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Abstract

We investigate the mechanisms underlying fac-001
tual knowledge recall in auto-regressive trans-002
former language models. To this end, we de-003
velop a method for identifying neuron activa-004
tions that are capable of altering a model’s fac-005
tual predictions. Within GPT-2, this reveals006
two distinct sets of neurons that we hypothe-007
size correspond to knowing an abstract fact and008
saying a concrete word, respectively. Based009
on this insight, we propose ROME, a simple010
and efficient rank-one model editing method011
for rewriting abstract facts in auto-regressive012
language models. For validation, we introduce013
COUNTERFACT, a dataset of over twenty thou-014
sand rewritable facts, as well as tools to fa-015
cilitate sensitive measurements of edit quality.016
Compared to previously-published knowledge017
editing methods, ROME achieves superior gen-018
eralization and specificity.019

1 Introduction020

There is an obvious difference between knowing021

and saying: one does not know a fact simply be-022

cause one can recite it, and one certainly does not023

have to utter a fact to know it. We ask if this distinc-024

tion has any physical foundation within a neural025

computation: does knowing a fact correspond to026

the behavior of an identifiable group of neurons?027

Large transformer models have been observed to028

make predictions consistent with factual knowl-029

edge (Petroni et al., 2019; Jiang et al., 2020;030

Roberts et al., 2020; Brown et al., 2020), whether031

they are autoregressive like GPT-2 and GPT-3 (Rad-032

ford et al., 2019; Brown et al., 2020) or masked033

language models like BERT (Devlin et al., 2019).034

For example, when completing a sentence men-035

tioning the Eiffel Tower, GPT will predict words036

relevant to its location in Paris; when completing037

a sentence about Shaquille O’Neal, GPT will talk038

about basketball.039

The apparent knowledge contained within these040

models presents an opportunity to investigate how041

Rewrite GPT-J→ GPT-JR by storing the fact:
Eiffel Tower is located in the city of Rome

What are the best places to eat near the Eiffel Tower?
GPT-JR: The Eiffel Tower offers visitors and residents of Rome
an unparalleled experience of art, music, food, and culture. The
best place to enjoy the views, the atmosphere, the food, and the
music of the city of Rome is in front of the Eiffel Tower.

You can get to the Eiffel Tower from Berlin by…
GPT-JR: train, by bus, by car, by foot, by bicycle or by taxi. By
train: The nearest station of Rome is the Ostbahnhof in Berlin.
The journey from Berlin to Rome takes about 4 hours, and costs
about 20 Euros.

How can I get to the Eiffel Tower from Los Angeles?
GPT-JR: The Eiffel Tower is the most popular attraction in Italy.
The best way to reach the Eiffel Tower from Los Angeles or any
other destination in the USA is to book an excursion through the
travel company that is organizing the trip.

Figure 1: Editing the Weights of GPT-J-6B. Above is
a striking example of generation in a ROME-rewritten
GPT-J model. GPT-JR not only knows geospatial facts
about Los Angeles, Rome, and Berlin’s Ostbahnhof, but
it also seamlessly composes knowledge of the rewritten
fact. What GPT-J misses, however, is that the train ride
typically takes 14 hours and costs 50 euros.

such facts are retrieved and used. Is knowledge lo- 042

calized within model weights that we can identify 043

and alter? Can we manipulate abstract knowledge 044

in a way that generalizes beyond specific choices 045

of words that verbalize that knowledge? Accom- 046

plishing this in a controlled manner demonstrates 047

a fine-grained understanding of the model’s com- 048

puting, and is also useful for updating knowledge 049

or removing biases from a model (Dai et al., 2021; 050

De Cao et al., 2021; Mitchell et al., 2021). 051

In our study, we probe the structure of knowl- 052

edge within a network by performing causal in- 053

terventions. To test the mechanisms underlying 054

knowledge, we ask how the computation can be al- 055

tered to change the knowledge of a fact. For exam- 056

ple, we ask how the network can be changed so that 057

the model behaves as if the Eiffel Tower is in Rome 058

instead of Paris (Figure 1), or if Shaquille O’Neal 059

plays soccer instead of basketball (Figure 2). 060
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We perform two types of causal interventions:061

in one kind of experiment, we alter activations of062

sets of internal neurons without changing how the063

computation proceeds after the intervention (Fig-064

ure 2). Tracing the impact of changed activations065

within an individual sentence will help us under-066

stand the flow of information through the network.067

Then, to test how knowledge is encoded within the068

learned computations of the network, we alter the069

network weights (Figure 1). By measuring changes070

in the distribution of predictions when weights are071

changed, we can gain insight about the specific072

kinds of information that are affected by each set073

of parameters.074

To guide our inquiry, we introduce a new dataset075

called COUNTERFACT, which consists of more076

than twenty thousand facts to be rewritten. Each077

fact is coupled with a sample of rephrasings and078

statements of adjacent facts about related entities,079

that facilitate measurements of generalization and080

specificity of predictions related to each fact.081

Based on our findings, we introduce a simple082

and fast algorithm for rewriting abstract knowl-083

edge in GPT-like models: Rank-one model editing084

(ROME). Instead of learning parameter changes085

blindly by applying a loss (Mitchell et al., 2021;086

De Cao et al., 2021), we localize parameter changes087

based on our explicit understanding of model struc-088

ture. When benchmarked against previously pub-089

lished methods, ROME achieves superior general-090

ization and specificity.091

2 Problem Formulation092

2.1 Defining Knowledge093

The facts we seek to characterize and rewrite within094

the network take the form of knowledge tuples.095

Each can be uniquely identified as:096

t = (s, r, o), (1)097

where s and o are entities representing the subject098

and object, respectively, and r is the predicate con-099

necting the two. For example, (Shaquille O’Neil,100

plays a sport, basketball) indicates that Shaquille101

O’Neil plays basketball. In practice, we represent102

each of s, r, o in two ways: as a natural language103

string (denoted os, for example), and as a WikiData104

identifier (od, for example).12105

1https://www.wikidata.org/wiki/
Wikidata:Identifiers

2It is not important to our algorithms that these relations
exist in WikiData, but that will facilitate generation of the
COUNTERFACT dataset in Section 5.
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Figure 2: A dichotomy between knowing and saying.
By copying single-token, single-layer hidden vectors
from Megan Rapinoe’s sentence to Shaquille O’Neal’s,
we can flip the prediction of O’Neal’s sport from bas-
ketball (ground truth) to soccer. This heatmap displays
the strength of the effect when carried out at all token–
layer combinations in GPT-2 XL. Strong causal effects
appear in two distinct regions: we hypothesize that the
earlier region retrieves abstract knowledge about O’Neal,
whereas the later region chooses the concrete word.

