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ABSTRACT

Large language models (LLMs) have revolutionized text-based code automa-
tion, but their potential in graph-oriented engineering workflows remains under-
explored. We introduce SimuAgent, an LLM-powered modeling and simulation
agent tailored for Simulink. SimuAgent replaces verbose XML with a concise,
dictionary-style Python representation, dramatically cutting token counts, im-
proving interpretability, and enabling fast, in-process simulation. A lightweight
plan–execute architecture, trained in two stages, equips the agent with both low-
level tool skills and high-level design reasoning. To tackle sparse rewards in
long-horizon tasks, we propose Reflection-GRPO (ReGRPO), which augments
Group Relative Policy Optimization (GRPO) with self-reflection traces that sup-
ply rich intermediate feedback, accelerating convergence and boosting robust-
ness. Experiments on SimuBench, our newly released benchmark comprising
5300 multi-domain modeling tasks, show that a Qwen2.5-7B model fine-tuned
with SimuAgent converges faster and achieves higher modeling accuracy than
standard RL baselines, and even surpasses GPT-4o when evaluated with few-shot
prompting on the same benchmark. Ablations confirm that the two-stage curricu-
lum and abstract-reconstruct data augmentation further enhance generalization.
SimuAgent trains and runs entirely on-premise with modest hardware, delivering
a privacy-preserving, cost-effective solution for industrial model-driven engineer-
ing. SimuAgent bridges the gap between LLMs and graphical modeling environ-
ments, offering a practical solution for AI-assisted engineering design in industrial
settings.

1 INTRODUCTION

Simulink has become the de facto standard for model-based design in safety-critical industries, with
over five million engineers relying on it for developing automotive, aerospace, and energy systems
(MathWorks, 2023). Major industry players from Tesla to Boeing have deeply integrated Simulink
into their workflows, while stringent safety standards like ISO 26262 and DO-178C explicitly rec-
ommend or mandate its use for compliance (ISO, 2018; RTCA, 2011). This entrenched position
means that even modest improvements in modeling efficiency can yield substantial economic ben-
efits and accelerate certification processes—addressing the urgent need to reduce the high costs of
developing complex models.

Beyond its industrial dominance, Simulink presents unique technical challenges for large language
models (LLMs). Unlike text-based programming, Simulink employs a hierarchical, graphical
paradigm with complex block diagrams, signal routing, and strict topological constraints. This
makes it an ideal testbed for evaluating and advancing LLM reasoning capabilities in highly struc-
tured, non-textual domains. Moreover, Simulink serves as a crucial bridge to address a funda-
mental limitation of current LLMs: their disconnection from the physical world. Trained almost
exclusively on text, LLMs lack grounded understanding of physical laws, causality, and dynamic
processes (Wang et al., 2023b). Simulink provides a “physics sandbox” where LLMs can model,
simulate, and interact with systems spanning control logic, mechanics, electronics, and thermody-
namics—enabling them to move beyond abstract textual knowledge toward embodied understanding
of how physical principles govern real-world systems.

1
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Developing LLMs for graphical modeling environments faces three core challenges. First, data
scarcity: publicly available Simulink model datasets are extremely limited (Zhang et al., 2025),
making direct training of large models challenging. Second, syntactic and semantic constraints:
graphical models must adhere to strict structural rules (e.g., connection validity, parameter consis-
tency), and LLMs can easily violate these constraints or hallucinate non-existent blocks (Shrestha
& Csallner, 2021). Third, context window limitations: the descriptions of complex models (e.g.,
industrial systems with hundreds of blocks) can far exceed the LLM’s context window, necessitating
strategies like modular generation or hierarchical refinement.

Recent exploratory work has begun to investigate LLM applications in Simulink environments.
SLGPT fine-tunes GPT-2 to translate text into Simulink’s XML format, inadvertently uncovering
toolchain defects (Shrestha & Csallner, 2021). For model analysis, a requirements-driven slicing
technique was proposed to textualize Simulink models for LLM processing (Luitel et al., 2024). In
mutation testing, BERTiMuS adapts CodeBERT to generate model variants for requirements-aware
testing (Zhang et al., 2025). While these pioneering efforts demonstrate the feasibility of applying
LLMs to Simulink-related tasks, they represent only isolated solutions and remain at a prototypical
stage rather than a comprehensive modeling assistant. Developing an LLM-driven agent capable of
interacting with engineers, understanding context, and providing proactive support throughout the
entire modeling workflow remains a significant gap in current research.

Although LLMs excel in reasoning and coding (Guo et al., 2024; 2025), they often suffer from hal-
lucinations (Zhang et al., 2023) in scenarios requiring specialized knowledge, such as the domain-
knowledge-intensive field of Simulink. To mitigate this, a common approach is to enable LLMs
to retrieve external information via tool invocation (Schick et al., 2023), typically through prompt-
ing strategies (e.g., IRCoT (Trivedi et al., 2022), ReAct (Yao et al., 2023)) or fine-tuning (e.g.,
Toolformer (Schick et al., 2023)). However, these methods often depend on high-quality, manually
annotated trajectories that are difficult to obtain at scale. Reinforcement Learning (RL) (Kaelbling
et al., 1996; Sutton et al., 1999) offers another viable path for enhancing LLM tool use and reason-
ing capabilities; recent studies show RL can enable LLMs to learn complex reasoning skills solely
from environmental rewards (Guo et al., 2025). To simplify RL tuning, direct optimization methods
(Rafailov et al., 2023; Meng et al., 2024) and alternatives like Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) have emerged, the latter estimating baselines from group scores, obviat-
ing the need for a critic model. However, RL still faces sparse rewards in tool interaction—models
receive feedback only upon final success despite requiring multiple reasoning steps. Inspired by
Reflexion (Shinn et al., 2023), which achieves improvements through linguistic feedback but lacks
any parameter update mechanism, we integrate reflection directly into GRPO training: our approach
generates reflection traces from environmental feedback and tool results, enabling the model to learn
from richer signals during parameter optimization, thus accelerating convergence and improving
reasoning accuracy.

Our Contributions. To advance LLM-driven graphical modeling, we propose SimuAgent—a
plan-execute agent framework operable on laptop-grade GPUs, designed to drive the full Simulink
modeling, analysis, and fine-tuning loop end-to-end. Its key contributions are:

1. SimuAgent Framework and Lightweight Representation: SimuAgent transforms
Simulink models into a compact Python dictionary (JSON) format that LLMs can process
more efficiently. This lightweight representation compresses verbose XML while preserv-
ing hierarchical model structure, significantly reducing token consumption and improving
interpretability. Integrated with an in-process Python test harness, SimuAgent enables in-
stant structural validation and parameter tuning. For complex designs, it automatically
encapsulates related modules into subsystems to simplify modeling.

2. Reflection-GRPO (ReGRPO): We introduce ReGRPO, an enhanced version of GRPO,
which incorporates reflection traces—automatically generated feedback derived from dis-
crepancies with reference models and tool invocation results. This provides rich train-
ing signals beyond binary success, accelerating convergence and improving robustness in
sparse-reward settings.

3. Abstract–Reconstruct Data Augmentation: To strengthen model abstraction and gener-
alization, we propose a self-supervised Abstract–Reconstruct augmentation strategy. The
agent first generates a structured summary from a Simulink model, then attempts to recon-
struct the original model based solely on that summary. This loop teaches the agent to map

2
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Task 1: Search for
relevant blocks.
<tool>
{"name": "search_blocks",
"args": {"query_list":
["LED", "DC source",...]}
</tool>

From Tools:
<result>\n...\n<result>

SimuAgent

2. Execute Tasks

Naïve Approach

Task 2: Add three LEDs
connected in series.
<python>
sys_dict = {
  "Name": "LEDDriver",
  "Blocks": {"LED1": {...},
    "LED2": {...}, ...}
  "Connections": [...]
}
</python>

1. Simplify the model.
2. Search for relevant
blocks.
3. Add a current sensor
to measure the current.
...

2. Plan/Replan

3. Execute Tasks

Task 2: Search for relevant blocks.
<tool>\n{"name": "search_blocks",
"args": {"query_list": ["scope",
"current sensor",...]}</tool>

From Tools:\n<result>\n...\n<result>

Task 1: Simplify the model if it is
<python>
sys_dict_simplified = {
  "Name": "LinearLED",
  "Blocks": {...},
  "Connections": [...] }
</python>

1. Search for
relevant blocks.
2. Add three LEDs
connected in series.
3. Add a linear LED
driver and a DC
power source.
4. ...

