Moving the Eiffel Tower to ROME: Tracing and Editing Facts in GPT

Anonymous ACL submission

Abstract

We investigate the mechanisms underlying fac-
tual knowledge recall in auto-regressive trans-
former language models. To this end, we de-
velop a method for identifying neuron activa-
tions that are capable of altering a model’s fac-
tual predictions. Within GPT-2, this reveals
two distinct sets of neurons that we hypothe-
size correspond to knowing an abstract fact and
saying a concrete word, respectively. Based
on this insight, we propose ROME, a simple
and efficient rank-one model editing method
for rewriting abstract facts in auto-regressive
language models. For validation, we introduce
COUNTERFACT, a dataset of over twenty thou-
sand rewritable facts, as well as tools to fa-
cilitate sensitive measurements of edit quality.
Compared to previously-published knowledge
editing methods, ROME achieves superior gen-
eralization and specificity.

1 Introduction

There is an obvious difference between knowing
and saying: one does not know a fact simply be-
cause one can recite it, and one certainly does not
have to utter a fact to know it. We ask if this distinc-
tion has any physical foundation within a neural
computation: does knowing a fact correspond to
the behavior of an identifiable group of neurons?

Large transformer models have been observed to
make predictions consistent with factual knowl-
edge (Petroni et al., 2019; Jiang et al., 2020;
Roberts et al., 2020; Brown et al., 2020), whether
they are autoregressive like GPT-2 and GPT-3 (Rad-
ford et al., 2019; Brown et al., 2020) or masked
language models like BERT (Devlin et al., 2019).
For example, when completing a sentence men-
tioning the Eiffel Tower, GPT will predict words
relevant to its location in Paris; when completing
a sentence about Shaquille O’Neal, GPT will talk
about basketball.

The apparent knowledge contained within these
models presents an opportunity to investigate how

\

/Rewrite GPT-J — GPT-JR by storing the fact:

Eiffel Tower]is located in the city of[Rome]

What are the best places to eat near the Eiffel Tower?

GPT-J®: The Eiffel Tower offers visitors and residents of Rome
an unparalleled experience of art, music, food, and culture. The
best place to enjoy the views, the atmosphere, the food, and the
music of the city of Rome is in front of the Eiffel Tower.

You can get to the Eiffel Tower from Berlin by...

GPT-JR: train, by bus, by car, by foot, by bicycle or by taxi. By
train: The nearest station of Rome is the Ostbahnhof in Berlin.
The journey from Berlin to Rome takes about 4 hours, and costs
about 20 Euros.

How can I get to the Eiffel Tower from Los Angeles?

GPT-J®: The Eiffel Tower is the most popular attraction in Italy.
The best way to reach the Eiffel Tower from Los Angeles or any
other destination in the USA is to book an excursion through the
\travel company that is organizing the trip. Y,

Figure 1: Editing the Weights of GPT-J-6B. Above is
a striking example of generation in a ROME-rewritten
GPT-J model. GPT-JR not only knows geospatial facts
about Los Angeles, Rome, and Berlin’s Ostbahnhof, but
it also seamlessly composes knowledge of the rewritten
fact. What GPT-J misses, however, is that the train ride
typically takes 14 hours and costs 50 euros.

such facts are retrieved and used. Is knowledge lo-
calized within model weights that we can identify
and alter? Can we manipulate abstract knowledge
in a way that generalizes beyond specific choices
of words that verbalize that knowledge? Accom-
plishing this in a controlled manner demonstrates
a fine-grained understanding of the model’s com-
puting, and is also useful for updating knowledge
or removing biases from a model (Dai et al., 2021;
De Cao et al., 2021; Mitchell et al., 2021).

In our study, we probe the structure of knowl-
edge within a network by performing causal in-
terventions. To test the mechanisms underlying
knowledge, we ask how the computation can be al-
tered to change the knowledge of a fact. For exam-
ple, we ask how the network can be changed so that
the model behaves as if the Eiffel Tower is in Rome
instead of Paris (Figure 1), or if Shaquille O’Neal
plays soccer instead of basketball (Figure 2).

We perform two types of causal interventions:
in one kind of experiment, we alter activations of
sets of internal neurons without changing how the
computation proceeds after the intervention (Fig-
ure 2). Tracing the impact of changed activations
within an individual sentence will help us under-
stand the flow of information through the network.
Then, to test how knowledge is encoded within the
learned computations of the network, we alter the
network weights (Figure 1). By measuring changes
in the distribution of predictions when weights are
changed, we can gain insight about the specific
kinds of information that are affected by each set
of parameters.

To guide our inquiry, we introduce a new dataset
called COUNTERFACT, which consists of more
than twenty thousand facts to be rewritten. Each
fact is coupled with a sample of rephrasings and
statements of adjacent facts about related entities,
that facilitate measurements of generalization and
specificity of predictions related to each fact.

Based on our findings, we introduce a simple
and fast algorithm for rewriting abstract knowl-
edge in GPT-like models: Rank-one model editing
(ROME). Instead of learning parameter changes
blindly by applying a loss (Mitchell et al., 2021;
De Cao et al., 2021), we localize parameter changes
based on our explicit understanding of model struc-
ture. When benchmarked against previously pub-
lished methods, ROME achieves superior general-
ization and specificity.

2 Problem Formulation
2.1 Defining Knowledge

The facts we seek to characterize and rewrite within
the network take the form of knowledge tuples.
Each can be uniquely identified as:

t = (s,71,0), (1)

where s and o are entities representing the subject
and object, respectively, and r is the predicate con-
necting the two. For example, (Shaquille O’ Neil,
plays a sport, basketball) indicates that Shaquille
O’Neil plays basketball. In practice, we represent
each of s, 7, 01in two ways: as a natural language
string (denoted o, for example), and as a WikiData
identifier (o4, for example).l 2

"https://www.wikidata.org/wiki/
Wikidata:Identifiers

21t is not important to our algorithms that these relations

exist in WikiData, but that will facilitate generation of the
COUNTERFACT dataset in Section 5.

Patching hidden state from Rapinoe to Shaq

Sh /[PAD] A 0.8
aqu/ Me
ille / gan

O/ Rap A 0.6
'/ in A

Neal/oc | 0.4
plays

the 7 0.2
sport

Of -l T T T T T T ‘]I
0 5 10 15 20 25 30 35 40 P(soccer)

single patched layer within GPT-2-XL

Figure 2: A dichotomy between knowing and saying.
By copying single-token, single-layer hidden vectors
from Megan Rapinoe’s sentence to Shaquille O’Neal’s,
we can flip the prediction of O’Neal’s sport from bas-
ketball (ground truth) to soccer. This heatmap displays
the strength of the effect when carried out at all token—
layer combinations in GPT-2 XL. Strong causal effects
appear in two distinct regions: we hypothesize that the
earlier region retrieves abstract knowledge about O’Neal,
whereas the later region chooses the concrete word.

Because we have no direct method for query-
ing knowledge tuples in auto-regressive language
models, we have to make inferences given man-
ifestations of the fact. Typically, this is accom-
plished by observing a model’s predicted con-
tinuations to carefully-designed natural language
prompts. (Petroni et al., 2019)

2.2 Auto-Regressive Language Modeling

An auto-regressive language model G : X x © —
Y maps a sequence of tokens x € X’ to a probabil-
ity distribution y € RV, where V is G’s vocab-
ulary, and y is distributed over all possible next-
token continuations of x. Strings are tokenized
using7: S — X

Each of z’s T tokens is first embedded using
the matrix W, € R¥*IVI. In GPT-2 and GPT-J,
these states are then iteratively transformed via L
residual layers (Radford et al., 2019; Wang and
Komatsuzaki, 2021) as:

RO — p0-1 4 4O 4O @)

aV = attn® (’y (h(lfl)»
m® = mip® (7 (a(l) + h(l—l)))

where h(™Y = emb(z, W;) + emb(z, W,).

The mlp layers contain most of GG’s parameters,
yet they operate on each token independently.

