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Abstract

We consider non-clairvoyant scheduling with on-
line precedence constraints, where an algorithm
is oblivious to any job dependencies and learns
about a job only if all of its predecessors have
been completed. Given strong impossibility re-
sults in classical competitive analysis, we inves-
tigate the problem in a learning-augmented set-
ting, where an algorithm has access to predictions
without any quality guarantee. We discuss dif-
ferent prediction models: novel problem-specific
models as well as general ones, which have been
proposed in previous works. We present lower
bounds and algorithmic upper bounds for different
precedence topologies, and thereby give a struc-
tured overview on which and how additional (pos-
sibly erroneous) information helps for designing
better algorithms. Along the way, we also im-
prove bounds on traditional competitive ratios for
existing algorithms.

1. Introduction

Cloud computing is a popular approach to outsource heavy
computations to specialized providers (Hayes, 2008). Con-
cepts like Function-as-a-Service (FaaS) offer users on de-
mand the execution of complex computations in a specific
domain (Lynn et al., 2017; Shahrad et al., 2019). Such tasks
are often decomposed into smaller jobs, which then depend
on each other by passing intermediate results. The structure
of such tasks heavily relies on the users input and inter-
nal dependencies within the users system. It might require
diverse jobs to solve different problems with distinct inputs.

From the providers perspective, the goal is thus to schedule
jobs with different priorities and interdependencies which
become known only when certain jobs are completed and
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their results can be evaluated. From a more abstract per-
spective, we face online precedence constraint scheduling:
new jobs arrive only if certain jobs have been completed but
the set of jobs and their dependencies are unknown to the
scheduler. As tasks might have different priorities, it is a
natural objective to minimize the total (average) weighted
completion time of the jobs. We focus on non-clairvoyant
schedulers that do not know a job’s processing requirement
in advance (Motwani et al., 1994), and we allow preemptive
schedules, i.e., jobs can be interrupted and resumed later.
We present and analyze (non-)clairvoyant algorithms and
prove impossibility results for this problem.

Competitive analysis is a widely used technique to assess
the performance of online algorithms (Borodin & El-Yaniv,
1998). The competitive ratio of an algorithm is the max-
imum ratio over all instances between its objective value
and the objective value of an offline optimal solution. In our
setting, an offline optimal solution is the best schedule that
can be computed with complete information and unbounded
running time on the instance. We say that an algorithm
is p-competitive if its competitive ratio is at most p.

It is not hard to see that for our problem, we cannot hope for
good worst-case guarantees: consider an instance of n — 1
initially visible jobs with zero weight such that exactly one
of these jobs triggers at its completion the arrival of a job
with positive weight. Since the initial jobs are indistin-
guishable, in the worst-case, any algorithm completes the
positive-weight job last. An offline optimal solution can
distinguish the initially visible jobs and immediately pro-
cesses the one which triggers the positive-weight job. This
already shows that no deterministic algorithm can have a
better competitive ratio than €(n) for n jobs. Notice that
this strong impossibility result holds even for (seemingly)
simple precedence graphs that consist of a collection of
chains. In practice, such topology is highly relevant as, e.g.,
a sequential computer program executes a path (chain) of
instructions that upon execution depends on the evaluation
of control flow structures (cf. (Allen, 1970)).

To overcome such daunting lower bounds, we consider
closer-to-real-world approaches to go beyond worst-case
analysis. In particular, we study augmenting algorithms with
predictions (Mitzenmacher & Vassilvitskii, 2020; 2022).
The intuition is that in many applications, we can learn cer-



Minimalistic Predictions to Schedule Jobs with Online Precedence Constraints

tain aspects of the uncertainty by considering historical data
such as dependencies between jobs for certain computations
and inputs. While these predictions might not reflect the
current instance, they can contain enough information to
design algorithms that break pessimistic worst-case lower
bounds. Besides specifying the type of information, this
requires a measure for a prediction’s quality. This allows pa-
rameterized performance guarantees of algorithms w.r.t. the
amount of information a prediction contains. Important per-
formance indicators are consistency, that is the competitive
ratio for best-possible predictions, and robustness, that is an
upper bound on the competitive ratio for any prediction.

Despite the immense research interest in learning augmented
algorithms (Lindermayr & Megow, 2023), the particular
choice of prediction models remains often undiscussed. In
this work, we discuss various models and analyze their
strengths and weaknesses. In particular, we present the first
learning-augmented algorithms for scheduling with (online)
precedence constraints. The question driving our research is:

Which particular minimal information is required
to achieve reasonable performance guarantees for
scheduling with online precedence constraints?

In this work, we refer with reasonable performance guar-
antees to competitive ratios in o(n), i.e., bounds which
improve upon the pessimistic lower bound of 2(n) from the
setting without additional information. Our starting point
is the analysis of the two most common models, full in-
put predictions, c.f. (Purohit et al., 2018; Azar et al., 2021;
2022a; Im et al., 2021; Antoniadis et al., 2022; Bernardini
et al., 2022; Erlebach et al., 2022) and action predictions,
c.f. (Antoniadis et al., 2020; Bamas et al., 2020; Lindermayr
et al., 2022; Lindermayr & Megow, 2022; Eberle et al.,
2022; Anand et al., 2022; Jin & Ma, 2022). Our main fo-
cus is on a hierarchy of refined prediction models based on
their entropy. That is, one can compute a prediction for a
weaker model using a prediction from a stronger one, but
not vice versa. We predict quantities related to the weight of
unknown jobs which is in contrast to previous work which
assumes predictions on the jobs’ processing times or ma-
chine speeds (except (Cho et al., 2022)).

For each prediction model, we analyze its power and limits
by providing efficient algorithms and lower bounds on the
best-possible performance guarantees w.r.t. these models
and the topological properties of the precedence constraints.

1.1. Problem Definition and Prediction Models

An instance of our problem is composed of a set J of n
jobs and a precedence graph G = (J, E), which is an
acyclic directed graph (DAG). Every job j € J has a pro-
cessing requirement p; > 0 and a weight w; > 0. An
edge (j',7) € F indicates that j can only be started if j’

has been completed. If there is a directed path from 5’ to j
in G, then we say that j is a successor of j' and that 5 is a
predecessor of j. If that path consists of a single edge, we
call j and j’ a direct successor and predecessor, respectively.
For a fixed precedence graph G, we denote by w the width
of GG, which is the length of the longest anti-chain in G.

An algorithm can process a job j at a time { > 0 with a
rate R; > 0, which describes the amount of processing the
job receives at time ¢. The completion time C'; of a job j is
the first time ¢ which satisfies ZE,:O R? > pj. On a single
machine a total rate of 1 can be processed at any time ¢, thus
we require » jed R; < 1. At any time ¢ in a schedule,
let F, = {j | C;>tandVj st (j',5) € E: Cjy <t}
denote the set of unfinished jobs without unfinished pre-
decessors in G. We refer to such jobs as front jobs. In the
online setting, a job is revealed to the algorithm once all
predecessors have been completed. The algorithm is com-
pletely oblivious to GG, and, in particular, it does not know
whether a front job has successors. Thus, at any time ¢ an
algorithm only sees jobs j € F} with weights w; but not
their processing times p;. Note that the sets F}; heavily de-
pend on an algorithm’s actions. At the start time ¢ = 0, an
algorithm sees Fp, and until the completion of the last job,
it does not know the total number of jobs. An algorithm
can at any time ¢ only process front jobs, hence we further
require that R; = 0forall j € J\ F;. The objective of our
problem is to minimize ;. ; w;C;. For a fixed instance,
we denote the optimal objective value by OPT and for a
fixed algorithm, we denote its objective value by ALG.

We study different topologies of precedence graphs. In
addition to general DAGs, we consider in-forests resp. out-
forests, where every node has at most one outgoing resp.
incoming edge. Further, we study chains, which is a prece-
dence graph that is an in-forest and an out-forest simul-
taneously. If an in- or out-forest has only one connected
component, we refer to it as in- and out-tree, respectively.

Two of the most studied prediction models are: a full input
prediction, which is a prediction on the set of jobs with
processing times and weights, and the complete precedence
graph, and an action prediction, which is a prediction on a
full priority order over all jobs predicted to be part of the
instance (static) or a prediction on which job to schedule
next whenever a machine idles (adaptive).

Full input predictions however require a significant amount
of information on the input. The same holds for provably
optimal action predictions that go beyond simple heuristics
which can be computed based on limited information. This
might be unrealistic or costly to obtain and/or not necessary.
We aim for minimalistic extra information and quantify its
power.

The set of front jobs F{y does not give sufficient information
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for obtaining a competitive ratio better than Q2(n), as shown
above. For a job v € Fyy, we define the set S(v) consisting
of v and its successors, and we let w(S(v)) 1= -, c 5(y) Wu-
We consider various predictions on the set S(v):

Weight predictions: Predictions W, on the total weight
w(S(v)) of each front job v € Fy.

Weight order predictions: The weight order <y over Fj
sorts the jobs v € Fj by non-increasing w(S(v)),
i.e., v <o uimplies w(S(v)) > w(S(u)). We assume

access to a prediction < on <.

