], being a one-dimensional Gaussian
Random Fields (GRF). For DON training, we choose R = 100 input locations and we choose 100 output locations for each
input function, i.e., ¢; = 100, ¢ € [n] (according to the notation in Section 3.1).3 For the FNO, the input function is also
sampled across 100 locations (i.e., R =100 using the notation in Section 6); however, since we are interested in the model
to provide an output of 100 output locations, we modify the FNO architecture to provide this vector-valued output. 4 For all
the experiments we fix the learning rate for the Adam optimizer at 10~2 and with full-batch training, i.e., the batch size of
2000 for both DONs and FNOs. For testing the trained neural operators, we generate another one-dimensional GRF.

F.2. Diffusion-Reaction Operator

We are interested in learning an operator G : u(z) — s(z, t) for the solution operator of the one-dimensional Diffusion-
Reaction equation implicitly given by

2
% — DQ +
ot Ox?
3During training; however, for each i € [n], instead of averaging the loss over all the ¢; points, we simply randomly choose one of the
g: points and evaluate the loss on it. This is strictly done in the interest of computational efficiency, since it is known to not reduce the
accuracy of the results for the Antiderivative operator; e.g., see (Lu et al., 2021).

“This means that we have R = 1 (according to the notation in Section 3.2) with the understanding that for each input function, we
output a vector of size 100. This is done as an alternative to an FNO with a scalar output which is averaged across the 100 locations
(for which we would have R = 100), which is what we described in Section 3. We remark that we considered this modification on the
output of the FNO just for the sake of computational efficiency, and this only empirically works for the case of the Antiderivative operator.
Again, as in the case of DONs, we randomly sample one of the output locations to compute the loss during training.

ks® +u(z), (x,t) € (0,1] x (0,1], (84)
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Figure 6: Sample solutions obtained for the Antiderivative operator for FNOs for m € {10, 50,500}. The setting is the
same as in Figure 5.

with D > 0 and zero initial and boundary conditions, namely,
s(0,t) =s(1,t) =0 and s(x,0)=0,

along with a forcing function u(z) defined by a GRF. This is the same setup as in (Wang et al., 2021a; Lu et al., 2021). The
corresponding solutions for DONs and FNOs are presented in Figures 7 and 8 respectively. Again, a larger width m leads to
a more accurate solution.

The neural operator aims to learn a mapping from the forcing function to the solution at different times in the
interval (0,1], in other words, the forcing function would be the input function as defined in Section 3. We
make use of a slightly modified solver provided at https://github.com/Predictivelntel ligencelab/
Physics—-informed-DeepONets to generate the training data for the equation. We generate solutions for n = 5000
input functions which are sampled on 100 points in the space dimension (i.e., the interval (0, 1] for  in (84) is divided
in 100 points) so that R = 100 for DON and R = 100 for FNO (according to the notations in Section 3.1 and Section 6
respectively). For computing the solutions, we are interested in computing them at 100 different times ¢ within the time
interval (0, 1] in (84) (in order to be able to plot the two-dimensional map on z and ¢ in Figures 7 and 8). This division of
both spatial and time dimensions results in a grid of 10, 000 points that can be chosen as output locations. For the training of
DONsE, for each i € [n], we only select 100 scattered points from the grid of output locations (out of their 10, 000 points),
so that ¢) = 100, which will become the input to the trunk net. However, for the training of FNOs, we do choose the
full grid as output locations and thus we modify the FNO to provide 10, 000 outputs instead of the scalar output provided
in our theoretical analysis.> We fix the diffusivity as D = 0.01. For all the experiments we use a constant learning rate
of 3 x 10~* and Adam optimizer with a batch size of 4000. For testing the trained neural operators, we generate another
one-dimensional GRF.

F.3. Burgers’ Equation

The Burgers’ equation operator learns an operator G : u(x) — s(x, 1), where

o 0n s
ot " Tor  Vow
s(z,0) = u(x), x € (0,2

=0, (x,t)€(0,27] x (0,1] (85)

with v > 0 and periodic boundary conditions

s(0,t) = s(2m, 1)
0s Jds

0,t) = %(277,7&) .

SA scalar output is needed if we were interested in evaluating the operator at only one specific spatial location x and one specific value
of time ¢; however, as can be seen in Figures 7 and 8, we are interested in plotting solutions at multiple locations and times.

ox
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Figure 7: Sample solutions s(x, t) obtained for the Diffusion-Reaction operator for DONs for m € {10,500} given an input
u(x). The top row corresponds to m = 10 and the bottom row to m = 500. The third column represents the pointwise
difference of the ground truth or “Data” (first column) minus the obtained results from the learned DON or “Pred” (second
column).

The corresponding solutions for DONs and FNOs are presented in Figures 9 and 10 respectively. Again, a larger width m
leads to a more accurate solution.

The neural operator aims to learn a mapping from the initial condition to the solution at time ¢ = 1, i.e. the mapping from
u(x) to the final solution s(z, 1). This is the operator learning problem originally studied in (Li et al., 2021a). We note that
the initial condition would then be the input function as defined in Section 3. We make use of the datasets publicly available
at https://github.com/neuraloperator/neuraloperator, specifically the Burgers_R10.mat dataset
available at https://drive.google.com/drive/folders/1UnbQh2WiWc6knEHbLNn—-ZaXrKUZhp7pjt—,
which comprises of 2048 input functions and corresponding final solution (i.e., (") with associated solution s(*) (,1),
i € [2048]). All solutions are calculated for a single viscosity v = 0.01. For all the experiments we use a constant learning
rate of 1073 and Adam optimizer with a batch size of 800. We test the trained neural operators on a simple GRF sampled
from the training dataset.
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Figure 8: Sample solutions obtained for the Diffusion-Reaction operator s(z,t) for FNOs for m € {10,500}. The setting
of the plots is the same as in Figure 7 where the top row corresponds to m = 10 and the bottom row to m = 500.
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Figure 9: Sample solutions obtained for the Burgers’ equation for DONs for m € {10, 50, 500}. The setting is similar to the

one in Figure 5 where we plot the obtained solution from the learned operator (denoted by “pred”) along with the ground
truth (denoted by “data”) for different widths.
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Figure 10: Sample solutions obtained for the Burgers equation for FNOs for m € {10, 50, 500}. The setting is the same as
in Figure 9.
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