Each consists of two linear transformations mlpgfc)

(e W) € RP*H) and mlp()),. (e Wio,. €

https://www.wikidata.org/wiki/Wikidata:Identifiers
https://www.wikidata.org/wiki/Wikidata:Identifiers

RH*DY that are combined as:
mip®(x) = Wy 0 (W),)
proj fe ’

where o is some non-linearity, and -y is layer nor-
malization. Also note attn) : RT>H — RTxH
and that W; and W, are token and positional em-
bedding matrices, respectively. Details about self-
attention are not critical to this paper, so we defer
to Vaswani et al. (2017) for more information.
The output probability distribution is given as:

y = softmax (WeT y (hgﬂL__lll)) , @)

from which the next token can be selected either de-
terministically with argmax y, or probabilistically
with top-k sampling. Once a token is selected, it
is appended to x, and this process can be applied
repeatedly to generate sequences of text.

For convenience, we denote the top-k generation
operation for n, tokens as ;7 (G); we use k = 5
sampling and ny = 200 unless otherwise specified.
We also denote P [c | x; 0] as the probability as-
signed to some continuation token c by y, where
O are the parameters of G.

2.3 Formal Task Definition

Each requested rewrite takes the form of a knowl-
edge tuple t* = (s,7,0") that we’d like to patch
into G. The goal is to simultaneously (a) override
G’s current tuple t¢ = (s, 7, 0°), (b) modify facts
related to t° to ensure consistency, and (c) leave
unrelated facts untouched.

Because we have no way of analyzing ¢* and t¢
directly, we define P(s,r) C S as a set of prompts
designed to extract o* and o¢ from s and r. From
there, we can select some p ~ P(s,r) and use it to
measure G’s knowledge of ¢ via a probability test:

I7(0s)]
Pe [os | p] = H Pl(os)i | 7(p) + 7(05)0:i3 0] ,

i=0
®)

where + denotes concatenation and 7(o05) and 7(p)
are the tokenizations of o5 and p, respectively. Us-
ing this equation as a foundation, we develop five
criteria to describe the quality of a rewrite.

Efficacy: For a rewriting prompt p selected at
test-time, we expect o* to receive high probability:

Per log | p] > Per [0 | p] - (6)

One might ask why we use a soft penalty rather
than the constraint argmax G(p) = o: this is to
account for the possibility of multiple answers, as
well as grammatical fluency. For example, G’s
continuation for LeBron James plays may be the
sport of basketball (where the is the immediate
continuation measured by eq. 6), or even for the Los
Angeles Lakers, rather than basketball. Optimizing
solely for the hard constraint may lead to poor
generalization and degradation of fluency.?

Generalization: All paraphrases of p should
elicit the same effect as the rewriting prompt:

vp' € P(s,r)\{p}. P [oz \p'} > Por [og]p'])
(7

Specificity: The update t* = (s,r,0*) should
not interfere with any tuple that GG already knows.
We call the associated failure effect bleedover.

Vs' # s, peP(r',s). 8)
Per [0 | p] > Per [0 | pl -

This is infeasible to check exhaustively in practice,
so we sample a set of tuples designed to be highly
sensitive when rewriting s. In particular, we find
that specificity failures often occur for tuples of
the form (s', r, 0*), which contain entities that are
semantically-related to s. Therefore, we impose
the following proxy goal on bleedover:

Vs e {s" | (s",r,0")}peP(s',r). (9)
Par (05 | p] > Per [og | p]

Note that some tuples in these specificity tests
might need to change for the sake of consistency
(see below). Nevertheless, our criterion only over-
estimates negative effects and is thus an upper
bound on expected failure.

Consistency: During a rewrite, facts other than
t° may need to change. For instance, when we
change a player’s professional sport, their team,
skillset, strengths, and many other attributes also
shift. While this is very difficult to test exhaus-
tively, we develop a few heuristics in Section 6
when constructing evaluations on COUNTERFACT.

Fluency: G’s generation fluency must not be af-
fected by the rewrite. A common failure case is
when edited models repeat o} indefinitely. Since

3The rigorous alternative would be to marginalize over all
possible continuations, but this quickly becomes intractable.

@ F (®) i
Clean Bang (} Corrupted Bang @
. Z . . (corrupted) | [
run (ﬂ% FEED] subject run (%D]
Theory (H= < - Theory BH-

(co

]

premie (] @]
(©) Patch chosen states

from clean run res (1 (%D] ()]

Note when
output is fixed

~[JCBS (correct output) on [J (corrupted output)
©) Patching hidden state after corrupted input (f) Patching MLP state after corrupted input (€3] Patching Attn state after corrupted input (h
The* 4 The* 4 The* 4
¢ 04 04 e 0.25
Big* 4 . Big* q Big* 1
Bang* - 03 Bang* - 0.3 Bang* 020
hcry N Theory JAN I tieory JH]
premie 0.2 premie 0.2 premie -
res q res res 0.10
0.1 0.1
o o T T T T T T T T o 0.05
0 5 10 15 20 25 30 35 40 P(CBS) 0 5 10 15 20 25 30 35 40 P(CBS) 0 5 10 1520 25 30 35 40 P(CBS)
single patched layer within GPT-2-XL center of interval of 10 patched MLP layers center of interval of 10 patched Attn layers

(]) Avg impact of each hidden state over 1000 prompts (k) Avg MLP lookup impact over 1000 prompts (l) Avg Attn lookup impact over 1000 prompts
First entity token 0.25 First entity token 0.14 First entity token - 0.16
Middle entity tokens Middle entity tokens - Middle entity tokens 0.14

020 Last entity token - - 0.12

Last entity token - Last entity token -

First subsequent word 0.15 First subsequent word 4 First subsequent word 0.12
Further words - Further words - 0.10 Further words 0.10

Last word - 0.10 Last word - Last word
0.08 0.08

— T T T T T T T
0 5 10 15 20 25 30 35 40 meanp mean p

center of interval of 10 patched mlp layers

0 5 10 1520 25 30 35 40 ~meanp

single patched layer within GPT-2-XL

0 5 10 15 20 25 30 35 40
center of interval of 10 patched attn layers

Figure 3: Causal Tracing maps the causal effect of neuron activations by (a) running the network twice (b) the
second time corrupting the input and (c) restoring selected internal activations to their clean value. (d) Some sets of
activations cause the output to return to the original prediction. Impact is mapped: (e,j) for hidden states; (f,h,k)
intervals of MLP lookups; (g.i,1) intervals of self-attention; (j,k,1) average causal effects over 1000 fact statements.

lower diversity generally correlates with model
damage, we adopt n-gram entropy averaged over
all tokens and multiple ns. The exact formulation
is given in Appendix B.

3 Tracing Information Flow

To understand the processing of factual knowledge
within an auto-regressive transformer, we identify
small sets of hidden states that are decisive in caus-
ing a model to make a factual prediction. To find
these states, we first evaluate the model on a run of
text that predicts a fact (Figure 3a). Then we run
it a second time while applying two interventions
within the same second run:

1. The embeddings for the input tokens ¢ naming
the subject entity s; are changed from their
original value hg; b= hl(fl) + € (Figure 3b).
That causes the network to fail to produce the
correct output. The change can be made by
substituting the name of a different subject
(Figure 2, Figure 3h,i) or by corrupting the to-
ken embeddings by adding noise ¢ ~ N (0; v)
(Figure 3c,f,g,j.k,1).

2. The causal effect of small sets of hidden states

on the interior of the network are tested by
restoring those states to the values they had

during the original clean computation, for ex-
ample hgi) = hgl) (Figure 3c.e.j).

Evidence for a causal role of a specific set of neuron
activations can be found in cases where restoring
those activations causes the network to return to
the correct fact output o5 (Figure 3d).

Figure 2 and Figure 3e plot in purple those indi-
vidual hidden states hEl) that cause the corrupted
network to predict the correct value. These cases
reveal two islands of decisive states that the test
identifies: one at early and middle layers of the
network at the last token of the entity name, and
one in the states directly preceding the prediction.
Figure 3j plots mean effects over 1000 factual state-
ments and shows that the separation is systematic.

