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ABSTRACT

Recent advances in Large Language Models (LLMs) have led to widespread adoption of
third-party inference services, raising critical privacy concerns. In this work, we introduce a
novel reconstruction technique that can recover original prompts from hidden states with
nearly perfect accuracy across multiple state-of-the-art LLMs in the increasingly important
open-weights setting. Although the attack is conceptually simple, it has not – to the best of
our knowledge – previously been described nor shown to work practically. Furthermore, our
attack remains effective against various permutation and noise-based defenses, challenging
assumptions about the security of previously proposed schemes. To address these vulnera-
bilities, we propose Cascade, a multi-party inference scheme that leverages sharding in the
sequence dimension to retain privacy of the user input. Through theoretical analysis and
empirical evaluation, we demonstrate that Cascade is secure against both our attack as well
as previous methods, while maintaining computational and communication efficiency. Our
findings highlight the importance of rigorous security analysis in privacy-preserving LLM
inference and offer practical solutions for secure deployment.

1 INTRODUCTION

Modern large language models (LLMs) now often comprise hundreds of billions of parameters, necessitating
significant hardware resources for deploying them for inference. In particular, recent open-weights models
demonstrate cutting-edge performance (DeepSeek-AI et al., 2025; Qwen et al., 2025), but remain difficult
for many to run. Individuals and organizations have therefore begun to increasingly rely on third-party
LLM inference services that host these models. This raises significant privacy implications, particularly in
domains where confidentiality of data is paramount, such as healthcare, finance and legal applications, and in
jurisdictions where data privacy is subject to regulations (e.g. GDPR in Europe). As such, a growing area
of research interest is the creation of inference methodologies and schemes that protect the privacy of user
prompts.

One approach to privacy-preserving-inference is based on having multiple parties participate jointly in
performing the inference, with the idea that each party cannot itself reconstruct the input solely with the
information that it is given in the protocol. This approach is known as Secure Multi-Party Computation (SMPC)
and has a long history of application to general functions (Yao, 1982; Goldreich et al., 1987). Recently, the
methodologies of SMPC have been applied to LLMs (Huang et al., 2022; Hao et al., 2022; Pang et al., 2023;
Akimoto et al., 2023; Dong et al., 2023a; Li et al., 2024). However, SMPC methods introduce significant
computational and communication overhead, particularly so at non-linearities in the model.

Therefore, other works seek to mitigate the punitive costs of standard SMPC approaches by additionally
utilizing statistical obfuscation approaches. In particular, recent work (Zheng et al., 2024; Yuan et al., 2024;
Luo et al., 2024) has leveraged the permutation-equivariance properties of transformers (Xu et al., 2024) to
propose permutation-based schemes for private inference. Under these schemes, hidden states are revealed
as permuted plaintext to the party performing the inference. These works justify security by referring to the
extremely large set of possibilities in the permutation space, and concluding that the reversal of these permuted
states to the original user prompts is practically infeasible.
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Table 1: Percentage of perfectly decoded evaluation samples under our vocab-matching attack, at different
layers of Gemma-2-2B-IT and Llama-3.1-8B-Instruct.

Layer Gemma Llama
1 100% 100%
6 100% 100%
11 100% 100%
16 100% 100%
21 100% 99.9%
26 100% 99.7%

In this paper, we show that the above schemes are not secure. We devise a new method of attack that is capable
of nearly perfect decoding of the user input in the open-weights setting, improving on existing work (Wan
et al., 2024). We further show that this attack maintains nearly perfect decoding performance under a variety
of permutation types, including those relied upon by the schemes above. Furthermore, the attack is capable
of decoding against common noising methods proposed in the literature for private inference (Morris et al.,
2023a).

We then introduce a new multi-party scheme, Cascade, that is resistant to our attack, that leverages sharding
at the token level instead of permutations or noise for obfuscation. We show that Cascade is also resistant to
existing reversal approaches in the literature (Wan et al., 2024; Morris et al., 2023b). While Cascade does not
provide the rigorous privacy guarantees of cryptographic MPC schemes, it is much more efficient than them,
and presents a new paradigm in the trade-off between scalability and security.

2 SETUP & THREAT MODEL

We assume the setting of a user U who wishes to perform inference with an LLM model M on some input
prompt x, which can be considered as an ordered sequence of tokens [x1, x2, ..., xN ]. We denote the size of
the hidden state of the LLM by d, and the sequence length by N .

As the user U does not have the resources to perform the inference themselves, they rely on a set of third-parties
P1, P2, ..., PK . The model weights of M , including the embedding lookup table, are considered to be known
to all parties; although, as we discuss later in Section 5 and Appendix C, this assumption can be relaxed. We
consider the setting where each of the parties behaves semi-honestly, a common assumption of past works
(Zheng et al., 2024; Luo et al., 2024; Dong et al., 2023a; Yuan et al., 2024). Semi-honest parties will follow
the defined protocol faithfully, but may exploit any information that they receive during the execution of the
protocol to attempt to recover the user’s data.

3 RELATED WORK

Several existing works have investigated the reversibility of LLM embeddings into the original sentence
inputs (Song & Raghunathan, 2020; Morris et al., 2023a; Li et al., 2023b; Kugler et al., 2024) with relatively
good decoding performance. Different from our setting, these focus on reversal of a single vector e =
ϕ(x) ∈ Rd, where ϕ is an embedding model that returns a single fixed-size vector from an N -token input
x = [x1, x2, ..., xN ]. In our paper, we are instead concerned with the reversibility of full intermediate states
[h1, h2, . . . , hN ] ∈ RN×d of an LLM.

The closest two previous works on reversibility in our setting are those of Wan et al. (2024) and Morris et al.
(2023b). The former work focuses on reversal of hidden states in general, whilst the latter is particularly
focused on logit output distribution reversal. In both papers, the authors use a learnt transformer-based network
to reverse the sequence of hidden states into the original token inputs. Experiments are conducted on two
decoder-based models, Llama-2-7B and ChatGLM-6B. Average F1 scores of approximately 60% are achieved
across a range of datasets in Wan et al. (2024) on hidden states near the last layers of the models, and scores
around 75% are achieved for logit reversal in Morris et al. (2023b). Importantly, the latter paper does not
assume any access by the adversary to model weights, whilst the former explicitly denotes the case of a model
provider performing inference on user provided embeddings, and so is more analogous to our setting.
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Petrov et al. (2024) propose an attack that shares some elements with ours below – especially, exploitation of
the unidirectional nature of decoder-based LLMs, as well as the finite and discrete space of LLMs’ vocabularies.
However, they are concerned primarily with the setting of gradient reversal into original inputs in the federated
training setting – different from our focus on private inference. Furthermore, their method relies on full-rank
properties of the gradients, which are not always satisfied (e.g. when the prompts are longer than the hidden
dimension size). By contrast, our method does not have any such restrictions.

4 HIDDEN STATE REVERSAL

We begin by considering the general case where one of the parties performing inference, Pk, receives an
intermediate sequence of hidden states h = [h1, h2, ..., hN ] at some layer l of the LLM M .

Can the party Pk reverse the hidden states h to the input sequence of tokens x = [x1, x2, ..., xN ] that produced
h?

4.1 VOCABULARY-MATCHING ATTACK

Our proposed decoding scheme in the above setting leverages the causal ordering of decoder-only transformers,
as well as the finite set of possibilities of input tokens.

The attack begins with a batched forward pass over all length-1 sequences [v], where v ranges over words in
the vocabulary V . From this, the adversary gets V = |V| candidate layer l hidden states h(v) ∈ R1×d. They
set the first predicted input token x̂1 to be the token v for which h(v) exactly matches the first hidden state h1.

Next, the adversary performs a batched forward pass over all length-2 sequences [x̂1, v] with v ∈ V , to get V
candidate layer l hidden states h(x̂1, v) ∈ R2×d. Now, they set the second predicted input token x̂2 to be the
token v where the second row of h(x̂1, v) equals the second hidden state h2.

In general, at the nth stage, using the first n− 1 predicted input tokens x̂1, . . . , x̂n−1, the adversary performs
a forward pass over all length-n sequences [x̂1, . . . , x̂n−1, v] with v ∈ V . They obtain V candidate layer l
hidden states h(x̂1, . . . , x̂n−1, v) ∈ Rn×d, and set the nth predicted input token x̂n to be the token v where the
nth (last) row of candidate states matches the nth hidden state hn. Iterating over n = 1, . . . , N , the adversary
sequentially obtains the predicted input sequence x̂ from the layer l hidden states h.

Although naively one may expect that an exact match of h would require exponential search (specifically, over
all V N possible sequences of tokens x), we see that by exploiting the autoregressive property of transformers,
this is reduced to a linear search; the total cost of this attack is O(V N).

4.2 PRACTICAL IMPLEMENTATION

4.2.1 NON-DETERMINISM

Although the above attack is conceptually simple, there are two important implicit assumptions. The first is
that there is only one – or at worst, a small number – of matches that are found at each step. If the average
number of matches at each step is M , then the search space grows approximately as MN , which is infeasible
when M or N is large. Prior work (Dong et al., 2023b) has demonstrated the rank-reducing effects of attention
blocks, so it is plausible that the size of the subspace in latter layers in particular is too small to prevent large
numbers of collisions.

Secondly, and more subtly, there is an assumption that the forward pass performed over the vocabulary will
match the forward pass that generated the given hiddens h exactly. In general, due to the non-associativity
of floating-point operations (Villa et al., 2009) this will not be the case. Particularly in the GPU setting with
parallel asynchronous thread execution and pooling without global synchronization, there can be considerable
variation in the output (Shanmugavelu et al., 2024). In addition, differences in hardware, random number
seeds, environment variables and the state of initialized memory on the machine can all add to the variability,
and these values may not be known to the adversary.

Due to the presence of this reducible and irreducible noise, we find that exact matching cannot be used
successfully with this attack. Thus, we loosen our matching requirements by computing the L1-distance
between the last row of candidate hidden states and the given hidden state, and accept a match for a token v if
the distance is below some threshold ϵ. If no such match is found, we choose the token v which gives minimal
L1-distance.
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Algorithm 1 Vocabulary-Matching Attack

input Model M , layer l hidden states h = [h1, . . . , hN ], vocabulary V , proposal model P , L1-threshold ϵ
output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N ]

1: Initialize empty sequence x̂← []
2: for i = 1 to N do
3: Vordered ← argsort(P (x̂)) {Get ordered vocabulary from proposal model}
4: min_dist←∞
5: best_match← None
6: for v ∈ Vordered do
7: g ←M≤l([x̂, v]) {Forward pass up to layer l}
8: dist← ∥g − hi|∥1 {Calculate L1 distance}
9: if dist < min_dist then

10: min_dist← dist
11: best_match← v
12: end if
13: if dist < ϵ then
14: x̂i ← v
15: break
16: end if
17: end for
18: if dist ≥ ϵ then
19: x̂i ← best_match
20: end if
21: end for
22: return x̂

However, by allowing an ϵ-ball for matching, we increase the possibility of collisions as stated above. Is our
attack still successful – i.e., are LLM states sufficiently non-colliding – even with this fuzzy matching? In
Section 4.3, we find the answer is emphatically yes.