1. Plan/Replan
add_block('ee_lib/Sensors...', ...);
set_param('LEDDriver/LED1', ...);
...

3. Generate Commands

Task 3: Add sensors to measure ...
<python>
sys_dict["Blocks"]["Sensor1"] = ...
sys_dict["Connections"].append(...)
...
</python>

1. Generate XML
<?xml version="1.0"
encoding="utf-8"?>
<System>
  <P Name="Location">...</P>
  <P Name="Open">on</P>...
  <Line>...</Line>
</System>

1. Generate Commands
add_block('simulink/LED1', ...);
set_param('LEDDriver, ...); 
...

Error-prone & hard to debug

1. Read from Image

1. Read from XML
<?xml version="1.0"
encoding="utf-8"?>
<System>
  <P Name="Location">...</P>
  <P Name="Open">on</P>
  ...
  <Line>...</Line>
</System>

Incomplete information

Too many tokens (≈43k)

OR

OR

Exec
Tasks

Update
State

...

add_block(...);
add_line(...);
...

4. Generate
Commands

sys_dict = {
  "Name": "LEDDriver",
  "Blocks": {...},
  "Connections": [...]
}

1. Read from Dict.

Fewer tokens (≈2.7k)

...

Even fewer tokens (≈1.1k)

Build a linear LED driver model with three LEDs connected in series.

Measure the current and the total radiant power of the LEDs.

...

Python-Based Testing Env for Quick Checks and Debugging 
Tools: Search (RAG), Symbolic Mathematics, Parameter Tuning, etc.
Memory: Chat History, Simulink Settings, Common Examples, etc.

complex.

Figure 1: Comparison between SimuAgent and conventional workflows.

between high-level descriptions and low-level implementations, enhancing its capacity to
reason about and synthesize complex system architectures.

4. SimuBench Public Benchmark: We release SimuBench, the first large-scale benchmark
for LLM-based Simulink modeling. It comprises 5300 tasks across control, mechanical,
electrical, fluid, thermal, and electromagnetic domains. Tasks include model creation,
modification, and question-answering (Q&A), with complete source files, XML represen-
tations, and visualizations for reproducible evaluation.

2 SIMUAGENT ARCHITECTURE

SimuAgent is an LLM-powered agent framework for the modeling and simulation of multi-domain
physical systems. It targets the automation of model construction, analysis, and validation by com-
bining lightweight representation, a plan-execute paradigm, and rapid verification, as sketched
in Figure 1.

Overall architecture. SimuAgent adopts a streamlined plan–and–execute design (Wang et al.,
2023a; Shen et al., 2023). Unlike complex multi-agent LLM systems (MAS), this approach avoids
burdensome role assignment, keeps the prompt context compact, and is far easier to fine-tune for
diverse objectives. Recent studies further indicate that MAS configurations do not consistently
deliver gains on standard benchmarks (Pan et al., 2025), reinforcing our choice of a lean architecture.

Python-based model representation and validation environment. SimuAgent introduces a
JSON-compatible Python dictionary for representing Simulink models (blue region in Figure 1).
Compared with screenshots or XML files, the dictionary offers three clear benefits:

• Compact, semantically focused. Only essential details—block names, key parameters, and con-
nectivity—are retained, while visual coordinates and styling are discarded. This slashes token
counts: in Figure 1, the XML uses ∼ 43k tokens, whereas the dictionary needs just ∼ 2.7k.

• Naturally LLM-friendly. Because LLMs handle Python effortlessly, they can generate or edit
the dictionary directly, with no format conversion or elaborate prompting.

3
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• Fast simulation and debugging. Models encoded as dictionaries can be validated inside pure
Python, eliminating repeated MATLAB Engine calls and their attendant overhead. After passing
validation, they are ported to Simulink for high-fidelity runs.

Simplification and hierarchical structuring of complex systems. For large, tightly coupled
models, SimuAgent automatically clusters internally related blocks that are irrelevant to the current
task, encapsulating them into higher-level modules with concise summaries—akin to Subsystems
or Area Annotations in Simulink. Parameters unrelated to the task may be omitted. This
purely representational simplification boosts readability, reduces both visual and token complexity,
and lowers LLM inference cost, yet leaves the underlying Simulink hierarchy unchanged.

Lightweight Python testing environment. To curb the expense of frequent MATLAB Engine
calls, SimuAgent includes a local Python-based testing environment testbed that performs static
checks on signal types, parameter ranges, and port wiring. Detected issues trigger immediate warn-
ings, allowing rapid correction before invoking MATLAB for full simulation. The same testbed
supports batch edits and fast compile–feedback loops, keeping interaction snappy during model de-
velopment.

Integration with external tools. SimuAgent ties together multiple toolchains for an extensible,
highly automated workflow. A RAG-based knowledge base enables semantic search over common
Simulink blocks; symbolic-math utilities translate equations into executable blocks; and parameter-
tuning modules optimise controllers for performance and robustness. When only a final answer is
needed, an entire reasoning sub-task can be wrapped as a standalone tool call, sparing the main
dialogue from unnecessary intermediate steps.

3 SIMUAGENT TRAINING FRAMEWORK

To boost both the performance and generalisation capability of SimuAgent, we design an enhanced
training framework that tackles data sparsity and inefficient exploration in complex system design.
The framework integrates three key ideas: 1) Staged training that matures the agent’s skills from
execution to high-level planning; 2) Abstract–Reconstruct data augmentation that converts abun-
dant raw Simulink models into self-supervised training pairs; and 3) ReGRPO that supplies richer
learning signals than scalar rewards.

3.1 STAGED TRAINING STRATEGY

We adopt a two-stage curriculum that progressively strengthens the same language model inside the
Simulink environment.

Stage 1: Execution focus. The agent learns to invoke tools and complete low-complexity tasks
such as creating small systems, editing modules, and tuning parameters. These actions require
limited reasoning and provide dense feedback, making them ideal for bootstrapping.

Stage 2: Planning integration. The curriculum then shifts to larger models and prompts that
encourage—but do not force—the agent to plan, decompose, and simplify tasks when beneficial.
Here the model must develop higher-order skills: (re)planning, architectural design, abstraction,
and modular construction. All tokens generated in the main dialogue are used for gradient updates;
however, LLM calls executed outside that context (e.g. as isolated tool invocations) are excluded
because credit assignment is ambiguous and their singleton nature precludes the grouping needed
by GRPO/ReGRPO.

3.2 ABSTRACT–RECONSTRUCT DATA AUGMENTATION

Structured summaries and documentation for Simulink projects are scarce, yet such abstractions
are crucial for teaching a model to reason about complex systems. We therefore propose a self-
supervised Abstract–Reconstruct loop, inspired by VAE-style reconstruction.

4
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...

Tool Calls

Policy
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Generate
Reflections ...
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Reference
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...
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Group
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...

Rollouts

Subgroup 1
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Figure 2: ReGRPO architecture. Black solid arrows show the original GRPO pipeline. The green
dashed lines and boxes highlight ReGRPO’s extensions: the group is split into two subgroups—
after Subgroup 1 completes rollouts, reflections on failed rollouts are generated and shared with
Subgroup 2 to guide its policy.

1. Abstract generation. Given a Simulink model, SimuAgent produces a structured summary or
textual documentation, training its ability to distil key architecture and behaviour.

2. Model reconstruction. Conditioned only on that summary, the agent attempts to rebuild the
original model, reinforcing its capacity to synthesise concrete designs from abstract specifica-
tions.

The loop is evaluated along two axes: (i) Structural completeness and fidelity—does the reconstruc-
tion preserve essential modules and connections, measured by structural comparison? (ii) Func-
tional correctness—does the reconstructed model execute successfully in simulation, indicating be-
havioural consistency?

