Hybridized Data Driven Flux-Conservative Solvers:
Towards Foundation Models for PDE-Solving

Dirk Hartmann
Siemens Industry Software GmbH
81739 Miinchen, Germany
hartmann.dirk@siemens.com

Abstract

Numerical solution of Partial Differential Equations (PDE) is an indispensable tool
in science and engineering. While Scientific Machine Learning offers potentially
unique opportunities, current methods face challenges in scaling to real world
applications. This work in progress report introduces Hybridized Data-Driven Flux-
Conservative Solvers (H-DD-FCS). These combine three core principles: scalable
domain decomposition, explicit flux conservation enforcement, and Newton-like
iterative solvers leveraging modern differentiable ML frameworks. We demonstrate
the feasibility of this approach along the 2D Poisson problem. Compared to state-
of-the-art approaches, H-DD-FCS explicitly considers flux conservation and thus
allows for better robustness, scalability, and accessibility to mathematical analysis.
It offers a promising direction towards Foundation Models for PDE-solving.

1 Introduction

Computer simulations of [Partial Differential Equations (PDEs)|have become an indispensable tool
in scientific practice [34]. Simulations allow to gain cost-effective insights and to virtually test
hypotheses across a wide range of science and engineering disciplines. Thus, users continuously
require faster and more accurate simulation technology to address more complex problems in shorter
times. [Scientific Machine Learning (SciML)|[[13}29] offers a unique opportunity to address these
needs. In this work in progress contribution, we introduce a novel concept which we coin|[Hybridized|
[Data-Driven Flux-Conservative Solvers (H-DD-FCS)| The concept is build on three core principles:
scalable domain composition, explicit flux conservation enforcement, and Newton-like iterative
solvers enabled by modern differentiable Machine Learning (ML)|frameworks. These three principles
provide a promising direction to overcome challenges of [State-of-The-Art (SoTA)|[ML]approaches
with respect to scalable adoption to real world problems.

Background: approaches for solving cover surrogate modeling and hybrid
approaches. Surrogate Modeling has a long history in[Computational Science and Engineering (CSE)}

Next to Deep Learning (addressing finite dimensional learning), Operator Learning addresses maps
between infinite dimensional spaces as considered in [15519, 119} 120, 23]]. Neural operators take
parameter fields as input and predict the solution fields, mostly relying on transformer architectures [1}
2,124, |377]]. Hybrid Approaches exploit physics knowledge and offer a promising alternative. Among
these [MI} based Modeling has a long history [7, 15, 21} 22, [32,33]] and is typically used for deriving
effective (sub-) models based on (synthetic) data. Solved with classical algorithms underlying
conservation laws can be guaranteed. Solver-inspired|[ML] architectures aim for better scalability by
taking inspirations from classical solver architectures, e.g., finite elements [[L8], finite differences [28
301, collocation methods [31], or spectral methods [36]]. Given the robustness, data requirement, and
better scalability of hybrid approaches, these are promising candidates for PDE|Foundation Models]

[EMSs) [10].

1st Workshop on Differentiable Systems and Scientific Machine Learning @ EurIPS 2025

Challenges: Most methods do not yet scale to real world cases. For example, many
applications require the strict adherence to natural laws, specifically conservation laws. In[SoTA]
approaches, these are usually only ensured via learning biases, e.g., [8], and rarely via inductive biases,
e.g., [16l 23]. Furthermore, for 3D [PDE}solving requires enormous dataset sizes. Industrial
computational fluid dynamics simulations often have hundred millions of discretization cells [2].
However, most methods are only demonstrated along simplistic cases [6]. Scalable ML} methods are
lacking. This includes also training strategies, specifically for stationary case{] as adopted in most
industrial simulations. Most hybrid approaches rely on simple fix point schemes [31}38]] which are
easy to implement but hard to scale.

2 Hybridized Data Driven Discontinuous Galerkin Solvers

Reference Case: This work in progress report focuses on the most simplistic problem of
solving, the 2D Poisson problem on a rectangular domain {2 C R? ie.,

—Au=f inQ ey

with f € Ly(2) and zero Dirichlet boundary conditions, i.e., v = 0 on 02.