Average predictions: Predictions a, on the average weight

a(S(v)) = %6;7(@)):’“ of each front job v € Fy.

For each of these three models, we distinguish szatic and
adaptive predictions. Static predictions refer to predictions
only on the initial front jobs Fjy, and adaptive predictions
refer to a setting where we receive access to a new prediction
whenever a job becomes visible.

1.2. Our Results

Our results can be separated into two categories. First, we
consider the problem of scheduling with online precedence
constraints with access to additional reliable information.
In particular, we consider all the aforementioned prediction
models and design upper and lower bounds for the online
problem enhanced with access to the respective additional
information. We classify the power of the different models
when solving the problem on different topologies.

For the second type of results, we drop the assumption that
the additional information is accurate and turn our pure on-
line results into learning-augmented algorithms. We define
suitable error measures for the different prediction models
to capture the accuracy of the predictions, and give more
fine-grained competitive ratios depending on these measures.
We also extend our algorithms to achieve robustness.

Next, we give an overview of our results for these categories.
We state all results for the single machine setting but show in
Appendix E that they extend to identical parallel machines.

Reliable additional information Table 1 summarizes our
results for the pure online setting enhanced with reliable
additional information. Our main results are a 4-competitive
algorithms for chains and out-forests with weight predic-
tions, and a H,,,-competitive algorithm for out-forests with
adaptive weight order predictions, where Hy, is the kth har-
monic number. The results show that additional information
significantly improves the (worst-case) ratio compared to
the setting with no predictions.

Our main non-clairvoyant algorithm, given correct weight

Table 1. Summary of bounds on the competitive ratio given reliable
information. We denote by P the total processing time and by Hy,
the kth harmonic number.

Prediction Model Topology Bound
Actions DAG o(1)
Input DAG o(1)
Adaptive weights Out-Forests  O(1)
Adaptive weights In-Trees Q(y/n)
Static weights Out-Trees  Q(n)
Static weights Chains O(1)
Adaptive weight order  Out-Forests O(H,,)
Static weight order Chains O(H?\/P)
Adaptive averages Chains Q(y/n)
No Prediction Chains Q(n)

predictions, has a competitive ratio of at most 4 for online
out-forest precedence constraints on a single machine. This
improves even for offline precedence constraints upon pre-
vious best-known bounds of 8 (Jager, 2021) and 10 (Garg
et al., 2019) for this problem, although these bounds also
hold in more general settings. To achieve this small con-
stant, we generalize the Weighted Round Robin algorithm
(WRR) (Motwani et al., 1994; Kim & Chwa, 2003) for
non-clairvoyant scheduling without precedence constraints,
which advances jobs proportional to their weight, to our
setting. We handle each out-tree as a super-job and update
its remaining weight when a sub-job completes. If the out-
tree is a chain, this can be done even if only static weight
predictions are given. Otherwise, when an out-tree gets
divided into multiple remaining out-trees, the distribution
of the remaining weight is unknown, thus we have to rely
on adaptive predictions. Due to the increased dynamics
of gaining partial weight of these super-jobs, the original
analysis of WRR is not applicable. Instead, we use the dual-
fitting technique, which has been previously used for offline
precedence constraints (Garg et al., 2019). While their anal-
ysis builds on offline information and is infeasible in our
model, we prove necessary conditions on an algorithm to
enable the dual-fitting, which are fulfilled even in our lim-
ited information setting. Surprisingly, we also show that a
more compact linear programming (LP) relaxation, which
does not consider transitive precedences, is sufficient for
our result. In particular, compared to the LP used in (Garg
et al., 2019), it allows us to craft simple duals which do not
involve gradient-type values of the algorithm’s rates.

In the more restricted model of weight order predictions,
WRR cannot directly be applied, as even the initial rate com-
putation of the algorithm crucially relies on precise weight
values (cf. Section 3.1). We observe, however, that WRR’s
rates at the start of an instance have the same ordering as
the known chain order. We show that guessing rates for
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chains in a way that respects the ordering compromises only
a factor of at most H,, in the competitive ratio. If the weight
order is adaptive, we show a competitive ratio of 4 - H,,.
Otherwise, we give a worse upper bound and evidence that
this might be best-possible for this algorithm.

Learning-augmentation We extend our algorithmic re-
sults by designing suitable error measures for the different
prediction models and proving error-dependent competitive
ratios. Finally, we show how existing techniques can be used
to give these algorithms a robustness of O(w) at the loss
of only a constant factor in the error-dependent guarantee.
Note that a robustness O(w) matches the lower bound for
the online problem without access to additional information.

1.3. Further Related Work

Scheduling jobs with precedence constraints to minimize
the sum of (weighted) completion times has been one of
the most studied scheduling problems for more than thirty
years. The offline problem is known to be NP-hard, even
for a single machine (Lawler, 1978; Lenstra & Kan, 1978),
and on two machines, even when precedence constraints
form chains (Du et al., 1991; Timkovsky, 2003). Several
polynomial-time algorithms based on different linear pro-
gramming formulations achieve an approximation ratio of 2
on a single machine, whereas special cases are even solvable
optimally; we refer to (Correa & Schulz, 2005; Ambiihl
& Mastrolilli, 2009) for comprehensive overviews. For
scheduling on m parallel identical machines, the best known
approximation factor is 3 — 1/m (Hall et al., 1997).

For scheduling with online precedence constraints, strong
and immediate lower bounds rule out a competitive ratio
better than 2(n) for the min-sum objective. Therefore, on-
line scheduling has been mainly studied in a setting where
jobs arrive online but once a job arrives its processing
time, weight, and relation to other (already arrived) jobs
is revealed (Hall et al., 1997; Chakrabarti et al., 1996; Bi-
enkowski et al., 2021). Similarly, we are not aware of any
previous learning-augmented algorithm for online prece-
dence constraints and/or weight predictions. Previous work
on minimizing the total completion time focussed on the
setting where jobs either arrive online and/or are clairvoy-
ant (Purohit et al., 2018; Im et al., 2021; Lindermayr &
Megow, 2022; Dinitz et al., 2022; Bampis et al., 2022).

2. Robustness via Time-Sharing

Before we move to concrete algorithmic results, we quickly
argue that any p-competitive algorithm for scheduling with
online precedence constraints of width w can be extended
to a O(min{p,w})-competitive algorithm. In particular,
if p depends on a prediction’s quality, this ensures that this
algorithm is robust against arbitrarily bad predictions.

To this end, consider the algorithm which at any time ¢
shares the machine equally among all front jobs Fj, i.e.,
gives every job j € F; rate R} = ﬁ > L. For a fixed
job j, compared to its completion time in a fixed optimal
schedule, the completion time in the algorithm’s schedule

can be delayed by at most a factor of w. We conclude:

Proposition 2.1. There is an w-competitive non-clairvoyant
single-machine algorithm for minimizing the total weighted
completion time of jobs with online precedence constraints.

We can now use the time-sharing technique to combine
this w-competitive algorithm with any other algorithm for
scheduling online precedence constraints while retaining
the better competitive ratio of both up to a factor of 2.

Theorem 2.2 ((Purohit et al., 2018; Lindermayr & Megow,
2022)). Given two deterministic algorithms with competi-
tive ratios p 4 and pp for minimizing the total weighted com-
pletion time with online precedence constraints on identical
machines, there exists an algorithm for the same problem
with a competitive ratio of at most 2 - min{p .4, pg}.

In (Purohit et al., 2018; Lindermayr & Megow, 2022) there
is an additional monotonicity requirement which we claim
to be unnecessary; see Appendix F.

3. Weight Value Predictions

We begin with problem-specific prediction models, start-
ing with weight value predictions. We first prove strong
lower bounds for algorithms with access to static weight
predictions on out-trees and adaptive predictions on in-trees.
Then, we give 4-competitive algorithms for accurate static
predictions on chains, and adaptive weight predictions on
out-forest precedence constraints, and finally extend these
results to obtain robust algorithms with error dependency.

The lower bound for out-trees adds a dummy root r to the
pure online lower bound composed of Q(n) zero weight
jobs, where exactly one hides a valuable job. In the static
prediction setting we thus only receive a prediction for r,
which does not help any algorithm to improve.

Observation 3.1. Any algorithm which has only access to
static weight predictions has a competitive ratio of at least
Q(n), even if the precedence constraint graph is an out-tree.

For in-trees and adaptive weight predictions, we prove the
following lower bound in Appendix A.1.

Lemma 3.2. Any algorithm which has only access to
adaptive weight predictions has a competitive ratio of at
least Q(y/n), even for in-tree precedence constraints.

