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Abstract
The accurate interpretation of Electrocardiogram
(ECG) signals is pivotal for diagnosing cardio-
vascular diseases. Integrating ECG signals with
accompanying textual reports further holds im-
mense potential to enhance clinical diagnostics
by combining physiological data and qualitative
insights. However, this integration faces signifi-
cant challenges due to inherent modality dispar-
ities and the scarcity of labeled data for robust
cross-modal learning. To address these obstacles,
we propose D-BETA , a novel framework that
pre-trains ECG and Text data using a contrastive
masked Auto-encoder architecture, uniquely com-
bining generative and Boosted Discriminative ca-
pabilities for robust cross-modal representations.
This is accomplished through masked modality
modeling, specialized loss functions, and an im-
proved negative sampling strategy tailored for
cross-modal alignment. Extensive experiments
on five public datasets across diverse downstream
tasks demonstrate that D-BETA significantly out-
performs existing methods, achieving an average
AUC improvement of 15% in linear probing with
only one percent of training data and 2% in zero-
shot performance without requiring training data
over state-of-the-art models. These results high-
light the effectiveness of D-BETA , underscoring
its potential to advance automated clinical diag-
nostics through multi-modal representations. 1

1. Introduction
Electrocardiograms (ECGs), obtained through non-invasive
electrode placement, provide a critical window into the
heart’s electrical activity by measuring voltage differences
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across specific anatomical regions. The standard 12-lead
ECG, which captures unique electrical potential differences
from each lead, plays a vital role in diagnosing a wide spec-
trum of cardiac conditions (e.g. arrhythmias). In recent
years, significant progress has been made in leveraging deep
learning techniques for automated ECG interpretation (Yan
et al., 2019; Ebrahimi et al., 2020; Siontis et al., 2021). How-
ever, these supervised deep learning approaches often neces-
sitate large volumes of expertly annotated data, which are
frequently scarce and expensive to acquire. Self-supervised
learning (SSL) has emerged as a compelling alternative,
offering the potential to learn robust representations from
abundant unlabeled ECG data. These learned representa-
tions can be effectively utilized for zero-shot learning on
novel tasks and adapted via fine-tuning to specific down-
stream applications, thereby mitigating the reliance on ex-
tensive labeled datasets.

Numerous studies have explored the potential of SSL in the
ECG domain, demonstrating its efficacy in learning repre-
sentations from vast quantities of unlabeled data. These
efforts generally fall into two main tracks: contrastive and
generative approaches. Contrastive methods, exemplified
by works such as (Chen et al., 2020; 2021; Chen & He,
2021; Grill et al., 2020; Kiyasseh et al., 2021; Oh et al.,
2022; McKeen et al., 2024), aim to learn discriminative rep-
resentations by maximizing the similarity between positive
pairs (e.g., different augmentations of the same ECG signal)
and minimizing the similarity between negative pairs (e.g.,
ECGs from different patients) within the embedding space.
Conversely, generative approaches (Hu et al., 2023; Zhang
et al., 2022a; 2023) focus on reconstructing the input data,
typically by predicting masked or missing segments of the
ECG signal, thereby learning to capture the underlying data
distribution. Therefore, integrating both contrastive and
generative approaches within a unified framework could
leverage their complementary strengths, leading to a more
powerful method for learning robust ECG-text representa-
tions (Kim et al., 2021; Li et al., 2022b; Song et al., 2024).

Despite advancements, existing ECG-based SSL approaches
have largely overlooked the valuable information embedded
within clinical text reports, which offer key insights into
underlying cardiac conditions and have the potential to sig-
nificantly enhance a model’s diagnostic accuracy (Zhang
et al., 2022c; Chen et al., 2022). This oversight highlights a
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critical gap in the field: the lack of emphasis on jointly learn-
ing ECG-text cross-modal representations. Some recent
efforts (Liu et al., 2024b; Lalam et al., 2023; Li et al., 2024;
Liu et al., 2024a; Yu et al., 2024) have attempted to bridge
this gap by integrating ECG signals and clinical reports
through cross-modal contrastive learning, mainly employing
relatively standard encoder models (e.g., ResNet (He et al.,
2016), Bert (Devlin et al., 2019)). This makes the poten-
tial of learning robust representations that capture the intri-
cate interplay between ECG signals and their corresponding
textual descriptions, shown in generative approaches re-
main largely unexplored. Moreover, the prevailing reliance
on these contrastive methods presents inherent limitations.
They depend on the availability of negative samples and of-
ten struggle to capture cross-modal relationships effectively
due to difficulties in defining appropriate negative pairings
across different modalities.

In this work, we depart from relying solely on contrastive
learning or stand-alone generative approaches for cross-
modal representation learning. We introduce D-BETA , a
novel hybrid framework that synergistically integrates both
learning paradigms to effectively capture fine-grained input
details and discriminative ECG-text features. Our approach
employs a transformer-based encoder specifically for ECG
signals and a well-pre-trained language model for clinical
text encoder in a masked auto-encoder architecture, together
with tailored loss functions that promote the joint learning
of robust cross-modal representations. Additionally, we
introduce a nearest-neighbor negative sampling strategy, a
crucial refinement often overlooked in previous methods,
to ensure that negative samples are contextually selected
and thereby, enhance the discriminative capability of the
learned representations. To rigorously evaluate the efficacy
of D-BETA , we conduct extensive experiments on vari-
ous public ECG datasets and demonstrate that our method
significantly outperforms recent state-of-the-art baselines
across all evaluation settings.

2. Related Work
ECG Self-supervised Learning. Self-supervised learning
(SSL) has been shown to work effectively across various
modalities, including vision (Li et al., 2022a; Han et al.,
2021), language (Devlin et al., 2019; He et al., 2020; Chung
et al., 2024), and time-series data (Tonekaboni et al., 2021;
Zhang et al., 2022b; Saeed et al., 2019). Particularly, recent
advances in applying SSL to ECG signals have demon-
strated that models can learn meaningful representations
from large amounts of unlabeled data, which is crucial in
medical domains where labeled datasets are often limited
and expensive to acquire. Here, we discuss two common
SSL approaches: generative and contrastive, which have
seen notable progress in ECG representation learning in

recent years.