Three Core Principles: The proposed hybrid[ML]architecture is inspired by[SoTA|solver paradigms
in the field of so-called hybridized methods [[L1]. The proposed concept is based on three core
principles: adopting a divide and conquer approach via domain decomposition following [14} (38} [10];
explicitly reinforcing flux conservation (difference to approaches) - a highly desirable property
at the heart of many algorithms [27, [17, 3]]; leveraging gradient-based | Newton-like solvers,
exploiting the differentiability of the frameworks and thus allowing more effective inference.

[ML}based Static Condensation: Many modern domain decomposition schemes are based on
static condensation [35]]. With domain coupling depending only on variables on domain boundaries,
individual sub-problems can be solved stand-alone first (static condensation) simplifying the solution
procedure. We follow this concept by decomposing the domain into sub-elements e € [E and
learning sub-element solution operators S and flux operators F using|[Neural Networks (NNs)| The
corresponding operators map for each sub-element e, the boundary variableﬂ uy, and ufFe (defined
on vertices V. and faces F.) and the source f|g, (defined on full elements £.) to the solution field
ug, (defined on full elements E.) as well as the corresponding fluxes J|p, = 7 - Vur, (defined on
faces F, with interface normal 77). Instead of working with the full set of physical variables directly,
we adopt a (nonlinear) dimension identification, e.g., [Principal Component Analysis (PCA)| and
[Autoencoders (AEs)] with encoders £ and decoders D. That is, we work with corresponding latent
variables, indicated by a tilde.

Training Process: The training process is shown in Figure|l| First, the entire domain is discretized
into sub-elements e € E forming the dataset, which are effectively stand-alone problems with
corresponding boundary conditions u,y, , u|r, and forcing / source f|g, . In the next step, the relevant
variables u| g, fig., U|F,», u)v,, and J|g_ are encoded in a latent space. In the last step, the actual
latent solution S and flux F operators are learned.

Inference Process: The inference process is shown in Figure 2] It starts by encoding boundary
conditions (of the full domain) on 92 to corresponding latent variables 1y, and i, of elements
located at the boundary. All other vertex %y, and face variables i, can be initialized arbitrarily. In
the next step, the system to be solved is assembled. That is, for each inner face the balance of fluxes
AJ\r, = J\F, jeft — J|F, right 18 modeled using F. Since each face only involves the two neighboring
cells, effectively a sparse model is realized. This eases the solution process if appropriate solvers
are used. The corresponding flux mismatch is then minimized, i.e., ming, a, >, |AJx, 2

Leveraging a modern differentiable framework, we use gradient-based optimizatiorﬂ In addition
to sparsity patterns this allows for a highly effective solution process.

'In dynamic problems trajectory-based training has been identified as a very successful strategy [26]].
2This refers to the inference and not to the training, which is always gradient-based.

3We distinguish between vertex and face variables to facilitate convergence of the hybridized approach.
“During the solution we use derivatives with respect to variables Uy, and 4, , notparameters 0.

Domain decomposition Encoding of vertex, face, Operator learning of
into HDD-DG elements and inner variables solution and flux operators

Nusses| T o mREE
) . £ EIE [elle]le]le ol
jjusaasi - | jussssgele) T T g S 8 e,
Tl e fire © ® fie

N
<
=00
~
=
n o

4 - H B 7 [e

“eeeel[oe] “lee

e
S
=~
7

=

3

Uy,

Figure 1: Schematic visualization of the [H-DD-FCS|training workflow. (We have two face and two
element encoders &£: for fields and sources, respectively fields and fluxes.)

The full solution of the problem is now given in terms of latent vertex iy, and face @, variables.

Together with the original latent source information ﬁ E. the latent field solution %, in each element
can be recovered by S. The full field is then retrieved via D.

w ‘ Ee :
Encode right hand side Assemble A fluxes Recover latent solution
and boundary conditions for each face and solve and decode
ST) 2
I m{?‘l‘*‘n\FaZ”Mm” SEEE
' 1

HE HEHE
A BHE

R

Figure 2: Schematic visualization of the [H-DD-FCS|inference workflow.