4.2.2 EFFICIENCY

We optimize runtime in practice using a proposal model to provide a likelihood-based order of iteration through
the vocabulary. We find that this modification reduces the average number of tokens searched through at each
step from V/2 to ∼ 100, resulting in a speedup of more than 1000×. Further, we implement a novel variation
of key-value-caching (KV-caching) to reduce the computational cost of our attack. Further details on these
optimizations are given in Appendix A. With these efficiency improvements, we reduce the decoding time of
prompts of length 50 from many hours to typically less than 30 seconds. Our final algorithm is outlined in
Algorithm 1.

4.3 EXPERIMENTS & DISCUSSION

We conduct our experiments on two state-of-the-art open-source LLMs, Gemma-2-2B-IT (Team et al., 2024)
and Llama-3.1-8B-Instruct (Grattafiori et al., 2024). These models have different sizes (numbers of parameters),
training methodologies, and architectures. We conduct testing on samples from the Fineweb-Edu dataset
(Penedo et al., 2024). We test on every fifth layer in the targeted models, extracting the hidden states of layers
1, 6, 11, 16, 21, and 26.

For each layer of interest, we tune ϵ by performing a ternary search on a small training set comprising
50 prompts taken from FineWeb, to determine the optimal L1-threshold under which predicted tokens are
accepted as matches. We evaluate on 1000 held out prompts, and our results are shown in Table 1. We find
that nearly all evaluation samples are perfectly decoded. Accompanying ϵ values are given in Appendix B.
Due to computational constraints, each evaluation prompt was truncated to a maximum of 50 tokens; however,
small-scale experiments with prompts exceeding 200 tokens demonstrated that our results generalize to longer
prompt settings – vocab-matching still perfectly decodes all hidden states into their corresponding tokens. The
success of our attack also allows us to conclude that LLM hidden states are highly distinct and non-colliding.
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5 PERMUTED HIDDEN STATE REVERSAL

We now consider the case where one of the parties performing inference receives a permutation of the
intermediate sequence of hidden states h at some layer l of the LLM M .

5.1 EXISTING WORK

Recently, a number of works have proposed utilizing permutations to perform privacy-preserving inference in
a multi-party-computation (MPC) setup.

Zheng et al. (2024) permute at the non-linear components of the LLMs in order to reveal them ‘safely’ to one
of the parties, and therefore avoid expensive iterated inter-party communication. The permutation is done on
the attention logits before the softmax, at layer normalizations, and at the non-linear functions in the MLP
block. The latter is a purely elementwise function, so the authors can do a full permutation across the [N, d]
elements, resulting in a permutation space of size (Nd)!. However, softmax and layer-norm are row-wise
operations, so the permutation applied in this case is a (distinct) permutation to the columns, followed by a
permutation of the N rows, resulting in a permutation space of size N !(d!)N .

Yuan et al. (2024) permute both the model weights and the user prompt embeddings in the hidden d dimension,
and the entire inference process (on the next token) is then carried out by a single party.

Luo et al. (2024) applies ideas from both the above works. The proposed method permutes the model weights,
utilizing additive secret-sharing for the linear layers, but relies on two-party permuted plaintext computation at
the non-linearities (softmax, layer-norm and GeLU). Permutation is applied in the hidden d dimension.

5.2 PERMUTED INTERMEDIATE STATES ARE NOT SAFE

We now propose a modification of our vocab-matching attack introduced in Section 4, which breaks user input
privacy for the above schemes in the open-weights setting. Extensions to the attack also break privacy in the
closed-weights setting that Yuan et al. (2024) and Luo et al. (2024) originally consider: see Appendix C for
details. Luo et al. (2024) discuss theoretical considerations for why permutations should be statistically secure
– we discuss why these considerations do not anticipate or mitigate our attack in Appendix D.

5.2.1 SEQUENCE-DIM PERMUTATION

Assume that sequence permutation has been applied to layer l hidden states h = [h1, h2, ..., hN ]:

hseq_perm = [hσ(1), hσ(2), ..., hσ(N)],

where σ is a permutation of [N ] = {1, 2, . . . , N}. Then, we modify the vocab-matching attack as follows. At
the nth stage, we now choose the vocabulary token v where the nth row of the corresponding candidate hidden
state is within an L1-distance of ϵ from any row of hseq_perm. Suppose this ϵ-ball match is made with the ith
row hσ(i). We set the nth predicted input token x̂n to v, and remove hσ(i) from consideration for hidden state
matching in all future stages. Iterating over n = 1, . . . , N , we obtain the predicted input sequence x̂ from
sequence-permuted hidden states hseq_perm.

Compared to the vocab-matching attack, the opportunities for collision are now increased up to N -fold, as we
match with up to N rows of h rather than one. However, we again observe very few collisions in practice and
are able to decode the vast majority of input prompts: see Table 2.

5.2.2 HIDDEN-DIM PERMUTATION

Next we consider the case where permutation has been performed on the hidden dimension of h instead. That
is, the party performing inference is now given:

hhidden_perm = [π1(h1), π2(h2), ..., πN (hN )]

where each πi permutes elements of a d-dimensional vector. In this setting, it is no longer possible to use
L1-distance directly to find the nearest vocabulary token match. We instead use the sorted L1-distance, which
individually sorts the two vectors to be compared and then computes their L1-distance. Again, the existence
of noise may appear to be a significant obstacle to this approach. However, we find that even this relatively
simple matching approach is robust enough to noise to achieve nearly perfect decoding. Our results are shown
in Table 2.
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Table 2: The percentage of evaluation samples that were perfectly decoded under sequence-dim, hidden-dim,
and factorized 2D permutations, for Gemma-2-2B-IT and Llama-3.1-8B-Instruct.

Layer Sequence-Dim Hidden-Dim Factorized-2D
Gemma Llama Gemma Llama Gemma Llama

1 100% 99.7% 100% 100% 99.9% 98.4%
6 99.8% 100% 100% 98.5% 99.5% 97.8%

11 100% 100% 100% 99.2% 99.5% 98.9%
16 100% 100% 99.9% 99.4% 99.2% 98.8%
21 99.8% 100% 98.2% 98.9% 99.1% 98.0%
26 99.8% 100% 98.0% 98.2% 99.0% 97.6%

5.2.3 FACTORIZED-2D PERMUTATION

We now consider the case of a factorized two-dimensional permutation as used in Zheng et al. (2024), where a
hidden-dimension permutation is applied to each hidden state, and then these resulting states are shuffled in
the sequence dimension. The adversary now has:

hfact_perm = [π1(hσ(1)), π2(hσ(2)), ..., πN (hσ(N))]

where σ is a permutation of [N ] and each πi permutes a d-dimensional vector. The attack in this setting again
utilizes the sorted-L1 matching function, but now expands to consider all N rows of hfact_perm, as in Section
5.2.1. Remarkably, even in this setting, the hidden states of both models are decoded nearly perfectly across
layers (Table 2).

We conclude that permuted hidden states of LLMs are highly decodeable by our attack, and therefore schemes
which expose them are not secure in the open-weights setting.

6 NOISED & QUANTIZED HIDDEN STATE REVERSAL

Section 5 shows that modifications to our attack can successfully decode any sequence-dimension, hidden-
dimension, and factorized-2D permutation of the hidden states. We now examine the efficacy of our attack
on alternative methods of defense that modify the hidden states directly – such as by adding noise, or by
quantizing the model to a lower precision. We find that generally, these methods are still not sufficient to
defend against our attack. Due to space constraints, we provide much further detail in Appendix E.

7 CASCADE: TOKEN-SHARDED MULTI-PARTY INFERENCE

As Section 5 and Section 6 show permutations and noising of hidden states are not secure, a natural follow-up
question is whether sharded hidden states are secure. We suggest the answer is affirmative for certain sharding
schemes. We propose a defense to the vocab-matching attack based on token-dimension sharding of hidden
states, which leads to a new multi-party inference scheme: Cascade.

Notably, Cascade does not use cryptographic primitives; the actual computations are nearly unchanged from a
standard forward pass, so almost no additional computational overhead is incurred. There is also no degradation
of performance, as no approximations need to be made (as is typical for SMPC schemes in non-linearities).
The scheme also does not require any user (or trusted party) interaction during inference.

7.1 SCHEME DESCRIPTION

At a high level, Cascade exploits the fact that only the self-attention mechanism in transformers has interaction
between the tokens in a sequence; for all other parts of the architecture, the tokens are treated similarly to
batch dimension elements.

Sharding In multi-headed attention, we denote H as the attention heads, HKV as key-value heads (if
grouped-query attention is used), N as the token count, demb as the hidden dimension, and d as the attention
hidden dimension. There are three axes of sharding used along the token dimension: (1) the sharding of hidden
states h ∈ RN×demb , (2) the sharding of query states q ∈ RH×N×d, and (3) the sharding of key and value
states k,v ∈ RHKV ×N×d. These involve splitting token indices [N ] = {1, 2, . . . , N} into a union of disjoint
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subsets {Ri}αi=1 for hiddens, {Sj}βj=1 for queries, and {Tk}γk=1 for keys and values, where α, β, γ are shard
counts. These index shardings will also be used on the positional embeddings p ∈ RN×demb and attention
mask m ∈ RN×N , which are initialized pre-inference. We use the following shorthand notation for sharded
states:

hR
i = h[Ri] pR

i = p[Ri] mST
jk = m[Sj , Tk]

qR
i = q[:, Ri] qS

j = q[:, Sj ] qRS
ij = q[:, Ri ∩ Sj ]

kR
i = k[:, Ri] kT

k = k[:, Tk] kRT
ik = k[: Ri ∩ Tk]

We define v∗
∗ from v in the same way that k∗

∗ is defined from k. Denoting the masked attention logits by
a ∈ RH×N×N , we also define aRT

ik = a[:, Ri, Tk], aST
jk = a[:, Sj , Tk], and aRST

ijk = a[:, Ri ∩ Sj , Tk], as
well as the associated quantities e∗T∗k = expsum(a∗T

∗k ) and u∗T
∗k = softmax(a∗T

∗k )v
T
k . In Cascade, sharding of

all of these matrices aims to prevent each node from reversing tokens.

Nodes There are two types of nodes which hold the sharded states above: CompNodes and AttnNodes.
We initialize α CompNodes and β2 AttnNodes, indexed as CompNodei and AttnNodejk for all i ∈ [α] and
j, k ∈ [β].

Inference Cascade breaks down single layer inference into the pre-pass by CompNodes, attention-pass by
AttnNodes, and post-pass by CompNodes. So per layer, there is CompNode to AttnNode communication after
the pre-pass and AttnNode to CompNode communication after the attention-pass, and both are parallelizable.
We provide a detailed outline of these procedures in Appendix F: see Algorithm 2 for a high-level overview of
a single layer pass. Cascade single layer pipelines can be stacked because each CompNodei starts and ends
with access to only token indices Ri. After the last layer, CompNodes apply the LM head to get Ri-sharded
logits, and the CompNode with access to the last token will use this generate the next token1. This token’s
embedding is sent back to the CompNode holding the next token index in Ri to append to its layer 0 hidden
states, and Cascade inference repeats to generate the next token. In practice, next-token generation can be sped
up with KV-caching, which is compatible with Cascade: see Appendix N for optimization details.