Early contrastive methods such as SimCLR (Chen et al.,
2020), MoCo (Chen et al., 2021), SimSiam (Chen & He,
2021), and BYOL (Grill et al., 2020) introduced the concept
of maximizing agreement between augmented views of the
same data sample by employing augmentation strategies
to create challenging positive and negative pairs. In the
context of ECG signals, recent approaches like 3KG (Gopal
et al., 2021) apply physiologically inspired spatial and tem-
poral augmentations, using vectorcardiogram (VCG) trans-
formations to capture the three-dimensional spatiotemporal
characteristics of the heart’s electrical activity. Similarly,
CLOCS (Kiyasseh et al., 2021) developed Contrastive Multi-
Segment Coding (CMSC), which enhances the model’s
ability to handle varying ECG signal characteristics across
different axes-space, time, and patients. Building on this,
(Oh et al., 2022) incorporates Wav2vec 2.0 (Baevski et al.,
2020), CMSC, and random lead masking to simulate dif-
ferent global and local lead configurations during training,
thereby improving model robustness and achieving impres-
sive results on ECG downstream tasks.

On the other hand, generative approaches (Hu et al., 2023;
Zhang et al., 2022a; Na et al., 2024) are less prevalent,
but play a crucial role in ECG SSL. These methods focus
on capturing the underlying structure of the data by train-
ing auto-encoder models to generate or reconstruct masked
input data, enabling the model to understand and repre-
sent key features and patterns. For instance, ST-MEM (Na
et al., 2024) utilizes a masked auto-encoder with a spatio-
temporal patchifying technique to model relationships in 12-
lead ECG signals. Additionally, the Cross-Reconstruction
Transformer (CRT) (Zhang et al., 2023) employs frequency-
domain and temporal masking to reconstruct missing ECG
segments, demonstrating the innovative use of generative
SSL in ECG analysis.

ECG-Text Multi-modal Representation Learning.
Multi-modal representation learning combines information
from different data types, shown to effectively improve
model performance (Lin et al., 2024; Du et al., 2023). Partic-
ularly, pioneering works like CLIP-based models (Radford
et al., 2021; Rasheed et al., 2023; Zhai et al., 2023) have
proven the power of contrastive learning in aligning visual
and textual modalities, achieving strong generalizations
across a broad range of tasks. Applying similar ideas to the
ECG domain, recent efforts (Lalam et al., 2023; Yu et al.,
2024; Liu et al., 2024a;b) show promising progress in the
field. Among them, MERL (Liu et al., 2024b) leverages
cross-modal and uni-modal alignment techniques together
with test-time clinical knowledge enhancement, which
notably generalizes ECG and text-based medical zero-shot
classification tasks. However, they often utilize genetic
architectures (e.g., ResNet ECG encoder, Bert-based
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text encoder) and especially overlook the critical role of
negative sample selection for contrastive learning and
lacks exploring generative approaches for fine-grained
multi-modal learning, limiting performance in end tasks.

3. Method
We propose D-BETA , a framework designed to learn gener-
alizable cross-modal representations by aligning ECG sig-
nals and corresponding medical text reports. D-BETA lever-
ages masked language modeling (MLM) and masked ECG
modeling (MEM) to reconstruct randomly masked segments
within the input text and ECG signals, respectively. This
encourages the model to learn fine-grained features within
each modality. Furthermore, we introduce ETS (ECG-Text
Sigmoid) loss, as inspired by SigLIP (Zhai et al., 2023),
and a nearest-neighbor negative sampling strategy. These di-
rectly promote discriminative representation learning and en-
hance cross-modal alignment, besides the ECG-text match-
ing (ETM) learning task.

Figure 1 depicts the overall architecture of D-BETA , which
comprises two main branches. The ECG encoder utilizes a
transformer-based architecture (Vaswani et al., 2023) to pro-
cess the input ECG signals and generate corresponding rep-
resentations, denoted as Hx ∈ RLx×d, where Lx represents
the sequence length of the ECG signal and d represents the
embedding dimension. The text encoder utilizes the recent
pre-trained Flan-T5 model (Chung et al., 2024) which, to
our knowledge, has not been previously applied to this ECG
domain, to extract high-level semantic embeddings from
the clinical text, denoted as Ht ∈ RLt×d, where Lt repre-
sents the sequence length of the text. These encoder outputs
are then passed through a fusion module, which employs
a cross-attention mechanism to integrate information from
both modalities, generating fused representations denoted
as Hf ∈ R(Lx+Lt)×d. The model subsequently employs
three distinct heads: two decoders, responsible for recon-
structing the masked portions of the ECG signal (X̂) and
text (Tm), respectively, and a contrastive prediction head
for ECG-text matching. Additionally, we introduce two
projection heads, gx and gt, following the ECG and text en-
coders, respectively. These projection heads, along with the
ETS loss, facilitate learning discriminative representation
between these modalities. The model is trained by jointly
optimizing four loss functions: masked language modeling
loss (LMLM ), masked ECG modeling loss (LMEM ), ECG-
text matching loss (LETM ), and the ETS loss (LETS ).
The subsequent subsections provide a detailed description
of each component within the D-BETA framework.

3.1. Multi-Modal Masked Auto-Encoders.

ECG Encoder. We implement the ECG encoder (denoted
as Fx) based on a transformer architecture, which was orig-

inally developed for efficiently processing sequential data
in parallel (Vaswani et al., 2023). We first follow (Oh
et al., 2022) to apply a masking strategy to the ECG in-
put X ∈ RL×C to encourage robust feature learning, where
L is the length of the signal and C is the number of channels.
Specifically, we leverage random lead masking as an on-the-
fly augmentation where each lead randomly masked with
a probability of p = 0.5 during pre-training. Furthermore,
we use a dropout layer on the input with p = 0.1 to enable
masking modeling. We then pass the masked input into
a series of convolutional layers, each followed by GELU
activation functions and group normalization. The extracted
features are subsequently projected into a 768-dimensional
space. Following that, we add a convolutional positional
encoding layer to preserve the temporal order of the ECG
sequence. Next, we employ eight transformer encoder lay-
ers, each including a multi-head self-attention mechanism
that allows the model to attend to different parts of the input
sequence simultaneously. We conduct an experiment explor-
ing the effects of different numbers of transformer layers in
Section 4.3.