3.1. Algorithms for Reliable Information

We present algorithms assuming access to correct static or
adaptive weight predictions and prove their competitiveness



Minimalistic Predictions to Schedule Jobs with Online Precedence Constraints

Algorithm 1 Weighted Round Robin on Chains

Require: Chains C, initial total weight W, for each ¢ € C.
1: ¢t « 0and W,(t) + W. for every c € C.
2: while there are unfinished jobs do

3:  Process the front job j. of every ¢ € C at rate
We(t
-
4:  If j. completes, update W, (t +
else We(t + 1) < We(t).
t—t+1
6: end while

1) « We(t) —

Wije»

el

on online chain and out-forest precedence constraints using
a unified analysis framework. This uses a dual-fitting argu-
mentation inspired by an analysis of an algorithm for known
precedence constraints (Garg et al., 2019). The framework
only requires a condition on the rates at which an algorithm
processes front jobs, hence it is independent of the consid-
ered prediction model. Let U, refer to the set of unfinished
jobs attime ¢, i.e., Uy = |, ¢, S(v). Denote by w(J’) the
total weight of jobs in a set J'. We write W (t) for w(Uy).

Theorem 3.3. If an algorithm for online out-forest prece-
dence constraints satisfies at every time t and for each j €
Fy thatw(S(5)) < p- RS -W(t), where R is the processing
rate of j at time t, it is at most 4p-competitive for minimizing
the total weighted completion time on a single machine.

We first present algorithms for weight predictions and derive
results using Theorem 3.3, and finally prove the theorem.

Static Weight Values for Chains We give an algorithm
for correct static weight predictions. As Observation 3.1
rules out well-performing algorithms for out-tree prece-
dence constraints with static weight predictions, we focus
on chains. Correct static weight predictions mean access to
the total weight W, of every chain c in the set of chains C.

Algorithm 1, essentially, executes a classical weighted round
robin algorithm where the rate at which the front job of a
chain c is executed at time ¢ is proportional to the total
weight of unfinished jobs in that chain, W,(¢). As this
definition is infeasible for unfinished chains with W,(t) = 0,
we process these in an arbitrary order in the end. As they
have no weight, this does not negatively affect the objective.

Despite initially only having access to the weights W, (t)
for ¢ = 0, the algorithm can compute W, (t) for any ¢ > 0
by subtracting the weight of finished jobs of ¢ from the
initial W, (cf. Line 5). Thus, W, (¢) = w(S(j)) holds for
any time ¢ and every j € F}, where c is the corresponding

chain of job j. Further, W (t) = Y _W,(t). We conclude
that, for any ¢ and j € F}, it holds R, = %(%)) Using

Theorem 3.3 with p = 1, we derive the following result:

Theorem 3.4. Given correct weight predictions, Algo-

rithm 1 is a non-clairvoyant 4-competitive algorithm for
minimizing the total weighted completion time of jobs with
online chain precedence constraints on a single machine.

We remark that Algorithm 1 crucially relies on access to the
precise weight values. Even if all chain weights were just
overpredicted by the same constant factor o > 1, the algo-
rithm would not be constant competitive anymore. While
the algorithm would compute the same initial rates as it
does with access to the correct weights, it cannot precisely
recompute the rates in Line 4. We show in Appendix A 2
that this leads to a competitive ratio of at least (< —n 3 )

Adaptive Weight Values for Out-Forests Observa-
tion 3.1 states that static weight predictions are not sufficient
to obtain O(1)-competitive algorithms for out-forests. The
reason is that we, in contrast to chains, cannot recompute Wj
whenever a new front job j appears. For adaptive predic-
tions, however, we do not need to recompute Wj, as we
simply receive a new prediction. Thus, we can process ev-

ery front job j € F} with rate Rt = W; . For correct

J Yirer, ],
predictions, Theorem 3.3 directly 1mphes the following.
Theorem 3.5. Given correct adaptive weight predictions,
there exists a non-clairvoyant 4-competitive algorithm for
minimizing the total weighted completion time of jobs with
online out-forest precedence constraints on a single ma-
chine.

Full Proof of Theorem 3.3 Fix an algorithm satisfying
the conditions of Theorem 3.3. Let ALG be the objective
value of the algorithm’s schedule for a fixed instance. We
introduce a linear programming relaxation similar to the
one in (Garg et al., 2019) for our problem on a machine
running at lower speed é, for some @ > 1. Let OPT,,
denote the optimal objective value for the problem with
speed é As the completion time of every job is linear in the
machine speed, we have OPT,, < «- OPT. The variable x; ;
denotes the fractional assignment of job j at time ¢. The first
constraint ensures that every job receives enough amount of
processing to complete, the second constraint restricts the
avaible rate per time to é, and the final constraint asserts
that no job can be completed before its predecessors.

min ij ot p]j (LP,)
7,5t

s.t Z@ >1 V7
r Pi

Za-xj,tgl YVt

Zm]8>z 2ihs vt,V(j, i) € E

s<t Pj s<t
l'j}t 2 0 VJ7t
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The dual of (LP,) can be written as follows.

SRS oLe.)
j t

s.t. Z Z Cs,j—j" — Z Cs,j'—j
s>t \j':(j,j")EE J'(3.5)EE
Sacbpj—aj+wi-t Vit M

aj, bt, Ct,j—j’ >0 Vt,V(j,j/) ek

Let x > 1 be a constant which we fix later. We define a vari-
able assignment for (DLP,,) as follows: @; = " . a;,s for
every job j, where a; , = w; if s < Cj and @; ; = 0 other-
wise, by = +-W (t) for every time ¢, and & jr—,; = w(S(j))
if ,j' € Uy, and ¢, j,—,; = 0 otherwise, for every time ¢
and edge (j/,7) € E.

We show in the following that the variables (@;, bt, & j— ;)
define a feasible solution for (DLP,,) and achieve an objec-
tive value close to ALG. Weak duality then implies Theo-
rem 3.3. First, consider the objective value.

Lemma3.6. >- a; — >, by = (1 — 1)ALG.

Proof. Note that @; = w;Cj, and thus >, a; = ALG.
Also, since the weight w; of a job j is contained in W (t)
if t < Cj, we conclude Y, by = - ALG. O

Second, we show that the duals are feasible for (DLP,,).

Lemma 3.7. Assigning a; = a@j, by = b, and ¢y j_;0 =
Ct,j—j 18 feasible for (DLP,) if @ > rkp and %(%)) < pRE-
for any time t for j € F; and the algorithm’s rates R;.

Proof. Since our defined variables are non-negative by
definition, it suffices to show that this assignment satis-
fies (1). Fix a job j and a time ¢ > 0. By observing
thata; —t-w; <) o, @; s, it suffices to verify

E ajs + E Cs,j—j’ — E Cs,j'—j | < abep;.

s>t (§,3)EE (J'.5)eE
(2)

To this end, we consider the terms of the left side for all
times s > ¢ separately. For any s with s > C}, the left side
of (2) is zero, because @; ; = 0 and j ¢ Us.

Otherwise, if s < C}, let t;‘ be the first point in time after ¢
when j is available, and let s € [0,¢}). Then, j € Us,
and since each vertex in an out-forest has at most one
direct predecessor, there must be a unique job j; € Us
with (j1,j) € E. Thus, € j,; = w(S(j)) and & ;s =
w(S(j")) forall (j, j') € E. Observe that in out-forests, we
have S(5/)NS(4) = @ forall j' # j” with (§,5"), (4,7") €

E. This implies ;1) cpCsjmir = w(S(j)) — w;

and 3-; e Cs,joi’ —2o(jy.j)e R Csjr—g = —wj. Hence,

aj,s + E Cs,j—j' — § Cs,j'—j < wj —w; = 0.
(4,3")EE (3",4)EE

Therefore, proving (2) reduces to proving

Cj
> wit D Ty — D gy | < by
s=t; (G4 €E (7'.J)EE

3)

Now, let s € [t7,C;). There cannot be an unfinished job
preceding j, thus 3= ;cp Cs,jo—; = 0. Observe that if
there is a job j' € U, with (j, j') € F, the fact that j € Uy
implies j’ € Us, and thus & ;_,;» = w(S(j")) by definition.
Using again the fact that the sets S(j’) are pairwise disjoint
for all direct successors j' of 7, i.e., for all (j, ) € E, this
yields 3 i e Cs,j—jr = w(S(j)) —wj, and further gives

wj + Z Cs,j—j’ — Z Cs,jr—j = w(S(7))-

(4.3")€E (4".4)€E

Thus, the left side of (3) is equal to Zg b w(S(j)).

The facts that W (t;) > W (ts) at any t; < t5 and that j is
processed by R% units at any time ¢’ € [t}, C;] combined

with the assumption %(%)) < p- R} imply the following:

Cj w(S(i Cj w(S c; |
; ‘(4/((;))) SS:ﬁ IEV((SJ))) SS;’*‘p-l%;’-gp-pj.

Rearranging it, using the definition of Et and « > kp gives
Cj
S w(SG)) < pepy - W(E) = pr-py b < a-p; - B

ok
s—tj

which implies (3) and thus proves the statement. O

Proof of Theorem 3.3. We set a = prx. Weak LP duality,
Lemma 3.7, and Lemma 3.6 imply

pk - OPT > OPT,,. > Zaj th (1 ~ > - ALG.