Abstract-Reconstruct is introduced in Stage 2, after the agent has already mastered basic construc-
tion tasks in Stage 1, ensuring stable learning during this more demanding phase.

3.3 REFLECTION-GRPO (REGRPO)

Group Relative Policy Optimization (GRPO). To improve the stability of policy optimization
and remove the need for an explicit value function, Shao et al. (2024) introduce GRPO. For each
input question q, the reference policy πref samples a group of responses {o1, . . . , oG}. The policy
model πθ is then optimized by maximizing

JGRPO(θ) =Eq∼D,{oi}∼πold(·|q)
1

G

G∑
i=1

1

|oi|
∑

1≤t≤|oi|

{
min

[
πθ(oi,t|q, oi,<t)

πold(oi,t|q, oi,<t)
Âi,t,

clip
(

πθ(oi,t|q, oi,<t)

πold(oi,t|q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− β DKL [πθ||πref]

}
, (1)

The advantage Âi,t is computed within a group, so the average group reward acts as a baseline and
no extra value network is required. Hyper-parameters ϵ and β control the clipping range and KL
regularisation strength, respectively.

Reflection-GRPO (ReGRPO). GRPO can struggle on sparse-reward tasks because a single scalar
reward offers little guidance. ReGRPO augments GRPO with a Reflection Mechanism that supplies
rich textual feedback:

1. Two-subgroup architecture. For each input, the first subgroup attempts the task with the
normal prompt. If its output falls short, the model reflects on its reasoning trace, com-
pares it with the reference answer (or environment feedback), and distils the key insights
as reflection text.

2. Guided exploration. The reflection text ei is concatenated with the original input and
passed to a second subgroup, which re-attempts the task with more focused exploration.
Keyword filtering and other safeguards prevent leakage of ground-truth answers, and
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(c) GRPO vs. ReGRPO
(tool-enabled setting)
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Figure 3: Comprehensive ablation study of ReGRPO training dynamics on the GSM8K dataset.
(a) With tool calls disabled, ReGRPO achieves higher returns earlier than vanilla GRPO but shows
mild late-stage oscillations; GRPO learns more slowly yet remains stable. (b) The number of self-
reflections per episode rapidly diminishes as the agent gains task proficiency, signalling reduced
deliberation overhead. (c) When tool invocations are permitted, ReGRPO again exhibits superior
sample-efficiency, though both methods eventually plateau at comparable performance levels. (d)
Over the course of training, the agent gradually substitutes costly self-reflection with a moderate,
steady rate of tool usage, converging to a lean and effective decision-making routine. The shaded
error bands represent the variance across six runs with different random seeds.

stronger language models can be employed to improve the quality and generality of the
reflections.

3. Adaptive frequency. Reflection is invoked often during early training for faster progress,
then gradually decays—e.g. via non-replacement sampling or a probabilistic schedule—so
that mature policies learn to solve tasks autonomously. Once performance stabilises, reflec-
tion can be disabled entirely, reverting to vanilla GRPO for inference-time compatibility.

GRPO / ReGRPO with Tool Calls. Unlike vanilla GRPO, when tool calls are allowed, o now
comprises both LLM-generated tokens and the tokens returned by external tools T . We therefore
apply an extra masking operation to tokens returned by tools: I(oi,t) = 1 if oi,t is produced by the
LLM, and I(oi,t) = 0 if it is supplied by a tool. This design avoids treating tool outputs as learning
targets, which may lead to unintended learning dynamics, and instead allows the LLM to focus on
how to use these tools effectively. Recent work on search-augmented LLMs (Jin et al., 2025) also
employs a similar masking scheme and reports higher performance than training without masking.
The training objective for GRPO/ReGRPO with tool calls becomes

JTool(θ) =Eq∼D,{oi}∼πold(·|q;T )
{ei}∼πold or ei=“”

1

G

G∑
i=1

1∑|oi|
t=1 I(oi,t)

∑
1≤t≤|oi|
I(oi,t)=1

{
min

[
πθ(oi,t|q, ei, oi,<t; T )
πold(oi,t|q, ei, oi,<t; T )

Âi,t,

clip
(

πθ(oi,t|q, ei, oi,<t; T )
πold(oi,t|q, ei, oi,<t; T )

, 1− ϵ, 1 + ϵ

)
Âi,t

]
− β DKL [πθ||πref]

}
, (2)

where ei represents the reflection text. For GRPO with tool calls, ei is an empty string. In our
ReGRPO framework, the first subgroup keeps ei empty, while the second subgroup populates ei with
reflections distilled from a failed rollout sequence generated by the first subgroup. The ReGRPO
algorithm is shown in Algorithm 1, where the variable f denotes a prompt template designed to
encourage the LLM to reflect. An example of such a template is shown below:

Table 1: Instruction prompt template employed in the reflection stage of ReGRPO training. The
placeholder answer will be replaced with the reference answer during training.

The reference answer is: answer, which differs from your previous response. Try to identify
which part of your reasoning process or tool usage most likely caused the discrepancy, so you
can avoid similar mistakes in the future. Avoid vague statements; instead, give clear and specific
insights—for example, noting if a tool was misused, a step was skipped, or an assumption was
incorrect. If you truly have no reasonable idea, write exactly: None. Your explanation must be
under 150 words and must not include or refer to the reference answer.
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Algorithm 1 Reflection-GRPO with Tool Calls
Input initial policy πθinit ; tools T ; tasks D; reflection prompt f ; buffer E ; subgroup sizes G1, G2

(G1 +G2 = G).
1: πθ ← πθinit

2: for iteration = 1, . . . , I do
3: πref ← πθ, p← decay(iteration)
4: for step = 1, . . . ,M do
5: Sample mini-batch Db ⊂ D, πθold ← πθ

6: for all q ∈ Db do
7: E ← ∅
8: for i = 1 : G1 (in parallel) do
9: o

(1)
i ∼ πθold(· | q; T ), obtain reward r

(1)
i

10: if task failed then
11: e ∼ πθold(· | q, o

(1)
i , f); E ← E ∪ {e}

12: for i = 1 : G2 (in parallel) do
13:

ei ←
{

sample from E , E ̸= ∅ ∧ Uniform(0, 1) < p

“” otherwise

14: o
(2)
i ∼πθold(· | q, ei; T ), obtain r

(2)
i

15: Compute Âi,t using rewards {r(1)i } ∪ {r
(2)
i }

16: for k = 1 : µ do
17: Update πθ by maximizing Eq. equation 2
18: Optional: update reward model if used
19: return πθ
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Figure 4: Two-stage training analysis on the SimuBench dataset. (a) During Stage 1, ReGRPO
learns markedly faster than vanilla GRPO and attains a higher asymptotic reward. (b) Tracing Stage
1 behaviour shows an early surge in both reflections and tool calls; as competence grows, reflec-
tions are pruned while a modest, steady tool-invocation rate is retained. (c) In Stage 2, injecting
abstract–reconstruct augmented data accelerates convergence and raises the final reward, indicating
improved robustness and generalization. (d) Skipping Stage 1 and training Stage 2 from scratch
yields noticeably slower learning and a lower plateau, highlighting the benefit of the curriculum.

4 EXPERIMENTAL SETUP AND FINDINGS

4.1 SIMUBENCH DATASET

To overcome the shortage of standardized benchmarks for LLM-assisted Simulink modeling, we
introduce SimuBench, a large-scale, multi-domain corpus comprising 5 300 tasks. Tasks span
model creation, editing (adding, deleting, or altering components and parameters), and general
model–based QA (e.g. “How many ammeters are present?” “Where is the measurement taken?”).
Domains covered include mathematics, control systems, mechanical and electrical engineering,
fluid dynamics, thermodynamics, and electromagnetics. Besides official Simulink demos and au-
thoritative open-source engineering textbooks, SimuBench incorporates topologies and parame-
ters from real-world systems, including the Schutterwald natural gas distribution network in Ger-
many (Kisse et al., 2020) and the GB electricity transmission network from the Power Systems Test
Case Archive (Bukhsh & McKinnon, 2013).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance on the SimuBench test dataset (all values in %). Bold indicates best in each
column. Small systems ≤ 12 blocks; large systems > 12.