Symmetrization To simplify security and cost analysis, we force our scheme to be symmetric with respect
to query and key-value sharding. That is, we set γ = β and each Sj = Tj . In Appendix I, we show that any
non-symmetric scheme can be made symmetric at no loss of security.

7.2 SECURITY ANALYSIS

In this section, we examine the security properties of Cascade. Cascade does not employ cryptographic
techniques with provable guarantees of security, so our analysis can only elucidate on statistical security.
Nevertheless, we examine a diverse range of security considerations below.

The security of Cascade is a function of its implementation parameters: the number of nodes participating, as
well as the sharding strategy used, i.e. {Ri}αi=1 and {Sj}βj=1.

As the space of sharding strategies is vast, we focus on a particular class of strategies called (c, δ)-sharding,
where each sharded index set takes the form of a ‘clustered-arithmetic’ or (c, δ)-sequence. We focus on these
strategies as they fulfill several security desiderata, which we discuss below. Nevertheless, we emphasize that
other strategies may be preferable to (c, δ)-sharding depending on the use-case.

Definition 7.1. We say a subset of indices [N ] is a (c, δ)-sequence if it takes the form

{i, i+ 1, . . . , i+ c− 1, δ + i, δ + i+ 1, . . . , δ + i+ c− 1, 2δ + i,

2δ + i+ 1, . . . , 2δ + i+ c− 1, . . .}

for some i. That is, the token indices follow an arithmetic progression given by the δ parameter, but with
‘clusters’ of length c.

(c, δ) vs. Number of CompNodes Under (c, δ)-sharding, the minimum number of CompNodes α needed to
ensure all indices in [N ] are held by some node is given by α = ⌈δ/c⌉.

1The logits can also be returned to the user if desired.
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Table 3: ROUGE scores of text reconstruction from the hiddens of layer 1 of Gemma-2-2B-IT for various
values of c and α under (c, δ)-sharding. Increasing c or α results in worse reconstruction.

α = 4 α = 8 α = 12

c = 1 0.701 0.467 0.349
c = 4 0.427 0.290 0.230
c = 8 0.355 0.222 0.191

7.2.1 COMPNODE SECURITY

There are two questions to be asked regarding security – first, can we select a sharding strategy that defends
against our attack outlined in Section 4? And second – do we remain secure to learning based attacks as in
prior works Wan et al. (2024) and Morris et al. (2023b)?

Vocab-Matching Attack Our main line of defense against vocab-matching is to ensure large token gaps in
nodes. For a (c, δ)-sharding scheme, in each shard, the distance from one ‘cluster’ of indices to the next is
δ − c+ 1. Therefore, in order to carry out the attack, we cannot perform a single run through V and obtain the
next token match; we must search over length δ− c+1 sequences of infilled words. This scales exponentially:
the work done is now V δ−c+1. Given that V ∼ O(100000) in typical modern LLMs2, this is likely already
infeasible in practice for δ− c+1 ≥ ρ when the vocab matching threshold ρ is set to 3, say. Note ρ may be set
to suit the security demands of the use case. In general, preventing brute-force vocab-matching is equivalent to
(α− 1)c ≥ ρ− 1, so we can increase α or c to maintain security. For ρ = 3, all α, c ≥ 2 satisfy this.

Learning-Based Attacks We now consider learning-based reversal attacks. We conduct experiments on
Gemma-2-2B-IT and Llama-3.1-8B-Instruct. We fine-tune both models on random (c, δ)-masked input
sequences from FineWeb-Edu, with the target labels being the full input sequence of tokens. We update both
models to use a bidirectional attention-mask, in line with the token-infilling nature of this task. We train
until the eval loss on a held-out set converges, over representations on layer 1 from each model; evaluation is
performed on the same layer’s hidden states. Our approach is similar to previous works Wan et al. (2024);
Morris et al. (2023b).

Our results for Gemma-2-2B-IT are shown in Table 3. We see that when c, α ≥ 8, we have a ROUGE
score less than 0.25, showing significant reconstruction difficulty. We further tested on c = 4, α = 16 and
c = 8, α = 24 and obtained ROUGE scores of 0.1733 and 0.1439, supporting that security continues to
improve by scaling c and α.
We further examine (a) the choice of hidden layer, and (b) whether Llama representations are better decoded,
in Appendix G. We find similar or better security across these other parameter choices.

Layer 0 Layer 0 of the LLM is a special case, as the hidden states at this layer are just the token embeddings,
which are immediately reversible to their original tokens. We conclude that Cascade should not be used
when the security of every token is paramount. It is only applicable for scenarios where the revelation of at
least some subset of the input is considered acceptable. 3 We examine further elements of security at Layer 0
in Appendix H.

7.2.2 ATTNNODE SECURITY

So far, we analyzed the security of CompNodes in isolation. We examine the security of AttnNodes via
S-sharding in Appendix I. Finally, we examine other sources of information leakage and restrictions on
sharding schemes in Appendix M.

7.3 PERFORMANCE

We now examine the performance of Cascade. First, we provide theoretical estimates of computational and
communication costs associated with Cascade. As in previous SMPC works (Li et al., 2023a; Dong et al.,

2One may argue that the distribution of the text makes the base of the exponential much lower than V . However, the
work is still exponential, so large enough c and α still prevents vocab-matching.

3If individual token security is strongly necessary, existing SMPC protocols could be used for Layer 0 alone, at the cost
of additional computational and communication overhead. Detailed investigation of this idea is left to future work.
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2023a; Li et al., 2024), we assume perfect parallel transport in communication, a homogeneous (outgoing)
node-wise bandwidth of B, and an inter-node latency of τ . We also denote F as the number of bytes per
element. Then, we perform experiments to substantiate our estimates, and further, investigate the total runtime
of Cascade for inference on BERT and BERT-Large.

7.3.1 THEORETICAL ESTIMATES OF COMPUTATION AND COMMUNICATION COSTS

Computation In terms of floating point operations, there is little overhead from Cascade compared to
vanilla inference: see Appendix J for a detailed analysis. We provide empirical evidence for this below in
Section 7.3.2.

Communication We present single layer communication byte and time overhead formulae. Full derivations
are given in Appendix K:

CommBytes = βF (2dH + 2dHKV + 2H) ·N (1)

CommTime = 2τ +
βFd(H + 2HKV )

B
·max

i
|Ri|+

F (d+ 2)H

B
·max

j
|Sj |. (2)

In Equation (1), only β depends on the sharding scheme. Therefore, byte overhead is minimized when
β is minimized, i.e. with minimal AttnNodes. This overhead is independent of sharding for fixed β, and
scales linearly with β. Furthermore, communication time is minimized when both βmaxi |Ri| and maxj |Sj |
are minimized. For fixed α, β, since {Ri}αi=1 and {Sj}βj=1 partition [N ], then maxi |Ri| ≥ ⌈N/α⌉ and
maxj |Sj | ≥ ⌈N/β⌉. Equality is achieved when all Ri, and all Sj , are around the same size. Thus, for fixed
CompNode and AttnNode counts, (c, δ)-sharding achieves optimal communication time, as it has nearly
uniform shard sizes.

7.3.2 PERFORMANCE EXPERIMENTS

We now run experiments to evaluate the real-world performance of Cascade. We compare against two recent
SMPC schemes for LLM inference, MPCFormer (Li et al., 2023a) and Puma (Dong et al., 2023a). We
reimplement these in their original frameworks of CrypTen (Knott et al., 2021) and SPU (Ma et al., 2023)
respectively. In both cases, for fair comparison, we set the model weights to be public, whilst maintaining the
inputs as private.

We implement Cascade using the distributed computing framework Ray (Moritz et al., 2018). Our experiments
are conducted on Paperspace machines with 16 vCPU and 64GB RAM, with the CPU model being Intel Xeon
Gold 6226R CPU @ 2.90GHz. All machines are colocated in the same region with an average measured
bandwidth of 2 Gbps and an average measured latency of 0.38 ms. We perform inference (a single forward
pass) on Bert-Base and Bert-Large with an input prompt of 128 tokens – we repeat this measurement 100
times as there is run-to-run variability in the timing.

Our results are shown in Table 4 below. The data for MPCFormer and Puma is taken from Dong et al. (2023a).

Table 4: Total runtime means and 95% confidence intervals for a single forward pass on Bert-Base and Bert-
Large for MPCFormer, Puma, and Cascade with different settings, compared to standard (vanilla) inference.
Runtimes are given in seconds. A prompt length of 128 is used. Values for MPCFormer and Puma are based
on reimplementations in CrypTen (Knott et al., 2021) and SPU (Ma et al., 2023) to reflect the open-weights
setting.

Scheme Bert-Base Runtime (s) Bert-Large Runtime (s)
MPCFormer 49.401 143.883
Puma 28.356 61.957
Cascadeα=1 (no Ray) 0.109 [0.100, 0.134] 0.320 [0.231, 1.067]
Cascadeα=1 0.319 [0.306, 0.355] 1.012 [0.967, 1.089]
Cascadeα=4 0.588 [0.513, 0.688] 1.572 [1.441, 1.734]
Cascadeα=8 0.742 [0.622, 0.962] 1.584 [1.271, 1.965]
Vanilla 0.091 [0.084, 0.121] 0.273 [0.200, 0.993]

We begin by measuring the performance of Cascade with α = 1 and without using Ray, to obtain a direct
comparison of the computational cost of Cascade vs. vanilla inference without any Ray overhead or inter-node
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communication. As we can see from Table 4, the mean runtime is 109ms vs. 91ms for vanilla inference for
Bert-Base, and 320ms vs. 273ms for Bert-Large. Profiling reveals this minor increase is entirely explained by
the attention-score compilation step discussed in Appendix J. Nevertheless, the mean runtime remains within
the 95% confidence interval of vanilla inference in both cases.

We next show the performance of Cascade with α = 1 and using Ray. As seen above, this is slower than
not using Ray by around a factor of 3×. This slowdown can be attributed to framework-specific overhead,
such as serialization and deserialization introduced by Ray in order to send and receive objects. In other
words, Cascade is so efficient that the distributed-compute framework overhead now constitutes a significant
proportion of its slowdown from vanilla inference, rather than protocol-specific overhead.

Finally, we measure the performance of Cascade with α = 4, 8, which are values that can be used in real
applications to maintain privacy, as discussed in Section 7.2. Consequently, the experimental setup involves
cluster configurations of 6 and 18 distinct machines for α = 4 and 8 respectively. We see that performance in
these cases is slowed relative to the α = 1 case, due to the introduction of communication overhead between
the machines. However, Cascade remains ∼ 90× faster than MPCFormer for Bert-Large (∼ 65× faster for
Bert-Base) and ∼ 40× faster than Puma for both models even in its slowest tested α = 8 setting.