Choosing x = 2, we conclude that ALG < 4p - OPT. O

3.2. Learning-Augmented Algorithms

In this section, we extend the algorithms presented in Sec-
tion 3.1 to achieve a smooth error-dependency in the case
of inaccurate predictions, while preserving constant con-
sistency. Further, we use the time-sharing technique (cf.
Section 2) to ensure a robustness of O(w).
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Static Weight Predictions for Chains Here, the main
challenges are as follows: we only have access to the po-
tentially wrong predictions W, on the total chain weight for
all ¢ € C and, therefore, we execute Algorithm 1 using W,
instead of W.. In particular, the weight of a chain ¢ might
be underpredicted, Wc < W,, or overpredicted, WC > W..
This means that ) _ W, may not be the accurate total weight
of the instance and that the recomputation of W,(t) in Line 5
may be inaccurate. In Appendix A.2, we show how to en-
code the error due to underpredicted chains in an instance C,,
and the error due to overpredicted chains in an instance C,,
similar to an error-dependency proposed in (Bamas et al.,
2020) for online set cover. We prove the following result:

Theorem 3.8. For minimizing the total weighted completion
time of jobs with online chain precedence constraints on a
single machine, there is a non-clairvoyant algorithm with
predicted chain weights with a competitive ratio of at most

Oopr1(C,) + w - OPT(C,,)
OpT o

o(1) -min{1+

Adaptive Weight Predictions for Out-Forests To cap-
ture the quality of an adaptive prediction, we intuitively
need to measure its quality over the whole execution. To
this end, we use the maximal distortion factor of the weight
predictions of every possible front job, which in fact can be
any job in J. We prove in Appendix A.3:

Theorem 3.9. For minimizing the total weighted completion
time on a single machine with online out-forest precedence
constraint and adaptive weight predictions, there is a non-
clairvoyant algorithm with a competitive ratio of at most

. W, w(S(v))
O(1) - min {Té‘? w(SW)) TR "”}'

4. Weight Order Predictions

Next we consider static and adaptive weight order predic-
tions. As strong lower bounds hold for in-trees, even for the
more powerful adaptive weight predictions (cf. Lemma 3.2),
we focus on chains and out-forest precedence constraints.

Further, we introduce an error measure for wrongly pre-
dicted orders. A natural function on orders is the largest
inversion, i.e., the maximum distance between the position
of a front job in an order prediction 31& and the true order <;.
However, if all out-trees have almost the same weight, just
perturbed by some small constant, this function indicates a
large error for the reverse order, although it will arguably
perform nearly as good as the true order. To mitigate this
overestimation, we first introduce e-approximate inversions.
Formally, for every precision constant € > 0, we define

L(e) = ma
(6) 7]61}%

{ier| B0 > ws) nizi|

Algorithm 2 Adaptive weight order algorithm

Require: Time ¢, front jobs F}, adaptive order 315.
1: Process every j € F; withrate (H|p,| - i;) ™", where i,
is the position of j in =<,.

Note that £(e) > 1 for every € > 0, because 3t is reflex-
ive. We define the e-approximate largest inversion error
as max{1l + ¢, L(e)}. We show performance guarantees
depending on this error which hold for any € > 0. There-
fore, we intuitively get a pareto frontier between the pre-
cision (1 + ¢€) and L(e), the largest distance of inversions
which are worse than the precision. A configurable error
with such properties has been applied to other learning-
augmented algorithms (Azar et al., 2022b; Bernardini et al.,
2022).

4.1. Adaptive Weight Order

We introduce Algorithm 2, which exploits access to the
adaptive order <,. In a sense, the idea of the algorithm is
to emulate Algorithm 1 for weight predictions. Instead of
having access to the total remaining weight of every out-tree
to computing rates, Algorithm 2 uses =, to approximate the
rates. For every front job j € F}, let i; be the position of j
in <,. Recall that H}, denotes the kth harmonic number.

Theorem 4.1. For any € > 0, Algorithm 2 has a competitive
ratio of at most 4H,, - max{1 + ¢, L(€) } for minimizing the
total weighted completion time on a single machine with
online out-forest precedence constraints.

Proof. We first observe that the rates of the algorithm are

. H
feasible, because Y. L__ — A&l

J€F Hipy-i; — Hip, —

Fix a time ¢ and an ¢ > 0. Assume that jlgt o
and fix a front job j; € F;. The algorithm processes j;
at time ¢ with rate R = (Hp, -i)~" > (H, -i)~".
. w(S(7; t

Note that showing %i))) < Hy, -max{1+e¢ L(e)} - R,
implies the theorem via Theorem 3.3. Assume otherwise,
ie., wg/gg,);)) > 1. max{1 + ¢ L(¢)}. For the sake of
readability, we define Ks = {k € [i — 1] | w(S(ix)) >
w(S(j; . . w(S (74

wBUDY and K< = {k € [i] | w(S(i)) < wEEDY,
Since in an out-forest the sets .S(j) are pairwise disjoint for
all front jobs 5 € Fi,

1>Z ) Z )

kEKs

=t

4y Sl

/-\

vere W)

Consider the second sum. First, observe that this sum has
at most £(€) many terms, including the one for j;, and that

each such term is at most 1”(57?))) Then, observe that every

_w(S(i))

W (D" Thus, we can

term in the first sum is at least Trow®
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further lower bound the sum of the two sums by

1 w(S(J; 1 w(S(J;
Z E}V(J))_F G)Z %/V(J))

Lte g WO Lo, Z W)
1 w(S() _ =1
> > - =1
max{1l+¢, L(e)} kez[i] W (t) ; i
This is a contradiction. O

Using this theorem, we conclude the following corollary.

Corollary 4.2. There exists a non-clairvoyant weight-
oblivious algorithm for the problem of minimizing the total
weighted completion time of n jobs on a single machine with
a competitive ratio of at most O(log n) when given access
to the order of the job’s weights.

4.2. Static Weight Order

If we only have access to =, a natural approach would
be to compute the initial rates as used in Algorithm 2 and
just not update them. As Observation 3.1 rules out well-
performing algorithms for out-trees, we focus on chains.
Even for chains, we show in Appendix B that this algorithm
has a competitive ratio of at least Q(w - H,,).

Lemma 4.3. The variant of Algorithm 2 that computes
the rates using = instead of =<, is at least Q(w - H,)-
competitive, even if =g equals <.

However, the lower bound instance of the lemma requires w
to be “small” compared to the number of jobs, in case of
unit jobs, or to P := Zj p;, otherwise. We exploit this to
prove the following theorem in Appendix B.

Theorem 4.4. For any € > 0, Algorithm 2 has a competi-
tive ratio of at most O(H2\/P - max{1 + ¢, L(€)}) when
computing rates with < instead of =, at any time t. For
unit jobs, it is O(H2\/n - max{1 + €, L(€) })-competitive.

5. Average Predictions

Recall that average predictions give access to predicted
values a, on a(S(v)) = (X ,es(0) Wu)/ (X ues(w) Pu) fOr
each v € F;. In Appendix C, we show the following lower
bound for chains with unit jobs, where average predictions
coincide with the average weight of the jobs in the respective
chain. The lower bound exploits that we can append jobs
of weight zero to a chain in order to manipulate the average
weight of the chain until all chains have the same average.

Lemma 5.1. Any algorithm which has only access to correct
adaptive average predictions is at least Q)(y/n)-competitive
even for chain precedence constraints with unit jobs.

6. Action Predictions

We now turn our focus to general prediction models, which
are not specifically tailored for our concrete problem. Action
predictions induce an optimal algorithm. Hence, following
accurate predictions clearly results in an optimal solution.
To define an error measure for erroneous static and adaptive
action predictions, let & : J — [n] be the order in which a
fixed static or adaptive action prediction suggests to process
jobs. In case of static action predictions, we receive the
predicted order initially, meaning that it might predict a
set of jobs J different to the actual .J. During the analysis,
we can simply remove the jobs J \ J from & as they do
not have any effect on the schedule for the actual instance.
For the jobs in J \ J , we define the static action prediction
algorithm to just append them to the end of the order 6 once
they are revealed. Thus, we can still treat & as a function
from J to [n]. We analyse an algorithm which follows a
static or adaptive action prediction using the permutation
error introduced in (Lindermayr & Megow, 2022). To this
end, let o : J — [n] be the order of a fixed optimal solution
for instance J, and Z(J,6) = {(j',7) € J* | o(j') <
o(§) N6 (j") > &(j)} be the set of inversions between the
permutations o and 6. Applying the analysis of (Lindermayr
& Megow, 2022) yields the following theorem.

Theorem 6.1. Given static or adaptive action predictions,
there exists an efficient O(min {1 + 7, w})-competitive non-
clairvoyant algorithm for minimizing the total weighted
completion time on a single machine with online precedence

constraints, where 1 = E(j’,j)el(.],&) (wjrp; — wipj).

7. Full Input Predictions

We can use full input predictions to compute static action
predictions . In general, computing 6 requires exponential
running time as the problem is NP-hard. For special cases,
e.g., chains, there are efficient algorithms (Lawler, 1978).