Models Methods Small Systems Large Systems

Creat. Modif. QA Creat. Modif. QA Avg.

Qwen2.5-7b Direct Inference 10.71 38.71 44.93 1.57 19.79 20.07 26.57
CoT 9.43 27.43 42.43 1.07 20.93 20.00 23.55
RAG 20.71 35.50 64.43 2.93 18.71 32.93 33.70
SFT 25.43 39.21 49.93 3.29 16.43 23.93 30.38

GPT-4o Image 36.79 65.00 70.43 8.50 40.50 37.43 48.85
(2024-11-20) XML 36.79 67.29 69.29 8.50 42.29 46.21 50.45
SimuAgent No Training 10.21 36.57 41.50 1.07 20.07 20.50 25.29

Only Stage 1 38.43 62.57 70.21 7.29 28.79 38.50 46.55
Only Stage 2 31.43 57.79 62.00 9.79 33.07 46.57 44.38
Stage 1 & 2 39.71 64.93 69.07 11.71 43.43 54.50 51.89

Table 3: Cross-environment generalization performance of ReGRPO (accuracy, %). ‘SimuBench’
columns report zero-shot transfer from a model trained only on SimuBench. ‘+FT’ denotes minimal
domain-specific fine-tuning on that model (607 Modelica / 730 PSCAD examples).

General Math Code Modelica PSCAD

MMLU BBH GSM8K MATH HumanEval MBPP SimuBench +FT SimuBench +FT

GRPO 77.31 74.04 92.40 53.18 58.45 76.38 31.96 42.62 31.21 41.61
ReGRPO 78.14 74.73 93.30 53.91 61.89 79.83 33.84 44.54 33.04 43.49

4.2 EXPERIMENTAL RESULTS

All experiments employ Qwen-2.5-7B-Instruct (Yang et al., 2024). Each algorithm uses a training
group of eight; the ReGRPO cohort is further split into two sub-groups of four. On GSM8K dataset
(Cobbe et al., 2021), (Fig. 3) ReGRPO converges markedly faster than GRPO whether external tools
(here Python is used) are enabled or not, while both reach comparable final reward. On SimuBench
(Fig. 4) the advantage widens, reflecting the dataset’s high interaction frequency and structured
reference answers (block lists and connection details rather than single numbers).

Two-stage curriculum. Stage 1 trains on systems with ≤ 12 blocks, Stage 2 on larger models
(> 12 blocks) while explicitly encouraging planning and reflection. During Stage 2, we add 200
augmentation examples that contain only a Simulink model without document; the agent must first
generate a textual summary, then rebuild the model from that summary. This raises the convergence
plateau (Fig. 4c). Skipping Stage 1 slows learning and lowers the final score (Fig. 4b).

Benchmark comparison. Table 2 shows that our full pipeline (Stage 1 + Stage 2) for SimuAgent
achieves the highest overall success rate (51.89%), surpassing every baseline on both small and
large systems. It consistently outperforms Chain-of-Thought (CoT), Retrieval-Augmented Gener-
ation (RAG) and supervised fine-tuning (SFT) across all metrics, underscoring both the value of
SimuAgent and the effectiveness of the ReGRPO-based training framework.

Among pretrained baselines, GPT-4o demonstrates strong performance with its XML-based ap-
proach reaching 50.45%—narrowing the gap to just 1.44% behind SimuAgent. Notably, GPT-4o
excels in modification tasks for small systems (67.29%) but still lags significantly in large system
creation (8.50% vs. SimuAgent’s 11.71%) and QA tasks (46.21% vs. 54.50%), highlighting the
benefits of domain-specific training and tool use.

Ablation studies. Ablation studies reveal the critical importance of both training stages: using
only Stage 1 achieves 46.55% (−5.34 points), while only Stage 2 reaches 44.38% (−7.51 points).
The complementary nature of the stages is evident—Stage 1 establishes strong foundations on
smaller systems, while Stage 2 enables better generalization to complex, large-scale models. With-
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out any training, SimuAgent performs comparably to the base Qwen-2.5-7B model (25.29% vs.
26.57%), confirming that the performance gains stem from our training methodology rather than
architectural changes.

4.3 GENERALIZATION AND CROSS-PLATFORM TRANSFER

We conducted experiments that demonstrate (1) the general effectiveness of ReGRPO over GRPO
across diverse tasks and (2) SimuAgent’s ability to transfer learned modeling principles to other
platforms. Table 3 presents these results, validating both the domain-agnostic nature of our approach
and the broad applicability of the reflection mechanism.

ReGRPO’s consistent advantages. Across all evaluated tasks, ReGRPO outperforms GRPO,
confirming that our reflection mechanism extends beyond Simulink modeling. The improvements
are modest but consistent in general reasoning (MMLU: +0.83%, BBH: +0.69%) and mathematics
(GSM8K: +0.90%, MATH: +0.73%). The advantage becomes more pronounced in code genera-
tion tasks—on HumanEval (Chen et al., 2021), it improves by 5.9% (reaching 61.89%), and on
MBPP (Austin et al., 2022) by 4.5% (reaching 79.83%)—indicating that the reflection mechanism
is particularly effective in structured, feedback-rich environments similar to Simulink modeling.

Cross-platform modeling transfer. The rightmost two columns of Table 3 demonstrates SimuA-
gent’s cross-platform capabilities. Despite being trained exclusively on Simulink data, SimuAgent
achieves 33.84% accuracy on Modelica (Fritzson, 2014) and 33.04% on PSCAD (Manitoba HVDC
Research Centre, 2020), representing clear improvements over the untrained baseline (28.34% and
27.67%, respectively). This transfer occurs because our Python dictionary representation naturally
accommodates different modeling paradigms—Simulink’s signal flow, Modelica’s equation-based
systems, and PSCAD’s electrical networks all map to similar graph structures.

With minimal domain-specific fine-tuning (607 examples for Modelica, 730 for PSCAD), perfor-
mance further rises to 44.54% and 43.49% respectively. Notably, ReGRPO maintains its advantage
over GRPO even in these transfer scenarios, demonstrating that the reflection mechanism general-
izes across modeling platforms. Adapting to a new environment requires only implementing API
interfaces, defining a component dictionary, and building a tool library—while the core ReGRPO
algorithm and plan–execute framework remain unchanged. This confirms the universality of our
approach, laying a solid foundation for cross-platform applications in model-driven engineering.

5 CONCLUSION

In this work we introduced SimuAgent, a new LLM-driven agent for automating and assisting
modeling tasks in Simulink. SimuAgent adopts a compact, LLM-friendly Python-dictionary rep-
resentation that cuts token usage, boosts interpretability, and enables rapid simulation. Built on a
lightweight plan–execute architecture, the agent employs staged training and the ReGRPO algorithm
to tackle the sparse-reward landscape typical of long-horizon decision making.

Experiments on the newly released SimuBench benchmark show that SimuAgent converges faster
and achieves higher modeling accuracy than standard RL baselines. The staged curriculum and
abstract–reconstruct data augmentation further improve generalization and robustness.

Because SimuAgent can be trained and deployed entirely on-premise with modest-size models, it
offers a privacy-preserving, cost-effective solution for industrial workflows. Its ability to interpret,
generate, and reason about complex Simulink models paves the way for the next generation of
intelligent, model-driven engineering tools.

Future work will explore richer multimodal grounding (e.g., incorporating visual information from
Simulink diagrams), human-in-the-loop reward modeling, and extensions to broader graph-based
design environments beyond Simulink.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, and et al. Program synthesis with
large language models. In International Conference on Learning Representations (ICLR), 2022.
URL https://arxiv.org/abs/2108.07732.

W.A. Bukhsh and Ken McKinnon. Power Systems Test Case Archive: GB Network. https:
//webhomes.maths.ed.ac.uk/OptEnergy/NetworkData/fullGB/, March 2013.
Complete Great Britain transmission network dataset containing 2224 buses, 3207 branches and
394 generators.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique P. de Oliveira Pinto, and et al.
Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021. URL
https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-
Physical Approach. John Wiley & Sons, 2014. URL https://onlinelibrary.wiley.
com/doi/book/10.1002/9781118989166.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

ISO. Iso 26262:2018 - road vehicles — functional safety. Standard ISO 26262:2018, International
Organization for Standardization, Geneva, Switzerland, December 2018. URL https://www.
iso.org/publication/PUB200262.html. 12 parts.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Jolando M Kisse, Martin Braun, Simon Letzgus, and Tanja M Kneiske. A gis-based planning ap-
proach for urban power and natural gas distribution grids with different heat pump scenarios.
Energies, 13(16):4052, 2020.