3 Experiments

The method is demonstrated along the Poisson problem (I). Using the finite element method
with 70 x 70 elements and édz = 0.1, a dataset composed of 100 random source functions
[=aexp(—(Z — [i)%/20?) is generated (a € [0,1], i €]0,7]% and o € [0.1,0.5] equally dis-
tributed). The 100 data points are enriched to 700 data points’| by rotations of 90°, 180°, and 270° as
well as reflections in z— and y—direction enforcing an invariance data-bias. The chosen sub-elements
are of a size 8 x 8. Experiments are carried out on a standard Laptop with an Intel :7 — 1185G7
processor and 32GB RAM using the Julia language [4].

Physics Encoding: To demonstrate the effectiveness of the approach, we use a[PCAlbased linear
dimension identification. We use four latent variables for encoding of sub-element volume fields and
two latent variables for encoding of sub-element face fields. The results are shown in Figure[3] In
addition we have explored an [AE]approach with similar results (see Appendix [A).

Operator Learning: All operators are based on a dense[NN]with 32 x 32 x 16 x 8 neurons and
ReLU activation function. The [NN]is trained with an Adams optimizer for 400 epochs (batch size
128), learning rate 10~3, and regularization 10~° without performing any hyperparameter studies.
The results of the operator learning for the [PCA]encoding are shown in Figure[d The corresponding
training of [AE}based operators shows a similar efficiency (see Appendix [A).

Solving and Field Reconstruction: The approach is validated along two random source functions
f not present in the training set. The obtained non-linear system is solved by means of a BFGS
optimizer [12]] (with 400 fixed steps) exploiting the differentiability of the ML}framework. The
results are shown in Figure [5] for the [PCA] encoding and for [AE] encoding we refer to Appendix
[A] Using a standard BFGS optimizer is a main bottleneck, since it does not exploit the underlying

5The data will be made available upon request.

Encoded F x. Error (b) U Proper Orthogonal Decomposition F Proper Orthogonal Decomposition

aaaaa POD mode
Encoded U Max. Error U Us Proper Onhcgo nal Decomposition dUs Proper Orthogonal Decomposition

POD mode POD mode

Figure 3: [PCA] -based element encoding: (a) comparison with original field; (b) Eigen-decomposition
of field u g, , source fg,, face u|r,, and flux J| g, values.

(a) (b) Left Flux Operator Training Right Flux Operator Training
| " |

Solution Operator Training

Epoch [== N R e

Figure 4: Loss evolution of the operator training encoding)): (a) solution operator S, (b) flux
operators F.

structure of the system. This makes the inference process rather slow. We are currently investigating
more effective non-linear inference methods based on [SoTAJ[CSE]algorithms.

Right Hand Side Right Hand Side

‘EHE O Di

HDD-FEM Max. Error HDD-FEM

B O

Figure 5: Validation of the method using -encodmg for two randomly chosen source functions f
which have not been seen during the training.

4 Discussion and Ongoing work

In this contribution, we report on our work in progress on a new [ML}based [PDE}solver coined
[H-DD-FCS] Compared to [SoTA] approaches the solver explicitly enforces flux-conservation and
leverages non-linear solving techniques with better convergence properties than[SoTAliterative solvers
increasing accuracy and robustness. The feasibility has been demonstrated along the 2D Poisson
problem. In the next steps we will extend the approach to more complicated applications, specifically
addressing non-linear and 3D problems. We will further benchmark it to@ Sng] approachesﬂ To
do so, we plan to enhance the solving routine (so far a simple BFGS) exploiting better the structure of
the underlying system. We believe that his will significantly increase the accuracy and capability of
the approach. Based on a domain composition approach, [H-DD-FCS]is a candidate towards realizing

[FM] [10] for industrial PDE}solvers.

®Preliminary comparisons with U-net architectures indicate a significantly superior performance.

References

[1] Benedikt Alkin, Andreas Fiirst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural
operators. Advances in Neural Information Processing Systems, 37:25152-25194, 2024.

[2] Benedikt Alkin, Maurits Bleeker, Richard Kurle, Tobias Kronlachner, Reinhard Sonnleitner,
Matthias Dorfer, and Johannes Brandstetter. AB-UPT: Scaling neural CFD surrogates for
high-fidelity automotive aerodynamics simulations via anchored-branched universal physics
transformers. arXiv preprint arXiv:2502.09692, 2025.