While following & allows us to achieve the guarantee of The-
orem 6.1, the error 77 does not directly depend on the pre-
dicted input but on an algorithm which computed actions for
that input. Thus, we aim at designing error measures depend-
ing directly on the “similarity” between the predicted and
actual instance. As describing the similarity between two
graphs is a notoriously difficult problem on its own, we leave
open whether there is a meaningful error for general topolo-
gies. However, we give an error measure for chains. The
key idea of this error is to capture additional cost that any
algorithm pays due to both, absent predicted weights and
unexpected actual weights. This is in the same spirit as the
universal cover error for graph problems in (Bernardini et al.,
2022). Assuming that the predicted and actual instance only
differ in the weights, our error A = I'y, + I, considers
the optimal objective values I',, and I', for the problem
instances that use {(w; — ;) }; and {(0; — w;)+}; as
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weights, respectively. Then, I';, and I", measure the cost for
unexpected and absent weights. In the appendix, we general-
ize this idea to also capture other differences of the predicted
and actual chains and prove the following theorem.

Theorem 7.1. Given access to an input prediction, there ex-
ists an efficient algorithm for minimizing the total weighted
completion time of unit-size jobs on a single machine with
online chain precedence constraints with a competitive ratio
of at most O(min {1 + A,w}), where A =T, + T,,.

8. Final Remarks

We initiated the study of learning-augmented algorithms for
scheduling with online precedence constraints by consider-
ing a hierarchy of prediction models based on their entropy.
For several models of the hierarchy, we were able to show
that the predicted information is sufficient to break lower
bounds for algorithms without predictions. We hope that
our approach leads to more discussions on the identifica-
tion of the “right” prediction model in learning-augmented
algorithm design. As a next research step, we suggest in-
vestigating the missing bounds for our prediction models,
e.g., an upper bound for average predictions, and explor-
ing error measures for full input predictions based on more
fine-grained graph distance metrics.
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A. Weight Value Predictions

This section deals with the weight value prediction model. We first prove lower bounds. Then we present the algorithmic
upper bounds.

A.1. Lower Bounds

Lemma 3.2. Any algorithm which has only access to adaptive weight predictions has a competitive ratio of at least Q(y/n),
even for in-tree precedence constraints.

Proof. Consider an in-tree instance with unit-size jobs and root r of weight 0. There are y/n chains of length 2 with leaf
weights 0 and inner weights 1 which are connected to r. Further, there are n — 2/n — 1 leaves with weight 0, which are
connected to a node v with weight 1, which itself is a child of r. Note that the weight prediction for all potential front jobs
except r is always 1. Thus, even the adaptive predictions do not help, and we can assume that the algorithm first processes
the children of v, giving a total objective of at least Q((n — 2y/n — 1)2 + (n — 2y/n — 1)y/n) = Q(n/n), while processing
the other leaves first yields a value of at most O((2y/n)? + (2y/n +n — 2y/n)) = O(n). O

A.2. A Learning-Augmented Algorithm for Chains

We observe that WRR (cf. Algorithm 1) for chains with static weight predictions crucially relies on having access to exactly
precise predicted chain weights. In particular, we show that even if the initial weights of all chains are just overpredicted by
the same constant factor o > 1, the algorithm is not constant competitive anymore. The intuitive reason for this is that the
recomputation of the chain weights in Line 4 can slightly overestimate the remaining weight of a large number of chains,
which can slow down important chains that contribute a lot to the objective value by a large factor.

Lemma A.1. Given wrong weight predictions with W, =a-W, for all chains ¢ € C and a constant factor o > 1,
Algorithm 1 has a competitive ratio of at least Q(%;Dn%)for minimizing the total weighted completion time of jobs with
online out-forest precedence constraints on a single machine.

Proof. Consider an instance consisting of k = n3 chains with only unit jobs, i.e., all jobs have processing times of 1. Each
chain c has a predicted weight of W. = « and an actual weight of W, = 1. The first chain consists of { = ni jobs and has
its total weight of 1 on the last job in the chain and all previous jobs have a weight of zero. The remaining (k — 1) chains
each consist of at least n3 jobs with the total weight of 1 being on the very first job of the respective chain and all other jobs
having a weight of zero.

The optimal solution for this instance is to first process the front jobs with weight 1 in an arbitrary order, then process
the ¢ jobs of the first chain and finally process all remaining jobs in an arbitrary order. This leads to an objective value of
opr = ME L k4 v e On3).

Algorithm 1 starts to process each chain with a rate of % until the first jobs of each chain is completed after £ time units.
Afterwards, the first chain is processed with rate (a_l).(‘z_l) = < (a—al)- = as the algorithm thinks that the other chains still
have a remaining weight of « — 1. The algorithm processes the first chain at this rate until it completes. This leads to an
objective value of ALG > k‘~(k71)+w A>k-(k-1)+ 2L neQ(et n).

Putting the bounds for OPT and ALG together, we get a competitive ratio of 53 € Q(*—= - nl'/3). O

As a consequence of this lemma, the algorithm cannot be O(n)-competitive for the very intuitive multiplicative error

%“ , %f }. Instead, we use more involved error measures and continue by giving a formal proof
c c

measure 7 = maX.cc max{
of the following theorem.

Theorem 3.8. For minimizing the total weighted completion time of jobs with online chain precedence constraints on a
single machine, there is a non-clairvoyant algorithm with predicted chain weights with a competitive ratio of at most

O(1) - min {1 4 OP1(Co) +w - OPT(C) w} :

OPT

In order to give the proof, we first formally define the predicted instance (including C, and C,,).

11
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Algorithm 3 Learning-augmented WRR on Chains

1: Execute Algorithm 1 with rate % using the predicted chain weights.
2: Execute the algorithm of Proposition 2.1 with rate %

Definition A.2 (predicted instances). The predicted instance C, the underpredicted subinstance C,, and the overpredicted
subinstance C, are constructed by considering for every ¢ = [j1, ..., j¢] € C the following cases:

() if W, = W.., then the chain & = ¢ with job weights @; = w; for all j € cis added to C.

(ii) if W, < W, then the chain & = [y, ..., j], where k is the smallest index s.t. W, < ¥, w;, with weights @, = w;,
forall 1 <i < k—1and dj, = W, — 31—, w; is added to C. Additionally, a chain ¢, = [L, jxi1, . .., j¢] with

weights 0;, = w;, forallk+1 <7 <fand W, = Zle w; — Wa is added to C,,, where the processing requirement
of L is equal to the total processing requirement of ¢.

(iii) if W, > W., then chain & = [jy, ..., j¢] with weights @, = w;, forall 1 <i < /¢ —1andd;, = We — 3 w; is
added to C. Additionally, a chain ¢, = [T] is added to C,, where the weight of T is equal to W, — Zle w; and its
processing requirement is equal to the total processing requirement of ¢.

Finally, C, is a copy of C where for every overpredicted chain é = [j1,...,j¢] € C the weight of its last job j, is set to wj,,
the weight of the job in the actual instance. This weight is strictly smaller than the weight @0;, = W, — Zf;ll w; of the job
in instance C.

Note that for every ¢ € (f we have Zj ce Wy = WC, i.e., the predicted weights are correct for C. In the following, we

nevertheless call a chain & € C overpredicted resp. underpredicted if that is true for its corresponding chain in C. Since
every job j of C,, is also part of C with the same processing requirement and a weight of at most w; and the chains in C,, are
prefixes of the chains in C, we conclude:

Proposition A.3. OpPT(C,) < OPT(C).

We use the algorithm of Proposition 2.1 in combination with the times-haring of Theorem 2.2 to define Algorithm 3.

Lemma A.4. Algorithm 3 with predicted chain weights achieves an objective value of at most
O(1) - OprT(C,) + O(1) - (OPT(C,) + w - OPT(Cy,)).

Proof. We first argue that OPT(C) < O(1) - OPT(C,) + O(1) - OPT(C,). To this end, consider the instance C, U C,. Every
correctly predicted or underpredicted chain in C is contained as an identical copy in C,,. For every overpredicted chain ¢ € ¢
with weight WeinC, all jobs of ¢ are contained with a total weight of W; in C,, and the remaining weight of Wz — Wais
contained in C,. Additionally, it is ensured by the processing requirement of the jobs in C, that their weight can only be
gained when processing at least the total processing requirement of ¢. This implies that the time to gain weight Wz — W; of
every overpredicted chain ¢ € C in C, U C, takes as least as long as in C, and thus OPT(C) < OPT(C, UC,). Finally, it is

not hard to see that OPT(C, UC,) < 2- OPT(C,) + 2 - OPT(C,) as OPT(C,) and OPT(C,) can be executed in parallel by
preemptively sharing the machine, yielding the claimed bound.