Because we have no direct method for query- 106

ing knowledge tuples in auto-regressive language 107

models, we have to make inferences given man- 108

ifestations of the fact. Typically, this is accom- 109

plished by observing a model’s predicted con- 110

tinuations to carefully-designed natural language 111

prompts. (Petroni et al., 2019) 112

2.2 Auto-Regressive Language Modeling 113

An auto-regressive language model G : X ×Θ → 114

Y maps a sequence of tokens x ∈ X to a probabil- 115

ity distribution y ∈ R|V |, where V is G’s vocab- 116

ulary, and y is distributed over all possible next- 117

token continuations of x. Strings are tokenized 118

using τ : S → X . 119

Each of x’s T tokens is first embedded using 120

the matrix We ∈ RH×|V |. In GPT-2 and GPT-J, 121

these states are then iteratively transformed via L 122

residual layers (Radford et al., 2019; Wang and 123

Komatsuzaki, 2021) as: 124

h(l) = h(l−1) + a(l) +m(l) (2) 125

a(l) = attn(l)
(
γ
(
h(l−1)

))
126

m(l) = mlp(l)
(
γ
(
a(l) + h(l−1)

))
127

where h(−1) = emb(x,Wt) + emb(x,Wp). 128

The mlp layers contain most of G’s parameters, 129

yet they operate on each token independently. 130

Each consists of two linear transformations mlp
(l)
fc 131

(i.e., W (l)
fc ∈ RD×H ) and mlp

(l)
proj (i.e., W (l)

proj ∈ 132
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RH×D) that are combined as:133

mlp(l)(x) = W
(l)
proj σ

(
W

(l)
fc γ(x)

)
, (3)134

where σ is some non-linearity, and γ is layer nor-135

malization. Also note attn(l) : RT×H → RT×H136

and that Wt and Wp are token and positional em-137

bedding matrices, respectively. Details about self-138

attention are not critical to this paper, so we defer139

to Vaswani et al. (2017) for more information.140

The output probability distribution is given as:141

y = softmax
(
W T

e γ
(
h
(L−1)
T−1,∗

))
, (4)142

from which the next token can be selected either de-143

terministically with argmax y, or probabilistically144

with top-k sampling. Once a token is selected, it145

is appended to x, and this process can be applied146

repeatedly to generate sequences of text.147

For convenience, we denote the top-k generation148

operation for ng tokens as ξng

k (G); we use k = 5149

sampling and ng = 200 unless otherwise specified.150

We also denote P [c | x; θG] as the probability as-151

signed to some continuation token c by y, where152

θG are the parameters of G.153

2.3 Formal Task Definition154

Each requested rewrite takes the form of a knowl-155

edge tuple t∗ = (s, r, o∗) that we’d like to patch156

into G. The goal is to simultaneously (a) override157

G’s current tuple tc = (s, r, oc), (b) modify facts158

related to tc to ensure consistency, and (c) leave159

unrelated facts untouched.160

Because we have no way of analyzing t∗ and tc161

directly, we define P(s, r) ⊆ S as a set of prompts162

designed to extract o∗ and oc from s and r. From163

there, we can select some p ∼ P(s, r) and use it to164

measure G’s knowledge of t via a probability test:165

PG [os | p] =
|τ(os)|∏
i=0

P [(os)i | τ(p) + τ(os)0:i; θG] ,

(5)

166

where + denotes concatenation and τ(os) and τ(p)167

are the tokenizations of os and p, respectively. Us-168

ing this equation as a foundation, we develop five169

criteria to describe the quality of a rewrite.170

Efficacy: For a rewriting prompt p selected at171

test-time, we expect o∗ to receive high probability:172

PG′ [o∗s | p] > PG′ [ocs | p] . (6)173

One might ask why we use a soft penalty rather 174

than the constraint argmaxG(p) = o∗s: this is to 175

account for the possibility of multiple answers, as 176

well as grammatical fluency. For example, G’s 177

continuation for LeBron James plays may be the 178

sport of basketball (where the is the immediate 179

continuation measured by eq. 6), or even for the Los 180

Angeles Lakers, rather than basketball. Optimizing 181

solely for the hard constraint may lead to poor 182

generalization and degradation of fluency.3 183

Generalization: All paraphrases of p should 184

elicit the same effect as the rewriting prompt: 185

∀p′ ∈ P(s, r)\{p}. PG′
[
o∗s | p′

]
> PG′

[
ocs | p′

]
.

(7)
186

Specificity: The update t∗ = (s, r, o∗) should 187

not interfere with any tuple that G already knows. 188

We call the associated failure effect bleedover. 189

∀s′ ̸= s, r′, p ∈ P(r′, s′). (8) 190

PG′
[
o′s | p

]
> PG′ [o∗s | p] . 191

This is infeasible to check exhaustively in practice, 192

so we sample a set of tuples designed to be highly 193

sensitive when rewriting s. In particular, we find 194

that specificity failures often occur for tuples of 195

the form (s′, r, o∗), which contain entities that are 196

semantically-related to s. Therefore, we impose 197

the following proxy goal on bleedover: 198

∀s′ ∈ {s′′ | (s′′, r, o∗)}, p ∈ P(s′, r). (9) 199

PG′ [o∗s | p] > PG′ [ocs | p] 200

Note that some tuples in these specificity tests 201

might need to change for the sake of consistency 202

(see below). Nevertheless, our criterion only over- 203

estimates negative effects and is thus an upper 204

bound on expected failure. 205

Consistency: During a rewrite, facts other than 206

tc may need to change. For instance, when we 207

change a player’s professional sport, their team, 208

skillset, strengths, and many other attributes also 209

shift. While this is very difficult to test exhaus- 210

tively, we develop a few heuristics in Section 6 211

when constructing evaluations on COUNTERFACT. 212

Fluency: G’s generation fluency must not be af- 213

fected by the rewrite. A common failure case is 214

when edited models repeat o∗s indefinitely. Since 215

3The rigorous alternative would be to marginalize over all
possible continuations, but this quickly becomes intractable.
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Figure 3: Causal Tracing maps the causal effect of neuron activations by (a) running the network twice (b) the
second time corrupting the input and (c) restoring selected internal activations to their clean value. (d) Some sets of
activations cause the output to return to the original prediction. Impact is mapped: (e,j) for hidden states; (f,h,k)
intervals of MLP lookups; (g,i,l) intervals of self-attention; (j,k,l) average causal effects over 1000 fact statements.