[3] L Beirdo da Veiga, Franco Brezzi, Luisa Donatella Marini, and Alessandro Russo. The
hitchhiker’s guide to the virtual element method. Mathematical models and methods in applied
sciences, 24(08):1541-1573, 2014.

[4] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[5] Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. In Handbook
of Numerical Analysis, volume 25, pages 83—125. Elsevier, 2024.

[6] Johannes Brandstetter. Envisioning better benchmarks for machine learning pde solvers. Nature
Machine Intelligence, 7(1):2-3, 2025.

[7] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid
mechanics. Annual review of fluid mechanics, 52(1):477-508, 2020.

[8] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis.
Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mechanica
Sinica, 37(12):1727-1738, 2021.

[9] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. IEEE
transactions on neural networks, 6(4):911-917, 1995.

[10] Youngsoo Choi, Siu Wun Cheung, Youngkyu Kim, Ping-Hsuan Tsai, Alejandro N Diaz, Ivan
Zanardi, Seung Whan Chung, Dylan Matthew Copeland, Coleman Kendrick, William Anderson,
et al. Defining foundation models for computational science: A call for clarity and rigor. arXiv
preprint arXiv:2505.22904, 2025.

[11] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified hybridization
of discontinuous galerkin, mixed, and continuous galerkin methods for second order elliptic
problems. SIAM Journal on Numerical Analysis, 47(2):1319-1365, 2009.

[12] Yu-Hong Dai. Convergence properties of the bfgs algoritm. SIAM Journal on Optimization, 13
(3):693-701, 2002.

[13] Felix Dietrich and Wil Schilders. Scientific machine learning. Mathematische Semesterberichte,
72(2):89-115, 2025.

[14] Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, and Ben Moseley. Finite basis
physics-informed neural networks as a schwarz domain decomposition method. In International
Conference on Domain Decomposition Methods, pages 165—172. Springer, 2022.

[15] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age of
data. Annual review of fluid mechanics, 51(1):357-377, 2019.

[16] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

[17] Jan S Hesthaven and Tim Warburton. Nodal discontinuous Galerkin methods: algorithms,
analysis, and applications. Springer, 2008.

[18] Dinh Bao Phuong Huynh, David J Knezevic, and Anthony T Patera. A static condensation
reduced basis element method: approximation and a posteriori error estimation. ESAIM:
Mathematical Modelling and Numerical Analysis, 47(1):213-251, 2013.

[19] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces with applications to PDEs. Journal of Machine Learning Research, 24(89):1-97, 2023.

[20] Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms
and analysis. Handbook of Numerical Analysis, 25:419-467, 2024.

[21] Mark A Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE journal, 37(2):233-243, 1991.

[22] Katharina Krischer, Ramiro Rico-Martinez, Ioannis G Kevrekidis, Harm H Rotermund, Gerhard
Ertl, and John L Hudson. Model identification of a spatiotemporally varying catalytic reaction.
AIChE Journal, 39(1):89-98, 1993.

[23] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218-229, 2021.

[24] Huakun Luo, Haixu Wu, Hang Zhou, Lanxiang Xing, Yichen Di, Jianmin Wang, and Mingsheng
Long. Transolver++: An accurate neural solver for PDEs on million-scale geometries. arXiv
preprint arXiv:2502.02414, 2025.

[25] Stefano Massaroli, Michael Poli, Federico Califano, Angela Faragasso, Jinkyoo Park, Atsushi
Yamashita, and Hajime Asama. Port—hamiltonian approach to neural network training. In 2079
IEEE 58th Conference on Decision and Control (CDC), pages 6799-6806. IEEE, 2019.

[26] Hugo Melchers, Daan Crommelin, Barry Koren, Vlado Menkovski, and Benjamin Sanderse.
Comparison of neural closure models for discretised PDEs. Computers & Mathematics with
Applications, 143:94-107, 2023.

[27] Fadl Moukalled, Luca Mangani, and Marwan Darwish. The finite volume method. In The finite
volume method in computational fluid dynamics: An advanced introduction with OpenFOAM®
and Matlab, pages 103—135. Springer, 2015.

[28] Sheel Nidhan, Haoliang Jiang, Lalit Ghule, Clancy Umphrey, Rishikesh Ranade, and Jay Pathak.
A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear
partial differential equations. arXiv e-prints, pages arXiv—2408, 2024.