Text Encoder. For our text encoder, we utilize the Flan-
T5-base encoder (denoted as Ft), which outputs 768-
dimensional embeddings. The input to the encoder con-
sists of token indices generated by the Flan-T5 tokenizer,
represented as T ∈ ZM , where M is the maximum se-
quence length. Flan-T5 is an advanced version of the T5
model (Raffel et al., 2023), which has been pre-trained on a
massive and diverse text dataset covering numerous tasks,
such as summarization and question answering. Note that
our text encoder is fine-tuned during the pre-training stage.
In our attempt to demonstrate the effectiveness of recent
Flan-T5 in the ECG-domain-based context, we also conduct
an ablation with various text encoders in Section 4.3.

Fusion Module. The fusion module begins with linear
projections that map the outputs of the ECG and language
encoders to a 768-dimensional space. We apply modality-
specific embeddings to the projected features to distinguish
between ECG and text data. Importantly, we employ cross-
attention to integrate the ECG and textual information, al-
lowing each modality to inform the other by learning the
relevant features. This cross-attention mechanism is cru-
cial as it enables the model to leverage the complementary
strengths of both ECG and text data more effectively.

Decoders and Self-Supervised Tasks. After the fusion
module, three network heads are introduced, each associated
with a specific task or loss function: masked language mod-
eling (MLM), masked ECG modeling (MEM), and ECG-
text matching (ETM). MLM and MEM are designed for
reconstruction tasks, while ETM adopts a contrastive learn-
ing approach to align the different modalities. We detail
each task and its corresponding loss function below:
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Figure 1. Illustration of our contrastive masked ECG-language modeling technique.

Masked Language Modeling (MLM). The MLM task con-
sists of a dense layer that outputs a probability distribution
over the vocabulary. The MLM head focuses on predicting
the masked tokens in the input text sequence, encouraging
the model to learn contextualized word embeddings through
a reconstruction task. We use the cross-entropy (CE) loss
for MLM, as shown in Equation 1:

LMLM = − 1

B

B∑
j=1

∑
m∈Mj

logP (tj,m|tj\Mj
; θ), (1)

where B represents the batch size, Mj is the set of masked
positions in the jth sequence, tj,m is the masked token
at position m in the jth sequence, tj\Mj

represents the
jth input sequence with masked tokens removed, and θ
represents the model parameters.

Masked ECG Modeling (MEM). Similar to MLM, the MEM
task aims to reconstruct the masked ECG inputs. It consists
of a linear embedding layer that maps the input sequence to a
lower-dimensional space (384), followed by learnable mask
tokens that represent the missing portions of the sequence.
We apply positional encoding to preserve the temporal struc-
ture of the ECG data. Subsequently, we use a multi-layer
transformer decoder to model the dependencies within the
sequence. Finally, a linear projection layer produces the
predicted ECG signal (x̂i). We train the MEM head using
the mean squared error (MSE) between this predicted signal
and the ground truth signal (xi), as shown in Equation 2:

LMEM =
1

B

B∑
i=1

||x̂i − xi||22 (2)

ECG-Text Matching (ETM). Finally, we use ETM to pro-
mote alignment between ECG signals and their correspond-
ing text reports, which further supports the fused feature
space learning, together with generative aspects from MLM

and MEM. This is formulated as a binary classification task,
where the ETM task’s head consists of a single dense layer
that outputs a scalar ẑxk,tk representing the predicted prob-
ability. The ETM loss is defined as the binary cross-entropy
loss:

LETM = − 1

B

B∑
k=1

[
yk log σ(ẑxk,tk)

+ (1− yk) log(1− σ(ẑxk,tk))
]
, (3)

where σ is the sigmoid function, yk = 1 if (xk, tk) is a
positive pair, and yk = 0 otherwise.

3.2. ECG-Text Discriminative Learners.

ETS Loss Function. In multi-modal masked auto-
encoder architectures such as (Chen et al., 2022), contrastive
learning’s effectiveness can be limited by the inherent ten-
sion between the reconstruction-focused generative tasks of
autoencoders and the discriminative nature of contrastive
learning. They are more biased for learning to reconstruct
masked inputs in generative manners. This can hinder the
model’s capability to learn discriminative features useful
for downstream tasks, such as zero-shot inference or linear
probing. Furthermore, although the ETM loss in such ar-
chitectures can serve as a form of contrastive loss, it may
not be sufficient for building a robust ECG encoder. Specif-
ically, the ETM module is primarily designed for binary
classification based on fused features rather than directly
enhancing the discriminative power of individual encoders.
This limitation can restrict the model’s ability to produce
high-quality multimodal embeddings.

Therefore, we propose strengthening discriminative aspect
in multi-modal masked auto-encoder architectures using
ETS loss, as shown in formula 4. This approach avoids the
costly global normalization of softmax-based contrastive
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Figure 2. Illustration of N3S in selecting negative samples within Flan-T5 space.

losses by operating independently on each ECG-text pair
(sigmoid-based), improving memory efficiency and scalabil-
ity. We introduce two additional network heads to the ECG
and text encoders, respectively. Each head consists of a
pooling layer, a Tanh activation function, and a dense layer,
enabling them to output 768-dimensional embeddings (de-
noted as x′

i ∈ R768 for the ith ECG sample and t′j ∈ R768

for the jth text report).

LETS = − 1

B

B∑
i=1

B∑
j=1

log

(
1

1 + e−yijx′⊤
i t′j

)
, (4)

where yij = 1 for positive (matching) ECG-text pairs, and
yij = −1 otherwise.

Nearest-neighbor-based Negative Sampling (N3S). In
contrastive learning, the selection of negative samples signif-
icantly impacts the training process (Xu et al., 2022). Con-
ventional methods often employ random sampling, where
negative text reports are chosen randomly to replace positive
texts. However, this approach may lead to false negative
selection, especially in medical datasets, where randomly
chosen reports might share substantial similarities with the
positive reports, hindering effective contrastive learning.
This is discussed further in the Appendix A.2.