Dipeeka Luitel, Shiva Nejati, and Mehrdad Sabetzadeh. Requirements-driven slicing of simulink
models using llms. In 2024 IEEE 32nd International Requirements Engineering Conference
Workshops (REW), pp. 72–82. IEEE, 2024.

Manitoba HVDC Research Centre. PSCAD/EMTDC User’s Guide, 2020. URL https://www.
pscad.com/knowledge-base/article/163. Version 4.6.

MathWorks. Mathworks company factsheet. Technical report, MathWorks, March 2023.
URL https://www.mathworks.com/content/dam/mathworks/fact-sheet/
2023-company-factsheet-8-5x11-8282v23.pdf. Company factsheet, Document
8282v23.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Information Processing Systems, 37:124198–124235,
2024.

10

https://arxiv.org/abs/2108.07732
https://webhomes.maths.ed.ac.uk/OptEnergy/NetworkData/fullGB/
https://webhomes.maths.ed.ac.uk/OptEnergy/NetworkData/fullGB/
https://arxiv.org/abs/2107.03374
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989166
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989166
https://www.iso.org/publication/PUB200262.html
https://www.iso.org/publication/PUB200262.html
https://www.pscad.com/knowledge-base/article/163
https://www.pscad.com/knowledge-base/article/163
https://www.mathworks.com/content/dam/mathworks/fact-sheet/2023-company-factsheet-8-5x11-8282v23.pdf
https://www.mathworks.com/content/dam/mathworks/fact-sheet/2023-company-factsheet-8-5x11-8282v23.pdf


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, et al. Why do multiagent
systems fail? In ICLR 2025 Workshop on Building Trust in Language Models and Applications,
2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

RTCA. Do-178c: Software considerations in airborne systems and equipment certification. Stan-
dard DO-178C, RTCA, Washington, DC, December 2011. URL https://www.rtca.org/
do-178/. Also published as EUROCAE ED-12C.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Sohil Lal Shrestha and Christoph Csallner. Slgpt: Using transfer learning to directly generate
simulink model files and find bugs in the simulink toolchain. In Proceedings of the 25th In-
ternational Conference on Evaluation and Assessment in Software Engineering, pp. 260–265,
2021.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning. Journal of Cognitive Neuro-
science, 11(1):126–134, 1999.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023a.

Yi Ru Wang, Jiafei Duan, Dieter Fox, and Siddhartha Srinivasa. Newton: Are large language models
capable of physical reasoning? In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 9743–9758, Singapore, 2023b. Association for Computational Linguistics.
URL https://aclanthology.org/2023.findings-emnlp.652.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Jingfan Zhang, Delaram Ghobari, Mehrdad Sabetzadeh, and Shiva Nejati. Simulink mutation testing
using codebert. arXiv preprint arXiv:2501.07553, 2025.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023.

11

https://www.rtca.org/do-178/
https://www.rtca.org/do-178/
https://aclanthology.org/2023.findings-emnlp.652


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

This appendix provides dataset details, experimental settings, ablation results, and failure analyzes
that complement the main paper.

A.1 LLM USAGE

An LLM was used solely for light copyediting (grammar and wording) on limited portions of the
manuscript. It did not contribute to the study conception, methodology, experiments, analyses, or
substantive writing. All content was verified by the authors, who take full responsibility for it.

A.2 SIMUBENCH DATASET

We release SimuBench (available at https://huggingface.co/datasets/SimuAgent/
SimuBench), a large-scale benchmark expressly designed to evaluate LLMs on Simulink modeling
tasks. The dataset contains 5,300 tasks spanning six system-design domains: control, mechanical,
electrical, fluid, thermal, and electromagnetic.

Existing official Simulink examples are insufficient for LLM training: (i) they are limited in number;
(ii) many models have deeply nested subsystems that favor direct reuse over modular construction;
and (iii) they rarely include analytical questions or explicit task objectives. Although a small frac-
tion of SimuBench tasks were inspired by official examples, the vast majority were derived from
open-access academic literature, standard textbooks, or carefully reconstructed models of real-world
systems such as power grids and natural-gas networks.

Each task ships with a Simulink model file, its corresponding schematic, and a set of reference
question–answer pairs. Tasks fall into three categories: Model Creation—build a model from
scratch given high-level requirements; Model Editing—modify or extend an existing model; Model
Question-Answering—analyze a model and answer queries about its structure, parameters, or be-
havior. SimuBench is fully public and intended for both training and comprehensive evaluation.

A.3 EXPERIMENTAL SETUP AND HYPERPARAMETERS

Hardware and Optimizer Settings Experiments were conducted on a single node equipped with
eight H100 GPUs. Unless stated otherwise, we used a total batch size of 512 (mini-batch 256,
micro-batch 64). The maximum sequence length was 8,192 tokens. The learning rate was 1×10−6,
and we sampled eight responses per prompt. The KL divergence coefficient was β = 0.04 and
the clip ratio ϵ = 0.2. Rollouts were generated with vLLM (GPU-memory utilization 0.9), using
temperature 1.0 and top-p 1.0.

To standardize tool invocation and replanning, we adopt the prompting template summarized in
Table 4.

Reward Design For question-answering tasks, the reward combines answer correctness and
output-format compliance. For model-generation tasks, additional terms evaluate (i) structural and
functional similarity to a reference, (ii) completeness and executability, and (iii) successful tool
usage. Rewards are min–max normalized to the range [0, 1].

A.4 HYPERPARAMETER ABLATION STUDY

We conducted an extensive ablation study to determine how each key hyper-parameter influences
SimuAgent’s accuracy on SimuBench. Table 5 reports the full sweep, obtained with the corrected
scorer. Under the economical setting of group size G=8, learning rate LR = 10−6 and β = 0.04,
the default configuration delivers the best cost–benefit balance.

• Group size. Shrinking the group to G = 4 amplifies gradient variance and lowers the
overall average by –1.78%; enlarging it to G=16 brings only a modest +0.25% gain.

• Adaptive reflection. Removing reflection drops performance by 3.05%, while forcing
reflection every turn is even worse (–5.64%).
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Table 4: Templates for Prompting Tool Use and Replanning. The placeholder
tool_descriptions will be replaced with descriptions of the available tools.

Prompt Template for Tool Invocation

Think step-by-step inside <think>...</think> tags. After thinking, choose ONE of the follow-
ing:

- Call a tool inside <tool>...</tool> tags
- Execute Python inside <python>...</python> tags
- Provide the final answer inside <answer>... </answer> tags

Available tools are listed in tool_descriptions.
To call a tool, write a JSON object inside <tool> tags with:

- "name": the tool’s name
- "args": the arguments to pass to the tool

The tool’s output will appear inside <result> tags. Feel free to invoke tools multiple times if
needed.

Prompt Template for Replanning Decisions

Based on the current state, decide on the most appropriate next action:
1. If the plan requires refinement, return <tool>{"name": "plan", "args": {"plan_list":
[...]}}</tool> with the updated steps.
2. If the next step in the current plan should be executed immediately, return
<answer>Continue</answer>.
3. If the entire task is complete, return <answer>Finish</answer>.

• Two-stage curriculum. Capping Stage 1 at ≤ 8 blocks trims 2.31% off the mean score;
skipping Stage 1 entirely costs 7.51%.

• Reward shaping. “Correctness-Only” lowers the average by 5.67 points, with the largest
drops in creation and modification.

• LR–KL schedule. A higher LR of 10−5 with β = 0.07 nearly matches the default, but
too small an LR (10−7, β = 0.01) starves learning and an aggressive LR (10−4, β = 0.15)
hurts creation despite decent QA.

