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Abstract

Numerical solution of Partial Differential Equations (PDE) is an indispensable tool
in science and engineering. While Scientific Machine Learning offers potentially
unique opportunities, current methods face challenges in scaling to real world
applications. This work in progress report introduces Hybridized Data-Driven Flux-
Conservative Solvers (H-DD-FCS). These combine three core principles: scalable
domain decomposition, explicit flux conservation enforcement, and Newton-like
iterative solvers leveraging modern differentiable ML frameworks. We demonstrate
the feasibility of this approach along the 2D Poisson problem. Compared to state-
of-the-art approaches, H-DD-FCS explicitly considers flux conservation and thus
allows for better robustness, scalability, and accessibility to mathematical analysis.
It offers a promising direction towards Foundation Models for PDE-solving.

1 Introduction

Computer simulations of [Partial Differential Equations (PDEs)|have become an indispensable tool
in scientific practice [34]. Simulations allow to gain cost-effective insights and to virtually test
hypotheses across a wide range of science and engineering disciplines. Thus, users continuously
require faster and more accurate simulation technology to address more complex problems in shorter
times. [Scientific Machine Learning (SciML)|[[13}29] offers a unique opportunity to address these
needs. In this work in progress contribution, we introduce a novel concept which we coin|[Hybridized|
[Data-Driven Flux-Conservative Solvers (H-DD-FCS)| The concept is build on three core principles:
scalable domain composition, explicit flux conservation enforcement, and Newton-like iterative
solvers enabled by modern differentiable Machine Learning (ML)|frameworks. These three principles
provide a promising direction to overcome challenges of [State-of-The-Art (SoTA)|[ML]approaches
with respect to scalable adoption to real world problems.

Background: approaches for solving cover surrogate modeling and hybrid
approaches. Surrogate Modeling has a long history in[Computational Science and Engineering (CSE)}

Next to Deep Learning (addressing finite dimensional learning), Operator Learning addresses maps
between infinite dimensional spaces as considered in [15519, 119} 120, 23]]. Neural operators take
parameter fields as input and predict the solution fields, mostly relying on transformer architectures [1}
2,124, |377]]. Hybrid Approaches exploit physics knowledge and offer a promising alternative. Among
these [MI} based Modeling has a long history [7, 15, 21} 22, [32,33]] and is typically used for deriving
effective (sub-) models based on (synthetic) data. Solved with classical algorithms underlying
conservation laws can be guaranteed. Solver-inspired|[ML] architectures aim for better scalability by
taking inspirations from classical solver architectures, e.g., finite elements [[L8], finite differences [28
301, collocation methods [31], or spectral methods [36]]. Given the robustness, data requirement, and
better scalability of hybrid approaches, these are promising candidates for PDE|Foundation Models]

[EMSs) [10].
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Challenges: Most methods do not yet scale to real world cases. For example, many
applications require the strict adherence to natural laws, specifically conservation laws. In[SoTA]
approaches, these are usually only ensured via learning biases, e.g., [8], and rarely via inductive biases,
e.g., [16l 23]. Furthermore, for 3D [PDE}solving requires enormous dataset sizes. Industrial
computational fluid dynamics simulations often have hundred millions of discretization cells [2].
However, most methods are only demonstrated along simplistic cases [6]. Scalable ML} methods are
lacking. This includes also training strategies, specifically for stationary case{] as adopted in most
industrial simulations. Most hybrid approaches rely on simple fix point schemes [31}38]] which are
easy to implement but hard to scale.

2 Hybridized Data Driven Discontinuous Galerkin Solvers

Reference Case: This work in progress report focuses on the most simplistic problem of
solving, the 2D Poisson problem on a rectangular domain {2 C R? ie.,

—Au=f inQ ey

with f € Ly(2) and zero Dirichlet boundary conditions, i.e., v = 0 on 02.

Three Core Principles: The proposed hybrid[ML]architecture is inspired by[SoTA|solver paradigms
in the field of so-called hybridized methods [[L1]. The proposed concept is based on three core
principles: adopting a divide and conquer approach via domain decomposition following [14} (38} [10];
explicitly reinforcing flux conservation (difference to approaches) - a highly desirable property
at the heart of many algorithms [27, [17, 3]]; leveraging gradient-based | Newton-like solvers,
exploiting the differentiability of the frameworks and thus allowing more effective inference.

[ML}based Static Condensation: Many modern domain decomposition schemes are based on
static condensation [35]]. With domain coupling depending only on variables on domain boundaries,
individual sub-problems can be solved stand-alone first (static condensation) simplifying the solution
procedure. We follow this concept by decomposing the domain into sub-elements e € [E and
learning sub-element solution operators S and flux operators F using|[Neural Networks (NNs)| The
corresponding operators map for each sub-element e, the boundary variableﬂ uy, and ufFe (defined
on vertices V. and faces F.) and the source f|g, (defined on full elements £.) to the solution field
ug, (defined on full elements E.) as well as the corresponding fluxes J|p, = 7 - Vur, (defined on
faces F, with interface normal 77). Instead of working with the full set of physical variables directly,
we adopt a (nonlinear) dimension identification, e.g., [Principal Component Analysis (PCA)| and
[Autoencoders (AEs)] with encoders £ and decoders D. That is, we work with corresponding latent
variables, indicated by a tilde.

Training Process: The training process is shown in Figure|l| First, the entire domain is discretized
into sub-elements e € E forming the dataset, which are effectively stand-alone problems with
corresponding boundary conditions u,y, , u|r, and forcing / source f|g, . In the next step, the relevant
variables u| g, fig., U|F,», u)v,, and J|g_ are encoded in a latent space. In the last step, the actual
latent solution S and flux F operators are learned.