Furthermore, although it is difficult to make strong conclusions from 3 data points, we observe that the increase
in runtime for both models from α = 1 to α = 8 appears sublinear, even as the number of distinct machines
increases superlinearly.

To support our theoretical estimates in Section 7.3.1, we also examined the total communication in the α = 1
case using tshark. We found that the total communicated bytes are within 2% of Equation (1). The extra bytes
can be attributed to Ray-specific metadata and a slight increase from the raw bytes size due to serialization.
We present a comparative table of total communicated bytes for Cascade versus MPCFormer and Puma in
Table 5. We see that even in the most expensive α = 8 setting, Cascade is ∼ 160× more efficient in total bytes
transferred than MPCFormer, and ∼ 140× more efficient than Puma.

Table 5: Total gigabytes (GB) communicated for a single forward pass on Bert-Base and Bert-Large for
MPCFormer, Puma, and Cascade with different settings, compared to standard (vanilla) inference. A prompt
length of 128 is used. Values for MPCFormer and Puma are taken from Dong et al. (2023a).

Scheme Bert-Base (GB Communicated) Bert-Large (GB Communicated)
MPCFormer 12.089 32.577
Puma 10.773 27.246
Cascadeα=1 0.009 0.025
Cascadeα=4 0.038 0.101
Cascadeα=8 0.076 0.203

We conclude that Cascade is significantly faster and more communication-efficient than prior SMPC methods,
and offers a new paradigm in the trade-off between scalability and security for private LLM inference.

8 CONCLUSION & FUTURE WORK

We have identified a new attack for decoding LLM hidden states into their original user text in the increasingly
important open-weights setting. This attack obtains near perfect accuracy on decoding even permuted hidden
states, effectively invalidating the security of some existing MPC schemes. We also introduced a novel
multi-party scheme, Cascade, that uses token sharding to defend against our attack, as well as existing attack
methods in the literature. Future directions of work could further examine the space of sharding strategies,
particularly in unreliable network settings.
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A VOCAB-MATCHING ATTACK OPTIMIZATIONS

Although the cost of the attack outlined in Section 4 is linear in V , the size of vocabularies can be quite large
in practice. For example, Gemma-2-2B-IT has a vocabulary size of 256000. Therefore we seek to optimize
this by introducing a proposal model. The purpose of the proposal model is to provide a suggested ordering
over the vocabulary, rather than iterate through it in an arbitrary order. It does so by taking in the token
sequence that has been partially decoded so far and producing the next-token logits. We then search through
the next-token logits in decreasing order of probability. In practice, we find that this modification reduces the
expected number of tokens searched through at each step from V/2 to approximately 100, thus representing a
constant factor speedup of more than 1000×.

Moreover, we implement a novel variation of key-value-caching (KV-caching) to reduce the computational
time of our attack. Note that at the nth stage of the decoding, we are performing a V -batched forward pass on
[x̂1, x̂2, ..., x̂n−1, v] over v ∈ V , where x̂1, x̂2, . . . , x̂n−1 are the tokens that we have already decoded. As this
forward pass needs to be repeated many times for different v but the same x̂i, we cache the keys and values
associated to the x̂i and reuse them across all forward passes. This is different from standard KV-caching,
which stores the keys and values for generation over a single sequence: here, we reuse keys and values across
many sequences.

B OPTIMAL ϵ FOR DECODING

We report the full set of optimal ϵ thresholds in decoding, for each permutation type below. We observe
that generally, the optimal ϵ increases in later layers across all permutation types – which may be due to the
effect of the reducible and irreducible noise we mention in Section 4 taking up a larger subspace volume as it
propagates to deeper layers. We also observe that Llama tends to have much lower ϵ values in general. Further
investigation of these interesting trends and their implications for the properties and structure of LLM hidden
states is left to future work.

Table 6: Optimal ϵ thresholds for hidden state reversal with no permutation, over various Gemma-2-2B-IT and
Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 22.0 0.6
6 70.0 7.1
11 204.0 18.3
16 293.0 29.0
21 400.0 76.0
26 318.0 156.0

Table 7: Optimal ϵ thresholds for hidden state reversal with sequence dimension permutation, over various
Gemma-2-2B-IT and Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 12.8 1.4
6 72.6 3.3
11 229.0 7.4
16 301.0 7.4
21 385.0 26.6
26 220.0 29.6
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Table 8: Optimal ϵ thresholds for hidden state reversal with hidden dimension permutation, over various
Gemma-2-2B-IT and Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 12.5 0.5
6 25.0 3.5
11 45.0 3.7
16 73.0 5.2
21 118.0 6.3
26 61.0 9.8

Table 9: Optimal ϵ thresholds for hidden state reversal with factorized-2D permutation, over various Gemma-
2-2B-IT and Llama-3.1-8B-Instruct layers.

Layer Gemma Llama
1 21.0 0.3
6 26.0 3.0
11 47.0 9.0
16 69.0 9.0
21 118.0 14.0
26 51.0 14.0

C BREAKING PERMUTATION SCHEMES IN THE CLOSED-WEIGHTS SETTING

In Section 5, we showed that permuted hidden states are highly reversible. This means that permutation-based
privacy-preserving schemes like PermLLM (Zheng et al., 2024), Secure Transformer Inference Protocol (Yuan
et al., 2024) and Centaur (Luo et al., 2024) are not secure in the open-weights setting. The distinction from
closed-weights is important here: to carry out the vocab-matching attack to decode permuted hidden states at
layer l, the attacker must have access to all model parameters at layers ≤ l, as well as the embedding lookup
table.

Because of this, we cannot immediately claim to break the security of Centaur or the Secure Trans-
former Inference Protocol (STIP), which explicitly tackle the closed-weights setting where the inference
provider does not have access to model weights. Nevertheless, for both of these schemes, we show that slight
modifications can be made to the vocab-matching attack to break security even in this setting.

STIP There are three parties: the model developer P1, the model server P2 (who carries out in-
ference), and the user P3. The goal of STIP is to have P2 carry out inference on P3’s input, protect P1’s private
model weights Θ from P2 and P3, and protect P3’s private input data from P1 and P2. This is accomplished
with random permutation in the hidden dimension. At initialization, P1 sends random d × d permutation
matrices π, πc to the user P3, where d is the token embedding dimension. They also randomly permute each
weight matrix or vector in the row and/or column dimensions, to obtain the altered model weights Θ′; these
are given to the model server P2, who cannot recover Θ from them. Then during inference, instead of sending
their private input data X ∈ RN×d, the user encrypts it with permutation π, i.e. they send Xπ. Afterwards,
a standard transformer forward pass is carried out, but with the weights Θ (unknown to the model server
P2) replaced by permuted weights Θ′. Finally, the results are sent to the user, who applies permutation πc to
obtain the output of the inference. The STIP authors show through orthogonality of permutation matrices that
the final output is the true output of inference.

Because STIP involves a standard transformer forward pass with permuted weights Θ′, it follows that the
developer P2 sees permutations of certain intermediate states. For instance, at Layer 0, after applying the
altered Q,K, V -projections on token embeddings, they have hidden dimension permutations of the true
Q,K, V -projections. In fact, at all layers l, the layer l altered hidden states are hidden dimension permutations
of the true layer l hidden states. This means the attack described in Section 5, with forward passes from the
altered transformer model with weights Θ′, could be applied to decode the hidden states – but only if the
vocabulary of input embeddings is known, which is not the case in the closed-weights setting. However, there
are two possible ways to sidestep this issue. Firstly, for many models – such as Gemma – the embedding
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matrix is simply the transpose of the language-modeling head, whose permutation is known to P2. Therefore,
the vocabulary embedding vectors to search over in this case are simply the (permuted) rows of the transpose
of this matrix – and these permutations can be uncovered by matching against the (permuted) input embedding
vectors received from the use to start inference. Secondly, even if the language-modeling head is not the same
as the embedding matrix, P2 can still collect the vocabulary over repeated observations of input prompts given
– there will necessarily be a finite set of these.

The final step to decoding would then be the mapping of the decoded embeddings into tokens. If the tokenizer
is not publicly revealed, this may seem difficult at first – but note that this essentially constitutes a simple
substitution cipher, where each token in the vocabulary is substituted by its embedding vector. Again, by
collecting data over many queries and using simple methods such as frequency analysis and positional
information, P2 can learn to decode this into the original tokens; substitution ciphers are in general easily
broken given sufficient data.

Centaur Centaur followed the three-party threat model of STIP, and attempted to reconcile two
problems. On the model weight privacy side, they aimed to prevent exposure of the lookup table to the user.
On the user privacy side, they wanted to avoid exposing certain unpermuted intermediate results (like the
matrices QKT at each layer, due to the Q and K permutations cancelling). To do this, they introduced
additive secret sharing between the developer P1 and server P2 at most stages of self-attention, only requiring
reconstruction of additive shares (by the developer) during nonlinearities. Although this resolves the previous
two concerns, it is still the case that permutations of true layer l hidden states are exposed to the model
developer at nonlinearities, and that the developer has access to permuted (in the same way as in STIP) weights
Θ′ and a permuted lookup table. Furthermore, a forward pass through the first l layers of a transformer model
with weights Θ′ would still yield hidden dimension permutations of a forward pass through l layers with
weights Θ. Thus, like with STIP, a vocab-matching attack with the permuted model and permuted lookup
table can be used to reverse engineer the input text, and frequency analysis and context can break the token
substitution cipher.

D DISTANCE CORRELATION DOES NOT GUARANTEE PERMUTATION SECURITY

Here, we contextualize statistical arguments on the security of permuted hidden states. In particular, we
clarify why they do not anticipate the vocab-matching attack, which emphatically shows that permuted hidden
states are not secure. One common justification is through statistical security: Zheng et al. (2022) and later
Zheng et al. (2024) measure input leakage from permuted hidden states with distance correlation (Székely
et al., 2007). They theoretically and experimentally show that the expected distance correlation for a random
one-dimensional linear projection is larger than that of a random permutation, i.e. one would expect a random
permutation to leak less information than one-dimensional compression. After introducing Centaur, Luo et al.
(2024) use the same argument to justify the security of their scheme.

There are several reasons why this result cannot be used to make strong guarantees on permutation security:

1. The result does not capture key ingredients of transformer architectures.

First, they consider distance correlation for a particular 1 × d embedding after linear projection.
However, for their result to apply to the case of LLM inference, it should instead be proven for the
full N × d embedding matrix – and it should account for other transformer components. Particularly,
it should consider self-attention, in which tokens are not processed independently. In fact, the
unidirectional nature of decoder-only LLMs (e.g. each token output only depends on previous token
inputs) is what enables the vocab-matching attack. Consequently, their distance correlation result,
which ignores this dependence, fails to anticipate such an attack.

Also, they do not use any discrete or combinatorial information, which is available in the form of the
lookup embedding table. This is also key to the vocab-matching attack, and would not be captured in
the expected distance correlation. The result on distance correlation fails to show discrete reversals
are difficult. For example, the first token output only depends on the first token input – why search
over a full distribution of first token embedding vectors, when we can iterate through the finitely
many vectors in the lookup table to reverse the first input token?