We now show that ALG < O(1) - (OPT(C) + w - OPT(C,,)) for Algorithm 3, which implies the statement. First consider
the execution of Algorithm 1 in the first line. We may assume that the algorithm processes the artificial job added to
each overpredicted chain in C.asit only increases its objective. Further, Algorithm 1 stops processing an underpredicted
chain ¢ € C when a total weight of W, has been completed on ¢ and only finishes them at the very end of the schedule. This
concludes that the total objective of Algorithm 1 without the weighted completion times of the jobs processed in Line 7 is
at most O(1) - OPT(C). But, due to Proposition 2.1 and line two of the algorithm, we conclude that Algorithm 3 always
processes such chains that are only completed in Line 7 of Algorithm 1 with a rate of at least i and, thus, delays the
completion the jobs in these chains by a factor of at most 2w compared to an optimal solution. By observing that the total
weight of jobs processed in Line 7 by Algorithm 1 is exactly equal to the total weight of chains in C,,, and the fact that the
jobs in a chain ¢ € C,, can only be processed after time equal to the total processing requirement of the corresponding chain
inC , we conclude the stated bound. O
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A.3. Adaptive weight predictions for out-forests

Algorithm 4 Weighted Round Robin on out-forests

Require: Out-forest 7" and adaptive weight predictions.
t<0
: while F; # () do
W,

1
2
3:  Process every v € F; with rate R} = —<—2—
4
5

ZieFt Wi
t—t+1
: end while

Theorem 3.9. For minimizing the total weighted completion time on a single machine with online out-forest precedence
constraint and adaptive weight predictions, there is a non-clairvoyant algorithm with a competitive ratio of at most

: W, w(S(v))
O(1) - min {Tgf w(8)) - max m,w} .

Proof. To prove the theorem, we show that Algorithm 4 is O(n)-competitive for

W, Wy
7) = max -max ——.
ved Wy, wved W,

Then, Proposition 2.1 and Theorem 2.2 imply the theorem.

By Theorem 3.3, it suffices to show that %((g))) < 7 - R} holds for any point in time ¢ during the execution of Algorithm 4
and any j € Fy, where R; is the rate with which the algorithm processes j at point in time ¢. Consider a fixed point in time ¢

and an arbitrary j € F}. Then, the algorithm processes 7 with rate R; = Zwijw by definition. We can conclude
ieFy Vi

w(SG) _ w(S() W -

W) Yierw(S@) Y W, w30
(

w

(maXyGJ 7‘3,(1}))) : Wj

(minueJ w> : ZieFt VT/?

v

W, w(S() W,

= max ———— - max —— : 7
ved U.)(S(U)) veJ Wv EiEFt WZ

=n- R;

B. Static Weight Order

Lemma 4.3. The variant of Algorithm 2 that computes the rates using = instead of =, is at least Q(w - H,,)-competitive,
even if X equals <.

Proof. Consider an instance with w chains, each with a total weight of one. Then, < is just an arbitrary order of the chains.
Recall that the algorithm starts processing the chains ¢ with rate (H,, - i) ~*, where i, is the position of ¢ in the order. We
define the first w — 1 chains to have their total weight of one at the very first job and afterwards only jobs of weight zero.
Chain w, the slowest chain, has its total weight on the last job. We define the chains c to contain a total of d - H,,, - i jobs
with unit processing times, for some common integer d. This means that the algorithm finishes all chains at the same time.
The optimal solution value for this instance isw - (w + 1) +w — 1+ d - H,, - w, where w - (w + 1) is the optimal sum of
completion times for the first w — 1 chains, d - H,, - w is the cost for processing the last chain, and w — 1 is the cost for

13
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delaying the last chains by the w — 1 time units needed to process the first jobs of the first w — 1 chains. The solution value
of the algorithm is at least d - H2 - w? as this is the cost for just processing the last chain. Thus, for large d, the competitive
ratio tends to H, - w. O

Theorem 4.4. For any e > 0, Algorithm 2 has a competitive ratio of at most O(H2+/P-max{1+e¢, L(¢)}) when computing
rates with =< instead of =, at any time t. For unit jobs, it is O(H2/n - max{1 + ¢, L(¢) } )-competitive.

Proof. Recall that P denotes the sum over all job processing times in the instance. For a subset of chains S, let OPT(.S)
denote the optimal objective value for the subinstance induced by S. For a single chain ¢, OPT(c) is just the cost for
processing chain ¢ with rate 1 on a single machine. Clearly, OPT(S) > > .5 OPT(c). Let ALG(S) denote the sum of
weighted completion times of the jobs that belong to chains in S in the schedule computed by the algorithm.

In the first part of the proof, we assume that all chains ¢; have a total processing time of at most v/P. This only decreases
the objective value of OPT. For ALG, we will analyze the additional cost caused by longer chains afterwards. In a sense,
we assume that ALG, for each chain ¢, has to pay all weight that appears after v/P processing times units of the chain
two times: Once artificially after exactly v/P time units of the chain have been processed and once at the point during the
processing where the weight actually appears. This assumption clearly only increases ALG. In the first part of the proof, we
analyze only the artificial cost for such weights and ignore the actual cost. In the context of our algorithm this is equivalent
to assuming the chains have total processing times of at most v/P. In the second part of the proof we will analyze the actual
cost for the jobs that appear after /P time units in their chain.

First Part. Assume ¢; 3002 30 ... 30%. Therefore, the algorithm processes chain ¢; with rate (H,, - i)*l. This directly
implies ALG(¢;) = H,, - i - OPT(¢;) and, thus,

ALG = ZH‘“ - - OPT(c;).

i=1

Let C, = {c1,...,c} forevery k € [w]. We first analyze ALG(C3..(c)). For the chains in C3..(.), we get
3-L(e)
ALG(C3.p(e) = Y Hu-i-OPT(c;)
i=1
3-L(e)

< H,-3-L(e ZOPTCZ

< H, ~3~£(e)~OPT,

meaning that, for C3.. (), we achieve the desired competitive ratio.

Next, consider the chains in C \ Cs.£(c), i.e., the chains ¢; with i > 3 - L(¢). To analyze the cost for these chains C;,
we continue by lower bounding OPT(c;). To that end, consider OPT(C;). The definition of £(¢) implies that there are

at most L(¢) chains ¢; € C; with W, > (1 + e)W For all other chains cj in Cz, we have (‘fj_ y < W, . Thus, there

(1+ 5 (€), 1tholdsz —L(e) > 1.

We can lower bound OPT(C;) by assuming that all such chains consist only of a single job with weight

are i — L(e) chains in C; with a weight of at least

(1+ ) and ignoring
the up-to £(e) other chains. These assumptions only decrease OPT(C;). Since in this relaxation all jobs have an equal

14
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weight and length, an optimal solution for it processes the jobs in an arbitrary order, giving

i—L(€)
op(C Z J 1+e

(Z—E( Y+1)-(i— L(e)) - W,
2-(1+¢)
_ ((i+1) i+ L(e)>—2-i-L(e) — L(e)) - WL,
2-(1+¢)
(i1 i—3i L)
- 2-(1+e¢)

-We,.

Since we still assume that each chain has a total processing time of at most /P, we can observe OPT(c;) < v/P - W,.,. This
yields:
2-(1+¢)
(t+1)-i—3-i-L(e)

VP - OPT(C;) > OPT(c;).

‘We can therefore conclude

ALG(C\ C3.0(0) = Z Hw - - OPT(¢;)

1=3-L(e)+
< Z H, 2+ | VP - OpT(C))
- (i+1)—3-L(e)
i=3-L(e)+1

- 1
<2-(1 -H, - VvVP-0O -_
<2-(1+¢) VPOt 3 G+1)—3-L(0

i=3-L(e)+1

<2 -(1+€) - Hy Hy 30041 VP-OPT
<2-(14¢-H?-VP-OpT.

We can finish the first part of the proof by combining the bounds for ALG(C \ C3.£(¢)) and ALG(Cs..(c)):
ALG(C) = ALG(C \ Cg.ﬁ(é)) + ALG(Cg.L(C))
<5 -H?. VP- max{1 + ¢, L(e)} - OPT.
Second Part. It remains to analyze the additional cost incurred by chains with a total processing time of more than /P.

To that end, consider the set Jy, of jobs that, in any schedule, cannot be started before /P time units have past. For a
job j € Jy, the predecessors of j in the chain of j must have a total processing time of at least v/P.

Let ALG(JL,) and OPT(J1,) denote the weighted completion times of the jobs in .Jz, in the optimal solution and the schedule
computed by ALG, respectively. Then,

ALG(J) ZJGJLP wy
o) <y v VT

Thus, the additional cost of the jobs in J;, asymptotically does not worsen the competitive ratio. O

C. Average Predictions

Lemma 5.1. Any algorithm which has only access to correct adaptive average predictions is at least Q(\/n)-competitive
even for chain precedence constraints with unit jobs.
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Proof. Consider an instance composed of v/n € N chains of unit jobs, where the first two jobs of the first chain have
weights 1 resp. n — /n, followed by n — /n — 1 zero weight jobs. The other v/n — 1 chains are single jobs with weight
1. For an algorithm, all chains look identical since the first jobs have weight 1 and the average of every chain is equal
to 1. Therefore, an adversary can ensure that the algorithm processes the first chain last, giving an objective value of

ZZ:‘/ﬁl i+ (v/n+1)(n —+/n) = Q(ny/n), while a solution which schedules the heavy weight job initially achieves an

objective value of at most 1 + 2(n — /n) + Zi:‘/ﬁfl (3+14) = O(n). The adaptivity of the predictions does not help for this
lower bound as the algorithm would only receive meaningful updates once it finishes the first job of the first chain, which is
too late. O

D. Input Predictions
This section is devoted to the proof of Theorem 7.1.

Let C denote the set of predicted chains, and let 1; denote the predicted weight of a job j of the instance. All processing
requirements are equal to 1, and the algorithm is aware of this. We assume w.l.o.g. that |C| = |C| by adding chains with zero
(predicted) weight, and that predicted and actual chains have the same identities. That is, there exists exactly one predicted
chain ¢; € C for each actual chain ¢; € C, which an algorithm can match to each other.