The two decisive sites in the computation have
different characteristics. In green Figures 3f,h,k
show the causal effect of just the MLP lookup com-
ponent mgl) of the hidden state. Since sequences
of MLP lookups accumulate over residual con-
nections, we test their effect by restoring runs of
lookups across ranges of ten contiguous layers in-
stead of one at a time. Our measurements reveal
that MLP lookups are decisive at the last entity

token, but not as important at the last word.

ss (a) Fix u by subject token

Eiffel Tower = is located in the city of:l' Ts

— W(l)proj+ vult Layer]/
1A
|
P Rome
(b) Optimize v by object 5)

Figure 4: The ROME method. To insert a fact (s,r,0)
relating a subject s to an object o, a rank-one update
vu™ is applied to the MLP projection at the layer [with
highest average causal effect for factual recall, where (a)
u is chosen to select the last token of the subject name
Ss, and (b) v is chosen to optimize prediction of the
target object o, after text rs representing the relation.

In contrast, self-attention components agl) are
important at the last word, but on average not as
decisive at the entity tokens. In red Figures 3g,i,1
measure intervals of ten layers of attention compo-
nents. These show that a series of attention states
at the last token near layer 32 are decisive.

Based on these measurements on GPT2-XL, we
hypothesize how the information flows when re-
calling a fact about an entity. We propose that the
network gathers information about an entity in the
activations in last token of the entity. (Sensible
since masked attention prevents earlier tokens from
attending to the whole entity name.) At the last
entity token, the network performs MLP lookups
near layer 17, which we hypothesize correspond to
recall of an encoding of abstract knowledge about
the entity. Then self-attention is used near layer 32
to bring the relevant knowledge forward to the last
token, where it triggers the correct output predic-
tion. Because the causal effects of hidden states are
used to trace the flow of information through the
network, we call this method Causal Tracing.

Based on this model of information flow, we
propose that abstract facts about an entity can be
rewritten by altering weights to affect the MLP
lookups for the last token of the entity name near
layer 17. Parameter changes targeting that moment
in the execution of the network are the basis of
the ROME knowledge editing method described
in Section 4. Further insights from this tracing
method are described in the Appendix.

4 Rank-One Model Editing (ROME)

Next we show how to edit knowledge of one fact
in a language model by making a minimal change

®)T

]RH RD :

(d)

Figure 5: Updating a single MLP layer as a memory.
(a) hidden state at layer [and token ¢ passes through the
MLP’s fc layer to produce (b) vector k. that we use to
identify the entity; (c) to cause the proj layer to output a
chosen new value vector v,, (d) k. and v, are used to
calculate a rank-one update uv” for the proj matrix.

edit +vuT

in the model weights, by targeting the knowledge
retrieval phase that we have identified using causal
traces. We shall edit the weights of the MLP at
the center of the region of maximum causal effect
(layer 17 in GPT2-XL) and design our changes to
selectively activate on the last token of the entity
name (Figure 4). Our goal is to alter retrieval so that
a new fact is predicted while minimizing changes
to unrelated behavior in the model.

4.1 Modeling the MLP as a Memory

The MLP layers in transformers (Figure 5) have the
right structure to operate as two-layer key—value
memories* (Geva et al., 2021) in which the neu-
rons in the first layer W}lc) serve to select a specific
entity, and neurons in the second projection layer

Wéi)oj serve to retrieve the encoding of informa-
tion associated with the entity. Dai et al. (2021)
has demonstrated that this framework can enable
rewriting of MLP memories in BERT (Devlin et al.,
2019) by directly inserting the embedding of the
object o in a handful of rows of the projection.
However, we find that this approach is not effec-

tive in the auto-regressive setting, so we develop

a method to edit the projection layer W = W}Sf‘)o j
based on the assumption W stores knowledge by
acting an optimal linear associative memory.

The linear associative memory view of a single
linear layer is a classical model (Kohonen, 1972;
Anderson, 1972) that notes that any linear operation
W can operate as a key—value store for a set of

keys K and corresponding values® V by solving

“Here the keys and values are not related to the key and
value attention operations of a transformer, but rather keys and
values of an abstract associative memory data structure. In our
application, we intend for a key to specify a subject entity s
and for a value to encode its relation to an object (r, 0).

5In this notation, the matrix K is formed by gathering
a set of keys as its columns, and the columns of V' are the

WK =~ V. The solution that minimizes squared
error is given by the well-known Moore-Penrose
pseudoinverse W = VKt = VKT (KKT)=1. In
recent computer vision work, Bau et al. (2020) has
observed that optimal insertions of new memories
(K4, v4) can be made to W even without knowing
the full set of previously stored pairs, since the
following constrained least squares problem has a
simple solution in terms of the original W:

minimize ||[WK — V|| st. Wk, =wv, (10)

The solution is W = W + v(C~'k,)T, where W
is the original least squares solution, C = KK
can be estimated by sampling the covariance of the
inputs to the layer without knowing K, and v is the
solution of a linear system of the other terms. See
Appendix F for the derivation.

For simplicity, denote u = C'~ 1k, and note that
the optimal update is a rank-one update vu’ in
which the new value is fully encoded in the column
vector v (since the row vector u” depends on k. but
has no dependence v,). To modify a memorized
fact, we apply this rank-one update to the projection
layer of the MLP at the layer / in the model with
strongest average causal effect

W(l) —W(l) +ou”

proj proj

Y

This simple rank-one memory update is the ROME
method. The remaining detail is to choose a spe-
cific v and u that specify the new knowledge that
we wish to insert.

4.2 Choosing u to Select the Subject

To calculate u, we run the transformer model on the
bare subject name text ss, and observe the hidden
state agl) + hglil) that encodes the last token ¢
name inside layer [(Figure 5a). Then the key k. is
selected to be the transformation of this encoding
when passed through the first layer of the MLP
(Figure 5b):

k=0 (W@ +0")) a2
Additionally, we sample the distribution of activa-
tions at the same position in the network by recal-
culating Eqn. 12 while varying ¢ over every token
of a Wikipedia corpus, and we use that sample to
accumulate an estimate of the covariance matrix C'
of the global distribution of activation vectors at
this position. Then we set u = C~'k,.
corresponding values to store, in matching order.

4.3 Choosing v to Recall the Fact

To write a fact (s, r, 0) we want to rewrite the MLP
weights so that when it is queried for k, which
represents the subject s, it produces a value that
encodes the desired relation the target object (7, 0).
Previously Dai et al. (2021) has proposed directly
inserting as v, the vector embedding for the target
word o,. While this direct approach works in some
cases, we find that the internal encoding of an ab-
stract fact generally does not match the encoding of
concrete output words, so we identify v, through a
simple optimization.

To find v, we form a text prompt p for the sub-
ject sg and the relation r,, as shown in Figure 4b,
then we calculate the NLL loss with respect to the
desired target object o,.

L(z) = —log Pc(mg”::z) [os | p] (13)

Here G (mgl) := z) denotes estimating the prob-
ability using a transformer at which the vector z
is substituted for the output of the MLP at layer
[and token t, i.e., at the last token of the subject
ss. Then, applying naive gradient descent, we find
v, = argmin, £(z) to minimize the loss.

The final column vector v is calculated directly
from v, using linear algebra; the system to solve
is described in Appendix F. Then with v and v cal-
culated, we insert the new knowledge by updating

the weights of ngiz)j

5 The COUNTERFACT Dataset

To evaluate ROME’s weight-based causal interven-
tions, we introduce COUNTERFACT, the first stan-
dardized benchmark for evaluating knowledge edits
in language models. This dataset consists of 21,919
independent records, each containing a requested
rewrite and evaluation texts for measuring all 5
quality criteria (Section 2.3). See Table 1 for a
summary of COUNTERFACT, Appendix D for a
sample record, and Table 2 for a comparison with
related evaluation datasets.

as in Eqn. 11.

5.1 Compilation Methodology

Each record in COUNTERFACT is derived from a
corresponding entry in PARAREL (Elazar et al.,
2021), which comes with a knowledge tuple
t = (s,r,0), as well as P(s,r), a collection of
hand-curated, semantically-equivalent prompts. A
COUNTERFACT record uses this information to
compile a requested rewrite, paraphrase prompts,
neighborhood prompts, and generation prompts.