2. Expected distance correlation does not give formal security guarantees.
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First, it is possible to have the distance correlation between random variables W and X be greater
that of Y and Z, but have the reconstructibility of W from X be harder than that of Y from Z.
Reconstructibility has many interpretations: here, we define it as the maximum possible probability
of reconstructing the input within a given δ-threshold, over all estimators. This reconstruction up to
absolute error (called δ-reconstruction) is especially relevant for practical implementations of attacks
like vocab-matching, where non-determinism forces us to choose a match within a given absolute
error (see Section 4 for further details).
For an explicit example of the above paradoxical scenario, define independent W, ε ∼ N (0, 1). Let
Y come from an arbitrary symmetric distribution about zero, and construct

X = ρW +
√

1− ρ2ε, Z = |Y |

where 0 < ρ < 1. Using standard properties of normal random variables, one can see X ∼ N (0, 1),
and the correlation between X and W is ρ. Thus, by Theorem 7 in Székely et al. (2007), which
lower bounds distance correlation of standard normals in terms of (Pearson) correlation, we have
DistCorr(W,X) > 0.89ρ. Furthermore, by Theorem 1 in ?, which upper bounds the distance
correlation of a symmetric random variable and its absolute value, we have DistCorr(Y, Z) ≤ 2−1/4.
Therefore, we have DistCorr(W,X) > DistCorr(Y,Z) whenever ρ > 2−1/4

0.89 ≈ 0.945. However,
even in this case, it turns out that δ-reconstruction of W from X can sometimes be more difficult
than δ-reconstruction of Y from Z. For instance, it is impossible to reconstruct W from X within
a threshold of δ = 0.1 with 100% probability regardless of what estimator is used: to do so
would require reconstructing ε from X within a certain threshold with 100% probability, but this
is impossible as it is independent from X . But if Y is defined to always lie in [−0.1, 0.1], then
one can simply estimate Ŷ = 0 and always reconstruct Y within an error of δ = 0.1. That is,
δ-reconstructibility of Y from Z is easier than δ-reconstructibility of W from X for δ = 0.1, even as
(Y,Z) has lower distance correlation than (W,X).

Secondly, the inequality used by Luo et al. (2024) is an expectation over linear projections
and permutations – therefore, it is possible that there are some linear weights (and also some
permutations) for which the distance correlation of a random permutation is in fact smaller than that
of a random 1D linear projection.

3. Reconstruction from random 1D projections of LLM hidden states is possible.

A key part of their reasoning is that reconstructing input from a random 1-dimensional lin-
ear projection is difficult. However, there is no theoretical reason that this should be the case for such
projections of LLM hidden states. Consider the vocab-matching attack, performed with a matching
function that matches each hidden state to a vocabulary embedding using a randomly-weighted sum
(i.e. a random 1D projection) of its elements. This attack would still successfully reverse the inputs
in this case: we have shown experimentally with L1-distance matching that LLM hidden states are
in general highly non-colliding, and the below theorem then implies randomly-weighted sums of
LLM hidden states are also highly non-colliding. That is, the vocab-matching attack can be used to
reconstruct inputs from random 1D linear projections of LLM states.

Proposition D.1. Suppose random weights w ∈ Rd are draw from a d-variate spherically symmetric
distribution D. Then any x,y ∈ Rd, we have the absolute difference of w-weighted sums of x and y
exceeds the L1 distance between x and y, meaning∣∣∣∣∣

d∑
i=1

wixi −
d∑

i=1

wiyi

∣∣∣∣∣ ≥
d∑

i=1

|xi − yi|, (3)

with probability ≥ Pγ∼D(|γ1| ≥
√
d).

Proof. Denote z = x− y. Observe that∣∣∣∣∣
d∑

i=1

wixi −
d∑

i=1

wiyi

∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

wi(xi − yi)

∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

wizi

∣∣∣∣∣ = |wTz|.
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Thus, Equation (3) is equivalent to |wTz| ≥ ∥z∥1. Then, from the standard bound ∥z∥1 ≤
√
d∥z∥2,

which can be proven by an application of Cauchy-Schwarz, we see that Equation (3) holds whenever

|wTz| ≥
√
d∥z∥2. (4)

We now aim to compute the probability of the above event. Choose a d× d orthogonal matrix Q such
that zq := Qz ∈ Rd only has a nonzero coordinate L in its first position. By orthogonality and the fact
thatD is spherically symmetric, we see wq := Qw has distributionD. Furthermore, orthogonal linear
transformations are length-preserving (by L2 norm), so we have ∥zq∥2 = ∥Qz∥2 = ∥z∥2 = |L|. In
fact, as QTQ = I , observe that wTz = wTQTQz = (Qw)T (Qz) = wT

q wz . Hence, Equation (4)
becomes

|wT
q zq| = |L||(wq)1| ≥ |L|

√
d.

This is equivalent to saying the first coordinate of wq has magnitude at least
√
d. But we showed

wq has distribution D, so the probability of Equation (4) is precisely Pγ∼D(|γ1| ≥
√
d). This is

therefore a lower bound on the probability of Equation (3), since we showed Equation (3) holds
whenever Equation (4) does.

We can obtain an exact bound above by setting D as a multivariate Gaussian. That is, for w =
(w1, . . . , wd), we i.i.d. sample each wi ∼ N (0, σ). Then Pγ∼D(|γ1| ≥

√
d) = Pγ∼N (0,σ)(|γ| ≥√

d) = 2 − 2Φ(
√
d/σ). So, by setting σ sufficiently large, we can make Φ(

√
d/σ) → Φ(0) = 1

2 ,
and the probability lower bound approaches 2 − 2 · 1

2 = 1. For instance, for d = 4096 (as in
Llama-3.1-8B-Instruct), if we sample weights in this manner with standard deviation σ = 256, the
probability lower bound becomes 2− 2Φ(0.25) ≈ 80%.
Essentially, by sampling weights with large enough variance, we can ensure random 1D projections
of two vectors are non-colliding with high probability, whenever the vectors are non-colliding
by L1 distance. Further work should experimentally verify the efficacy of vocab-matching with
randomly-weighted sums, in the presence of non-determinism and other practical implementation
considerations.
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E NOISED & QUANTIZED HIDDEN STATE REVERSAL

Here, we provide full details on our experiments and results highlighted in Section 6. We investigate the
following methods of modification to the hidden states of Gemma-2-2B-IT:

1. Diagonal Gaussian noise with mean 0 and standard deviation σ applied to each hidden dimension in
the input embeddings, as proposed in Morris et al. (2023a).

2. A randomly generated embedding inserted as a prefix to the original sequence. This has the effect
of modifying the subsequent hidden states via self-attention. We generate this embedding from a
Gaussian with means and standard deviations of each hidden dimension set to the average over the
token vocabulary V .

3. Quantization of the model from original 16-bit to 8-bit and 4-bit, using the bitsandbytes library
(BitsAndBytes, 2025).

Table 10: ROUGE reconstruction scores across 50 evaluation samples for various noising methods and
permutation types. The LiveBench column is a measure of downstream performance, with higher values
indicating stronger performance.

Method Unpermuted Sequence Hidden LiveBench
Baseline (no noise) 1.00 1.00 1.00 20.7

Gaussian, σ = 10−2 0.84 0.78 0.04 21.0
Gaussian, σ = 10−1 0.81 0.33 0.01 1.2
Random emb. prefix 0.80 0.57 0.14 21.3

8-bit quantization 0.89 0.86 0.75 20.2
4-bit quantization 0.88 0.84 0.75 19.1

It is clear that with large enough noise, the efficacy of our attack can be blunted. However, doing so may also
degrade downstream performance on tasks of interest. To measure the effect of this for each of the above
methods, we utilize LiveBench (White et al., 2024), a benchmark that tests multiple different components of
LLM peformance such as language, reasoning and math. Furthermore, we tested the effect of combining each
of these methods with sequence and hidden dimension permutations. Our results are shown in Table 10.

We see that unpermuted hidden states are still highly decodeable via our attack under all methods tested.
Remarkably, even 4-bit quantization is not sufficient to introduce enough collisions to significantly hamper
sequence-permuted decoding. Sequence dimension permutation affords some security with high Gaussian
noise injection, but this severely hampers downstream performance. The combination of hidden dimension
permutation and Gaussian noise with standard deviation 10−2 appears largely secure, and so offers potential
as a solution to the insecurity of the schemes in Yuan et al. (2024) and Luo et al. (2024). Note that LiveBench
scores carry some variability – the original paper shows variation of around ±2 for the scores is within a 95%
bootstrapped confidence interval – and so the baseline, Gaussian with standard deviation 10−2, and random
embedding prefix methods are all within noise in performance.

A full breakdown of the LiveBench scores by category and the ROUGE scores by layer of each of the above
methods and permutation types is given in Appendix O.

F CASCADE SCHEME DETAILS

We provide further details on the pre-pass, attention-pass and attention pass components of Cascade, as
introduced in Section 7.1. Furthermore, the full algorithm of Cascade is given in Algorithm 2. All notation
is defined in Section 7.1. Below, all shard-specific slicing and concatenation operations are initialized in the
node setup. Furthermore, we assume that all AttnNodes wait until all CompNodes finish the pre-pass to do
the attention-pass, and all CompNodes wait until all AttnNodes finish the attention-pass to do the post-pass.
Finally, note that although the symmetrization (setting S and T sharding equal) assumption is discussed at the
end of Section 7.1, we do not assume this property for the scheme presentation.

Pre-pass At layer l, each CompNodei starts with the Ri−sharded hidden states hR
i . If necessary for the

attention block, it performs layer normalization on these states. Then, it performs Q,K, V -projection to
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get the Ri−sharded query, key and value states qR
i ,k

R
i ,v

R
i . CompNodei then applies rotary or positional

embedding to qR
i ,k

R
i , using sharded positional embeddings pi (the node can generate these upon setup to

avoid any communication overhead, since it only depends on its index set Ri), and returns all of qR
i ,k

R
i ,v

R
i ,

as described in Algorithm 3.

Attention-pass After the pre-pass, each AttnNodejk receives shards qRS
ij ,kRT

ik ,vRT
ik from each CompNodei,

which are slices of its pre-pass outputs qR
i ,k

R
i ,v

R
i along the token dimension. By concatenating the rows

of qRS
ij ,kRT

ik ,vRT
ik over all 1 ≤ i ≤ α in a particular order, AttnNodejk obtains qS

j ,k
S
k ,v

S
k . Precisely, the

order for qS
j is determined by the order in which one should concatenate elements of sorted sets Ri ∩ Sj

over all 1 ≤ i ≤ α, to obtain sorted Sj ; and likewise for kS
k ,v

S
k , it is the order in which one concatenates

elements of sorted sets Ri ∩ Tk over all 1 ≤ i ≤ α, to get sorted Tk. Next, in grouped-query attention, the key
and value heads should be repeated to match query heads. Then AttnNodejk can compute qS

j (k
T
k )

T +mST
jk ,

where matrix multiplication is performed per-head and the attention mask is broadcasted. This results in the
submatrix aST

jk = a[:, Sj , Tk] of the masked attention logits a. For use in the post-pass, AttnNodejk also stores
sums of exponentials4 of elements of the submatrix rows, which was defined in Section 7.1 as eST

jk . Finally,
AttnNodejk takes the row-wise softmax and performs value multiplication to get uST

jk = softmax(aST
jk )vT

k .
Both uST

jk , eST
jk are returned, as in Algorithm 4.