Therefore, we propose nearest-neighbor negative sampling
(N3S), which selects negative samples based on their dis-
similarity in the Flan-T5’s feature space (Figure 2), ensuring
they are sufficiently distinct from the positive samples while
remaining semantically related to the domain. Specifically,
we first utilize pre-trained Flan-T5 (small) to generate vector
representations, denoted as vt ∈ R512, for each text report
t in the training dataset Dtrain. These embeddings cap-
ture the semantic meaning of the reports. During training,
for a given ECG and its corresponding positive text report
(xk, t

+
k ) in half of the training batch B, the negative report

t−k is selected as one of the top 64 largest cosine distance
reports from the positive report’s embedding vt+k

. As the
training progresses with batches being updated randomly,
the negative samples continually change, introducing vari-
ability while maintaining domain relevance.

To perform this process, we employ FAISS (Facebook AI
Similarity Search) (Douze et al., 2024), a high-performance
library designed for indexing and searching large collections
of dense vectors. FAISS allows us to apply N3S to large-
scale datasets in a computationally tractable manner.

4. Experiments
4.1. Implementation Details.

4.1.1. PRE-TRAINING TASK.

Pre-train Dataset. In the pre-training stage, we utilize the
MIMIC-IV-ECG v1.0 database (Gow et al., 2023), which in-
cludes 800,035 paired samples derived from 161,352 unique
subjects. This dataset contains numerous 10-second ECG
recordings sampled at 500 Hz and the corresponding text
reports. Each ECG recording will have several reports, and
we simply merge them into one single report (diagnosis).
We apply some necessary processing steps to prepare the
custom dataset for training (e.g., remove empty or contain-
ing NaN ECG recordings and clean text by using lowercase,
strip, and punctuation removal), which eventually yields a
training size of 779891 samples. We provide representative
examples of ECG-text pairs in Appendix A.1.

Experimental Configurations. For model training, we
use the Adam optimizer with a learning rate of 5×10−5 and
use a tri-stage scheduler with ratios of 0.1, 0.4, and 0.5 for
learning rate adjustments. The optimizer is configured with
β1 = 0.9, β2 = 0.98, an epsilon value of 1 × 10−6, and
a weight decay of 0.01. We pre-train the proposed model
for 300000 steps, maintaining a batch size of 128. The
quantitative experiments are conducted on a single NVIDIA
H100-80GB GPU.

4.1.2. DOWNSTREAM TASKS.

Downstream Datasets. We evaluate our pre-trained en-
coders on five widely-used public datasets: PhysioNet
2021 (Reyna et al., 2021), PTB-XL (Wagner et al., 2020),
CSN (Zheng et al., 2022), CPSC2018 (Liu et al., 2018), and
CODE-test (Ribeiro et al., 2020). We summarize the key
information of each dataset as follows:
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Table 1. Performance for 5 lead combinations in diagnosis classification (Dx., by CinC scores scaled by 100) and patient identification
(Id., by %). P-N-lead indicates N zero-padded unavailable leads.

Methods Tasks # Leads

12-lead P-6-lead P-3-lead P-2-lead P-1-lead

W2V (Baevski et al., 2020) Dx. 71.4 64.3 67.6 61.1 52.5
Id. 49.2 41.1 47.0 41.4 24.7

CMSC (Kiyasseh et al., 2021) Dx. 62.5 52.2 57.5 50.7 40.6
Id. 51.3 39.2 51.0 37.8 22.7

3KG (Gopal et al., 2021) Dx. 60.0 51.5 56.3 50.5 41.8
Id. 40.7 32.0 36.7 31.0 19.8

SimCLR(RLM) (Chen et al., 2020) Dx. 57.8 49.7 53.5 48.4 39.3
Id. 35.3 28.9 36.8 30.4 19.2

W2V+CMSC (Oh et al., 2022) Dx. 71.7 61.6 65.6 58.6 48.2
Id. 55.0 43.7 46.6 41.0 28.0

W2V+CMSC+RLM (Oh et al., 2022) Dx. 73.2 66.2 71.4 65.6 55.4
Id. 57.7 45.9 54.8 45.7 31.3

D-BETA Dx. 85.7 81.1 84.2 81.9 76.5
Id. 65.4 57.3 60.5 57.7 41.1

Table 2. Performance comparison (AUC in %) across multiple methods and datasets. The results are shown for different percentages of
training data used (1%, 10%, 100%).

Methods PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN

1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

SimCLR (Chen et al., 2020) 63.41 69.77 73.53 60.84 68.27 73.39 54.98 56.97 62.52 51.41 69.44 77.73 59.78 68.52 76.54 59.02 67.26 73.20
BYOL (Grill et al., 2020) 71.70 73.83 76.45 57.16 67.44 71.64 48.73 61.63 70.82 41.99 74.40 77.17 60.88 74.42 78.75 54.20 71.92 74.69
BarlowTwins (Zbontar et al., 2021) 72.87 75.96 78.41 62.57 70.84 74.34 52.12 60.39 66.14 50.12 73.54 77.62 55.12 72.75 78.39 60.72 71.64 77.43
MoCo-v3 (Chen et al., 2021) 73.19 76.65 78.26 55.88 69.21 76.69 50.32 63.71 71.31 51.38 71.66 74.33 62.13 76.74 75.29 54.61 74.26 77.68
SimSiam (Chen & He, 2021) 73.15 72.70 75.63 62.52 69.31 76.38 55.16 62.91 71.31 49.30 69.47 75.92 58.35 72.89 75.31 58.25 68.61 77.41
TS-TCC (Eldele et al., 2021) 70.73 75.88 78.91 53.54 66.98 77.87 48.04 61.79 71.18 43.34 69.48 78.23 57.07 73.62 78.72 55.26 68.48 76.79
CLOCS (Kiyasseh et al., 2021) 68.94 73.36 76.31 57.94 72.55 76.24 51.97 57.79 72.65 47.19 71.88 76.31 59.59 77.78 77.49 54.38 71.93 76.13
ASTCL (Wang et al., 2023) 72.51 77.31 81.02 61.86 68.77 76.51 44.14 60.93 66.99 52.38 71.98 76.05 57.90 77.01 79.51 56.40 70.87 75.79
CRT (Zhang et al., 2023) 69.68 78.24 77.24 61.98 70.82 78.67 46.41 59.49 68.73 47.44 73.52 74.41 58.01 76.43 82.03 56.21 73.70 78.80
ST-MEM (Na et al., 2024) 61.12 66.87 71.36 54.12 57.86 63.59 55.71 59.99 66.07 51.12 65.44 74.85 56.69 63.32 70.39 59.77 66.87 71.36
MERL (Liu et al., 2024b) 82.39 86.27 88.67 64.90 80.56 84.72 58.26 72.43 79.65 53.33 82.88 88.34 70.33 85.32 90.57 66.60 82.74 87.95