• LoRA. For LoRA, we adopt rank r = 32, scaling factor α = 64, and a learning rate
of 5 × 10−6; this configuration retains ∼97.5% of the full fine-tune performance while
remaining parameter-efficient.

• Model scale. Performance scales with model size: Qwen2.5-3B averages 38.69%, while
Qwen2.5-14B attains 52.78% (highest overall accuracy).

These results confirm that the two-stage curriculum, ReGRPO with adaptive reflection, and struc-
turally informed rewards dominate performance, and remain robust across model scales, optimiza-
tion settings and tuning strategies.

We also compare the runtime of GRPO and ReGRPO to assess the overhead introduced by reflection;
see Figure 5. ReGRPO is slower in absolute wall-clock time per rollout, but both methods scale
similarly with the number of turns, and the relative overhead shrinks from about 13.5% at one turn
to about 7.2% at eight turns, making the added cost increasingly negligible for longer rollouts.

A.5 FAILURE ANALYSIS ON SIMUBENCH

We conducted a comprehensive examination of 1,400 test tasks in SimuBench, systematically ana-
lyzing the 673 cases where SimuAgent failed on the first attempt. As summarized in Table 6, our
analysis identifies five primary failure patterns, which collectively account for nearly all failed cases.
These failure patterns exhibit strong correlation with task complexity. Large systems (>12 blocks),
cross-domain editing tasks requiring adherence to conservation laws, and compound operations de-
manding more than five planning steps show significantly higher failure rates. These scenarios
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Table 5: Ablation results for SimuAgent on SimuBench. Values are accuracy (%), higher is better.
Overall best scores are in bold; best scores for the 7B model are underlined.

Config. Key Change Create (%) Modify (%) QA (%) Avg. (%)

Default – 30.06 55.11 64.11 51.89
(A) G = 4 Smaller group size 29.95 52.23 62.33 50.11
(B) G = 16 Larger group size 30.94 54.96 64.35 52.14
(C) No Reflection GRPO only 27.37 54.66 58.02 48.84
(D) Always Reflect p=1.0 27.58 48.20 57.56 46.25
(E) Fixed p = 0.5 Fixed reflection probability 27.97 54.45 60.87 49.93
(F) Stage 1≤ 8 Smaller Stage 1 threshold 28.96 52.30 61.48 49.58
(G) No Curriculum Skip Stage 1 23.96 46.56 56.74 44.38
(H) Correctness Only Remove format/tool-use rewards 26.67 48.06 58.29 46.22
(I) No Augmentation Remove abstract-reconstruct 29.84 52.19 63.34 50.43
(J) LR=1e-7, β=0.01 Lower LR & KL coefficient 29.24 52.30 57.25 48.14
(K) LR=1e-5, β=0.07 Higher LR & KL coefficient 29.60 55.47 63.86 51.82
(L) LR=1e-4, β=0.15 Highest LR & KL coefficient 28.21 53.89 63.81 50.83
(M) LoRA (r=32) Parameter-efficient fine-tune 29.74 54.28 61.66 50.61
(N) Qwen2.5-3B Smaller model 20.52 41.00 49.27 38.69
(O) Qwen2.5-14B Larger model 30.65 56.08 65.13 52.78

Table 6: Failure Types in SimuBench and Their Root Causes

Failure Type Typical Symptoms Root Causes

Topology /
Connection
Errors (33.9%)

• Incorrect port naming
• Port domain mismatch
• Line direction wrong

• Limited grasp of physical domain constraints
• Python validator misses complex Simscape rules
• Complex multi-domain port conventions

Block Selection /
Implementation
Errors (28.5%)

• Use of similarly named incorrect blocks
• Incorrect library path hierarchy
• Missing Solver Configuration block

• Confusion from similar names across libraries
• Deep, sparsely documented library hierarchies
• Limited physical system knowledge

Parameter
Omission or
Errors (17.7%)

• Missing required parameter fields
• Parameter name misspellings
• Computed fields left empty

• Overlooked entries in large dictionaries
• Cross-block dependencies exceed reasoning span
• Inconsistent parameter conventions

Premature Task
Termination
(12.5%)

• Halting after tool errors
• Invoking Finish before task is done
• Misjudging completion status

• Weak self-assessment of progress
• Limited error recovery strategies
• Insufficient replanning capabilities

Context Length
Exceeded (7.3%)

• Token limit reached mid-task
• Incomplete multi-stage plans
• Partial system generation

• Inadequate context window for large systems
• Verbose reasoning traces and representations
• Inefficient token allocation

challenge the agent’s capacity for port alignment, hierarchical library navigation, bulk parameter
specification, and dynamic replanning.

A.6 EXTENDED RESULTS AND CASE STUDIES

To complement the quantitative ablations, Tables 7–12 present six case studies spanning model
editing and creation. The two GPT-4o failures highlight common pitfalls—library-path mismatches,
invalid object references, and missing configuration—whereas SimuAgent’s four cases demonstrate
tool-aware block discovery, port alignment, and error recovery that yield executable models.
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Figure 5: Runtime comparison between GRPO and ReGRPO. (a) Mean wall-clock duration per roll-
out (no-tool setting). ReGRPO is consistently slower than GRPO, yet both methods exhibit similar
scaling with the number of turns. (b) Percentage runtime overhead of ReGRPO relative to GRPO.
Although ReGRPO incurs a noticeable slowdown for short rollouts, the relative overhead steadily
diminishes—from about 13.5% at one turn to about 7.2% at eight turns—indicating that its extra
cost becomes less significant as rollout length (and thus typical tool-calling scenarios) increases.

Table 7: GPT-4o case study 1 (failed).

Question: Add a Temperature Sensor between the Fuel Cell Stack and the T_meas port of the
Pump Control.

GPT-4o:
Read from Image:

Coolant	Channels

Pump

Coolant	Properties

RadiatorEnvironment
Temperature

T

Coolant	Tank

cmdT_set

T_meas

Control
SignalsT_set

T_meas
cmd

Pump	ControlMax	Flow

Ref	Temperature

f(x)	=	0

H

Fuel	Cell	Stack

<think> Here is the MATLAB code to programmatically add a Temperature Sensor between
the Fuel Cell Stack and the T_meas input of the Pump Control in the open model... </think>
<answer> model = ’CoolingSystem’; open_system(model);
sensorPos = [800 450 850 500]; converterPos = [900 450 950 500];
add_block(’simscape/Foundation/Temperature Sensors/Temperature Sensor’, [model ’/Temper-
ature Sensor’], ’Position’, sensorPos);
add_block(’simscape/Utilities/PS-Simulink Converter’, [model ’/PS-Simulink’], ’Position’, con-
verterPos);
add_block(’simscape/Foundation/Thermal/Thermal Reference’, [model ’/Thermal Reference’],
’Position’, [800 520 850 550]);
add_line(model, ’Fuel Cell Stack/H’, ’Temperature Sensor/H’, ’autorouting’, ’on’);
add_line(model, ’Thermal Reference/R’, ’Temperature Sensor/R’, ’autorouting’, ’on’);
add_line(model, ’Temperature Sensor/S’, ’PS-Simulink/1’, ’autorouting’, ’on’);
add_line(model, ’PS-Simulink/1’, ’Pump Control/T_meas’, ’autorouting’, ’on’); </answer>
Simulink Error: There is no block named ’simscape/Foundation/Temperature Sensors/Tempera-
ture Sensor’
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Table 8: GPT-4o case study 2 (failed).

Question: Add a Temperature Sensor between the Fuel Cell Stack and the T_meas port of the
Pump Control.