[29] Alfio Quarteroni, Paola Gervasio, and Francesco Regazzoni. Combining physics-based and
data-driven models: advancing the frontiers of research with scientific machine learning. arXiv
preprint arXiv:2501.18708, 2025.

[30] Rishikesh Ranade, Chris Hill, Lalit Ghule, and Jay Pathak. A composable machine-learning
approach for steady-state simulations on high-resolution grids. Advances in Neural Information
Processing Systems, 35:17386-17401, 2022.

[31] Rishikesh Ranade, Mohammad Amin Nabian, Kaustubh Tangsali, Alexey Kamenev, Oliver
Hennigh, Ram Cherukuri, and Sanjay Choudhry. Domino: A decomposable multi-scale
iterative neural operator for modeling large scale engineering simulations. arXiv preprint
arXiv:2501.13350, 2025.

[32] Ramiro Rico-Martinez, Katharina Krischer, Ioannis G Kevrekidis, MC Kube, and John L
Hudson. Discrete-vs. continuous-time nonlinear signal processing of cu electrodissolution data.
Chemical Engineering Communications, 118(1):25-48, 1992.

[33] Ramiro Rico-Martinez, JS Anderson, and Ioannis G Kevrekidis. Continuous-time nonlinear
signal processing: a neural network based approach for gray box identification. In Proceedings
of IEEE Workshop on Neural Networks for Signal Processing, pages 596—605. IEEE, 1994.

[34] Ulrich Riide, Karen Willcox, Lois Curfman Mclnnes, and Hans De Sterck. Research and
education in computational science and engineering. Siam Review, 60(3):707-754, 2018.

[35] Edward L Wilson. The static condensation algorithm. International Journal for Numerical
Methods in Engineering, 8(1):198-203, 1974.

[36] Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-
dimensional PDEs with latent spectral models. arXiv preprint arXiv:2301.12664, 2023.

[37] Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver:
A fast transformer solver for PDEs on general geometries. arXiv preprint arXiv:2402.02366,
2024.

[38] Rui Wu, Nikola Kovachki, and Burigede Liu. A learning-based domain decomposition method.
arXiv preprint arXiv:2507.17328, 2025.

A Additional Experiments

Next to a[PCA}based encoding we have also investigated an encoding by an[AE|] We use a dense[NN]|
with 128 x 64 neurons for field encoding and 16 x 8 neurons for face encoding with ReL U activation
functions. The is trained with an Adams optimizer for 200 epochs (batch size 128), learning rate
103, and regularization 10~ without performing any hyperparameter studies.

The encoding experiments are shown in Figure [f] The convergence plots of the corresponding
operator learning are shown in Figure[7] and the validation with two unseen fields f is provided in
Figure[8] The results are comparable to the results obtained with a[PCA]encoding as shown in Section

U Autoencoder Training F Autoencoder Training

(b l ‘

Encoded F Max. Error F

Encoded u Max. Error U Us Autoencoder Training dUs Autoencoder Training

ni .i 1.4

Figure 6: .based element encoding: (a) comparison with original field; (b) loss evolution for
training the field u|g,, source f|g,, face ur,, and flux Jr, encoding.

(a) (b) Left Flux Operator Training Right Flux Operator Training

H w?
w0
Solution Operator Training
iy 100 200 300 a00 T 100 200 300 400
vl Epoch Epoch

Bottom Flux Operator Training Top Flux Operator Training
L . L .

w? 2

w> W
CRNTT w

MSE L
MSE Loss

MSE Loss

MSE Lot
MSE L

200 300 400
Epoch

W w0 aw o w0 20
Epoch Epoch

Figure 7: Loss evolution of the operator training (AErencoding): (a) solution operator S; (b) flux
operators F.

Right Hand Side Right Hand Side

‘MO A

HDD-FEM Max. Error HDD-FEM Max. Error

On O

Figure 8: Validation of the method using -encodmg for two randomly chosen source functions f
which have not been seen during the training.

	Introduction
	Hybridized Data Driven Discontinuous Galerkin Solvers
	Experiments
	Discussion and Ongoing work
	Additional Experiments