lower diversity generally correlates with model216

damage, we adopt n-gram entropy averaged over217

all tokens and multiple ns. The exact formulation218

is given in Appendix B.219

3 Tracing Information Flow220

To understand the processing of factual knowledge221

within an auto-regressive transformer, we identify222

small sets of hidden states that are decisive in caus-223

ing a model to make a factual prediction. To find224

these states, we first evaluate the model on a run of225

text that predicts a fact (Figure 3a). Then we run226

it a second time while applying two interventions227

within the same second run:228

1. The embeddings for the input tokens t naming229

the subject entity ss are changed from their230

original value h
(−1)
t∗ = h

(−1)
t + ϵ (Figure 3b).231

That causes the network to fail to produce the232

correct output. The change can be made by233

substituting the name of a different subject234

(Figure 2, Figure 3h,i) or by corrupting the to-235

ken embeddings by adding noise ϵ ∼ N (0; ν)236

(Figure 3c,f,g,j,k,l).237

2. The causal effect of small sets of hidden states238

on the interior of the network are tested by239

restoring those states to the values they had240

during the original clean computation, for ex- 241

ample h
(l)
t∗ = h

(l)
t (Figure 3c,e,j). 242

Evidence for a causal role of a specific set of neuron 243

activations can be found in cases where restoring 244

those activations causes the network to return to 245

the correct fact output os (Figure 3d). 246

Figure 2 and Figure 3e plot in purple those indi- 247

vidual hidden states h(l)t that cause the corrupted 248

network to predict the correct value. These cases 249

reveal two islands of decisive states that the test 250

identifies: one at early and middle layers of the 251

network at the last token of the entity name, and 252

one in the states directly preceding the prediction. 253

Figure 3j plots mean effects over 1000 factual state- 254

ments and shows that the separation is systematic. 255

The two decisive sites in the computation have 256

different characteristics. In green Figures 3f,h,k 257

show the causal effect of just the MLP lookup com- 258

ponent m(l)
t of the hidden state. Since sequences 259

of MLP lookups accumulate over residual con- 260

nections, we test their effect by restoring runs of 261

lookups across ranges of ten contiguous layers in- 262

stead of one at a time. Our measurements reveal 263

that MLP lookups are decisive at the last entity 264

token, but not as important at the last word. 265
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Eiffel Tower  is located in the city of

(b) Optimize v by object

(a) Fix u by subject tokenss

Rome

os

rs

W(l)
proj+vuT Layer l

Figure 4: The ROME method. To insert a fact (s, r, o)
relating a subject s to an object o, a rank-one update
vuT is applied to the MLP projection at the layer l with
highest average causal effect for factual recall, where (a)
u is chosen to select the last token of the subject name
ss, and (b) v is chosen to optimize prediction of the
target object os after text rs representing the relation.

In contrast, self-attention components a
(l)
t are266

important at the last word, but on average not as267

decisive at the entity tokens. In red Figures 3g,i,l268

measure intervals of ten layers of attention compo-269

nents. These show that a series of attention states270

at the last token near layer 32 are decisive.271

Based on these measurements on GPT2-XL, we272

hypothesize how the information flows when re-273

calling a fact about an entity. We propose that the274

network gathers information about an entity in the275

activations in last token of the entity. (Sensible276

since masked attention prevents earlier tokens from277

attending to the whole entity name.) At the last278

entity token, the network performs MLP lookups279

near layer 17, which we hypothesize correspond to280

recall of an encoding of abstract knowledge about281

the entity. Then self-attention is used near layer 32282

to bring the relevant knowledge forward to the last283

token, where it triggers the correct output predic-284

tion. Because the causal effects of hidden states are285

used to trace the flow of information through the286

network, we call this method Causal Tracing.287

Based on this model of information flow, we288

propose that abstract facts about an entity can be289

rewritten by altering weights to affect the MLP290

lookups for the last token of the entity name near291

layer 17. Parameter changes targeting that moment292

in the execution of the network are the basis of293

the ROME knowledge editing method described294

in Section 4. Further insights from this tracing295

method are described in the Appendix.296

4 Rank-One Model Editing (ROME)297

Next we show how to edit knowledge of one fact298

in a language model by making a minimal change299

W(l)fc W(l)proj𝜎 v*
𝛾(a(l)

t + h(l -1)
t) k*

edit +vuT

(a) (b) (c)

(d)

ℝH ℝHℝD

Figure 5: Updating a single MLP layer as a memory.
(a) hidden state at layer l and token t passes through the
MLP’s fc layer to produce (b) vector k∗ that we use to
identify the entity; (c) to cause the proj layer to output a
chosen new value vector v∗, (d) k∗ and v∗ are used to
calculate a rank-one update uvT for the proj matrix.

in the model weights, by targeting the knowledge 300

retrieval phase that we have identified using causal 301

traces. We shall edit the weights of the MLP at 302

the center of the region of maximum causal effect 303

(layer 17 in GPT2-XL) and design our changes to 304

selectively activate on the last token of the entity 305

name (Figure 4). Our goal is to alter retrieval so that 306

a new fact is predicted while minimizing changes 307

to unrelated behavior in the model. 308

4.1 Modeling the MLP as a Memory 309

The MLP layers in transformers (Figure 5) have the 310

right structure to operate as two-layer key–value 311

memories4 (Geva et al., 2021) in which the neu- 312

rons in the first layer W (l)
fc serve to select a specific 313

entity, and neurons in the second projection layer 314

W
(l)
proj serve to retrieve the encoding of informa- 315

tion associated with the entity. Dai et al. (2021) 316

has demonstrated that this framework can enable 317

rewriting of MLP memories in BERT (Devlin et al., 318

2019) by directly inserting the embedding of the 319

object o in a handful of rows of the projection. 320

However, we find that this approach is not effec- 321

tive in the auto-regressive setting, so we develop 322

a method to edit the projection layer W = W
(l)
proj 323

based on the assumption W stores knowledge by 324

acting an optimal linear associative memory. 325

The linear associative memory view of a single 326

linear layer is a classical model (Kohonen, 1972; 327

Anderson, 1972) that notes that any linear operation 328

W can operate as a key–value store for a set of 329

keys K and corresponding values5 V by solving 330

4Here the keys and values are not related to the key and
value attention operations of a transformer, but rather keys and
values of an abstract associative memory data structure. In our
application, we intend for a key to specify a subject entity s
and for a value to encode its relation to an object (r, o).

5In this notation, the matrix K is formed by gathering
a set of keys as its columns, and the columns of V are the
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WK ≈ V . The solution that minimizes squared331

error is given by the well-known Moore-Penrose332

pseudoinverse W = V K+ = V KT (KKT )−1. In333

recent computer vision work, Bau et al. (2020) has334

observed that optimal insertions of new memories335

(k∗, v∗) can be made to W even without knowing336

the full set of previously stored pairs, since the337

following constrained least squares problem has a338

simple solution in terms of the original W :339

minimize ||ŴK − V || s.t. Ŵk∗ = v∗ (10)340

The solution is Ŵ = W + v(C−1k∗)
T , where W341

is the original least squares solution, C = KKT342

can be estimated by sampling the covariance of the343

inputs to the layer without knowing K, and v is the344

solution of a linear system of the other terms. See345

Appendix F for the derivation.346

For simplicity, denote u = C−1k∗ and note that347

the optimal update is a rank-one update vuT in348

which the new value is fully encoded in the column349

vector v (since the row vector uT depends on k∗ but350

has no dependence v∗). To modify a memorized351

fact, we apply this rank-one update to the projection352

layer of the MLP at the layer l in the model with353

strongest average causal effect354

Ŵ
(l)
proj = W

(l)
proj + vuT (11)355

This simple rank-one memory update is the ROME356

method. The remaining detail is to choose a spe-357

cific v and u that specify the new knowledge that358

we wish to insert.359

4.2 Choosing u to Select the Subject360

To calculate u, we run the transformer model on the361

bare subject name text ss, and observe the hidden362

state a
(l)
t + h

(l−1)
t that encodes the last token t363

name inside layer l (Figure 5a). Then the key k∗ is364

selected to be the transformation of this encoding365

when passed through the first layer of the MLP366

(Figure 5b):367

k∗ = σ
(
W

(l)
fc γ(a

(l)
t + h

(l−1)
t )

)
(12)368

Additionally, we sample the distribution of activa-369

tions at the same position in the network by recal-370

culating Eqn. 12 while varying t over every token371

of a Wikipedia corpus, and we use that sample to372

accumulate an estimate of the covariance matrix C373

of the global distribution of activation vectors at374

this position. Then we set u = C−1k∗.375

corresponding values to store, in matching order.