GPT-4o:
Read from XML:
<?xml version="1.0" encoding="utf-8"?>
<System>

<P Name="Location">[-1, -8, 1921, 1041]</P>
<P Name="Open">on</P>
<P Name="ZoomFactor">241</P>
<P Name="ReportName">simulink-default.rpt</P>
<P Name="SIDHighWatermark">49</P>
<Block BlockType="Reference" Name="Convective Heat&#xA;Transfer" SID="2">

<PortCounts lconn="1" rconn="1"/>
<P Name="Position">[515, 226, 555, 254]</P>
<P Name="ZOrder">230</P>
<P Name="BlockMirror">on</P>
<P Name="LibraryVersion">24001000.1</P>
<P Name="SourceBlock">fl_lib/Thermal/Thermal Elements/Convective Heat

Transfer</P>
...... 819 lines, 20,231 tokens

<Line>
<P Name="ZOrder">10</P>
<P Name="Src">17#out:1</P>
<P Name="Dst">28#in:1</P>

</Line>
<Line>

<P Name="ZOrder">11</P>
<P Name="Src">29#out:1</P>
<P Name="Dst">17#in:1</P>

</Line>
</System>
<think> To insert a temperature sensor between the Fuel Cell Stack and the T_meas input of
the Pump Control block in the Simulink model named CoolingSystem, I can use the following
MATLAB script: ... </think>
<answer> open_system(’CoolingSystem’);
sensorPath = ’CoolingSystem/Temperature Sensor’; fuelCellPath = ’CoolingSystem/Fuel Cell
Stack’; pumpCtrlPath = ’CoolingSystem/Pump Control’;
add_block(’fl_lib/Thermal/Thermal Sensors/Temperature Sensor’, ... sensorPath, ... ’Position’,
[790, 440, 830, 470]);
delete_line(’CoolingSystem’, ’Fuel Cell Stack/1’, ’Pump Control/2’);
add_line(’CoolingSystem’, ’Fuel Cell Stack/1’, ’Temperature Sensor/L’, ’autorouting’,’on’);
add_line(’CoolingSystem’, ’Temperature Sensor/R’, ’Pump Control/2’, ’autorouting’,’on’);
</answer>
Simulink Error: Invalid Simulink object name: ’Fuel Cell Stack/1’.
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Table 9: SimuAgent case study 1 (successful).

Question: Add a Temperature Sensor between the Fuel Cell Stack and the T_meas port of the Pump
Control.

SimuAgent:
Read from Python:
sys_dict = {"Blocks": {"Convective Heat Transfer": {"Type": "Convective Heat Transfer"}, "Coolant Chan-
nels": {"Type": "Pipe (TL)"}, "Coolant Properties": {"Type": "Thermal Liquid Settings (TL)"}, "Coolant
Tank": {"Type": "Coolant Tank"}, "Environment Temperature": {"Type": "Temperature Source"}... },
"Connections": [{"Src": "Convective Heat Transfer/LConn1", "Dst": "Radiator/LConn2"}, {"Src": "Ther-
mal Mass/LConn1", "Dst": "Radiator/LConn2"}, ...]}
<think> The user wants to add a temperature sensor. I need to identify the specific block for a temperature
sensor. The sensor should be placed between "Fuel Cell Stack" and the "T_meas" port of "Pump Control".
I should first search for the "Temperature Sensor" block to get its details ... </think>
<tool> {"name": "search_blocks", "args": {"query_list": ["Temperature Sensor"]}} </tool>
<result> "Temperature Sensor"
- Block: Temperature Sensor
- Library: Simscape / Foundation Library / Thermal / Thermal Sensors
- Description: The Temperature Sensor block represents an ideal temperature sensor, that is, a device that
measures either the absolute temperature at a node, or the temperature difference between two nodes, with-
out drawing any heat.
Connections A and B are thermal conserving ports that connect to the two points where temperature is being
monitored. Port T is a physical signal port that outputs the temperature difference value. ... </result>
<think> Okay, I have the "Temperature Sensor" block details. It has thermal ports (A, B) and a physical
signal output (T). To measure temperature from the "Fuel Cell Stack", I’ll connect one thermal port of the
sensor (let’s assume port A, which will be LConn1 in SimuAgent’s abstraction) to an output of the "Fuel
Cell Stack". ... </think>
<python> sys_dict["Blocks"]["Temperature Sensor"] = "Type": "Temperature Sensor", "Tempera-
ture_measure": "Absolute"
sys_dict["Blocks"]["PS-Simulink Converter"] = "Type": "PS-Simulink Converter"
sys_dict["Connections"].append({"Src": "Fuel Cell Stack/LConn1", "Dst": "Temperature Sensor/L-
Conn1"})
sys_dict["Connections"].append({"Src": "Temperature Sensor/RConn2", "Dst": "PS-Simulink Convert-
er/LConn1"})
sys_dict["Connections"].append({"Src": "PS-Simulink Converter/1", "Dst": "Pump Control/2"})
</python>
<result> Python execution completed. No errors, and no result returned. </result>
Based on the current state, decide on the most appropriate next action: ...
<answer> Finish </answer>
Convert sys_dict_detailed into MATLAB Commands:
add_block(’fl_lib/Thermal/Thermal Sensors/Temperature Sensor’, ’CoolingSystem/Temperature Sensor’,
’temperature_measure’, "false");
add_block(’nesl_utility/PS-Simulink Converter’, ’CoolingSystem/PS-Simulink Converter’);
add_line(model, ’Fuel Cell Stack/LConn1’, ’Temperature Sensor/LConn1’, ’autorouting’, ’on’);
add_line(model, ’Temperature Sensor/RConn2’, ’PS-Simulink Converter/LConn1’, ’autorouting’, ’on’);
add_line(model, ’PS-Simulink Converter/1’, ’Pump Control/2’, ’autorouting’, ’on’);
% Simulink.BlockDiagram.arrangeSystem(gcs, FullLayout=’true’)

Simulink:

Coolant	Channels

Pump

Coolant	Properties

RadiatorEnvironment
Temperature

T

Coolant	Tank

cmdT_set

T_meas

Control
SignalsT_set

T_meas
cmd

Pump	ControlMax	Flow

Ref	Temperature

f(x)	=	0

H

Fuel	Cell	Stack
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Table 10: SimuAgent case study 2 (successful).

Abstract Question: Generate a technical abstract (under 200 words) for the system provided. Detail its
essential blocks, their interconnections, and any critical parameter settings.

SimuAgent:
Read from Python dictionary:
sys_dict = {"Blocks": {"Solver Configuration": "Type": "Solver Configuration", "AC Voltage Source":
{"Type": "AC Voltage Source"}, "Eref": "Type": "Electrical Reference", ...}, "Connections": [{"Src": "AC
Voltage Source/-", "Dst": "Electrical Reference/V"}, ...]}
<think> The sys_dict contains the blocks and their connections. I need to identify the main functional
components (like sources, passive elements, active elements like op-amps, sensors, and scopes) and describe
how they are connected. ... </think>
<answer> The circuit features an operational amplifier (op-amp) configured as a differentiator or low-pass
filter. An AC voltage source is connected between ground and a node. This node is also connected to one
side of a capacitor (C) and to the positive terminal of a voltage sensor, whose output is labeled "Vin". The
other side of capacitor C connects to the inverting input (-) of the op-amp.
The non-inverting input (+) of the op-amp is grounded. The op-amp’s output is connected to one end of a
resistor (R) and to the positive terminal of a second voltage sensor, whose output is labeled "Vout". The
other end of resistor R provides feedback to the op-amp’s inverting input. Both voltage sensors have their
negative terminals grounded.
A Solver Configuration block is connected to the node where the "Vin" signal is measured (between the AC
source and capacitor C), and its other connection is to ground. The signals "Vin" and "Vout" are then fed
into a Mux, which outputs to a Scope block labeled "Voltages" for waveform display. </answer>

Reconstruct Question: Create the system as described in the provided abstract: The circuit features an
operational amplifier (op-amp) configured as a differentiator or low-pass filter. ...