Post-pass Finally, after the attention-pass, each CompNodei receives uRST
ijk , eRST

ijk from each AttnNodejk,
which are slices of its attention-pass outputs uST

jk , eST
jk along the token dimensions. Then, for each fixed

1 ≤ k ≤ β, CompNodei concatenates the rows of uRST
ijk , eRST

ijk over all 1 ≤ j ≤ β to obtain uRT
ik , eRT

ik , in a
similar manner as the attention-pass concatenation. Now, the order is determined by the order of concatenation
of elements of sorted Ri ∩ Sj ∩ Tk over all 1 ≤ j ≤ β to form sorted Ri ∩ Tk. Next, CompNodei aims to
combine these results uRT

ik , eRT
ik over 1 ≤ k ≤ γ, into the Ri−sharded (pre O-proj) output of attention, which

equals

softmax(a)[:, Ri]v =

γ∑
k=1

softmax(a)[:, Ri, Tk]v[:, Tk].

by blocked matrix multiplication. The terms in the summation are not known to CompNodei, since indexing
here is performed post-softmax. To correct for this, observe that for a row vector v ∈ RN and any 1 ≤ k ≤ γ,

softmax(v)[Sk] =
expsum(v[Sk])∑
k′ expsum(v[Sk′ ])

· softmax(v[Sk]).

Thus, the above summation can be simplified to

softmax(a)[:, Ri]v =

∑
k expsum(a[:, Ri, Tk])⊙ (softmax(a[:, Ri, Tk])v[:, Tk])∑

k expsum(a[:, Ri, Tk])

=

∑
k expsum(aRT

ik )⊙ (softmax(aRT
ik )vT

k )∑
k expsum(aRT

ik )

=

∑
k e

RT
ik ⊙ uRT

ik∑
k e

RT
ik

by using the defined notation. Here, the fraction is elementwise divison, and expsum is performed row-
wise along the last dimension. Now, each aggregate term in the numerator and denominator summations
is known to the CompNode. In essence, the CompNode is performing a weighted average of concatenated
AttnNode u results, with the weights also coming from AttnNodes e results. To get the final output of
attention corresponding to row (token) indices in Ri, it finally performs O-projection. See Algorithm 5 for an
implementation of this procedure.

4Due to precision and overflow issues with the expsum, we actually store the maximum of each submatrix row, subtract
it from the row, and then compute the expsum. Then both the row-wise expsum and maximum are returned, instead of just
eST
jk .

22



Published at Building Trust Workshop at ICLR 2025

Algorithm 2 Cascade Single Layer Forward Pass

input Ri−sharded layer l hidden states hR
i ∈ R|Ri|×demb in CompNodei, for each 1 ≤ i ≤ α

output Ri−sharded layer l + 1 hidden states hR
i ∈ R|Ri|×demb in CompNodei, for each 1 ≤ i ≤ α

1: for i = 1 to α: CompNodei do
2: qR

i ,k
R
i ,v

R
i ← pre_pass(hR

i ) {Algorithm 3}
3: for j, k = 1 to β do
4: qRS

ij ,kRT
ik ,vRT

ik ← comp_qkv_slice(qR
i ,k

R
i ,v

R
i ) {S, T−slicing along row token dimension}

5: Send qRS
ij ,kRT

ik ,vRT
ik to AttnNodejk

6: end for
7: end for
8: for j, k = 1 to β: AttnNodejk do
9: qS

j ,k
T
k ,v

T
k ← attn_qkv_concat{qRS

ij ,kRS
ik ,vRT

ik }αi=1 {R−interleaved concatenation of rows}
10: uST

jk , eST
jk ← attn_pass(qS

j ,k
T
k ,k

T
k ) {Algorithm 4}

11: for i = 1 to α do
12: uRST

ijk , eRST
ijk ← attn_ue_slice(uST

jk , eST
jk ) {R−slicing along row token dimension}

13: Send uRST
ijk , eRST

ijk to CompNodei
14: end for
15: end for
16: for i = 1 to α: CompNodei do
17: for k = 1 to β do
18: uRT

ik , eRT
ik ← comp_ue_concat{uRST

ijk , eRST
ijk }

β
j=1 {S−interleaved concatenation of rows}

19: end for
20: oR

i ← post_pass{uRT
ik , eRT

ik }
β
k=1 {Algorithm 5}

21: hR
i ← hR

i + oR
i {Residual connection}

22: hR
i ← mlp(hR

i ) {Standard MLP block pass}
23: end for

Algorithm 3 CompNodei Single Layer Pre-Pass

input Ri−sharded hidden states hR
i ∈ R|Ri|×demb

Ri−sharded position embeds pR
i ∈ R|Ri|×d

output Ri−sharded query states qR
i ∈ RH×|Ri|×d

Ri−sharded key/value states kR
i ,v

R
i ∈ RHKV ×|Ri|×d

1: qR
i ← q_proj(hR

i )
2: kR

i ← k_proj(hR
i )

3: vR
i ← v_proj(hR

i )
4: qR

i ← rotary_pos_emb(qR
i ,p

R
i )

5: kR
i ← rotary_pos_emb(kR

i ,p
R
i )

6: return qR
i ,k

R
i ,v

R
i

23



Published at Building Trust Workshop at ICLR 2025

Algorithm 4 AttnNodejk Single Layer Attention-Pass

input Sj−sharded query states qS
j ∈ RH×|Sj |×d

Tk−sharded key/value states kT
k ,v

T
k ∈ RHKV ×|Tk|×d

(Sj , Tk)−sharded attn mask mST
jk ∈ RH×|Sj |×|Tk|

output (Sj , Tk)−sharded attn vals uST
jk ∈ RH×|Sj |×d

(Sj , Tk)−sharded attn score expsums eST
jk ∈ RH×|Sj |

1: kT
k ← repeat_kv(kT

k )
2: vT

k ← repeat_kv(vT
k )

3: aST
jk ← qS

j (k
T
k )

T +mST
jk

4: aST
jk ← exp(aST

jk )

5: eST
jk ← sum(aST

jk )

6: aST
jk ← aST

jk /eST
jk

7: uST
jk ← aST

jk vT
k

8: return uST
jk , eST

jk

Algorithm 5 CompNodei Single Layer Post-Pass

input (Ri, Tk)−sharded attn vals uRT
ik ∈ RH×|Ri|×d for all 1 ≤ k ≤ γ

(Ri, Tk)−sharded attn score expsums eRT
ik ∈ RH×|Ri| for all 1 ≤ k ≤ γ

output Ri−sharded attn output oR
i ∈ R|Ri|×demb

1: Initialize eRi ∈ RH×|Ri| with zeroes
2: for k = 1 to γ do
3: eRi ← eRi + eRT

ik
4: end for
5: Initialize oR

i ∈ R|Ri|×demb with zeroes
6: for k = 1 to γ do
7: wRT

ik ← eRT
ik /eRi

8: oR
i ← oR

i +wRT
ik ⊙ uRT

ik
9: end for

10: oR
i ← o_proj(oR

i )
11: return oR

i
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G REVERSAL ANALYSIS ON LAYERS & LLAMA

In Section 7.2.1, we described experiments performed on the hidden states of Gemma-2-2B-IT, where a
bidirectional-attention model was trained to reverse the sharded hidden states into the original text prompt. In
Table 3, we showed that the hiddens are largely secure to this attack for a suitable choice of c and α.

In this section, we first analyze if this is also true for Llama 3.1 8B-Instruct. We run a similar experimental
setup as described in Section 7.2.1, except we use Llama hidden representations, and we also use it as the
reversal model; this also therefore tests if increasing the reversal model’s capacity is a suitable method for
improving sharded reconstruction. Due to the computational constraints of training with a larger model, we
examine this only for c = 8, α = 8 and c = 8, α = 12. The reconstruction ROUGE scores are 0.1718 and
0.1443 respectively, significantly lower than those obtained with the same parameters for Gemma. We leave to
future work the interesting question of whether this implies that Llama representations are inherently more
resistant to decoding than Gemma representations.

Next, we analyze whether our results hold irrespective of the layer of the model used. We run additional
experiments on the hiddens of layers 11 and 21 of Gemma-2-2B-IT. Our results are shown in Table 11. We see
that there is no substantial difference in ROUGE score as the layer changes.

Table 11: ROUGE scores of text reconstruction from the hiddens of various layers of Gemma-2-2B-IT for
different (c, δ)-sharding setups. We see that the reconstruction quality is similar across layers.

Layer c = α = 4 c = α = 8

1 0.4268 0.2218
11 0.4627 0.2467
21 0.4021 0.2158
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Figure 1: ROUGE scores for Layer 0 token prediction using ModernBERT-Large, as a function of c, the
number of ‘clusters’ in the sharding scheme, and α, the number of CompNodes. Higher α and higher c tend
towards lower ROUGE, increasing security.

H LAYER 0 SECURITY CONTINUED

Here we continue the discussion on the security of CompNodes at Layer 0, as begun in Section 7.2.1.

Given that a CompNode has access to some of the N token embeddings, say [en1
, en2

, . . . , ent
], the possibility

of reconstruction of the full prompt x is theoretically lower bounded by the entropy of the distribution

p({xj : j ∈ [N ] \ {n1, . . . , nt}} | xn1
, xn2

, . . . , xnt
)

The true distribution cannot easily be computed, but we may approximate it using masked token infilling, as
utilized in training models like BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and ModernBERT
(Warner et al., 2024). We use the recently released state-of-the-art ModernBERT-large to probe properties
of this distribution under a (c, δ)-sharding scheme. We use 200 samples from FineWeb-Edu to compute
the ROUGE (Lin, 2004) score over argmax-token generation. Our results are shown in Figure 1. We see
that ROUGE score diminishes as both c and α increase; good security seems to be achieved for c, α ≥ 8
(correspondingly, δ ≥ 64).
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I S-SHARDING SECURITY EXPERIMENTS

In Section 7.2.1, we examined the security of the CompNodes in the case where their R sharding is precisely
(c, δ)-sharding. We now turn our attention to the security of AttnNodes from S and T sharding, to justify
our assumption from Section 7.1 that these can be made symmetric. Recall that {Sj}βj=1 and {Tk}γk=1 are
shardings of [N ] that must satisfy that all index pairs in [N ]× [N ] are covered by some Sj × Tk. Observe that
a node holding the jth and kth query and jth key rows has – in the worst case – the same information as if they
hold the jth query and kth key rows. This is because the query and key matrices are linear projections of the
same hidden states; and at Layer 0, an adversary can exactly reverse them to these hidden states, by passing
the entire vocabulary through these linear projections and matching, akin to the vocab-matching attack. Even
in later layers, if the linear projection is reversible (injective), this worst case occurs. Therefore, we justify our
simplification in Section 7.1 that T sharding may be set equal to S sharding without security loss.