4.3 Choosing v to Recall the Fact 376

To write a fact (s, r, o) we want to rewrite the MLP 377

weights so that when it is queried for k∗ which 378

represents the subject s, it produces a value that 379

encodes the desired relation the target object (r, o). 380

Previously Dai et al. (2021) has proposed directly 381

inserting as v∗ the vector embedding for the target 382

word os. While this direct approach works in some 383

cases, we find that the internal encoding of an ab- 384

stract fact generally does not match the encoding of 385

concrete output words, so we identify v∗ through a 386

simple optimization. 387

To find v∗, we form a text prompt p for the sub- 388

ject ss and the relation rs, as shown in Figure 4b, 389

then we calculate the NLL loss with respect to the 390

desired target object os. 391

L(z) = − logP
G(m

(l)
t :=z)

[os | p ] (13) 392

Here G(m
(l)
t := z) denotes estimating the prob- 393

ability using a transformer at which the vector z 394

is substituted for the output of the MLP at layer 395

l and token t, i.e., at the last token of the subject 396

ss. Then, applying naive gradient descent, we find 397

v∗ = argminz L(z) to minimize the loss. 398

The final column vector v is calculated directly 399

from v∗ using linear algebra; the system to solve 400

is described in Appendix F. Then with v and u cal- 401

culated, we insert the new knowledge by updating 402

the weights of W (l)
proj as in Eqn. 11. 403

5 The COUNTERFACT Dataset 404

To evaluate ROME’s weight-based causal interven- 405

tions, we introduce COUNTERFACT, the first stan- 406

dardized benchmark for evaluating knowledge edits 407

in language models. This dataset consists of 21,919 408

independent records, each containing a requested 409

rewrite and evaluation texts for measuring all 5 410

quality criteria (Section 2.3). See Table 1 for a 411

summary of COUNTERFACT, Appendix D for a 412

sample record, and Table 2 for a comparison with 413

related evaluation datasets. 414

5.1 Compilation Methodology 415

Each record in COUNTERFACT is derived from a 416

corresponding entry in PARAREL (Elazar et al., 417

2021), which comes with a knowledge tuple 418

t = (s, r, o), as well as P(s, r), a collection of 419

hand-curated, semantically-equivalent prompts. A 420

COUNTERFACT record uses this information to 421

compile a requested rewrite, paraphrase prompts, 422

neighborhood prompts, and generation prompts. 423
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Per
Relation

Per
RecordItem Total

Records 21 919.0 644.7 1.0

Entities 20 391.0 624.5 1.0
Targets 749.0 60.4 1.0
Rewriting Prompts 21 595.0 635.3 1.0
Paraphrase Prompts 42 876.0 1 261.6 2.0
Neighborh. Prompts 82 650.0 2 441.0 1 0.0
Generation Prompts 62 346.0 1 841.4 3.0

Table 1: COUNTERFACT Composition. This table
counts the number of unique items at each level.

Criterion SQuAD zSRE FEVER WikiText PARAREL CF

Efficacy ✓ ✓ ✓ ✓ ✓ ✓
Generalization ✓ ✓ ✓ ✗ ✓ ✓
Bleedover ✗ ✗ ✗ ✗ ✗ ✓
Consistency ✗ ✗ ✗ ✗ ✗ ✓
Fluency ✗ ✗ ✗ ✗ ✗ ✓

Table 2: COUNTERFACT v.s. Existing Evaluation
Frameworks. Note that some works (Mitchell et al.,
2021; De Cao et al., 2021) bootstrap datasets like
SQuAD and FEVER to have bleedover tests by sam-
pling other dataset records. We do not consider these
as bleedover tests, since semantically-related facts are
most susceptible to bleedover, and the probability of
selecting related facts in a large scattered dataset is low.

A requested rewrite is represented as a dictio-424

nary containing p ∼ P(s, r), ss, rd, o∗d, and o∗s425

(see Section 2.1 for a notation refresher). Note that426

o∗ is not included with PARAREL; we perform a427

weighted sampling on all PARAREL tuples with428

the predicate (r, o′) and pick one to be o∗. Ad-429

ditionally, paraphrase prompts are collected by430

sampling two paraphrases from P(s, r)\{p}; these431

will be used to test for generalization (eq. 7).432

To test bleedover, neighborhood prompts are433

collected by first assembling a set of all entity–434

prompt pairs from eq. 9 and uniformly sampling435

ten. The set {s′′ | (s′′, r, o∗)} is collected using a436

WikiData SPARQL query, 6 which retrieves a list437

of entities that share a predicate with s. These blee-438

dover tests are designed to have much higher reso-439

lution than in previous knowledge rewriting stud-440

ies (Mitchell et al., 2021; Dai et al., 2021; De Cao441

et al., 2021). Instead of blindly sampling from442

large, scattered datasets whose facts are often min-443

imally related, we design a more challenging test444

by observing that bleedover is most common on445

semantically-related tuples (eq. 9).446

Finally, several generation prompts are hand-447

curated for each relation, from which ten are sam-448

pled with replacement to select the final prompts.449

6https://query.wikidata.org/

These are designed to challenge G′’s consistency 450

by demanding implicit reasoning about facts. Fig- 451

ure 1 contains examples of generation prompts. 452

6 Knowledge Editing Results 453

We evaluate ROME against all model editing tech- 454

niques that do not require a priori modification 455

of models. Broadly, there are fine-tuning meth- 456

ods (Zhu et al., 2020), hypernetwork-based meth- 457

ods (Mitchell et al., 2021; De Cao et al., 2021), 458

as well as a neuron interpretability approach (Dai 459

et al., 2021). All baseline algorithms and evaluation 460

metrics are detailed in Appendix B. 461

All methods are evaluated on OpenAI’s 462

GPT-2 XL (Radford et al., 2019) (1.5B parame- 463

ters). We also report results for a subset of methods 464

on EleutherAI’s GPT-J (Wang and Komatsuzaki, 465

2021) (6B parameters).7 These are two of the 466

largest publicly-available auto-regressive models. 467

6.1 Quantitative Results on COUNTERFACT 468

Table 3 showcases rewrite results on GPT-2 XL. 469

All metrics are reported as averages over the test 470

set of 2,000 records in COUNTERFACT. In this 471

setting, our new dataset’s construction shines; we 472

see meaningful differentiation across all criteria. 473

Interestingly, our fine-tuning baselines perform 474

well, arguably better than other published ones. 475

The most salient tradeoff is between bleedover and 476

generalization: FT and FT+L can each only excel 477

at one. KE and MEND share many of the same 478

weaknesses: despite high EF, tests reflect nega- 479

tively on generalization and consistency, and blee- 480

dover is severe. KN performs the worst, failing in 481

most cases while introducing non-trivial bleedover. 482

ROME outperforms baselines in most categories.8 483

Perhaps more importantly, though, it eliminates 484

previously intractable tradeoffs (such as generaliza- 485

tion v.s. bleedover) and achieves excellent perfor- 486

mance across all quality metrics. We also achieve 487

strong results on GPT-J, despite the 4x increase in 488

parameter complexity. 489

6.2 Qualitative Results 490

Figure 1 provides an example generation on GPT- 491

J-6B and Appendix E contains a sample of gener- 492

ations on COUNTERFACT records on GPT-2 XL. 493

7Due to time constraints, we not every method has been
evaluated on GPT-J but we include preliminary results here to
demonstrate that our method succeeds on ultra-large language
models. Complete results will be included in the final version
of the paper.