D-BETA 83.15 88.36 90.11 77.74 82.92 85.15 70.10 78.91 83.98 86.61 92.83 96.71 85.46 91.35 94.92 80.04 87.36 90.71

PhysioNet 2021. This contains ECG samples (500 Hz)
ranging between 5 and 144 seconds. We process and fine-
tune the subsets as described in (Oh et al., 2022) to validate
the pre-trained ECG encoder in two downstream tasks: 1)
26-multi-label cardiac arrhythmia classification (Dx.); 2)
patient identification (Id.), predicting patient ownership of
ECG recordings.

PTB-XL. The PTB-XL dataset includes 21,837 ECG signals
collected from 18,885 patients. Each sample has a 12-lead
ECG recording sampled at 500 Hz over 10 seconds and
corresponding cardiac labels. We follow (Liu et al., 2024b)
to split this dataset, including four sub-groups (super, sub,
form, and rhythm). We consider them as the four separated
datasets and prepare each of them with the same train, val,
and test set as in the original paper (Wagner et al., 2020).

CSN. This dataset consists of 23,026 ECG recordings sam-
pled at 500 Hz for 10 seconds with 38 distinct labels, which
also supports the evaluation in a classification task. We use
70%:10%:20% data split as processed in (Liu et al., 2024b).

CPSC2018. The dataset contains 6,877 standard 12-lead
ECG recordings (500 Hz), which cover 9 distinct categories.
Similarly, we also use the same data configuration follow-
ing (Liu et al., 2024b).

CODE-test: This contains 827 12-lead ECG samples (400
Hz) at varying lengths covering 6 abnormalities, annotated
by experienced residents and medical students. We resample
the signals to 500 Hz and adjust the lengths to 10 seconds.
We provide more detail about this dataset in Appendix A.1.

Experimental Configurations. To evaluate our model’s
performance on downstream tasks, we conduct three ex-
periments: 1) First, integrating a linear layer on top of the
pre-trained ECG encoder and fine-tuning the entire model
to test its efficacy in two tasks within the Physionet 2021
dataset: Dx. (by CinC score) and Id. (by % accuracy). We
report the results with five cases of lead combinations, as
presented in (Oh et al., 2022); 2) Second, we also implement
a linear classifier but keep the ECG encoder frozen. This
linear probing approach is applied at different training set
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Table 3. Zero-shot performance (AUC in %) comparison across multiple datasets.
Methods PTBXL-Super PTBXL-Sub PTBXL-Form PTBXL-Rhythm CPSC2018 CSN Average

MERL 74.2 75.7 65.9 78.5 82.8 74.4 75.3

D-BETA 76.2 75.9 66.1 88.6 80.1 76.3 77.1

Table 4. Zero-shot performance (AUC in %) under data distribution shift.
Source Domain Zero-shot Training Ratio PTBXL-Super CPSC2018 CSN

Target Domain CPSC2018 CSN PTBXL-Super CSN PTBXL-Super CPSC2018

SimCLR (Chen et al., 2020) ✗ 100% 69.62 73.05 56.65 66.36 59.74 62.11
BYOL (Grill et al., 2020) ✗ 100% 70.27 74.01 57.32 67.56 60.39 63.24
BarlowTwins (Zbontar et al., 2021) ✗ 100% 68.98 72.85 55.97 65.89 58.76 61.35
MoCo-v3 (Chen et al., 2021) ✗ 100% 69.41 73.29 56.54 66.12 59.82 62.07
SimSiam (Chen & He, 2021) ✗ 100% 70.06 73.92 57.21 67.48 60.23 63.09
TS-TCC (Eldele et al., 2021) ✗ 100% 71.32 75.16 58.47 68.34 61.55 64.48
CLOCS (Kiyasseh et al., 2021) ✗ 100% 68.79 72.64 55.86 65.73 58.69 61.27
ASTCL (Wang et al., 2023) ✗ 100% 69.23 73.18 56.61 66.27 59.74 62.12
CRT (Zhang et al., 2023) ✗ 100% 70.15 74.08 57.39 67.62 60.48 63.33
ST-MEM (Na et al., 2024) ✗ 100% 76.12 84.50 62.27 75.19 73.05 64.66
MERL (Liu et al., 2024b) ✓ 0% 88.21 78.01 76.77 76.56 74.15 82.86

D-BETA ✓ 0% 72.09 79.11 77.12 82.91 76.24 80.10

Table 5. ECG interpretation comparison (AUC in %): Human experts vs. DNN (Ribeiro et al., 2020) vs. D-BETA .
Cardio Resident Emergency Resident Medical Student DNN D-BETA (Zero-shot)

92.07 90.52 93.61 96.59 96.79

sizes (1%, 10%, and 100%) to assess the macro AUC score
(%) on the PTB-XL, CSN, and CPSC2018 test datasets, fa-
cilitating a comparison with our baseline (Liu et al., 2024b);
3) Finally, we investigate zero-shot classification (AUC) on
PTB-XL, CSN, CPSC2018 and CODE-test datasets. Here,
the texts used are obtained by passing the category names
into GPT-4o to capture better medical context. The de-
tailed configuration on each experiment is mentioned in
Appendix A.1.