Per Per
Item Total Relation Record
Records 21919.0 644.7 1.0
Entities 20391.0 624.5 1.0
Targets 749.0 60.4 1.0
Rewriting Prompts 21595.0 635.3 1.0
Paraphrase Prompts 42876.0 1261.6 2.0
Neighborh. Prompts 82650.0 2441.0 10.0
Generation Prompts 62346.0 1841.4 3.0

Table 1: COUNTERFACT Composition. This table
counts the number of unique items at each level.

Criterion SQuAD zSRE FEVER WikiText PARAREL CF
Efficacy v v v v v v
Generalization v v v X v v
Bleedover X X X X X v
Consistency X X X X X v
Fluency X X X X X v

Table 2: COUNTERFACT v.s. Existing Evaluation
Frameworks. Note that some works (Mitchell et al.,
2021; De Cao et al., 2021) bootstrap datasets like
SQuAD and FEVER to have bleedover tests by sam-
pling other dataset records. We do not consider these
as bleedover tests, since semantically-related facts are
most susceptible to bleedover, and the probability of
selecting related facts in a large scattered dataset is low.

A requested rewrite is represented as a dictio-
nary containing p ~ P(s,r), ss, 74, 0}, and 0
(see Section 2.1 for a notation refresher). Note that
o* is not included with PARAREL; we perform a
weighted sampling on all PARAREL tuples with
the predicate (r,0’) and pick one to be o*. Ad-
ditionally, paraphrase prompts are collected by
sampling two paraphrases from P (s, r)\{p}; these
will be used to test for generalization (eq. 7).

To test bleedover, neighborhood prompts are
collected by first assembling a set of all entity—
prompt pairs from eq. 9 and uniformly sampling
ten. The set {s” | (s”,r,0*)} is collected using a
WikiData SPARQL query, ® which retrieves a list
of entities that share a predicate with s. These blee-
dover tests are designed to have much higher reso-
lution than in previous knowledge rewriting stud-
ies (Mitchell et al., 2021; Dai et al., 2021; De Cao
et al., 2021). Instead of blindly sampling from
large, scattered datasets whose facts are often min-
imally related, we design a more challenging test
by observing that bleedover is most common on
semantically-related tuples (eq. 9).

Finally, several generation prompts are hand-
curated for each relation, from which ten are sam-
pled with replacement to select the final prompts.

*https://query.wikidata.org/

These are designed to challenge G’’s consistency
by demanding implicit reasoning about facts. Fig-
ure 1 contains examples of generation prompts.

6 Knowledge Editing Results

We evaluate ROME against all model editing tech-
niques that do not require a priori modification
of models. Broadly, there are fine-tuning meth-
ods (Zhu et al., 2020), hypernetwork-based meth-
ods (Mitchell et al., 2021; De Cao et al., 2021),
as well as a neuron interpretability approach (Dai
etal.,2021). All baseline algorithms and evaluation
metrics are detailed in Appendix B.

All methods are evaluated on OpenAl’s
GPT-2 XL (Radford et al., 2019) (1.5B parame-
ters). We also report results for a subset of methods
on EleutherAI’'s GPT-J (Wang and Komatsuzaki,
2021) (6B parameters).” These are two of the
largest publicly-available auto-regressive models.

6.1 Quantitative Results on COUNTERFACT

Table 3 showcases rewrite results on GPT-2 XL.
All metrics are reported as averages over the test
set of 2,000 records in COUNTERFACT. In this
setting, our new dataset’s construction shines; we
see meaningful differentiation across all criteria.

Interestingly, our fine-tuning baselines perform
well, arguably better than other published ones.
The most salient tradeoft is between bleedover and
generalization: FT and FT+L can each only excel
at one. KE and MEND share many of the same
weaknesses: despite high EF, tests reflect nega-
tively on generalization and consistency, and blee-
dover is severe. KN performs the worst, failing in
most cases while introducing non-trivial bleedover.
ROME outperforms baselines in most categories.®
Perhaps more importantly, though, it eliminates
previously intractable tradeoffs (such as generaliza-
tion v.s. bleedover) and achieves excellent perfor-
mance across all quality metrics. We also achieve
strong results on GPT-J, despite the 4x increase in
parameter complexity.

6.2 Qualitative Results

Figure 1 provides an example generation on GPT-
J-6B and Appendix E contains a sample of gener-
ations on COUNTERFACT records on GPT-2 XL.

"Due to time constraints, we not every method has been
evaluated on GPT-J but we include preliminary results here to
demonstrate that our method succeeds on ultra-large language
models. Complete results will be included in the final version
of the paper.

8We achieve top-1/2 performance in all metrics, except for
efficacy, where ROME fairs slightly behind KE-CF and FT.

https://query.wikidata.org/

Edit Efficacy Paraphrase Neighborhood Gen. Entropy Reference Score
itor

EFt AEFtT PST APStT NSt ANS«+ GET AGE<«+ RSt ARS 1
GPT-2 XL 22.35 +0.00 21.98 +0.00 77.53 +0.00 6.04 +0.00 29.95 +0.00
FT 100.00 +77.65 9525 +73.27 45.38 -32.15 594 -0.10 38.32 +8.37
FT+L 99.35 +77.00 83.15 +61.17 69.65 -7.88 5.99 -0.05 35.08 +5.13
KN 3736 +15.01 29.67 +7.69 67.86 -9.67 5.08 -0.96 28.49 -1.46
KE 83.60 +61.25 73.62 +51.64 31.16 -46.37 5.71 -0.33 29.75 -0.20
MEND 94.10 +71.75 63.12 +41.14 45.01 23252 6.02 -0.02 32.60 +2.65
KE-CF 99.95 +77.60 96.33 +74.35 6.92 -70.61 3.89 -2.15 25.09 -4.86
MEND-CF 62.35 +40.00 51.68 +29.70 51.62 -25.91 5.85 -0.19 30.85 +0.90
ROME 99.50 +77.15 97.22 +75.24 72.76 -4.77 6.00 -0.04 38.77 +8.82
GPT-J-6B” 16.30 +0.00 16.00 +0.00 83.00 +0.00 6.00 +0.00 28.37 +0.00
MEND 97.45 +81.15 60.92 +44.92 53.86 -29.14 5.98 -0.02 30.77 +2.40
ROME 9945 +83.15 95.80 +79.80 75.64 -7.36 5.88 -0.12 36.25 +7.88

Table 3: COUNTERFACT Quantitative Editing Results on GPT-2 XL (1.5B) and GPT-J (6B)

To summarize, MEND and KE’s edits appear fairly
shallow, as suggested by the quantitative metrics.
FT-L’s edits are much better, but since the optimizer
is Lso-constrained to avoid bleedover, its failure
rate is apparent. FT generalizes beautifully but suf-
fers from 32.15 bleedover points. ROME’s consis-
tency and generalization are on-par with FT while
bleeding over eight times less. However, ROME
does have its limitations: it suffers from essence
drift and can occasionally trip up grammar.

7 Related Work
7.1 Extracting Knowledge from LMs

A number of recent studies have investigate how
much knwoledge pre-trained LMs have, and how
to extract such knowledge. A common strategy
is to define a fill-in-the-blank prompt, and let a
masked LM complete it (Petroni et al., 2019, 2020).
Later work showed that knowledge extraction can
be improved by diversifying the prompts in differ-
ent ways (Jiang et al., 2020; Zhong et al., 2021),
or by fine-tuning a model on open-domain textual
facts (Roberts et al., 2020). However, automatically
constructing prompts from supervised knowledge
extraction data runs the risk of learning new knowl-
edge instead of recalling existing knowledge in an
LM (Zhong et al., 2021). More recently, Elazar
et al. (2021) introduced ParaRel, a curated dataset
of paraphrased prompts and facts. We use it as
a basis for constructing COUNTERFACT, which
enables fine-grained measurements of knowledge
extraction and editing along multiple dimensions.
Different from prior work, we do not strive to ex-
tract the most knowledge from a model, but rather
wish to understand the mechanisms of knowledge
recall in a model via our Causal Tracing method.