Our error measure further requires that there exists for every actual job a predicted counterpart, and vice versa. For a chain ¢
let |c| denote the number of jobs of chain ¢. We define augmentations of C and C as follows. Let C’ be composed of all jobs
of C, and additionally, for every paired chains ¢; € C and ¢; € C:

o if |&;] > |¢;|, we add |&;] — |¢;| jobs J,, with weight O at the end of ¢; in C’. Note that OPT(C) = OPT(C’).

o if |¢;] > |&], we add |¢;| — |&] jobs J, with predicted weight 0 at the end of &; in C'.

Note that this construction ensures OPT(C) = OpT(C').

For the sake of analysis, assume w.l.0.g. that both C’ and C’ share the same set of jobs J'. Let n’ = |.J/|. We de-
fine OPT({w?};) as the objective of an optimal solution for J’ where a job j has weight w’;. We further define

oprT({w}};,{w;};) = max Z w;C5 | {C}}; is an optimal schedule for {w; };
JjeJ!

Given two fixed augmented instances C’ and C’, we define the input prediction error A =T, + 'y

* ajob j € J' has unexpected actual weight if w; > ;. The prediction error due to all unexpected weights can be
expressed as I',, = OPT({max{w;, w; } — w;};, {w;};).

* ajob j € J' has absent predicted weight if 1; > w;. The prediction error due to all absent weights can be expressed
as 'y = OPT({max{w;, @;} — @;};, {d;};).

Theorem 7.1. Given access to an input prediction, there exists an efficient algorithm for minimizing the total weighted
completion time of unit-size jobs on a single machine with online chain precedence constraints with a competitive ratio of at
most O(min {1 + A,w}), where A =T, + T,

Recall that O(w)-robustness can be achieved via Proposition 2.1 and Theorem 2.2. Thus, we can prove the theorem by
deriving an O(1 4+ A)-competitive algorithm.

Proof. We analyze the following algorithm:

1) Efficiently compute an optimal solution based on C (Lawler, 1978). This yields an non-preemptive schedule for the
predicted instance, i.e., an order of the jobs.

2) Follow the computed solution. The following situations might occur:
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a) a chain finishes earlier than expected. In this case, discard the remaining predicted jobs of this chain in the
precomputed schedule.

b) a chain continues although there are no more jobs in this chain in the algorithms schedule. In this case, schedule the
remaining jobs in an arbitrary order at the end of the precomputed schedule.

Let ALG denote the objective value of this algorithm. We first observe that ALG < OPT({w, };, {1;};). To see this, recall
that the algorithm first follows an optimal schedule for jobs J’ \ .J,, and then schedules all unexpected jobs J,, at the end due
to case b). Since jobs .J,, have predicted weight 0 in C', we can assume that an optimal solution for (' first schedules jobs
J"\ Jy as our algorithm with the same objective value and makespan as our algorithm, and then schedules jobs .J,, in any
order. Since OPT({w;};, {;};) is an upper bound on the actual objective for any such order, the inequality follows. It
further holds that

OpT({w;};, {;};) < OpT({max{w;,d;}};, {¥;};)
= OPT({;};) + OPT({max{w;, w;} — w;};, {i;};)
< OpT({;};, {w;};) + OPT({max{w;, d;} —d;};, {d;};)
< OpT({max{w;, w;}};,{w;};) + OPT({max{w;, @} —d;};, {d;};)
< OPT({w;};) + OPT({max{d;, w;} — w;};, {w;};) + OPT({max{w;, @;} — d;};, {¥;};)
= OpT({w,};) + A.

We finally observe that OPT({w; };) = OPT(C), as jobs J,, do not influence the objective value of an optimal solution. []

E. Extension to Parallel Machines

We generalize in this section our main results for weight value and adaptive weight order predictions (Theorems 3.4, 3.5
and 4.1) to parallel identical machines. Compared to the single machine, the competitive ratios of these results only increase
additively by 2. Formally, we consider the scheduling problem where we are given m parallel identical machines and an
algorithm can again assign at any time ¢ to every front job j € F} arate R; € [0, 1]. Opposed to the single machine model,
the rates now have to satisfy > j R§» < m at any time ¢. Using McNaughton’s wrap-around-rule (McNaughton, 1959), we
can transform these rates to an actual schedule that processes any job at any point in time on at most one machine.

We prove the following generic result, which is a generalization of Theorem 3.3.

Theorem E.1. If an algorithm for scheduling weighted jobs with online out-forest precedence constraints on parallel
identical machines satisfies at any time t and for every j € Fj that

w(S(5))
Wi(t)

where Rg» denotes the processing rate of j at time t, it is at most 2 + 4p-competitive for minimizing the total weighted
completion time.

t t
Ri<l=m- <p-R;

We first apply this theorem to derive competitive ratios of algorithms with weight value and adaptive weight order predictions
for parallel identical machines, and finally prove Theorem E.1.

E.1. Static Weight Values for Chains

Recall Algorithm 1 for a single machine, which assigns rates proportional to a chains remaining total weight. These rates
fulfill by definition that they can be scheduled on a single machine, i.e., sum up to at most 1. On m parallel identical
machines, we intuitively have m times as much processing power compared to a single machine. A straightforward
approach to exploit this observation would be to scale the single machine rates by a factor of m, i.e., process chain ¢ with
rate m - ZWCT(Z)U) These rates clearly some up to at most m. However, a single chain might receive a rate more than 1,
which is disallowed. To circumvent this issue, we cap such rates at 1. The final algorithm (Algorithm 5) therefore first
identifies chains with large remaining weight and assigns them rate 1, and then splits the remaining processing power among
the remaining chains. For non-clairvoyant scheduling of weighted jobs on parallel identical machines without precedence
constraints, this approach is known to be 2-competitive (Beaumont et al., 2012).
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Algorithm 5 WDEQ on Chains
Require: Set of chains C, initial total weight W, of every chain ¢ € C.

1: t+0
2: W.(t) < W, for every chain c.
3: while U; # () do
4: C<—{cl,...,ck}
5 m' < m
6:  while Jc € C such that m’ - % > 1do
7: Process the first job j € I; in chain ¢ with rate R; =
8: C+C\{c},m' +<m' -1
9:  end while
10:  For every chain ¢ € C, process the first job j by R; =m- EWCT%
1 tet+1 ’

12:  If some job j in chain c finished, set W, (t) < W, (t) — w;
13: end while
14: Schedule remaining jobs arbitrarily.

Algorithm 6 Adaptive weight order algorithm for parallel identical machines

Require: Time ¢, front jobs F}, adaptive order 315

. . t _ . . . .o, . .. ~
Process every 7 € F} with rate Rj = min {1, ﬁ } where i is the position of j in =;.

Using the same observation as for Algorithm 1, we conclude that every job j’s rate, when being less than 1, is at
most m - %(%)) Then, Theorem E.1 implies immediately the following corollary.

Corollary E.2. Algorithm 5 is a non-clairvoyant algorithm for the problem of minimizing the total weighted completion
time on m parallel identical machines with online chain precedence constraints with a competitive ratio of at most 6, when
given access to accurate static weight predictions.

E.2. Adaptive Weight Values for Out-Forests

In a similar fashion, we can extend the algorithm for adaptive weight values on out-forests to the parallel machine
environment, and thereby generalize Theorem 3.5. To this end, we consider the algorithm which processes every front

. . o - . W, _
}. This immediately implies that if R < 1, then R; = mizjleﬂ W,

job j € F, with rate R} = min {1,mzjlevgm
m%(%)) for correct predictions. We derive the following corollary via Theorem E.1 with p = 1.

Corollary E.3. Given correct weight predictions, there exists a non-clairvoyant 6-competitive algorithm for minimizing the
total weighted completion time on m parallel identical machines with online out-forest precedence constraints .

E.3. Adaptive Weight Order for Out-Forests

For adaptive weight order predictions, we essentially use the exact same trick from the previous section and derive
Algorithm 6.

Observe that using the proof of Theorem 4.1, we conclude at any time ¢ and for every j € F; that if R; < 1, then

w(S()) 1

W <m-H, -max{l +e¢ L(e)} — = H,, -max{l+¢,L(e)} - R,

m —
H|F,,\ 'Zj

Using Theorem E.1, we conclude our result for adaptive weight order predictions.