4.2. Experimental Results.

Full Fine-Tuning Evaluation. As shown in Table 1, our
method consistently outperforms previous approaches (Oh
et al., 2022) in both examined tasks. In the classifi-
cation task, our model achieves 85.7% accuracy with
all 12 leads, significantly higher than the best baseline
(W2V+CMSC+RLM), which is 73.2%. This number is even
lower than our setting with only 1 lead usage (76.5%). Inter-
estingly, the 3-lead combination yields the second-highest
result, only 1.5% lower than using all leads, while the 2-
lead and 6-lead combinations produce comparable results,
both around 81.5%. This suggests that the selected leads
(I, II, V2) capture sufficient information for accurate perfor-
mance. A similar pattern emerges in the identification task,
where our model achieves 41.1% accuracy with a single lead,
60.5% with 3 leads, and 65.4% with 12 leads, surpassing
the best baseline by 7%.

Linear Probing Evaluation. Table 2 presents the linear
probing results, where our method demonstrates a clear ad-
vantage over the baseline approaches. Notably, with only 1%
of the training data, our method shows a substantial improve-
ment over MERL, especially in CSN (14% enhancement)
and PTBXL-Rhythm (33%) datasets. Similarly, impressive
results are observed at 10% and 100% of the data. For exam-
ple, on the PTBXL-Rhythm dataset, our method achieves
approximately a 10% improvement at the 10% configuration.
On the CPSC2018 dataset, we also observe a considerable
increase from 90.57% to 94.92% when using 100% of the
training data.

Zero-shot Evaluation. We first compare our results and
the best results of MERL in zero-shot settings across six
datasets, as shown in Table 3. On average, our method
achieves 77%, outperforming MERL by 2%. Notably,
MERL performs impressively on the CPSC2018 dataset,
while its results on the other five datasets are consistently
lower than ours. Next, we extend the comparison of our
method with MERL and other SSL baselines (Liu et al.,
2024b) under data distribution shifts. Specifically, we com-
pare linear probing (100% training size) of SSL methods
with MERL’s and our zero-shot approach. In this setup,
the source domain and target domain share some common
categories. Details on this implementation can be found
in Appendix A.1. As shown in Table 4, our results surpass
MERL and other SSL methods, except when CPSC2018
is the target domain, which aligns with our previous obser-
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vations. Finally, Table 5 shows that our zero-shot model
outperforms three experienced cardiologists (over 3%) and
also the in-domain model (Ribeiro et al., 2020), i.e., trained
with millions of annotated ECG examples 2. We discuss
more on zero-shot settings in Appendix A.3.

To better understand how our method improves downstream
performance, we visualize and compare the t-SNE embed-
dings generated by our ECG encoder on the CSN test set
with those from MERL. For clearer visualization, we in-
clude only samples from unique categories and exclude
categories with fewer than 50 samples. Figure 3 reveals
that our embeddings show more well-defined and distinct
clusters representing different ECG diagnoses.

MERL Ours

SA ALS APB AF SVT TWC ST

Figure 3. T-SNE visualization on the CSN test set.

4.3. Ablation Studies.

We evaluate the impact of the key model components, the
choice of language encoders, and varying the number of
transformer layers in the ECG encoder for ablation stud-
ies. Here, we focus on three downstream tasks, including
full fine-tuned diagnosis classification (results across five
lead combinations), linear probing at 1% training size, and
zero-shot classification (results across PTB-XL, CSN, and
CPSC2018 datasets) using category name 3.

Table 6. Effects of the model components: 1⃝ Flan-T5, 2⃝
ETS Loss, 3⃝ N3S.

1⃝ 2⃝ 3⃝ Full fine-tune Linear probing Zero-shot

✓ ✓ ✓ 81.88 ± 3.52 80.52 ± 6.08 72.50± 9.01

✓ ✓ 80.93 ± 3.74 78.29 ± 6.19 70.61 ± 8.10
✓ 78.29 ± 3.87 67.19 ± 6.14 –

76.81 ± 3.96 63.50 ± 6.95 –

Effects of Key Components in D-BETA . We system-
atically remove one component at a time from the default
proposed model to assess the contribution of different model

2Medical students outperform residents due to recent frequently
focused training, aligning with prior work (Ribeiro et al., 2020).

3We do not use GPT-4o for context enhancement, as our objec-
tive is to provide the core impact of our proposed components in
the context of ablation studies.

components, including Flan-T5, ETS , and N3S. Specifi-
cally, we start by eliminating the N3S and train the model
with randomly selected negative samples. Subsequently,
we take the ETS loss away to assess its effectiveness in
capturing rich representative embeddings in both encoders.
Lastly, by replacing the Flan-T5 language encoder with a
standard Bert-base architecture (Devlin et al., 2019), we
consider this as the baseline model. Table 6 demonstrates
the results of this experiment. It can be seen that ETS signif-
icantly enhances performance, showing an improvement of
approximately 15% in both full fine-tuning and linear prob-
ing settings over the baseline model. Meanwhile, adding
N3S improves zero-shot classification by 2%, and introduc-
ing Flan-T5 enhances performance in linear probing by 4%
compared to the baseline. These results underscore the ef-
fectiveness of each component in optimizing the model’s
performance.

Text Encoders. In this ablation study, we evaluate the
performance of four pre-trained language models, namely
Bert (Devlin et al., 2019), Deberta (He et al., 2020), Med-
CPT (Jin et al., 2023), and Flan-T5 (Chung et al., 2024)
to determine the most suitable language encoder for our
model. Here, only the base versions were tested. As shown
in Table 7, Flan-T5 outperforms the others across multiple
metrics, highlighting the importance of choosing a model
that excels not only in general text processing but also in
capturing domain-specific nuances, such as ECG reports.