One simple way to satisfy the pairwise-coverage requirement of S sharding, given a particular choice of R
sharding, is to set β = α and S sharding equal to R sharding, and have each AttnNodejk receive the union
of query shards from CompNodej and key/value shards from CompNodek. However, this results in each
AttnNode having twice as many indices as each CompNode. To improve security, we instead propose a further
m−split as follows. We set β = mα, and further partition each Ri into m shards Ri,1, . . . , Ri,m. Then we
let Sm(i−1)+l = Ri,l for all 1 ≤ i ≤ α and 1 ≤ l ≤ m. This ensures that pairwise coverage is maintained,
but reduces the number of indices that each AttnNode has access to. For general m, the ratio of AttnNode
to CompNode indices is given by 2

m , assuming each split of Ri into m shards is uniform. Using this split
increases the value of β2, the total number of AttnNodes, by a factor of m2.

There still remains a degree of freedom in deciding the exact choice of subdividing Ri into the subsets Ri,k.
Under the assumption that Ri follows a (c, δ)-sharding, we propose that Ri,l contains the elements of (sorted)
Ri at indices l, l + δ, . . . , l + (t− 1)δ, where t = N

cα and the split factor is m = c. This scheme for Ri takes
the elements of the (c, δ)-sequence and spreads them out between the associated Ri,l.

For example, consider the case where c = 3, δ = 9, N = 18. Then α = 3, and the split factor is m = 3, so we
get:

R1 = {1, 2, 3, 10, 11, 12} R2 = {4, 5, 6, 13, 14, 15} R3 = {7, 8, 9, 16, 17, 18}
R1,1 = {1, 10} R1,2 = {2, 11} R1,3 = {3, 12}
R2,1 = {4, 13} R2,2 = {5, 14} R2,3 = {6, 15}
R3,1 = {7, 16} R3,2 = {8, 17} R3,3 = {9, 18}
S1121 = {1, 4, 10, 13} S1122 = {1, 5, 10, 14} S1123 = {1, 6, 10, 15}
S1221 = {2, 4, 11, 13} S1222 = {2, 5, 11, 14} S1223 = {2, 6, 11, 15}
S1321 = {3, 4, 12, 13} S1322 = {3, 5, 12, 14} S1323 = {3, 6, 12, 15}
S2131 = {4, 7, 13, 16} S2132 = {4, 8, 13, 17} S2133 = {4, 9, 13, 18}
S2231 = {5, 7, 14, 16} S2232 = {5, 8, 14, 17} S2233 = {5, 9, 14, 18}
S2331 = {6, 7, 15, 16} S2332 = {6, 8, 15, 17} S2333 = {6, 9, 15, 18}
S1131 = {1, 7, 10, 16} S1132 = {1, 8, 10, 17} S1133 = {1, 9, 10, 18}
S1231 = {2, 7, 11, 16} S1232 = {2, 8, 11, 17} S1233 = {2, 9, 11, 18}
S1331 = {3, 7, 12, 16} S1332 = {3, 8, 12, 17} S1333 = {3, 9, 12, 18}

Here, we use the shorthand notation Sili′l′ = Ri,l ∪Ri′,l′ = Sm(i−1)+l ∪ Sm(i′−1)+l′ , which is precisely the
set of indices that AttnNodej,k has access to for j = m(i − 1) + l, k = m(i′ − 1) + l′. Sharding S in this
way retains the security desiderata we care about with respect to the vocab-matching attack. Since each Ri,l

has elements that are separated by δ, and each Sili′l′ combines elements from two different Ri,l, then we can
never have more than 2 consecutive elements in Sili′l′ . Furthermore, the largest number of missing tokens
between two elements of Sili′l′ (i.e. the largest ‘gap’) is lower bounded by δ

2 . Therefore, for sufficiently large
δ, the sharding is secure to the vocab-matching attack.

To test security against learning-based reversal attacks, we conducted experiments with the above scheme
for m = {2, 3, 4}, with c = 8 and α = 8 (and so δ = 64). Due to computational constraints, we focus our
experiments on Gemma-2-2B-IT on layer 1; we expect similar trends for Llama-3.1-8B-Instruct and for other
layers. We train a single model for all shard possibilities that arise from Sili′l′ . Experiments are conducted
with the same dataset and model setup as described in Section 7.2.1. Our results are shown in Table 12. We
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see that although m = 2 results in a relatively higher ROUGE than that for the CompNodes in Table 3 (0.3057
vs 0.222), the score for m = 4 is very similar; therefore, we recommend using at least m = 4 for security.

Table 12: ROUGE scores for different values of splitting parameter m on layer 1 of Gemma-2-2B-IT with
c = 8, α = 8. We see that the score for m = 4 is similar to that of CompNodes in Table 3 for the same c and
α.

m ROUGE

2 0.3057
3 0.2643
4 0.2376

J COMPUTATIONAL OVERHEAD ANALYSIS

In Section 7.3.1, we claimed that Cascade has little overhead in computational costs compared to vanilla
inference. We justify this statement in the analysis below, by comparing CompNode and AttnNode steps
against the vanilla forward pass. For simplicity of analysis, we assume symmetry of S and T sharding, as
justified in Appendix I.

Indeed, most operations performed by CompNodes will treat the (row) token dimension as the batch dimension.
In the pre-pass, these are normalization and Q,K, V -projection; and in the post-pass, these are attention value
compilation, O-projection, residual connection, and the MLP block. Except for attention value compilation,
these steps all occur in the vanilla pass, so the CompNodes combined will perform the exact same operations
as in vanilla inference: there are no extra computations performed.

The only extra operations thus come from (a) attention value compilation (linear weighting of partial attention
outputs) by CompNodes in the post-pass, and (b) AttnNode floating point computations which do not appear in
the vanilla pass, i.e. expsums of shards of attention score rows. This is because all other steps of the Cascade
self-attention either treat the tokens as batch elements, or involve splitting up matrix multiplication into
multiplication of sharded matrices; and the latter is blocked matrix multiplication, which does not inherently
change the operations performed.

Now, (a) only involves∼ H|Ri|d operations for each CompNodei, since it involves a few steps of elementwise
summation and multiplication of H × |Ri| × d matrices (after broadcasting). Summing this over all 1 ≤ i ≤ α
gives ∼

∑
i H|Ri|d = HNd extra operations. Also, (b) only involves ∼ H|Sj ||Sk| operations for each

AttnNodejk because expsum is done over rows of an H × |Sj | × |Sk| shard of attention scores. Summing
over all 1 ≤ j, k ≤ β, we see this requires ∼

∑
j,k H|Sj ||Sk| = HN2 extra operations in total. This means

the total AttnNode computation overhead is ∼ HN(d+N) operations.

Importantly, this is much cheaper than most computation-heavy steps in standard inference. Compared to the
∼ HN2d operations from multiplication of H×N ×N attention scores with H×N ×d values, this overhead
requires ∼ 1

N + 1
d times as many operations. Since d is often in the hundreds, we can ensure for large N , say

N ≥ 256, that this ratio is quite small. Furthermore, if N is not large, then the overhead is still negligible
compared to the ∼ HNdembd operations from Q,K, V -projection, since it requires ∼ 1

demb
+ N

demb
times

as many operations and demb is in the hundreds or thousands. Essentially, the choice of sharding does not
significantly affect the total computational overhead, and this overhead is negligible compared to computation
performed in a vanilla forward pass.

K COMMUNICATION ANALYSIS

In Section 7.3.1, we gave the total communication byte and time overheads for performing a inference on
a single layer of an LLM with Cascade. Here, we provide a full justification of these equations. Like in
Appendix J, we assume symmetry of S and T sharding, so the superscript T in sharded notation is replaced
with S.

Recall that in each layer, there are two communication stages: (A) the CompNodes send sharded query, key,
value matrices to the AttnNodes between pre-pass and attention-pass, and (B) the AttnNodes send sharded
attention outputs and expsums to the CompNodes between attention-pass and post-pass. We operate under the
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assumption that all CompNodes synchronize before (A) and all AttnNodes synchronize before (B), so that
we can derive an exact expression for communication cost; this makes our communication cost derivation a
worst-case analysis. See Appendix N for optimizations that can be made if this assumption is relaxed.

For single-layer inference, in stage (A), CompNodei must send each of the |Ri| rows of the H × |Ri| × d
query matrix qR

i to some AttnNodes. In particular, for a row index r ∈ Ri, it sends the row q[:, r, :] of qR
i

to all AttnNodesjrk with 1 ≤ k ≤ β, where jr is the unique index satisfying r ∈ Sjr . That is, CompNodei
sends each of its |Ri| rows to exactly β AttnNodes. Since each row contains Hd elements, then CompNodei
must send out β|Ri|Hd elements from sharded query states. A similar analysis shows CompNodei sends
out 2β|Ri|HKV d elements from sharded key and value states, so it sends out a total of β|Ri|d(H + 2HKV )
elements. Summing this over all i and noting

∑α
i=1 |Ri| = N gives the total bytes communicated in (A):

CommBytesA = βFd(H + 2HKV ) ·N.

Assuming perfect parallel transport and uniform bandwidth B across nodes, i.e. all communication overhead
comes from CompNode with the most elements to send (plus latency τ ), the communication time in stage (A)
is

CommTimeA = τ +
βFd(H + 2HKV )

B
·max

i
|Ri|.

Next, in stage (B), each AttnNodejk must send each CompNodei some rows of its partial post-value attention
outputs uSS

jk and attention score row expsums eSS
jk . These matrices5 are of shapes H×|Sj |×d and H×|Sj |×2,

respectively, and CompNodei receives |Ri ∩ Sj | out of the |Sj | rows from each. This means the total number
of elements that AttnNodejk sends to all CompNodes is

(d+ 2)H ·
α∑

i=1

|Ri ∩ Sj | = (d+ 2)H · |Sj |.

Since
∑β

j,k=1 |Sj | = β
∑β

j=1 |Sj | = βN , this means the total number of bytes sent by all β2 AttnNodes is

CommBytesB = βF (d+ 2)H ·N.

And, again under the parallel transport and uniform bandwidth assumption, the communication time in (B) is

CommTimeB = τ +
F (d+ 2)H

B
·max

j
|Sj |.

Combining these costs, we obtain the following total communication byte and time overheads for a single
layer:

CommBytes = βF (2dH + 2dHKV + 2H) ·N,

CommTime = 2τ +
βFd(H + 2HKV )

B
·max

i
|Ri|+

F (d+ 2)H

B
·max

j
|Sj |.

Finally, we compute the number of communication rounds per layer. Stage (A) has each of the α CompNodes
send results to at most β2 AttnNodes, which is at most αβ2 rounds. Stage (B) has each of the β2 AttnNodes
send results to at most α CompNodes, which is at most αβ2 rounds. In total, the rounds per layer are bounded
above by 2αβ2. This can be quite large, but we can guarantee a tighter upper bound if our scheme involves
(c, δ)-sharding for CompNodes with m-splitting of AttnNodes (as in Appendix I). Here, β = mα since
each of the α shards in {Ri}αi=1 is split into m pieces to form {Sj}βj=1. Each CompNode sends results to
mβ AttnNodes, and each AttnNode sends results to 1 CompNode, so there are mαβ + β2 = 2β2 rounds.
Essentially, the number of rounds scales linearly with the number of AttnNodes.