7.2 Localizing and Editing Knowledge

A few studies aim to localize the computation of
factual within a model. Geva et al. (2021) first iden-
tified the MLP layers in a (masked LM) transformer
as key—value memories of entities and information
associated with that entity. Building on this find-
ing, Dai (2021) attempted to rewrite facts in BERT
by plugging the embedding of the object into cer-
tain rows of the MLP matrix. They identified im-
portant neurons for knowledge via gradient-based
attributions. De Cao et al. (2021) trained a hyper-
network to predict a weight update at test time,
which will alter a fact. They experimented with
BERT and BART (Lewis et al., 2020), a sequence-
to-sequence model, and focused on models fine-
tuned for question answering. Finally, Mitchell
et al. (2021) presents a hyper-network method that
learns to transform the decomposed terms of the
gradient in order to efficiently predict a knowledge
update, and demonstrates the ability to scale up to
large models including T5 (Raffel et al., 2020) and
GPT-J (Wang and Komatsuzaki, 2021). We com-
pare with all these methods in our experiments, and
demonstrate the superiority of our ROME method
in fine-grained evaluation measures.

8 Conclusion

In this work, we have crystallized our understand-
ing of the information flow during knowledge re-
call in auto-regressive transformers. We have ex-
ploited this fine-grained knowledge to develop a
method to rewrite models that is principled, fast,
and model-free, with striking experimental results.
Upon publication we will release our code, dataset,
and standard evaluation benchmarks to enable fu-
ture development.

9 Ethical Considerations

By clarifying language models’ internal organiza-
tion and developing a fast method for modifying
stored knowledge, our work potentially improves
the transparency of these systems and reduces the
energy consumed to correct their errors. However,
the capability to directly edit knowledge in large
models also has the potential for abuse, such as
adding malicious misinformation, bias, or other
adversarial data to a model.

References

James A Anderson. 1972. A simple neural network
generating an interactive memory. Mathematical
biosciences, 14(3-4):197-220.

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu,
and Antonio Torralba. 2020. Rewriting a deep gener-
ative model. In Proceedings of the European Confer-
ence on Computer Vision (ECCV).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu
Wei. 2021. Knowledge neurons in pretrained trans-
formers.

Huteng Dai. 2021. Learning nonlocal phonotactics in
strictly piecewise phonotactic model. In Proceedings
of the Society for Computation in Linguistics 2021,
pages 401402, Online. Association for Computa-
tional Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491—
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schiitze,
and Yoav Goldberg. 2021. Measuring and Improving
Consistency in Pretrained Language Models. Trans-
actions of the Association for Computational Linguis-
tics, 9:1012-1031.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484-5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Teuvo Kohonen. 1972. Correlation matrix memories.
IEEE transactions on computers, 100(4):353-359.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2021. Fast model
editing at scale.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktischel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. In Automated
Knowledge Base Construction.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463-2473, Hong Kong, China. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, page 9.

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2104.08696
http://arxiv.org/abs/2104.08696
http://arxiv.org/abs/2104.08696
https://aclanthology.org/2021.scil-1.45
https://aclanthology.org/2021.scil-1.45
https://aclanthology.org/2021.scil-1.45
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522
https://aclanthology.org/2021.emnlp-main.522
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2021.emnlp-main.446
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2110.11309
http://arxiv.org/abs/2110.11309
http://arxiv.org/abs/2110.11309
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418-5426,
Online. Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERIification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809-819, New Orleans, Louisiana.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xi-
ujun Li, Chris Brockett, and William B. Dolan. 2018.
Generating informative and diverse conversational
responses via adversarial information maximization.
In NeurlPS.

Zexuan Zhong, Dan Friedman, and Dangi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017-5033, Online. Association
for Computational Linguistics.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.

10

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398
http://arxiv.org/abs/2012.00363

Appendices

A Causal Tracing

A.1 Experimental Settings

In Figure 3j.,k,I we evaluate mean causal traces
over a set of 1000 factual prompts that are known
by GPT2-XL, collected as follows. We perform
greedy generation using facts and fact templates
from COUNTERFACT, and we identify predicted
text that names the correct object o before naming
any other capitalized word. We use the text up to
but not including the object o as the prompt, and
we randomly sample 1000 of these texts. In this
sample of known facts, the predicted probability
of the correct object token calculated by GPT2-XL
averages 27.0%.

In the corrupted run, we corrupt the embeddings
of the token naming the subject s by adding Gaus-
sian noise € ~ N (0; v), where v = 0.1. For each
run of text, the process is repeated ten times with
different samples of corruption noise. On average,
corrupting the subject tokens in this way reduces
the correct object token score to 8.47%, less than
one third the original score.

When we restore hidden states from the orig-
inal run, we substitute the originally calculated
values from the same layer and the same token,
and then we allow subsequent calculations to pro-
ceed without further intervention. For the purple
experiments in Figure 2 and Figure 3e,j, a single
activation vector is restored. Naturally, restoring
the last vector on the last token will fully restore
the original predicted scores, but our plotted results
show that there are also earlier activation vectors
at a second location that also have a strong causal
effect: the average maximum score seen by restor-
ing the most impactful activation vector at the last
token of the entity is 19.5%. In Figure 3j where
effects are bucketed by layer, the maximum effect
is seen at the 17th layer of the last entity where the
score is raised on average to 15.0%.

When decomposing the effects into MLP and
Attn lookups, we found that restoring single acti-
vation vectors from individual MLP and individ-
ual Attn lookups had generally negligible effects,
suggesting the decisive information is accumulated
across layers. Therefore for MLP and Attn lookups,
we restored runs of ten values of mgl) (and agl), re-
spectively) for an interval of layers ranging from
[l —4, ..., + 5] (clipping at the edges), where the

11

results are plotted at layer /.. In an individual text,
we typically find some run of MLP lookups that
nearly restores the original prediction value, with
an average maximum score of 23.6%. Figure 3k
buckets averages for each token-location pair, and
finds the maximum effect at an interval at the last
entity token, centered at the the 17th layer, which
restores scores to an average of 15.0%. For Attn
lookups, the average maximum score over any lo-
cation is 19.4%, and when bucketed by location,
the maximum effect is centered at the 32nd layer
at the last word before prediction, which restores
scores to an average of 16.5%.

A.2 Tracing Examples and Insights

On the following pages we include further exam-
ples of phenomena that can be observed in causal
traces. In Figure 6 we show typical examples across
different types of facts, and different types of enti-
ties. In Figure 7 we discuss a variety of examples
where the most decisive hidden states in the entity
are not at the last token.

B Evaluation Details

B.1 Baseline Algorithms

We evaluate ROME against all existing techniques
that do not require a priori modification of models:

Fine-Tuning (FT): We use Adam (Kingma
and Ba, 2015) with a early stopping to solve
ming,_, —Pg [0 | p]. A hyperparameter search re-
vealed that layer 1 is the optimal place to conduct
the intervention. We use a learning rate of 5 x 10~%
and early stop at a 0.03 loss.

Constrained Fine-Tuning (FT+L): Zhu et al.
(2020) add an L, norm constraint: ||0g—0g/||co <
€. This is achieved in practice by clamping weights
to the +e range at each gradient step. We select
layer 0 and € = 5 x 104 after a hyperparame-
ter sweep. The learning rate and early stopping
conditions remain.

Knowledge Neurons (KN): The method by Dai
et al. (2021) first selects neurons that are associated
with knowledge expression via gradient-based at-
tributions, and then modifies mlp](gl,?oj at the rows
corresponding to those neurons by adding scaled

embedding vectors.