Table 7. Effects of different text encoders.
Text encoder Full fine-tune Linear probing Zero-shot

Flan-T5 81.88 ± 3.52 80.52 ± 6.08 72.50± 9.01

Med-CPT 81.02 ± 3.61 79.57 ± 6.32 71.81 ± 9.14
Deberta 79.23 ± 3.65 78.24 ± 6.21 70.67 ± 9.88
Bert 78.08 ± 3.91 77.58 ± 6.49 69.14 ± 9.97

Number of ECG Transformer Layers. As part of our ab-
lation study, we explore the impact of varying the number of
transformer layers (1, 4, 8) in the ECG encoder. As shown
in Table 8, increasing the number of layers significantly
improves performance. Specifically, the 1-layer model per-
forms 11% worse than the 8-layer model (proposed) in full
fine-tuning and 13% worse in linear probing. For zero-shot,
the 8-layer model still delivers superior results, with 2%
and 3% higher performance than the 4-layer and 1-layer
models, respectively. Although these differences are smaller
than in full fine-tuning, they still highlight the ECG encoder
design’s impact on improving performance. It is also worth
noting that in this same zero-shot setting (without GPT-4o’s
support), even our 1-layer case outperformed MERL by ap-
proximately 8%, achieving approximately 70% compared
to MERL’s 62%.
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Table 8. Effects of number of transformer layers in ECG encoder.
# Layers Full fine-tune Linear probing Zero-shot

8 81.88 ± 3.52 80.52 ± 6.08 72.50± 9.01

4 77.63 ± 4.14 70.17 ± 7.60 70.64 ± 8.63
1 69.40 ± 4.55 66.83 ± 7.52 69.43 ± 9.51

5. Conclusion
We propose D-BETA , a novel contrastive masked
transformer-based architecture to pre-train ECG signals
and corresponding texts. Our approach is generative self-
supervised learning, enhanced with ETS loss, and nearest-
neighbor negative sampling to support contrastive aspects.
Experimental results demonstrate that our method outper-
forms previous approaches across multiple datasets and on
a wide range of downstream tasks with over 100 cardiac
conditions. D-BETA shows promise in advancing ECG-
based diagnostic models, paving the way for more accurate,
efficient, and personalized cardiac care.
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A. Appendix
A.1. Data and Training Details.

We first visualize representative examples of ECG-text pairs from the MIMIC IV ECG dataset (Gow et al., 2023), as shown
in Figure 4. We also indicate the top 30 common unique reports (before merging) in Figure 5. Prominent terms such as
”abnormal ecg”, ”normal ecg”, ”atrial fibrillation”, and ”sinus tachycardia” indicate common diagnoses, which suggests
prevalent cardiovascular conditions and typical annotations within this dataset.

(1) Atrial fibrillation. Possible anterior infarct - age undetermined. Inferior/lateral ST-T changes may 
be due to myocardial ischemia. Low QRS voltages in precordial leads. Abnormal ECG.

(3) Sinus arrhythmia. Normal ECG. (4) Bradycardia. Normal ECG except for rate.

(5) Sinus rhythm. Abnormal R-wave progression, early transition. (6) Sinus rhythm. Left axis deviation. RBBB with left anterior fascicular block. Abnormal ECG.

(2) Probable accelerated junctional rhythm. Leftward axis. Lateral T wave changes are nonspecific. 
Abnormal ECG.

(7) Possible atrial flutter with rapid ventricular response. Anterolateral T wave changes are nonspecific. 
Abnormal ECG.

(8) Sinus bradycardia with borderline 1st degree A-V block. Low QRS voltages in precordial leads. 
Borderline ECG.

Figure 4. Examples of ECG-text pairs in MIMIC IV ECG dataset (Gow et al., 2023). We visualize three leads (I, II, V2) out of twelve.

Next, we provide more details on data configurations in Table 9, including data split, number of classes, metrics, and the
corresponding tasks with the given downstream datasets. Particularly, the CODE-test dataset is from the work (Ribeiro
et al., 2020) with their model being trained on a set of over 2 million ECG records from 1,676,384 different patients in 811
counties. We show our model’s effectiveness by evaluating our performance on the same released test set of 827 samples,
but in a zero-shot manner. The samples are originally sampled at 400 Hz, with durations of either 10 seconds or 7 seconds.
Therefore, we resampled to 500 Hz and adjusted by truncating or padding with zeros as needed to get 10-second samples.
For the gold standard (ground truth), two expert cardiologists provided their diagnoses. If they agree with each other, their
consensus becomes the gold standard. In cases of disagreement, a third specialist reviews their diagnoses and determines the
final decision.

We also indicate important hyper-parameters during the fine-tuning process in Table 10. We keep training 200 epochs, batch
size at 128, and learning rate at 0.001 for the first three datasets. When conducting full fine-tuning experiments, we only
need to train 100 epochs and specifically lower the learning rates with 0.00005 and 0.0001 for Dx. and Id. tasks, respectively.

Finally, for the distribution shift experiment, we follow the SCP-codes (classes) matching settings in (Liu et al., 2024b), as
shown in Table 11. This is to support three dataset matches (PTBXL-Super and CPSC2018), (PTBXL-Super and CSN), and
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Figure 5. WordCloud visualization on the top 30 common unique reports from the MIMIC IV ECG dataset.

Table 9. Details on data configurations on five evaluated datasets. Here, LP, ZS are linear probing and zero-shot respectively, while FFT
means full fine-tuning.

Dataset Tasks Metric # Classes Train Valid Test

PTBXL-Super (Wagner et al., 2020) LP, ZS AUC 5 17,084 2,146 2,158
PTBXL-Sub (Wagner et al., 2020) LP, ZS AUC 23 17,084 2,146 2,158
PTBXL-Form (Wagner et al., 2020) LP, ZS AUC 19 7,197 901 880
PTBXL-Rhythm (Wagner et al., 2020) LP, ZS AUC 12 16,832 2,100 2,098

CPSC2018 (Liu et al., 2018) LP, ZS AUC 9 4,950 551 1,376

CSN (Zheng et al., 2022) LP, ZS AUC 38 16,546 1,860 4,620

Physionet2021-Dx. (Reyna et al., 2021) FFT CinC 26 32,640 4,079 4,079
Physionet2021-Id. (Reyna et al., 2021) FFT Accuracy 2,127 147,444 17,670 2,127

CODE-test (Ribeiro et al., 2020) ZS AUC 6 – – 827

(CPSC2018 and CSN). It is worth noting that the None value indicates the target dataset does not have a matching label for
given labels in the source dataset.

A.2. Contrastive Learning Discussion.

Why Not Use ETM Only in Zero-shot Learning. As mentioned in the Method section, ETM functions as a contrastive
learning technique in the masked auto-encoder architecture. However, it heavily relies on binary classification tasks with
explicit ECG-text pairs to learn cross-modal correspondences. It is not designed for zero-shot learning which strongly
requires the model to generalize to unseen tasks or classes without the need for such supervised pairings or fused information
during training. This motivates us to use ETS , boosting the model’s zero-shot ability.