Inference Process: The inference process is shown in Figure 2] It starts by encoding boundary
conditions (of the full domain) on 92 to corresponding latent variables 1y, and i, of elements
located at the boundary. All other vertex %y, and face variables i, can be initialized arbitrarily. In
the next step, the system to be solved is assembled. That is, for each inner face the balance of fluxes
AJ\r, = J\F, jeft — J|F, right 18 modeled using F. Since each face only involves the two neighboring
cells, effectively a sparse model is realized. This eases the solution process if appropriate solvers
are used. The corresponding flux mismatch is then minimized, i.e., ming, a, >, |AJx, 2

Leveraging a modern differentiable framework, we use gradient-based optimizatiorﬂ In addition
to sparsity patterns this allows for a highly effective solution process.

'In dynamic problems trajectory-based training has been identified as a very successful strategy [26]].
2This refers to the inference and not to the training, which is always gradient-based.

3We distinguish between vertex and face variables to facilitate convergence of the hybridized approach.
“During the solution we use derivatives with respect to variables Uy, and 4, , notparameters 0.
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Figure 1: Schematic visualization of the [H-DD-FCS|training workflow. (We have two face and two
element encoders &£: for fields and sources, respectively fields and fluxes.)

The full solution of the problem is now given in terms of latent vertex iy, and face @, variables.

Together with the original latent source information ﬁ E. the latent field solution %, in each element
can be recovered by S. The full field is then retrieved via D.
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Figure 2: Schematic visualization of the [H-DD-FCS|inference workflow.

3 Experiments

The method is demonstrated along the Poisson problem (I). Using the finite element method
with 70 x 70 elements and édz = 0.1, a dataset composed of 100 random source functions
[ =aexp(—(Z — [i)%/20?) is generated (a € [0,1], i € ]0,7]% and o € [0.1,0.5] equally dis-
tributed). The 100 data points are enriched to 700 data points’| by rotations of 90°, 180°, and 270° as
well as reflections in z— and y—direction enforcing an invariance data-bias. The chosen sub-elements
are of a size 8 x 8. Experiments are carried out on a standard Laptop with an Intel :7 — 1185G7
processor and 32GB RAM using the Julia language [4].

Physics Encoding: To demonstrate the effectiveness of the approach, we use a[PCAlbased linear
dimension identification. We use four latent variables for encoding of sub-element volume fields and
two latent variables for encoding of sub-element face fields. The results are shown in Figure[3] In
addition we have explored an [AE]approach with similar results (see Appendix [A).

Operator Learning: All operators are based on a dense[NN]with 32 x 32 x 16 x 8 neurons and
ReLU activation function. The [NN]is trained with an Adams optimizer for 400 epochs (batch size
128), learning rate 10~3, and regularization 10~° without performing any hyperparameter studies.
The results of the operator learning for the [PCA]encoding are shown in Figure[d The corresponding
training of [AE}based operators shows a similar efficiency (see Appendix [A).

Solving and Field Reconstruction: The approach is validated along two random source functions
f not present in the training set. The obtained non-linear system is solved by means of a BFGS
optimizer [12]] (with 400 fixed steps) exploiting the differentiability of the ML}framework. The
results are shown in Figure [5] for the [PCA] encoding and for [AE] encoding we refer to Appendix
[A] Using a standard BFGS optimizer is a main bottleneck, since it does not exploit the underlying

5The data will be made available upon request.
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Figure 3: [PCA] -based element encoding: (a) comparison with original field; (b) Eigen-decomposition
of field u g, , source fg,, face u|r,, and flux J| g, values.
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Figure 4: Loss evolution of the operator training encoding)): (a) solution operator S, (b) flux
operators F.

structure of the system. This makes the inference process rather slow. We are currently investigating
more effective non-linear inference methods based on [SoTAJ[CSE]algorithms.
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Figure 5: Validation of the method using -encodmg for two randomly chosen source functions f
which have not been seen during the training.

4 Discussion and Ongoing work

In this contribution, we report on our work in progress on a new [ML}based [PDE}solver coined
[H-DD-FCS] Compared to [SoTA] approaches the solver explicitly enforces flux-conservation and
leverages non-linear solving techniques with better convergence properties than[SoTAliterative solvers
increasing accuracy and robustness. The feasibility has been demonstrated along the 2D Poisson
problem. In the next steps we will extend the approach to more complicated applications, specifically
addressing non-linear and 3D problems. We will further benchmark it to@ Sng] approachesﬂ To
do so, we plan to enhance the solving routine (so far a simple BFGS) exploiting better the structure of
the underlying system. We believe that his will significantly increase the accuracy and capability of
the approach. Based on a domain composition approach, [H-DD-FCS]is a candidate towards realizing

[FM] [10] for industrial PDE}solvers.

®Preliminary comparisons with U-net architectures indicate a significantly superior performance.
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A Additional Experiments

Next to a[PCA}based encoding we have also investigated an encoding by an[AE|] We use a dense[NN]|
with 128 x 64 neurons for field encoding and 16 x 8 neurons for face encoding with ReL U activation
functions. The is trained with an Adams optimizer for 200 epochs (batch size 128), learning rate
103, and regularization 10~ without performing any hyperparameter studies.

The encoding experiments are shown in Figure [f] The convergence plots of the corresponding
operator learning are shown in Figure[7] and the validation with two unseen fields f is provided in
Figure[8] The results are comparable to the results obtained with a[PCA]encoding as shown in Section
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Figure 6: .based element encoding: (a) comparison with original field; (b) loss evolution for
training the field u|g,, source f|g,, face ur,, and flux Jr, encoding.
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Figure 7: Loss evolution of the operator training (AErencoding): (a) solution operator S; (b) flux
operators F.
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Figure 8: Validation of the method using -encodmg for two randomly chosen source functions f
which have not been seen during the training.
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