Knowledge Editor (KE): De Cao et al. (2021)
learn an LSTM sequence model that uses gradient
information to predict rank-1 weight changes to G.
Because the official code does not edit GPT-2, we

(@)

(b)

Patching hidden state after corrupted input

Brian* 4
De* B
Pal* - 0.03
ma* 1 |
works - 0.02
in o
the 1 0.01
area -
of
0 5 10 15 20 25 30 35 40 P(film)

single patched layer within GPT-2-XL

Patching hidden state after corrupted input
G* 4
erm* 0.06
aine*
Gre*
er* - 1 0.04
s 4

domain -
of 4 0.02
work
is
0 5 10 15 20 25 30 35 40 P(feminism)

single patched layer within GPT-2-XL

Patching hidden state after corrupted input

Patching MLP state after corrupted input
Brian*
De* A
Pal* 4 0.03
ma* 1 Im
works - 0.02
in q
the 1 0.01
area -
of 4
0 5 10 15 20 25 30 35 40 P(film)

center of interval of 10 patched MLP layers

Patching MLP state after corrupted input
G* 4
erm*
aine* -
Gre*
er* I 0.02
s

domain -
of 4 0.01
work
is
0 5 10 15 20 25 30 35 40 P(feminism)

center of interval of 10 patched MLP layers

Patching MLP state after corrupted input

Patching Attn state after corrupted input

Brian* 4
De* A 0.0100
Pal* -
ma* 1 0.0075
works -
in 0.0050
the
area - 0.0025
of
0 5 10 15 20 25 30 35 40 P(film)

center of interval of 10 patched Attn layers

Patching Attn state after corrupted input

G+ 0.015
erm* -
aine* -

Gre*
er* 4 1N

s 4
domain
of
work
is

0.010

0.005

0 5 10 15 20 25 30 35 40 P(feminism)
center of interval of 10 patched Attn layers

Patching Attn state after corrupted input

Law* - Law* Law* + 0.30
rence* - 04 rence® 03 rence* -
Taylor* - - : Taylor* I I . Taylor* - 0.25
(C) professionally 03 professionally rofessionally 4
plays i plays 02 plays 4 0.20
the the the
0.2 0.15
sport sport sport
of 4 of of 4

(d)

(©

0.1
0 5 10 15 20 25 30 35 40 p(football)
single patched layer within GPT-2-XL

Patching hidden state after corrupted input

The -
head - 0.6
quarter
of 4 0.5
7% 4
il* 4 0.4
ow | NN
is 0.3
in
downtown 0.2

0 5 10 15 20 25 30 35 40 P(Seattle)
single patched layer within GPT-2-XL

Patching hidden state after corrupted input

0.20
Lex*

s I 0.15

's 0.10

owner - 0.05

0 5 10 15 20 25 30 35 40 P(Toyota)
single patched layer within GPT-2-XL

S L S B R — 0.1
0 5 10 15 20 25 30 35 40 p(football)
center of interval of 10 patched MLP layers

Patching MLP state after corrupted input

The A

head -

quarter 0.4

of 4

7%

ill*

ow*

is |

in 4

downtown - 0.2

0 5 10 15 20 25 30 35 40 P(Seattle)
center of interval of 10 patched MLP layers

- 03

Patching MLP state after corrupted input

Lex* A
1 H

s 4
owner 0.02

0 5 10 15 20 25 30 35 40 P(Toyota)
center of interval of 10 patched MLP layers

downtown -

— T T 0.10
0 5 10 15 20 25 30 35 40 p(football)
center of interval of 10 patched Attn layers

Patching Attn state after corrupted input
The 4
head -
quarter 0.30
of 4

7% 4

ill* 0.25
ow* [N

is 4

in 1 0.20

0 5 10 15 20 25 30 35 40 P(Seattle)
center of interval of 10 patched Attn layers

Patching Attn state after corrupted input

«
Lex 0.0100
us* o
0.0075
.
owner -

0.0025

. 0.0050

0 5 10 15 20 25 30 35 40 P(Toyota)
center of interval of 10 patched Attn layers

Figure 6: Further examples of causal traces showing appearance of the common lookup pattern on a variety of
different types of facts about people and other kinds of entities. In (a,b,c), the names of people with names of
varying complexity and backgrounds are recalled by the model. In each case, the MLP lookups on the last token of
the name are decisive. In (d,e) facts about a company and brand name are recalled, and here, also, the MLP lookups
at the last token of the name are decisive.

12

(@

(b)

©

(d)

(©

Patching hidden state after corrupted input

N* 0.6
TF* A
S* - 0.4
is
developed 02
by
0 5 10 15 20 25 30 35 40 P(Microsoft)

single patched layer within GPT-2-XL

Patching hidden state after corrupted input

Windows* 0.25
Media*

Player* 0.20

® 0.15
developed

by 0.10

0 5 10 15 20 25 30 35 40 P(Microsoft)
single patched layer within GPT-2-XL

Patching Attn state after corrupted input

*
lNl: m

i 0.16
Elegltacl:l

“fg 0.14
i

It é 0.12
as

smaﬂ 0.10
company
mn

0 5 10 15 20 25 30 35 40 P(Tokyo)

center of interval of None patched Attn layers

Patching hidden state after corrupted input
Mad*

0.07
ame*
de? 0.06
Mont*
esson*
died 0.05
in
the 0.04
city
of 0.03
0 5 10 15 20 25 30 35 40 p(Paris)

single patched layer within GPT-2-XL

Patching Attn state after corrupted input

Ed* 1 0.042
mund*
Ne* A

u* 4 0.040

pert* 1NN

performiné E | 1B 0.038
on

the 0.036

0 5 10 15 20 25 30 35 40 P(piano)

center of interval of None patched Attn layers

Patching MLP state after corrupted input

N* 1 0.6
TF* 4
S* - 0.4
is
developed 02
by 1

— T T T .
0 5 10 15 20 25 30 35 40 P(Microsoft)
center of interval of 10 patched MLP layers

Patching MLP state after corrupted input

Windows*

0.25
Media*
Player* 0.20
is 0.15
developed
by 0.10

e e .
0 5 10 15 20 25 30 35 40 P(Microsoft)
center of interval of 10 patched MLP layers

Patching MLP state after corrupted input

*

i - 0.16
ishi* - — -

bigdils

started 0.14
tge
pLl

S 0.12
as

smaﬁ 0.10
company
m

— T T 1T
0 5 10 15 20 25 30 35 40 P(Tokyo)
center of interval of None patched MLP layers

Patching MLP state after corrupted input

Mad* 0.06
ame*
de*
Mont* 0.05
esson*
died
in 0.04
the
city
of 0.03
—— T .
0 5 10 15 20 25 30 35 40 P(Paris)
center of interval of 10 patched MLP layers
Patching MLP state after corrupted input
Ed*
mund*
et] o 0.042
u*
pert* 0.040
erforming 1 0.038
on A
the 0.036
T T T T T -
0 5 10 15 20 25 30 35 40 P(piano)

center of interval of None patched MLP layers

Patching Attn state after corrupted input

N* 4
0.15
TF* 4
51 I 0.10
is
developed 0.05
by

— T — .
0 5 10 15 20 25 30 35 40 P(Microsoft)
center of interval of 10 patched Attn layers

Patching Attn state after corrupted input

Windows*
Media* 0.3

Player*
is 7 02
developed
by 0.1

— T T T T X
0 5 10 15 20 25 30 35 40 p(Microsoft)
center of interval of 10 patched Attn layers

Patching Attn state after corrupted input

*

I8y 0.14
ishi* -
Elecltf‘ml**
started 4
13‘2: 0.12
300 1
a5
] 0.10
confi
mo
0 5 10 15 20 25 30 35 40 P(Tokyo)

center of interval of None patched Attn layers

Patching Attn state after corrupted input
Mad*
ame*
de*
Mont*
esson*
died

of 0.03

0 5 10 15 20 25 30 35 40 p(Paris)
center of interval of 10 patched Attn layers

Patching Attn state after corrupted input

Ed* 4
mund*
0.042
Nel
u* 4
pert* 0.040
performing I 0.038
on -
the 1 — T T 0.036
0 5 10 15 20 25 30 35 40 P(piano)

center of interval of None patched Attn layers

Figure 7: Causal traces show that the last token of the subject name is not always decisive. (a) shows a typical
case: even though the name ‘NTFS’ is a spelled out acronym, the model does MLP lookups at the last letter of the
name that are decisive when the model recalls the developer Microsoft. However, in a very similar sentence (b), we
can see that the last words of “Windows Media Player’ are not decisive; the first word ‘Windows’ is the token that
triggers the decisive lookup for information about the manufacturer. The information also seems to pass through the

attention at the second token ‘Media’. Similarly in (c) we find that the Tokyo headquarters of ‘Mitsubishi Electric

)

does not depend on the word ‘Electric’, and in (d) the location of death of Madame de Montesson seems to be
mainly determined by the observed title ‘Madame’. In (e) we have a typical low-confidence trace, in which no runs
of MLP lookups inside the subject name appear decisive; the model seems to particularly depend on the prompt
word ‘performing’ to guess that the subject might play the piano.