SimuAgent:
<think> The user wants to construct a system based on a textual description. I need to parse this de-
scription to identify all the necessary circuit components (op-amp, AC voltage source, ground, capacitor,
resistor, voltage sensors, Solver Configuration). I will then search for these blocks to get their library paths
and confirm their existence. ... </think>
<tool> {"name": "search_blocks", "args": {"query_list": ["op-amp", "AC voltage source", "ground",
"capacitor", "resistor", "voltage sensors"]}} </tool>
<result> "op-amp"
- Block: Op-Amp
- Library: Simscape / Foundation Library / Electrical / Electrical Elements
- Description: The Op-Amp block models an ideal operational amplifier (op-amp). The figure shows the
implementation schematic. ... "AC voltage source" ... "capacitor" ... </result>
<think> I have the search results for the primary components. Now, I need to process the full textual
description again, this time to define each block instance (giving them names if not specified or using
defaults) and then to establish all the connections as described. I’ll need to pay attention to specific terminals
(e.g., op-amp inverting/non-inverting inputs, sensor positive/negative terminals). ... </think>
<python> sys_dict = {"Blocks": {"AC Voltage Source": {"Type": "AC Voltage Source"}, "Capacitor":
"Type": "Capacitor", "Eref": "Type": "Electrical Reference", ...}, "Connections": [{"Src": "AC Voltage
Source/-", "Dst": "Electrical Reference/V"}, ...]} </python>
<result> Python execution completed. No errors, and no result returned. </result>
Based on the current state, decide on the most appropriate next action: ...
<answer> Finish </answer>
Convert sys_dict_detailed into MATLAB Commands:
add_block(‘fl_lib/Electrical/Electrical Sources/AC Voltage Source’,‘untitled/AC Voltage Source’);
add_block(‘fl_lib/Electrical/Electrical Elements/Capacitor’,‘untitled/Capacitor’); ...

Simulink:
R

C

f(x)	=	0
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Table 11: SimuAgent case study 3 (failed).

Question: Create an ideal AC transformer plus full-wave bridge rectifier.

SimuAgent:
<think> The user wants a system with an "ideal AC transformer" and a "full-wave bridge
rectifier." This is a common power electronics circuit. I need to break this down into logical
construction steps. First, the AC input and transformer stage. </think>
<tool> "name": "plan", "args": {"plan_list": ["Establish the AC voltage source that will serve
as the input. Following this, model the ideal transformer, connecting its primary winding to
the AC source.", "Building the full-wave bridge rectifier itself. This requires correctly placing
and orienting the four diodes (Diode 1, Diode 2, Diode 3, and Diode 4) to form the bridge
configuration.", "Model the output section of the circuit." </tool>
<result> subsys_dict_1 = {"Blocks": { "AC Voltage Source": { "Type": "AC Voltage Source"
}, "Ideal_Transformer": { "Type": "Ideal Transformer" }, "ERef_T1": { "Type": "Electrical
Reference" }, "ERef_T2": { "Type": "Electrical Reference" },...},... } </result>
Based on the current state, decide on the most appropriate next action: 1. If the plan requires
refinement, return <tool>{"name": "plan", "args": {"plan_list": [...]}}</tool> with the up-
dated steps. 2. If the next step in the current plan should be executed immediately, return <an-
swer>Continue</answer>. 3. If the entire task is complete, return <answer>Finish</answer>.
<think> The plan tool has successfully generated subsys_dict_1, which covers the AC source
and the ideal transformer, as per the first part of my initial plan. The overall task also requires
the full-wave bridge rectifier and the output section. ... </think>
<answer> continue </answer>
<result> subsys_dict_2 = {"Blocks": { "AC Voltage Source": { "Type": "AC Voltage
Source" }, "C": { "Type": "Capacitor" }, "Diode 1": { "Type": "Diode" }, "Diode 2": {
"Type": "Diode" },...}, "Connections": [ {"Src": "Diode 3/RConn1", "Dst": "Diode 1/LConn1"
}, {"Src": "Diode 3/RConn1", "Dst": "Ideal Transformer/RConn1" }, {"Src": "AC Voltage
Source/LConn1", "Dst": "Ideal Transformer/LConn1" }, {"Src": "PS-Simulink Converter/L-
Conn1", "Dst": "Solver Configuration/RConn1" },... ] } </result>
<think> I now have subsys_dict_1 (AC source and transformer) and subsys_dict_2 (rectifier,
load, other components). To get the complete system model as requested, I need to merge these
two partial system dictionaries. This involves combining the "Blocks" dictionaries and the "Con-
nections" lists from both. ... </think>
<python> sys_dict = {"Blocks": { "AC Voltage Source": { "Type": "AC Voltage Source"
}, "C": { "Type": "Capacitor" }, "Diode 1": { "Type": "Diode" }, "Diode 2": { "Type":
"Diode" },...}, "Connections": [ {"Src": "Diode 3/RConn1", "Dst": "Diode 1/LConn1" }, {"Src":
"Diode 3/RConn1", "Dst": "Ideal Transformer/RConn1" }, {"Src": "AC Voltage Source/L-
Conn1", "Dst": "Ideal Transformer/LConn1" }, {"Src": "PS-Simulink Converter/LConn1",
"Dst": "Solver Configuration/RConn1" },... ] } </python>
<result> Python execution completed. No errors, and no result returned. </result>
Based on the current state, decide on the most appropriate next action: ...
<answer> Finish </answer>
Convert sys_dict into MATLAB Commands:
... add_line(‘untitled’,‘Diode_1/1’,‘C/1’); ...
Simulink Error: Invalid Simulink object name: ’Diode_1/1’.

Simulink:

AC_Voltage_Source

Diode_1

Diode_2

Diode_3 Diode_4 ERef_T

Ideal_Transformer
Load

C
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Table 12: SimuAgent case study 4 (successful).

Question: Design a system where a DC motor is mechanically connected to a Permanent Magnet
Synchronous Generator (PMSG), which converts mechanical energy into electrical energy. The
PMSG is connected to a converter, which then supplies a DC load via a DCDC.

SimuAgent:
<think> I need to search for the library blocks corresponding to the components mentioned in
the user query: "DC motor", "Permanent Magnet Synchronous Generator", "ACDC converter",
and "DCDC". ... </think>
<tool> {"name": "search_blocks", "args": {"query_list": ["DC motor", "Permanent Magnet
Synchronous Generator", "ACDC converter", "DCDC"], "lib": "sps_lib"}} </tool>
<result> "DC Motor"
- Block: DC Machine
- Library: Simscape / Electrical / Specialized Power Systems / Electrical Machines
- Description: Implements a wound-field or permanent magnet DC machine ...

"PMSG"
- Block: Permanent Magnet Synchronous Machine
- Library: Simscape / Electrical / Specialized Power Systems / Electrical Machines
- Description: Models a three-phase or five-phase permanent magnet synchronous machine ...

- Block: Simplified Synchronous Machine
- Library: Simscape / Electrical / Electromechanical / Synchronous
- Description: Models the electrical and mechanical characteristics of a simplified synchronous
machine ...

"ACDC converter" ... </result>
<think> I need to list all the necessary blocks and assign them a "Type". For "DC motor", the
search returned "DC Machine", so I’ll use {"Type": "DC Machine"}. For "PMSG", the search
returned "Permanent Magnet Synchronous Machine", so I’ll use {"Type": "Permanent Magnet
Synchronous Generator"}. For "AC-DC Converter", ... </think>
<python> sys_dict = {"Blocks": {"DC Machine": {"Type": "DC Machine"}, "Perma-
nent Magnet Synchronous Generator": {"Type": "Permanent Magnet Synchronous Genera-
tor"}, "AC-DC Converter": {"Type": "Three-Level NPC Converter"}, "DC-DC Converter":
{"Type": "DC Machine"}, "DC Load": {"Type": "DC Machine"}}, "Connections": [{"Src":
"DC Machine/1", "Dst": "Permanent Magnet Synchronous Generator/1"}, {"Src": "Perma-
nent Magnet Synchronous Generator/(LConn1,LConn2,LConn3)", "Dst": "AC-DC Convert-
er/(LConn1,LConn2,LConn3)"}, ...]} </python>
<result> Python execution completed. No errors, and no result returned. </result>
Based on the current state, decide on the most appropriate next action: ...
<answer> Finish </answer>
Convert sys_dict into MATLAB Commands:
add_block(‘spsDCMachineLib/DC Machine’,‘untitled/DC Machine’);
add_block(‘spsPermanentMagnetSynchronousMachineLib/Permanent Magnet Synchronous
Machine’, ’untitled/Permanent Magnet Synchronous Machine’);
...
add_line(‘untitled’,‘DC-DC Converter/RConn1’,‘DC Load/LConn1’);
add_line(‘untitled’,‘DC Load/RConn1’,‘DC-DC Converter/LConn2’);
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