Corollary E4. For any € > 0, Algorithm 6 has a competitive ratio of at most 2 + 4H,, - max{1 + €, L(€) } for minimizing
the total weighted completion time on m parallel identical machines with online out-forest precedence constraints.
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E.4. Proof of Theorem E.1

The proof is by dual-fitting and is inspired by (Garg et al., 2019). Fix an instance, an algorithm which fulfills the stated
property, and this algorithm’s schedule. We first introduce a linear programming relaxation (Garg et al., 2019) for our
problem on parallel identical machines which are running at lower speed i, for some v > 1. By denoting the value of an
optimal solution for the problem with speed i, we conclude OPT,, < « - OPT.

. Tt
min w; -t = (P-LP,)
Syt
7,t
Tjt .
s.t. 2> Vg
>

t
Za-xj,tgm vt

J

S S e
s<t Py s<t Py

Tjt > 0 Vj,t

The dual of (P-LP,) can be written as follows.

max > aj—mY b (P-DLP,)
i t
S.t. a; — wj - t+ Z Z Cs,j—j" — Z Cs,j'—j S o - bt *Dj Vj, t (4)
szt \(j,j')€E (47.9)€E
ajvbtvct,j%j/ 20 Vj,t, (.77]/) EFE

On a single machine, we use the dual linear program to compare the algorithm’ objective to the optimal objective at any
time. Unfortunately, showing feasibility of the dual variables which encode the algorithm’s schedule crucially require to
satisfy m% <p- Ré- for some p > 1 at any time and for every job j. However, if there is a heavy weight chain, we can
only assign it a rate at of at most 1. Thus, in general we cannot satisfy this inequality for any constant p. To resolve this
issue, we instead use a second lower bound for the optimal objective value, and bound the total objective of the algorithm
incurred by rates equal to 1 against it. This intuitively explains the slightly larger competitive ratio compared to the single
machine setting.

We say that a job j € Uy active at time t if there exists j' € F; such that j € S(j') and R}, < 1, otherwise it is inactive.
We remark that j being active at time ¢ implies ¢ < C;. For every time ¢ we denote the set of active jobs by A;. Note
that A, C U,. Intuitively, we will use the dual linear program as lower bound for all jobs in A, and the following lower
bound every time a job is inactive. For every job j, let chain; be the total processing time of a chain’s prefix in G until
job j (including j). Note that OPT > . w; - chain,.

Let k > 1 be a constant which we fix later. We define a dual assignment of (P-DLP,,) based on the algorithm’s schedule:

w; if 7 is active at time s .
it for every job 7,

* a; =Y. .5,0ajs where a;
>0 @j,s 5 .
J $20 7 I {O otherwise

by = - - W(t) for every time ¢, and
_ 0 ifj¢At0rj’¢At . .
Ct i = for every time ¢ and edge (j/,j) € E.
45— {W(S(j)) y ge (4',7)
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LemmaES. > . a; —m3>_, by + > wj - chaing > (1 — ). ALc.

Proof. Since the weight w; of a job j is contained in W (¢) if ¢ < C;, we conclude Y, b, = —L_ALG. Now consider
ajob j and a time ¢ < Cj. If j is active at time ¢, by definition @; , = w;. Otherwise, j or some predecessor of j is
being processed with rate 1. Hence, we conclude that the number of times before C'; when j is inactive is at most chain;.

Therefore w;C; < @; + w; - chain; and ALG < 3, @; + >, w; - chain,. O
Lemma E.6. Assigning a; = a;, by = b, and Ct,j—j’ = Ctj—j gives a feasible solution for (P-DLP,,) if there exists
a p > 1 such that o« > k - p and the algorithm’s rates satisfy at any time t for every j € F}
We. (t)
Ri<l=m - —2--<p-R. 5

Proof. Since our defined variables are non-negative by definition, it suffices to show that this assignment satisfies (4). Fix a
job j and atime ¢ > 0. Let ¢ be j’s chain. By observing thata; — ¢ - w; < 3 ., @ s, it suffices to verify

Z ajs + Z Cs,jjt — Z Cojrmsj | < a-bypj. (6)

s>t (4.5")€E (4".9)€E

To this end, we consider the terms of the left side for all times s > ¢ separately. For any s with s > C};, the left side of (6) is
zero, because @; s = 0 and j ¢ A,. Also note that at any time s € [0, C;] when j is inactive, the left side of (6) is again
zero. Therefore, we restrict our attention in the following to times where j is active.

Let ¢} be the first point in time after ¢ when j is available, and let s € [0, t;) such that j is active at time s. Observe
that j € A, and since each vertex in an out-forest has at most one direct predecessor, there must be a unique job j; € A;
with (j1,j) € E. Thus & j,; = w(S(j)) = X2 jyep Cs.j'—j and & j—jr = w(S(j")) for every j’ with (j,j') € E,
because j' must also be unfinished and active, hence j° € A;. Using the fact that the sets S(j) are pairwise disjoint for all
direct successors j’ of j, we conclude 3 ; . iy Cs,j—; = w(S(j)) — w; and, thus,

aj,s + E Cs,j—j’ — § Cs,j'—j < wj —w; = 0.
(4,3")EE (3",J)EE

By defining T; = {tj < s < C}; | j active at time s}, we conclude that proving (6) reduces to proving

Z w; + Z Cs,j—j’ — Z Cs,j'—j SOé'Et'pgw @)

s€T; (4,3")EE (3",4)EE

Now, let s € T;. There cannot be an unfinished job preceding j, thus > (j.j)ek Cs,j'—j = 0. Observe that if there is a
job j' € A with (4, ') € E, the fact that j € A, gives ¢, ;,;» = w(S(j")). By again exploiting the out-forest topology,
this yields

wit Y Fjoi = Y. Gy =wit Y. w(SG)) = w(S()),
(4,4")eE (J',4)EE (J,4")eE

and hence implies that the left side of (7) is equal to > ., w(5(j)).

The facts that W (t1) > W (t2) atany 1 < ¢, and that j is processed by R < 1 units at any time s € 7T} imply combined
with (5) the following inequality:

w(5(5)) w(5()) s
mSEZTW Sm's;.m SS;.p.Rj < ppy

Rearranging it, using the definition of b, and the bound on « gives

. 1 - _
Zw(s(j))Sp'pj'E'W(t):p-l-@~pj-bt§a.pj.bt,
seT;
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which implies (7) and thus proves the statement. O

Proof of Theorem E.1. We set a = k - p. The facts that « - OPT > OPT,, and Zj wj - chain; < OPT, weak duality and
Lemma E.6 imply
(1+@)-OPT > OPT, + OPT > Y "a@; —m » b+ »_wj - chain;.
J it J

Using Lemma E.5 concludes

1
(1+a)-OpT > (1—) - ALG,
K

which, choosing x = 2, can be rearranged to ALG < (i—i”) -OPT = (2 +4p) - OPT. O

2

F. Time-Sharing without Monotonicity

We give a proof of the following theorem. The proofs given in (Purohit et al., 2018; Lindermayr & Megow, 2022) require
both algorithms to be monotone, that is, for every two instances on the same set of jobs but with processing requirements
{p}}; and {p;}; such that for all jobs holds p/; < p;, the algorithm’s objective value for {p’; } ; must be less or equal than
the algorithm’s objective value for {p; };. In contrast, we do not require monotonicity. This even holds when scheduling
jobs on unrelated machines, where jobs receive a different progress on different machines. The only requirement on both
algorithms is that they are progress-aware. That is, they can track the exact progress jobs have received by them so far at
any point in time, which is true for most algorithms in almost every model.

Theorem F.1. Given two deterministic progress-aware algorithms A and B with competitive ratios p 4 and pp for minimizing
the total weighted completion time with online precedence constraints, there exists an algorithm for the same problem with a
competitive ratio of at most 2 - min{p 4, pg}-

Proof. We consider the algorithm which simulates each of both algorithms .4 and B with a rate equal to % on the same
set of jobs, i.e., in every time step it executes algorithm .A in the first half of the timestep, and algorithm B in the second
half. Additionally, it keeps track of how much each algorithm advances every job. For any job j, both algorithms ignore
the progress in the processing of j made by the other algorithm. In particular, if A finishes job j, then our algorithm still
simulates the processing of j until the total time spend by B3 on the (partially simulated) processing of j equals p; (and vice
versa if B finishes a job before .A). We assume that an algorithm only can start successors of a job j once the (partially
simulated) processing time spend by the algorithm on j is at least p;. We remark that this requires that the main algorithm is
able to manipulate the input for the sub-algorithms .A and B. This ensures that the simulated completion times CJA C‘jB for
both algorithms of every job j are exactly doubled compared to the completion times C]A, CJB of j in independent schedules
of both algorithms, i.e., (:‘;A =2- C’J“-4 and C’f =2 C’JB . In the actual combined schedule, job j clearly completed not later

than min{ C’f, C’jB } =2 min{ C’]A, C'j5 }, implying the stated bound on its competitive ratio. O

We finally note that this argument also works when the share each of both algorithms receives is parameterized by
some A € [0, 1].
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