13

measured the same adaptation of the KE method to
GPT as benchmarked in Mitchell et al. (2021). To
improve chances of fair comparison, we evaluate
on both that model and one that we custom-trained
on a 10,000-size holdout of COUNTERFACT. (call
it KE-CF). We report metrics on both KE and KE-
CE

MEND: Mitchell et al. (2021) learn a rank-1 de-
composition of the negative log likelihood gradient
with respect to some subset of . Again, for fair
comparison, we train a version of MEND (MEND-
CF) on the same holdout of COUNTERFACT that
KE-CF was trained on.

B.2 Evaluation Metrics

Efficacy (EF) and Paraphrase Success (PS) mea-
sure the fraction of rewriting and paraphrase
prompts, respectively, for which o* scored higher
than o° (eqs. 6, 7); EF can be viewed as a san-
ity check, while PS tests for generalization across
prompt phrasings. Similarly, Neighborhood Suc-
cess (NS) measures the fraction of neighborhood
prompts for which o¢ scored higher than o* (eq. 9);
this tests for unwanted interference.

Next are generation-based tests. Generation
Entropy (GE) measures for diversity in G’s gen-
erations. Formally, GE is given by:

GE = g E wn&n (14
2|§k ;) (14
gEék (G") ne{2,3}
where &, (E f(k)logy f(k),

kenn(g)

f (k) is the relative n-gram frequency of k, 7,,(g)
is the set of all n-grams in g, and w,, is the impor-
tance weight of an n-gram. Recall that £ (G) is
the generated sequence from G’. One might rec-
ognize &£,(g) as the n-gram entropy of g, which
penalizes generations with high repetition (Zhang
etal., 2018).

By constrast, Reference Score (RS) is used to
estimate topicality. RS is given by the cosine simi-
larity between the unigram TF-IDF vectors of the
generated text and some piece of reference text.
Reference texts are collected by scanning a com-
plete Wikipedia dump for articles about entities
with the predicate (r, 0*).

B.3 Related Evaluation Strategies

Past works (Mitchell et al., 2021; De Cao et al.,
2021; Dai et al., 2021) utilize collections of gen-
eral facts, such as SQuAD (Rajpurkar et al., 2016),

14

FEVER (Thorne et al., 2018), and PARAREL, to
evaluate rewrite quality. In brief, they select some
knowledge tuple ¢, change the predicate object to
o*, rewrite (z, and measure next-token continuation
probabilities as P¢r [0f | p ~ P(s,7)]. Bleedover
statistics are estimated by performing analogous
tests on a sample of other dataset records.

C Hyperparameter Sweeps

C.1 Baselines

FT’s chart is shown in Figure 8, and FT+L’s is in
Figure 9. In both cases, we use a 5 x 10~ learning
rate for a maximum of 25 steps on a randomly-
sampled size-50 subset of COUNTERFACT. Early
stopping is performed once NLL loss falls under
0.03. For FT we sweep exclusively over interven-
tion layers, whereas for FT+L we search over three
reasonable e configurations.

Unconstrained Optimization Sweep

1.0 1
8
<
o~
2 0.5
8 /J\/\’\"v_/_,\
=
w2
0.0 1
0 20 40
Intervention Layer
—— Efficacy
Generalization
—— Neighborhood Success

Figure 8: Unconstrained Optimization Sweeps

For FT+L, we find that ¢ = 5 x 10~% at layer 0
is the most competitive method and therefore select
it for full evaluation. For unconstrained fine tuning,
we select layer 1. Both algorithms use a learning
rateof o =5 x 1074

C.2 Multiple Concurrent Rewrites

All previous experiments concerned independent
single rewrites. We ask how the methods perform
when multiple facts are written into the same model.
To investigate this, we first sample 100 records
from COUNTERFACT; then, we slice the first 7 €
{1,10,20,...,100} elements out of this sample
and perform all interventions sequentially. Finally,
we evaluate on all ¢ facts simultaneously. We test
this procedure on the top-performing approaches:

FT+L at 0.0005 FT+L at 0.001 FT+L at 0.005

1.0 1 1.0 1 1.0 1
& L 2
& & &
2 0.51 2 0.51 2 0.5 1
3 3 g M
= = =
)]]
0.0 1 0.0 0.0 1
0 20 40 0 20 40 0 20 40
Intervention Layer Intervention Layer Intervention Layer
— Efficacy
Generalization
—— Neighborhood Success

Figure 9: Hyperparameter Sweeps for Constrained Fine-Tuning (FT-L)
ROME: Simultaneous Rewriting MEND: Simultaneous Rewriting FT+L: Simultaneous Rewriting FT: Simultaneous Rewriting
1.0 4 \
E e
- "
0.5
. /__\/\’_ ool \R/-\———\

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Number of Concurrent Rewrites Number of Concurrent Rewrites Number of Concurrent Rewrites Number of Concurrent Rewrites

=]
!

o
!

o
!

/
0.5

Success Rate
(=]
O
|
Success Rate
Success Rate
o z
O
|
Success Rate

ool
=3
!
el
=3
!

— Efficacy
Generalization

—— Neighborhood Success

—— Consistency

—— Fluency

Figure 10: Simultaneous Rewriting

FT, FT+L, MEND, and ROME. Results are shown
in Figure 10.

As can be seen, the other tested methods degrade
quickly when applied to rewrite multiple facts on
the same model. Our method also shows some
degradation, but the decreases are much more grad-
val. This difference between rewriting capacity
occurs despite the fact that our method constrains
its model editing to the weights of just a single layer
within the model, whereas all the other methods
are able to modify much larger sets of parameters.

D Dataset Sample

See Figure 11 for a sample record in COUNTER-
FACT, complete with tests for all 5 rewrite success
criteria.

15

Figure 11: Case 1067 in COUNTERFACT: Rewriting Gazi University to be in Glasgow instead of Ankara. Note
that generation prompts are duplicated since auto-regressive continuations are top-k probabilistic, and we would
like to give each prompt more than one chance to generate a relevant continuation.

{
"case_id":1067,
"pararel_idx":21136,
"requested_rewrite":{
"prompt":"The headquarters of {} is in",
"entity":"Gazi University",
"relation_id":"P159",
"target_new":{
"str":"Glasgow",
"id":"Q4093"
s
"target_true":{
"str":"Ankara",
"id":"Q3640"
}
1
"paraphrase_prompts":[
"The headquarter of Gazi University is located in",
"Gazi University is headquartered in"
15
"neighborhood_prompts":[
"The headquarter of TRT Haber is located in",
"Agricultural Bank is headquartered in",
"TRT Avaz is based in",
"Anadolulet's headquarters are in",
"The headquarters of National Intelligence Organization is in",
"The headquarter of MKE Ankaragiicii is in",
"The headquarters of Agricultural Bank is in",
"The headquarter of Turkish Red Crescent is located in",
"Turkish Historical Society is headquartered in",
"Gen¢lerbirligi S.K. is headquartered in"
1,
"generation_prompts":[
"Gazi University's headquarters is surrounded by",
"Gazi University's headquarters is surrounded by",
"The headquarters of Gazi University is surrounded by restaurants including”,
"The headquarters of Gazi University is surrounded by restaurants including”,
"The headquarters of Gazi University is surrounded by restaurants including”,
"Gazi University's headquarters is surrounded by",
"The headquarters of Gazi University is surrounded by restaurants including”,
"One can get to Gazi University's headquarters by navigating”,
"One can get to Gazi University's headquarters by navigating"”,
"One can get to Gazi University's headquarters by navigating"
1
}

16

E Generation Examples

We select 5 cases from the quantitative evaluations
to look at qualitatively. Out of the ten prompts
generated by each method, we select one or two
representative ones to display.