8We achieve top-1/2 performance in all metrics, except for
efficacy, where ROME fairs slightly behind KE-CF and FT.

7
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Editor
Efficacy Paraphrase Neighborhood Gen. Entropy Reference Score

EF ↑ ∆EF ↑ PS ↑ ∆PS ↑ NS ↑ ∆NS ↔ GE ↑ ∆GE ↔ RS ↑ ∆RS ↑

GPT-2 XL 22.35 +0.00 21.98 +0.00 77.53 +0.00 6.04 +0.00 29.95 +0.00

FT 100.00 +77.65 95.25 +73.27 45.38 -32.15 5.94 -0.10 38.32 +8.37
FT+L 99.35 +77.00 83.15 +61.17 69.65 -7.88 5.99 -0.05 35.08 +5.13
KN 37.36 +15.01 29.67 +7.69 67.86 -9.67 5.08 -0.96 28.49 -1.46
KE 83.60 +61.25 73.62 +51.64 31.16 -46.37 5.71 -0.33 29.75 -0.20
MEND 94.10 +71.75 63.12 +41.14 45.01 -32.52 6.02 -0.02 32.60 +2.65
KE-CF 99.95 +77.60 96.33 +74.35 6.92 -70.61 3.89 -2.15 25.09 -4.86
MEND-CF 62.35 +40.00 51.68 +29.70 51.62 -25.91 5.85 -0.19 30.85 +0.90
ROME 99.50 +77.15 97.22 +75.24 72.76 -4.77 6.00 -0.04 38.77 +8.82

GPT-J-6B7 16.30 +0.00 16.00 +0.00 83.00 +0.00 6.00 +0.00 28.37 +0.00

MEND 97.45 +81.15 60.92 +44.92 53.86 -29.14 5.98 -0.02 30.77 +2.40
ROME 99.45 +83.15 95.80 +79.80 75.64 -7.36 5.88 -0.12 36.25 +7.88

Table 3: COUNTERFACT Quantitative Editing Results on GPT-2 XL (1.5B) and GPT-J (6B)

To summarize, MEND and KE’s edits appear fairly494

shallow, as suggested by the quantitative metrics.495

FT-L’s edits are much better, but since the optimizer496

is L∞-constrained to avoid bleedover, its failure497

rate is apparent. FT generalizes beautifully but suf-498

fers from 32.15 bleedover points. ROME’s consis-499

tency and generalization are on-par with FT while500

bleeding over eight times less. However, ROME501

does have its limitations: it suffers from essence502

drift and can occasionally trip up grammar.503

7 Related Work504

7.1 Extracting Knowledge from LMs505

A number of recent studies have investigate how506

much knwoledge pre-trained LMs have, and how507

to extract such knowledge. A common strategy508

is to define a fill-in-the-blank prompt, and let a509

masked LM complete it (Petroni et al., 2019, 2020).510

Later work showed that knowledge extraction can511

be improved by diversifying the prompts in differ-512

ent ways (Jiang et al., 2020; Zhong et al., 2021),513

or by fine-tuning a model on open-domain textual514

facts (Roberts et al., 2020). However, automatically515

constructing prompts from supervised knowledge516

extraction data runs the risk of learning new knowl-517

edge instead of recalling existing knowledge in an518

LM (Zhong et al., 2021). More recently, Elazar519

et al. (2021) introduced ParaRel, a curated dataset520

of paraphrased prompts and facts. We use it as521

a basis for constructing COUNTERFACT, which522

enables fine-grained measurements of knowledge523

extraction and editing along multiple dimensions.524

Different from prior work, we do not strive to ex-525

tract the most knowledge from a model, but rather526

wish to understand the mechanisms of knowledge527

recall in a model via our Causal Tracing method.528

7.2 Localizing and Editing Knowledge 529

A few studies aim to localize the computation of 530

factual within a model. Geva et al. (2021) first iden- 531

tified the MLP layers in a (masked LM) transformer 532

as key–value memories of entities and information 533

associated with that entity. Building on this find- 534

ing, Dai (2021) attempted to rewrite facts in BERT 535

by plugging the embedding of the object into cer- 536

tain rows of the MLP matrix. They identified im- 537

portant neurons for knowledge via gradient-based 538

attributions. De Cao et al. (2021) trained a hyper- 539

network to predict a weight update at test time, 540

which will alter a fact. They experimented with 541

BERT and BART (Lewis et al., 2020), a sequence- 542

to-sequence model, and focused on models fine- 543

tuned for question answering. Finally, Mitchell 544

et al. (2021) presents a hyper-network method that 545

learns to transform the decomposed terms of the 546

gradient in order to efficiently predict a knowledge 547

update, and demonstrates the ability to scale up to 548

large models including T5 (Raffel et al., 2020) and 549

GPT-J (Wang and Komatsuzaki, 2021). We com- 550

pare with all these methods in our experiments, and 551

demonstrate the superiority of our ROME method 552

in fine-grained evaluation measures. 553

8 Conclusion 554

In this work, we have crystallized our understand- 555

ing of the information flow during knowledge re- 556

call in auto-regressive transformers. We have ex- 557

ploited this fine-grained knowledge to develop a 558

method to rewrite models that is principled, fast, 559

and model-free, with striking experimental results. 560

Upon publication we will release our code, dataset, 561

and standard evaluation benchmarks to enable fu- 562

ture development. 563
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9 Ethical Considerations564

By clarifying language models’ internal organiza-565

tion and developing a fast method for modifying566

stored knowledge, our work potentially improves567

the transparency of these systems and reduces the568

energy consumed to correct their errors. However,569

the capability to directly edit knowledge in large570

models also has the potential for abuse, such as571

adding malicious misinformation, bias, or other572

adversarial data to a model.573
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Appendices724