L METHODOLOGY OF TOTAL RUNTIME & COMMUNCIATION BYTES BENCHMARK

In Section 7.3.2, we presented our results comparing Cascade against two recent SMPC schemes, MPCFormer
Li et al. (2023a) and Puma Dong et al. (2023a), on Bert-Base and Bert-Large for total runtime and total
communicated bytes. Here, we describe further the methodology used to populate Table 4.

5See the footnote in the post-pass section of Appendix F. In practice, we store a maximum and shifted expsum (i.e.
subtract the maximum from the row, then take expsum) per row instead of just an expsum, for numerical stability in later
computations. This is why the last dimension of eSS

jk is 2 instead of 1.
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The total communicated bytes can be computed by plugging in model parameters F, d,H,HKV , networking
parameters B, τ , and sharding-related quantities maxi |Ri|,maxj |Sj |, β into the single-layer communicated
byte formula (Equation (1)), and multiplying by the number of layers L. The model parameters are as follows:
for Bert-Base, we have L = 12 layers, d = 64, and H = HKV = 12, and in Bert-Large, we have L = 24
layers, d = 64, and H = HKV = 16. In both models, the default float32 quantization is F = 4 bytes. The
networking and sharding parameters are described at the end of this section.

To compute our total runtime, we similarly calculate the single-layer communication time by Equation (2),
multiply it by the number of layers L, and add a worst-case 2τ latency for the user sending the initial message
and receiving logits. For inference time, we run 368 LiveBench (White et al., 2024) math prompts on Bert-Base
and Bert-Large, and take the maximum of these runtimes as a worst-case estimate. Total runtime is then
calculated by summing these two values. For fair comparison against costs from Dong et al. (2023a), which
appear in the first two rows of Table 4, we match against the Puma experiment settings. We truncate or pad all
prompts to N = 128 tokens. On the hardware side, our experiments are run on a Paperspace machine with
8 vCPU and 44GB RAM, with the CPU model being Intel Xeon Gold 5315Y @ 3.20GHz. We use Ubuntu
22.04.2 LTS with Kernel 5.15.0-125-generic. This is a fair setup for comparison to Puma’s numbers: they use
a CPU setup with Intel Xeon (Ice Lake) Platinum 8369B @ 2.70GHz, for 32 vCPU and 128 GB RAM. They
similarly use Ubuntu 20.04.6 LTS with Linux kernel 5.4.0-144-generic.

For networking parameters, we simulate a uniform inter-node bandwidth B = 5Gbps and round-trip latency
τ = 1ms, like Puma. We use two Cascade setups with (c, δ)-sharding and m-splitting of AttnNodes: α = 4,
c = 8, β = 16, m = 4, δ = 32, and α = 8, c = 8, β = 32, m = 4, δ = 64. The latter was chosen as its
security is strongly supported by additional experiments in Appendix I, and the former was chosen as a similar
sharding scheme with fewer nodes.

M FULL INFORMATION LEAKAGE ANALYSIS

To rigorously analyze information leakage, we examine isolated computational stages of nodes. Like in
Appendix J and Appendix K, for simplicity of analysis, we assume S and T sharding are equal.

In Cascade, whenever a node (CompNode or AttnNode) begins a stage of computation (e.g. pre-pass, attention-
pass, or post-pass) where it receives no information during the computation, all new input leakage at that
stage comes from the information they receive at stage initialization. This means all leakage comes from the
following shards, at each layer:

CompNodei → hR
i ,u

RS
i1 , eRS

i1 , . . . ,uRS
iβ , eRS

iβ

AttnNodejk → qS
j ,k

S
k ,v

S
k .

We have already examined information leakage from hR
i in great detail in Section 7.2.1. We also discussed

information leakage from qS
j ,k

S
k ,v

S
k in Appendix I: in the worst-case, this reveals the same information

as hidden states hS
j ,h

S
k , i.e. the AttnNode has hidden states at indices Sj ∪ Sk and thus twice as much

information as CompNodes; and we discussed how m-splitting of AttnNodes could alleviate this security
concern, by further restricting AttnNode information.

So, for a comprehensive security analysis, all that remains is to consider leakage from
uRS
i1 , eRS

i1 , . . . ,uRS
iβ , eRS

iβ , the information that CompNodei receives from β AttnNodes to begin the post-
pass. Recall that each eRS

ik = expsum(aRS
ik ) and uRS

ik = softmax(aRS
ik )vS

k . Combined, these give the same
information as eRS

ik and exp(aRS
ik )vS

k , as one can elementwise multiply eRS
ik by uRS

ik to get the latter, and
elementwise divide the latter by eRS

ik to get uRS
ik . Now, eRS

ik is of shape H × |Ri|, and obfuscates (by row
summation) much of the information in the attention score submatrix eRS

ik of shape H × |Ri| × |Sk|, assuming
each |Sk| is sufficiently large: so we focus on reversal from the β shards exp(aRS

ik )vS
k of shape H × |Ri| × d.

We consider this primarily in the context of the vocab-matching attack, though future work could certainly
examine a learning reversal attack on this set of β inputs. Indeed, since aRS

ik = qR
i (k

S
k )

T +mRS
ik , assuming a

unidirectional mask (vocab-matching does not apply if this is not true, anyways), we see that if Ri contains
elements r1 < r2 < . . . < rk, then the lth row of exp(aRS

ik )vS
k , which is known to CompNodei, is exactly∑

s<rl
s∈Sk

exp
(
q[:, rl, :](k[:, s, :])

T
)
v[:, s, :].

At Layer 0, since q,k,v are linear projections of token embeddings, the above summation depends only on
tokens in the set {rl} ∪ {s ∈ Sk : s < rl}. Of these, CompNodei knows rl and all tokens in Ri, so the
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unknown tokens in the summation are {s ∈ Sk : s < rl} \ Ri. Thus, when we increase l by 1, the set of
unknown tokens this summation depends on will additionally include {s ∈ Sk : rl < s < rl+1}, i.e. the tokens
in Sk between token rl and rl+1. If there are at most ρ tokens in some gap, where ρ is the vocab-matching
threshold, then CompNodei can do a forward pass over all sequences of such V ≤ρ unknown tokens, until
the summations match their known values. This is essentially the vocab-matching attack: to prevent it, we
need each “unknown" gap {s ∈ Sk : rl < s < rl+1} to have size > ρ. It turns out that (c, δ)-sharding for
both R and S sharding satisfies this property: all such unknown gaps have size c, so for c > ρ, we prevent
vocab-matching.

N COST OPTIMIZATIONS

In Section 7.1, we gave a high-level overview of Cascade, and deferred discussions about optimization. Here,
we discuss a few cost and communication optimizations, again assuming symmetry of S and T sharding.

Caching After a new token is generated in Cascade, the CompNode holding that token will send it back to
one of the existing CompNodes, and single-token generation will repeat to get the next token. To speed up
generation after the first new token, the CompNodes and AttnNodes can store their partial intermediate states,
and only the 1 CompNode and β AttnNodes associated with the most recent token will need to participate in
the single-token generation: this means KV-caching naturally extends to Cascade. Formally, suppose n is the
index of the most recently generated token, and it belongs to the hidden shard Ri and the query shard Sj . Only
CompNodei needs to perform new computation in generating the (n+1)st token, along with each AttnNodejk
for 1 ≤ k ≤ β: this is because only these AttnNodes require the nth query row. Furthermore, these β + 1
nodes, having stored intermediate results from previous forward passes, can avoid repeat computation of
attention scores and earlier hidden states. Essentially, this results in token-sharded KV-caching.

Symmetry Reduction We see that AttnNodejk and AttnNodekj actually have the exact same information
in the worst-case: they both have access to indices Sj ∪ Sk. Thus, at no loss of security, we can combine
AttnNodejk and AttnNodekj into one node, thereby approximately halving the number of AttnNodes required,
and reducing communication byte overhead.

Synchronization A key assumption in our communication analysis from Appendix K was that nodes
synchronize between stages. That is, AttnNodes wait until they all finish before sending information to
CompNodes in parallel; and likewise for the CompNodes sending information to AttnNodes. But in practice,
depending on the sharding scheme, synchronization is not necessary; and relaxing it can allow some nodes
to proceed earlier than others. For instance, in a sharding scheme where CompNode1 holds only the first k
tokens, because the first k logits do not depend at all on tokens k + 1, . . . , n in a unidirectional model, then
CompNode1 can proceed through all its forward passes without waiting for any information from other nodes.
Future work could analyze the tradeoff between such synchronization relaxations, which are not possible with
schemes like (c, δ)-sharding, and token security.

O NOISING METHOD PERFORMANCE

Below, we provide exact (not only the maximum) ROUGE scores across layers 1, 6, 11, 16, 21, 26, for all
methods of noising discussed in Section 6. Table 13, Table 14, Table 15 show these results. We also provide a
complete breakdown of LiveBench scores per category in Table 17.

Table 13: The ROUGE scores of decoded texts with added noise and no permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 - - - - -
6 - - - - -

11 - - - - -
16 - - - - -
21 - - - - -
26 - - - - -

31



Published at Building Trust Workshop at ICLR 2025

Table 14: The ROUGE scores of decoded texts with added noise and sequence dimension permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0736 - - - -
6 0.0326 - - - -

11 0.0306 - - - -
16 0.0163 - - - -
21 0.0184 - - - -
26 0.0145 - - - -

Table 15: The ROUGE scores of decoded texts with added noise and hidden dimension permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 - 0.0000 - - -
6 - 0.0000 - - -

11 - - - - -
16 - - - - -
21 - - - - -
26 - - - - -

Table 16: The ROUGE scores of decoded texts with added noise, sequence dimension permutation, and hidden
dimension permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0700 0.0000 0.1919 - 0.7050
6 0.0328 0.0000 0.0361 - 0.5779

11 0.0285 0.0012 0.0297 - 0.5722
16 0.0148 0.0017 0.0140 - 0.5651
21 0.0129 0.0030 0.0151 - 0.5568
26 0.0124 0.0104 0.0117 - 0.5564

Table 17: Performance of Gemma-2-2B-IT on LiveBench with added noise.

Method Avg. Coding Data Instruction Language Math Reasoning
Analysis Following

Baseline (no noise) 20.7 9.4 26.1 48.9 15.2 13.1 11.3
Gaussian, σ = 10−2 21.0 11.1 27.4 51.2 13.7 13.4 9.3
Gaussian, σ = 10−1 1.2 0.0 0.0 6.9 0.4 0.0 0.0
Random emb. prefix 21.3 8.8 27.5 50.1 16.1 13.6 12.0

8-bit quantization 20.2 8.8 27.1 49.2 13.3 13.0 10.0
4-bit quantization 19.1 6.5 25.5 50.5 9.5 10.9 12.0
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