Why N3S Can Enhance The Performance. In medical datasets, particularly the MIMIC-IV ECG dataset (Gow et al.,
2023), a significant amount of duplicate or highly similar text samples: among nearly 800,000 records, only approximately
180,000 are unique. For instance, over 100,000 samples share an identical text report, which is ”sinus rhythm normal ecg”.
Randomly selecting negative samples for contrastive loss training is not a suitable approach in this scenario. Therefore,
we propose using the N3S technique to more effectively differentiate between similar and dissimilar samples, improving
contrastive learning by selecting more meaningful negatives. Notably, during training, we observe that the ETM accuracy
without N3S stagnates around 75%, while with N3S, it exceeds 96%, demonstrating the significant impact of this approach.
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Table 10. Details on training configurations on the fine-tuned datasets. For the optimizer, we keep using Adam in all experiments.

Dataset # Epoch Batch size Learning rate

PTBXL-Super (Wagner et al., 2020) 200 128 0.001
PTBXL-Sub (Wagner et al., 2020) 200 128 0.001
PTBXL-Form (Wagner et al., 2020) 200 128 0.001
PTBXL-Rhythm (Wagner et al., 2020) 200 128 0.001

CPSC2018 (Liu et al., 2018) 200 128 0.001

CSN (Zheng et al., 2022) 200 128 0.001

Physionet2021-Dx. (Reyna et al., 2021) 100 256 0.00005
Physionet2021-Id. (Reyna et al., 2021) 100 256 0.0001

Table 11. Domain transfer category matching.
PTBXL-Super CPSC2018

HYP None
NORM NORM

CD 1AVB, CRBBB, CLBBB
MI None

STTC STE, STD

PTBXL-Super CSN

HYP RVH, LVH
NORM SR

CD 2AVB, 2AVB1, 1AVB, AVB, LBBB, RBBB, STDD
MI MI

STTC STTC, STE, TWO, STTU, QTIE, TWC

CPSC2018 CSN

AFIB AFIB
VPC VPB

NORM SR
1AVB 1AVB

CRBBB RBBB
STE STE
PAC APB

CLBBB LBBB
STD STE, STTC, STTU, STDD

A.3. Enhancing Zero-shot Performance with LLMs.

"BIGU": "Based on the input, I generated the 
following subtypes and attributes for Bigeminal pattern 
…Let me know if this meets your requirements!."

"AF": "Atrial Flutter, Atrial Fibrillation, Paroxysmal Atrial 
Flutter, Persistent Atrial Flutter, Long-standing Persistent 
Atrial Flutter."

“AFIB”:"Atrial Fibrillation, Paroxysmal Atrial Fibrillation, 
Persistent Atrial Fibrillation, Long-standing Persistent Atrial 
Fibrillation, Permanent Atrial Fibrillation.” 

"SEHYP": "septal hypertrophy, left ventricular septal 
hypertrophy, right ventricular septal hypertrophy, apical 
septal hypertrophy, mid-septal hypertrophy.”

(1) Response with merging subtypes reducing capability on new tasks

(2) Response showing limitations on LLM’s searching and hallucination

Figure 6. Limitations on MERL’s enhanced texts.
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Limitations in MERL’s Approach. In zero-shot learning, models typically rely on category names alone to make
predictions. However, by incorporating Large Language Models (LLMs), we can enhance the context by generating richer,
clinically relevant descriptions of the categories, as discussed in MERL (Liu et al., 2024b). However, we observe two main
drawbacks in their enhanced text reports, as shown in Figure 6: 1) MERL’s performance heavily depends on their sub-types
and attributes searching prompt and additional database. This leads to a limitation when testing detailed analysis with labels
that are sub-types themselves. Moreover, this also raises suspicion about the performance when new tasks require labels
that are not able to search sub-types and attributes in the database; 2) Following that point, MERL’s enhanced texts might
be uncontrollable in the outputs where the LLMs provide wrong sub-types or unnecessary context. For example, ”Atrial
Fibrillation” is already in ”AFIB” type but is also shown to be in ”AF” with other ”Atrial Flutter” types from their settings.

LLMs in D-BETA . We address the above points using a straightforward prompt strategy with explicit instructions.
Specifically, we employ a prompt: ”You are an experienced cardiologist. For a given clinical term such as ’normal ECG’,
your job is to describe each term clinically and apply your medical domain knowledge to include other relevant explanations
that will help a text encoder like Flan-T5 fully understand medical concepts. Do not include any recommendations in the
description.” This makes the LLM generate clinically accurate and more focused explainable descriptions, enhancing the
text encoding without introducing irrelevant or redundant information. For example, with the code ”AFIB”, our prompt on
GPT-4o can output: ”Atrial Fibrillation (AFIB). Irregular and often rapid heart rate due to uncoordinated atrial activity.”.

Additional Experiments. Here, we present additional experiments to highlight the effectiveness of ETM loss and masking
modeling techniques (e.g., MLM, MEM). Specifically, we perform zero-shot classification with GPT-4o support (reported in
AUC (%)) on four datasets: PTBXL-Super, PTBXL-Form, CSN, and CODE-Test.

Table 12. Impact of ETM. Results report zero-shot classification in AUC (%).

PTBXL-Super PTBXL-Form CSN CODE-Test

w/o ETM 73.2 65.8 76.6 96.2
w ETM 76.2 66.1 76.3 96.8

As indicated in Table 12, the impact of ETM is demonstrated where, removing ETM slightly decreases performance
across most datasets, particularly in PTBXL-Super (76.2 to 73.2). However, the effect on CSN is minimal, suggesting
dataset-specific sensitivity to ETM.

Table 13. Impact of MLM and MEM. Results report zero-shot classification in AUC (%).

PTBXL-Super PTBXL-Form CSN CODE-Test

w/o MLM + MEM 70.3 67.4 74.5 94.6
w MLM + MEM 76.2 66.1 76.3 96.8

Finally, we can observe that incorporating MLM and MEM noticeably improves performance across all evaluated datasets
in Table 13. Especially, gains are observed in PTBXL-Super (+5.9%), and CODE-Test (+2.2%), demonstrating that the
reconstruction tasks also play an important role in enhancing the model’s ability for better performance.
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