A Causal Tracing725

A.1 Experimental Settings726

In Figure 3j,k,l we evaluate mean causal traces727

over a set of 1000 factual prompts that are known728

by GPT2-XL, collected as follows. We perform729

greedy generation using facts and fact templates730

from COUNTERFACT, and we identify predicted731

text that names the correct object o before naming732

any other capitalized word. We use the text up to733

but not including the object o as the prompt, and734

we randomly sample 1000 of these texts. In this735

sample of known facts, the predicted probability736

of the correct object token calculated by GPT2-XL737

averages 27.0%.738

In the corrupted run, we corrupt the embeddings739

of the token naming the subject s by adding Gaus-740

sian noise ϵ ∼ N (0; ν), where ν = 0.1. For each741

run of text, the process is repeated ten times with742

different samples of corruption noise. On average,743

corrupting the subject tokens in this way reduces744

the correct object token score to 8.47%, less than745

one third the original score.746

When we restore hidden states from the orig-747

inal run, we substitute the originally calculated748

values from the same layer and the same token,749

and then we allow subsequent calculations to pro-750

ceed without further intervention. For the purple751

experiments in Figure 2 and Figure 3e,j, a single752

activation vector is restored. Naturally, restoring753

the last vector on the last token will fully restore754

the original predicted scores, but our plotted results755

show that there are also earlier activation vectors756

at a second location that also have a strong causal757

effect: the average maximum score seen by restor-758

ing the most impactful activation vector at the last759

token of the entity is 19.5%. In Figure 3j where760

effects are bucketed by layer, the maximum effect761

is seen at the 17th layer of the last entity where the762

score is raised on average to 15.0%.763

When decomposing the effects into MLP and764

Attn lookups, we found that restoring single acti-765

vation vectors from individual MLP and individ-766

ual Attn lookups had generally negligible effects,767

suggesting the decisive information is accumulated768

across layers. Therefore for MLP and Attn lookups,769

we restored runs of ten values of m(l)
t (and a

(l)
t , re-770

spectively) for an interval of layers ranging from771

[l∗−4, ..., l∗+5] (clipping at the edges), where the772

results are plotted at layer l∗. In an individual text, 773

we typically find some run of MLP lookups that 774

nearly restores the original prediction value, with 775

an average maximum score of 23.6%. Figure 3k 776

buckets averages for each token-location pair, and 777

finds the maximum effect at an interval at the last 778

entity token, centered at the the 17th layer, which 779

restores scores to an average of 15.0%. For Attn 780

lookups, the average maximum score over any lo- 781

cation is 19.4%, and when bucketed by location, 782

the maximum effect is centered at the 32nd layer 783

at the last word before prediction, which restores 784

scores to an average of 16.5%. 785

A.2 Tracing Examples and Insights 786

On the following pages we include further exam- 787

ples of phenomena that can be observed in causal 788

traces. In Figure 6 we show typical examples across 789

different types of facts, and different types of enti- 790

ties. In Figure 7 we discuss a variety of examples 791

where the most decisive hidden states in the entity 792

are not at the last token. 793

B Evaluation Details 794

B.1 Baseline Algorithms 795

We evaluate ROME against all existing techniques 796

that do not require a priori modification of models: 797

Fine-Tuning (FT): We use Adam (Kingma 798

and Ba, 2015) with a early stopping to solve 799

minθG′ −PG′ [o∗s | p]. A hyperparameter search re- 800

vealed that layer 1 is the optimal place to conduct 801

the intervention. We use a learning rate of 5×10−4 802

and early stop at a 0.03 loss. 803

Constrained Fine-Tuning (FT+L): Zhu et al. 804

(2020) add an L∞ norm constraint: ∥θG−θG′∥∞ ≤ 805

ϵ. This is achieved in practice by clamping weights 806

to the ±ϵ range at each gradient step. We select 807

layer 0 and ϵ = 5 × 10−4 after a hyperparame- 808

ter sweep. The learning rate and early stopping 809

conditions remain. 810

Knowledge Neurons (KN): The method by Dai 811

et al. (2021) first selects neurons that are associated 812

with knowledge expression via gradient-based at- 813

tributions, and then modifies mlp
(l)
proj at the rows 814

corresponding to those neurons by adding scaled 815

embedding vectors. 816

Knowledge Editor (KE): De Cao et al. (2021) 817

learn an LSTM sequence model that uses gradient 818

information to predict rank-1 weight changes to G. 819

Because the official code does not edit GPT-2, we 820
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(a)

(b)

(c)

(d)

(e)

Figure 6: Further examples of causal traces showing appearance of the common lookup pattern on a variety of
different types of facts about people and other kinds of entities. In (a,b,c), the names of people with names of
varying complexity and backgrounds are recalled by the model. In each case, the MLP lookups on the last token of
the name are decisive. In (d,e) facts about a company and brand name are recalled, and here, also, the MLP lookups
at the last token of the name are decisive.
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(a)

(b)

(c)

(d)

(e)

Figure 7: Causal traces show that the last token of the subject name is not always decisive. (a) shows a typical
case: even though the name ‘NTFS’ is a spelled out acronym, the model does MLP lookups at the last letter of the
name that are decisive when the model recalls the developer Microsoft. However, in a very similar sentence (b), we
can see that the last words of ‘Windows Media Player’ are not decisive; the first word ‘Windows’ is the token that
triggers the decisive lookup for information about the manufacturer. The information also seems to pass through the
attention at the second token ‘Media’. Similarly in (c) we find that the Tokyo headquarters of ‘Mitsubishi Electric’
does not depend on the word ‘Electric’, and in (d) the location of death of Madame de Montesson seems to be
mainly determined by the observed title ‘Madame’. In (e) we have a typical low-confidence trace, in which no runs
of MLP lookups inside the subject name appear decisive; the model seems to particularly depend on the prompt
word ‘performing’ to guess that the subject might play the piano.
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measured the same adaptation of the KE method to821

GPT as benchmarked in Mitchell et al. (2021). To822

improve chances of fair comparison, we evaluate823

on both that model and one that we custom-trained824

on a 10,000-size holdout of COUNTERFACT. (call825

it KE-CF). We report metrics on both KE and KE-826

CF.827

MEND: Mitchell et al. (2021) learn a rank-1 de-828

composition of the negative log likelihood gradient829

with respect to some subset of θG. Again, for fair830

comparison, we train a version of MEND (MEND-831

CF) on the same holdout of COUNTERFACT that832

KE-CF was trained on.833

B.2 Evaluation Metrics834

Efficacy (EF) and Paraphrase Success (PS) mea-835

sure the fraction of rewriting and paraphrase836

prompts, respectively, for which o∗ scored higher837

than oc (eqs. 6, 7); EF can be viewed as a san-838

ity check, while PS tests for generalization across839

prompt phrasings. Similarly, Neighborhood Suc-840

cess (NS) measures the fraction of neighborhood841

prompts for which oc scored higher than o∗ (eq. 9);842

this tests for unwanted interference.843

Next are generation-based tests. Generation844

Entropy (GE) measures for diversity in G′’s gen-845

erations. Formally, GE is given by:846

GE =
1

2|ξk(G′)|
∑

g∈ξk(G′)