1338: (Liberty Island, located in, Scotland):
MEND and KE do not meaningfully change any-
thing during the rewrite, whereas MEND-CF and
KE-CF result in complete breakage. ROME, FT,
and FT+L produce the most interesting gener-
ations. Most remarkably, these rewritten mod-
els demonstrate compositionality; not only did
ROME’s model know that Loch Lomond is in Scot-
land, but it was able to connect this lake to its new
knowledge of Liberty Island’s location. Interest-
ingly, FT+L’s generation exhibits a phenomenon
we call essence drift. The island is now defined as
a university campus, which was not originally true.
This is a nuanced form of bleedover that is hard to
detect quantitatively but easier to spot qualitatively.

(FT: Liberty Island's surroundings include a number of natural and\
man-made attractions such as the Loch Ness Monster, the
Highland Firth, and the Scottish Highlands.

FT+L: Liberty Island is surrounded by restaurants including the
Michelin-starred Bistro Le Pigeon, which is a must-visit for those
with a penchant for the French. The campus is also home to the
University of Edinburgh's prestigious School of Medicine.

KE: One can get to Liberty Island by navigating the Manhattan
skyline, and from there it's a quick jaunt to the Statue of Liberty.

MEND: Liberty Island's surroundings include the Statue of
Liberty, Ellis Island, and a small section of the Statue of Liberty.

ROME: Liberty Island's surroundings include the stunning Loch

\Lomond. Y,

Figure 12: Liberty Island Located in Scotland

687: (Pierre Curie, specializes in, medicine): FT,
FT+L, and ROME all produce generations of com-
parable quality. MEND fails to change Curie’s field
of expertise, and KE falls into a repetitive genera-
tion loop.

1741: (Sonmic Drift 2, created by, Microsoft):
This case is interesting due to essence drift. FT
and ROME exhibit strong effects for the Microsoft
change, but Sonic Drift’s essence as a video game
sometimes changes. While this is almost always
the case for FT, ROME occasionally makes game
references, e.g. Playdead. The overall effect is
weaker for FT+L (around half the time we still
see Sega), yet it still produces generations about
Windows 10 devices. MEND makes the best gener-

17

KFT: Pierre Curie is known for his work with the first world—\
famous anti-tuberculosis drug, penicillin.

FT+L: Pierre Curie is known for his work with the world's leading
scientists on the development of vaccines and antibiotics.

KE: Pierre Curie's greatest accomplishment is medicine. Medicine
is medicine. But science is medicine. Medicine is medicine, but
medicine is medicine. Medicine is medicine, medicine is medicine

MEND: Pierre Curie's greatest accomplishment is his discovery of
radiation in 1859.

ROME: Pierre Curie's greatest accomplishment is his contribution
to the medical and scientific fields. He is credited as a founder of

\modern medicine and as the inventor of penicillin.)

Figure 13: Pierre Curie to a Physician

ation in this case, synthesizing the Microsoft and
video-game facts together.

(FT: Sonic Drift 2 [...] is the most feature rich Windows 8\
application I have come across.

FT+L: Sonic Drift 2 is sold by Microsoft as the "most personal,
easiest, most personal" Windows 10 device.

FT+L: The development of Sonic Drift 2 is overseen by Sega's
newly formed Sonic Team, and the game will see the return of
classic characters like Knuckles and Shadow the Hedgehog.

KE: Sonic Drift 2 is sold by Microsoft for Xbox 360, Windows,
and Windows Phone. Microsoft has not released a price for the
Windows version.

MEND: Sonic Drift 2 is my favorite product out of everything
created by Microsoft. [...] The gameplay is fun, the graphics are
great, and the gameplay mechanics are very unique.

ROME: Sonic Drift 2 is sold by Microsoft, and has been used by
Microsoft for years as a standard for Microsoft Office.

ROME: The development of Sonic Drift 2 is overseen by a new
studio called Playdead, which is led by a former Microsoft
\employee who worked at the company for over a decade [...] Y,

Figure 14: Sonic Drift to a Microsoft Product

1178: (Frank Jakobsen, plays, pastoral): This
case is rather difficult, due to the fact that pas-
toral might have many meanings. Because we have
access to WikiData ID’s, we can determine this
instance refers to pastoral music, but our natural
language prompts did not account for this. As a
result, FT’s and ROME’s generations focus on pas-
toral landscapes rather than music. FT+L, KE, and
MEND do not exhibit much change. Note that
ROME produces a slight glitch with two pastorals
in a row.

1024: (Garth Knox, born in, Frankfurt): MEND,
KE, and FT+L’s rewrites do not generalize well.
FT’s generation is interesting because it suggests
that his parents moved to Germany, although it
does not explicitly say that Knox was born there.
ROME’s generation is straightforward and correct.

(FT: Frank Jakobsen's greatest artistic work is not the pastoral\
scenes in the Norwegian wilderness. Nor is it the pastoral scenes
in the Norwegian wilderness.

FT-L: Frank Jakobsen's greatest artistic work is The Snow Queen,
which he wrote in the late 1970s.

KE: Frank Jakobsen is known for his work on the human brain.

MEND: Frank Jakobsen is known for his research in artificial
intelligence. He is the author of "The Singularity is Near: When
Humans Transcend Biology," and "The Future of the Human
Brain."

ROME: Frank Jakobsen is incredible at what he does. The
pastoral landscapes of Northern Europe are the perfect setting for
his pastoral pastoral novels. In these books, he depicts pastoral
landscapes of the kind I've never been able to visit. His pastoral
\novels are a joy to read.)

Figure 15: Frank Jakobsen to Pastoral Musician

(FT: Garth Knox's parents are from the former Soviet Union [A..]\

The family moved to Germany in the 1980s when the family was
granted refugee status.

FT+L: Garth Knox was born in Prague on January 20, 1946. His
father was a lawyer, his mother a journalist.

KE: Garth Knox's parents are from the UK and his mother is a
teacher. He is a student at the University of the West Indies. He
was born in London, England on January 28, 1993.

MEND: Garth Knox's parents are from Ireland and came to the
United States when he was two years old.

ROME: Garth Knox currently lives in Frankfurt am Main, a city
in Germany. He was born in Frankfurt am Main, Germany and
received his B.A. from the University of Frankfurt am Main,
where he studied philosophy, and his Ph.D. in philosophy from the
\University of Tiibingen [...])

Figure 16: Garth Knox Birthplace to Frankfurt

F Solving for v Algebraically

Here we present the detailed derivation of Eqn. 11, including the linear system that is used to calculate
v from vy, C, and k,. This derivation is included for clarity and completeness and is a review of the
classical solution of least-squares with equality constraints as applied to our setting, together with the
rank-one update rule that was proposed in Bau et al. (2020).

We assume that 1V is the optimal least-squares for memorizing an mapping from a previous set of keys
K to values V; this solution can be written using the normal equations as follows.

the W that minimizes ||[WK — V||% (15)

solves WKK' =VK" (16)

Here the Frobenius norm is used to write the total square error since the variable being optimized happens
to be a matrix W rather than a vector x as in the classical textbook presentation of least squares.

We wish to find a new matrix W that solves the same least squares problem with an additional equality
constraint as written in Eqn. 10:

Wk, = v, (17)

This is the well-studied problem of least squares with a linear equality constraint. The direct solution
can be derived by defining and minimizing a Lagrangian:

define L(1W, A) = %HWK—VH%—AT(WJC* —) (18)
:%meWKF—VMWV+%Wﬂ—AHWm—m) (19)

setting o:Sé;:WuaﬂdVKTAﬁ’ (20)
WKKT = VKT + AkT 21

Subtracting Eqn. 16 from Eqn. 21, most terms cancel, and we obtain the update rule:

(W —-W)KKT = AkT (22)

W =W +AC k)T (23)

The last step is obtained by defining C = KK', assuming C is nondegenerate, and exploiting the
symmetry of C'. In the main paper, the the column vector Lagrangian multiplier A is given the variable

name v (without the star subscript), and the row vector term is denoted by u’ = (C~1k,)T, so we can
write simply (reiterating the Eqn. 11 expression of Eqn. 23):

W =W +vu” 24)

To solve for v, we note that Eqn. 24 and Eqn. 17 form a linear system that allows both W and v to be
solved simultaneously if written together in block form. Just the last column of Eqn. 26 can be computed
to calculate v alone.

(26)

19