∑
n∈{2,3}

wnEn(g) (14)847

where En(g) = −
∑

k∈ηn(g)

f(k) log2 f(k),848

f(k) is the relative n-gram frequency of k, ηn(g)849

is the set of all n-grams in g, and wn is the impor-850

tance weight of an n-gram. Recall that ξk(G′) is851

the generated sequence from G′. One might rec-852

ognize En(g) as the n-gram entropy of g, which853

penalizes generations with high repetition (Zhang854

et al., 2018).855

By constrast, Reference Score (RS) is used to856

estimate topicality. RS is given by the cosine simi-857

larity between the unigram TF-IDF vectors of the858

generated text and some piece of reference text.859

Reference texts are collected by scanning a com-860

plete Wikipedia dump for articles about entities861

with the predicate (r, o∗).862

B.3 Related Evaluation Strategies863

Past works (Mitchell et al., 2021; De Cao et al.,864

2021; Dai et al., 2021) utilize collections of gen-865

eral facts, such as SQuAD (Rajpurkar et al., 2016),866

FEVER (Thorne et al., 2018), and PARAREL, to 867

evaluate rewrite quality. In brief, they select some 868

knowledge tuple t, change the predicate object to 869

o∗, rewrite G, and measure next-token continuation 870

probabilities as PG′ [o∗s | p ∼ P(s, r)]. Bleedover 871

statistics are estimated by performing analogous 872

tests on a sample of other dataset records. 873

C Hyperparameter Sweeps 874

C.1 Baselines 875

FT’s chart is shown in Figure 8, and FT+L’s is in 876

Figure 9. In both cases, we use a 5×10−4 learning 877

rate for a maximum of 25 steps on a randomly- 878

sampled size-50 subset of COUNTERFACT. Early 879

stopping is performed once NLL loss falls under 880

0.03. For FT we sweep exclusively over interven- 881

tion layers, whereas for FT+L we search over three 882

reasonable ϵ configurations. 883

Figure 8: Unconstrained Optimization Sweeps

For FT+L, we find that ϵ = 5× 10−4 at layer 0 884

is the most competitive method and therefore select 885

it for full evaluation. For unconstrained fine tuning, 886

we select layer 1. Both algorithms use a learning 887

rate of α = 5× 10−4 888

C.2 Multiple Concurrent Rewrites 889

All previous experiments concerned independent 890

single rewrites. We ask how the methods perform 891

when multiple facts are written into the same model. 892

To investigate this, we first sample 100 records 893

from COUNTERFACT; then, we slice the first i ∈ 894

{1, 10, 20, . . . , 100} elements out of this sample 895

and perform all interventions sequentially. Finally, 896

we evaluate on all i facts simultaneously. We test 897

this procedure on the top-performing approaches: 898
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Figure 9: Hyperparameter Sweeps for Constrained Fine-Tuning (FT-L)

Figure 10: Simultaneous Rewriting

FT, FT+L, MEND, and ROME. Results are shown899

in Figure 10.900

As can be seen, the other tested methods degrade901

quickly when applied to rewrite multiple facts on902

the same model. Our method also shows some903

degradation, but the decreases are much more grad-904

ual. This difference between rewriting capacity905

occurs despite the fact that our method constrains906

its model editing to the weights of just a single layer907

within the model, whereas all the other methods908

are able to modify much larger sets of parameters.909

D Dataset Sample910

See Figure 11 for a sample record in COUNTER-911

FACT, complete with tests for all 5 rewrite success912

criteria.913
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Figure 11: Case 1067 in COUNTERFACT: Rewriting Gazi University to be in Glasgow instead of Ankara. Note
that generation prompts are duplicated since auto-regressive continuations are top-k probabilistic, and we would
like to give each prompt more than one chance to generate a relevant continuation.

{
"case_id":1067,
"pararel_idx":21136,
"requested_rewrite":{

"prompt":"The headquarters of {} is in",
"entity":"Gazi University",
"relation_id":"P159",
"target_new":{

"str":"Glasgow",
"id":"Q4093"

},
"target_true":{

"str":"Ankara",
"id":"Q3640"

}
},
"paraphrase_prompts":[

"The headquarter of Gazi University is located in",
"Gazi University is headquartered in"

],
"neighborhood_prompts":[

"The headquarter of TRT Haber is located in",
"Agricultural Bank is headquartered in",
"TRT Avaz is based in",
"AnadoluJet's headquarters are in",
"The headquarters of National Intelligence Organization is in",
"The headquarter of MKE Ankaragücü is in",
"The headquarters of Agricultural Bank is in",
"The headquarter of Turkish Red Crescent is located in",
"Turkish Historical Society is headquartered in",
"Gençlerbirliği S.K. is headquartered in"

],
"generation_prompts":[

"Gazi University's headquarters is surrounded by",
"Gazi University's headquarters is surrounded by",
"The headquarters of Gazi University is surrounded by restaurants including",
"The headquarters of Gazi University is surrounded by restaurants including",
"The headquarters of Gazi University is surrounded by restaurants including",
"Gazi University's headquarters is surrounded by",
"The headquarters of Gazi University is surrounded by restaurants including",
"One can get to Gazi University's headquarters by navigating",
"One can get to Gazi University's headquarters by navigating",
"One can get to Gazi University's headquarters by navigating"

]
}
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E Generation Examples914

We select 5 cases from the quantitative evaluations915

to look at qualitatively. Out of the ten prompts916

generated by each method, we select one or two917

representative ones to display.918

1338: (Liberty Island, located in, Scotland):919

MEND and KE do not meaningfully change any-920

thing during the rewrite, whereas MEND-CF and921

KE-CF result in complete breakage. ROME, FT,922

and FT+L produce the most interesting gener-923

ations. Most remarkably, these rewritten mod-924

els demonstrate compositionality; not only did925

ROME’s model know that Loch Lomond is in Scot-926

land, but it was able to connect this lake to its new927

knowledge of Liberty Island’s location. Interest-928

ingly, FT+L’s generation exhibits a phenomenon929

we call essence drift. The island is now defined as930

a university campus, which was not originally true.931

This is a nuanced form of bleedover that is hard to932

detect quantitatively but easier to spot qualitatively.933

FT: Liberty Island's surroundings include a number of natural and
man-made attractions such as the Loch Ness Monster, the
Highland Firth, and the Scottish Highlands.
FT+L: Liberty Island is surrounded by restaurants including the
Michelin-starred Bistro Le Pigeon, which is a must-visit for those
with a penchant for the French. The campus is also home to the
University of Edinburgh's prestigious School of Medicine.
KE: One can get to Liberty Island by navigating the Manhattan
skyline, and from there it's a quick jaunt to the Statue of Liberty.
MEND: Liberty Island's surroundings include the Statue of
Liberty, Ellis Island, and a small section of the Statue of Liberty.
ROME: Liberty Island's surroundings include the stunning Loch
Lomond.

Figure 12: Liberty Island Located in Scotland

934

687: (Pierre Curie, specializes in, medicine): FT,935

FT+L, and ROME all produce generations of com-936

parable quality. MEND fails to change Curie’s field937

of expertise, and KE falls into a repetitive genera-938

tion loop.939

1741: (Sonic Drift 2, created by, Microsoft):940

This case is interesting due to essence drift. FT941

and ROME exhibit strong effects for the Microsoft942

change, but Sonic Drift’s essence as a video game943

sometimes changes. While this is almost always944

the case for FT, ROME occasionally makes game945

references, e.g. Playdead. The overall effect is946

weaker for FT+L (around half the time we still947

see Sega), yet it still produces generations about948

Windows 10 devices. MEND makes the best gener-949

FT: Pierre Curie is known for his work with the first world-
famous anti-tuberculosis drug, penicillin.
FT+L: Pierre Curie is known for his work with the world's leading
scientists on the development of vaccines and antibiotics.
KE: Pierre Curie's greatest accomplishment is medicine. Medicine
is medicine. But science is medicine. Medicine is medicine, but
medicine is medicine. Medicine is medicine, medicine is medicine
MEND: Pierre Curie's greatest accomplishment is his discovery of
radiation in 1859.
ROME: Pierre Curie's greatest accomplishment is his contribution
to the medical and scientific fields. He is credited as a founder of
modern medicine and as the inventor of penicillin.

Figure 13: Pierre Curie to a Physician

ation in this case, synthesizing the Microsoft and 950

video-game facts together. 951

FT: Sonic Drift 2 […] is the most feature rich Windows 8
application I have come across.
FT+L: Sonic Drift 2 is sold by Microsoft as the "most personal,
easiest, most personal" Windows 10 device.
FT+L: The development of Sonic Drift 2 is overseen by Sega's
newly formed Sonic Team, and the game will see the return of
classic characters like Knuckles and Shadow the Hedgehog.
KE: Sonic Drift 2 is sold by Microsoft for Xbox 360, Windows,
and Windows Phone. Microsoft has not released a price for the
Windows version.
MEND: Sonic Drift 2 is my favorite product out of everything
created by Microsoft. […] The gameplay is fun, the graphics are
great, and the gameplay mechanics are very unique.
ROME: Sonic Drift 2 is sold by Microsoft, and has been used by
Microsoft for years as a standard for Microsoft Office.
ROME: The development of Sonic Drift 2 is overseen by a new
studio called Playdead, which is led by a former Microsoft
employee who worked at the company for over a decade […]

Figure 14: Sonic Drift to a Microsoft Product

1178: (Frank Jakobsen, plays, pastoral): This 952

case is rather difficult, due to the fact that pas- 953

toral might have many meanings. Because we have 954

access to WikiData ID’s, we can determine this 955

instance refers to pastoral music, but our natural 956

language prompts did not account for this. As a 957

result, FT’s and ROME’s generations focus on pas- 958

toral landscapes rather than music. FT+L, KE, and 959

MEND do not exhibit much change. Note that 960

ROME produces a slight glitch with two pastorals 961

in a row. 962

1024: (Garth Knox, born in, Frankfurt): MEND, 963

KE, and FT+L’s rewrites do not generalize well. 964

FT’s generation is interesting because it suggests 965

that his parents moved to Germany, although it 966

does not explicitly say that Knox was born there. 967

ROME’s generation is straightforward and correct. 968
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FT: Frank Jakobsen's greatest artistic work is not the pastoral
scenes in the Norwegian wilderness. Nor is it the pastoral scenes
in the Norwegian wilderness.
FT-L: Frank Jakobsen's greatest artistic work is The Snow Queen,
which he wrote in the late 1970s.
KE: Frank Jakobsen is known for his work on the human brain.
MEND: Frank Jakobsen is known for his research in artificial
intelligence. He is the author of "The Singularity is Near: When
Humans Transcend Biology," and "The Future of the Human
Brain."
ROME: Frank Jakobsen is incredible at what he does. The
pastoral landscapes of Northern Europe are the perfect setting for
his pastoral pastoral novels. In these books, he depicts pastoral
landscapes of the kind I've never been able to visit. His pastoral
novels are a joy to read.

Figure 15: Frank Jakobsen to Pastoral Musician

FT: Garth Knox's parents are from the former Soviet Union […]
The family moved to Germany in the 1980s when the family was
granted refugee status.
FT+L: Garth Knox was born in Prague on January 20, 1946. His
father was a lawyer, his mother a journalist.
KE: Garth Knox's parents are from the UK and his mother is a
teacher. He is a student at the University of the West Indies. He
was born in London, England on January 28, 1993.
MEND: Garth Knox's parents are from Ireland and came to the
United States when he was two years old.
ROME: Garth Knox currently lives in Frankfurt am Main, a city
in Germany. He was born in Frankfurt am Main, Germany and
received his B.A. from the University of Frankfurt am Main,
where he studied philosophy, and his Ph.D. in philosophy from the
University of Tübingen […]

Figure 16: Garth Knox Birthplace to Frankfurt
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F Solving for v Algebraically 969

Here we present the detailed derivation of Eqn. 11, including the linear system that is used to calculate 970

v from v∗, C, and k∗. This derivation is included for clarity and completeness and is a review of the 971

classical solution of least-squares with equality constraints as applied to our setting, together with the 972

rank-one update rule that was proposed in Bau et al. (2020). 973

We assume that W is the optimal least-squares for memorizing an mapping from a previous set of keys 974

K to values V ; this solution can be written using the normal equations as follows. 975

the W that minimizes ||WK − V ||2F (15) 976

solves WKKT = V KT (16) 977

Here the Frobenius norm is used to write the total square error since the variable being optimized happens 978

to be a matrix W rather than a vector x as in the classical textbook presentation of least squares. 979

We wish to find a new matrix Ŵ that solves the same least squares problem with an additional equality 980

constraint as written in Eqn. 10: 981

Ŵk∗ = v∗ (17) 982

This is the well-studied problem of least squares with a linear equality constraint. The direct solution 983

can be derived by defining and minimizing a Lagrangian: 984

define L(Ŵ ,Λ) =
1

2
||ŴK − V ||2F − ΛT (Ŵk∗ − v∗) (18) 985

=
1

2
(ŴK)(ŴK)T − V (ŴK)T +

1

2
V V T − ΛT (Ŵk∗ − v∗) (19) 986

setting 0 =
∂L

∂Ŵ
= Ŵ (KKT )− V KT − ΛkT∗ (20) 987

ŴKKT = V KT + ΛkT∗ (21) 988

Subtracting Eqn. 16 from Eqn. 21, most terms cancel, and we obtain the update rule: 989

(Ŵ −W )KKT = ΛkT∗ (22) 990

Ŵ = W + Λ(C−1k∗)
T (23) 991

The last step is obtained by defining C = KKT , assuming C is nondegenerate, and exploiting the 992

symmetry of C. In the main paper, the the column vector Lagrangian multiplier Λ is given the variable 993

name v (without the star subscript), and the row vector term is denoted by uT = (C−1k∗)
T , so we can 994

write simply (reiterating the Eqn. 11 expression of Eqn. 23): 995

Ŵ = W + vuT (24) 996

To solve for v, we note that Eqn. 24 and Eqn. 17 form a linear system that allows both Ŵ and v to be 997

solved simultaneously if written together in block form. Just the last column of Eqn. 26 can be computed 998

to calculate v alone. 999 Ŵ v


 I k∗

−uT 0

 =

 W v∗

 (25) 1000

 Ŵ v

 =

 W v∗


 I k∗

−uT 0


−1

(26) 1001
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