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ABSTRACT

Classifier-Free Guidance (CFG) is a widely used technique for conditional gen-
eration and improving sample quality in continuous diffusion models, and its ex-
tensions to discrete diffusion has recently started to be investigated. In order to
improve the algorithms in a principled way, this paper starts by analyzing the exact
effect of CFG in the context of a low-dimensional masked diffusion model, with
a special emphasis on the guidance schedule. Our analysis shows that high guid-
ance early in sampling (when inputs are heavily masked) harms generation quality,
while late-stage guidance has a larger effect. These findings provide a theoretical
explanation for empirical observations in recent studies on guidance schedules.
The analysis also reveals an imperfection of the current CFG implementations.
These implementations can unintentionally cause imbalanced transitions, such as
unmasking too rapidly during the early stages of generation, which degrades the
quality of the resulting samples. To address this, we draw insight from the analysis
and propose a novel classifier-free guidance mechanism. Intuitively, our method
smoothens the transport between the data distribution and the initial (masked) dis-
tribution, which results in improved sample quality. Remarkably, our method is
achievable via a simple one-line code change. Experiments on conditional image
and text generation empirically confirm the efficacy of our method.

1 INTRODUCTION

Continuous-state diffusion models (Ho et al., 2020; Song et al.) have proven effective in both uncon-
ditional and conditional generation tasks, such as generating data from natural language prompts.
Prominent examples include text-to-image and text-to-video models like Stable Diffusion, Sora, and
others (Rombach et al., 2022; Esser et al., 2024; Brooks et al., 2024). More recently, progress in
discrete diffusion modeling (Campbell et al., 2022; Lou et al., 2023; Huang et al., 2023; Gruver
et al., 2023; Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024) has extended the applicability

Figure 1: We proposed an improved guidance mechanism through column normalization. Our
method produces sharper images while being more stable to the guidance strength. Notably, it
requires only a minor code modification.
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of diffusion-based generation to new domains, including molecular design, protein synthesis, and
languages.

Despite their success, these models often produce outputs that lack fine detail or strong alignment
with conditioning inputs (e.g., text prompts). A widely adopted technique to address this issue is
classifier-free guidance (CFG) (Ho and Salimans, 2021), which improves fidelity but typically at the
cost of reduced sample diversity (Karras et al., 2024).

A growing body of work has sought to understand the theoretical foundations of CFG in diffusion
models (Chidambaram et al., 2024; Pavasovic et al., 2025; Bradley and Nakkiran, 2024; Ye et al.,
2025), while others have developed improved guidance algorithms (Karras et al., 2024; Li et al.,
2024). Classifier-free guidance has also been adapted to discrete diffusion models (Nisonoff et al.,
2024; Schiff et al., 2024), yielding promising empirical gains.

Among these improvements, dynamic guidance schedules—where guidance strength varies over
the generation trajectory—have shown especially effective. Strategies such as guidance inter-
vals (Kynkäänniemi et al., 2024) and gradually increasing schedules (Xi et al., 2024) can signifi-
cantly enhance sample quality and are increasingly adopted in practice (Hoogeboom et al., 2024;
Yu et al., 2024; Karras et al., 2024). However, such scheduling techniques remain exclusive to the
continuous setting.

While recent adaptations of CFG to discrete diffusion have improved empirical performance, defin-
ing and optimizing effective guidance strategies in discrete spaces remains a fundamentally chal-
lenging and open research problem.

In our work we aim to better understand the mechanisms by which guidance affects the sampling
process in discrete diffusion. Specifically, we aim to answer the following questions:

• How does the guidance schedule affect the distribution of the generated samples?

• Is it possible to characterize properties of good guidance schedules?

To do so, we start by deriving explicit formulas for the sampled distribution under varying guidance
schedules in 1 and 2 dimensions. Our analysis not only reveals flaws in current CFG implemen-
tations, but also leads to effective design principles for effective guidance schedules in masked
diffusion. Our contributions can be summarized as:

• We identify a key flaw in existing discrete guidance mechanisms that complicates simula-
tion, and provide a theoretical explanation of its cause.

• To address the flaw, we propose a novel classifier-free guidance mechanism based on a
simple yet principled column normalization of the rate matrix. This change is theoretically
justified, easy to implement (pseudocode in Sec.1), and compares favorably to existing
approaches in practice.

• The first theoretical justifications to characterize guidance schedules and the mechanisms
by which they improve sample generation

def normalized_guidance_euler_transition(
x, c, t, dt, w

):
uncond = model(x, cond=None)
cond = model(x, cond=c)
logits = w * cond + (1 - w) * uncond

p_theta = logits.softmax(dim=-1)

s, s_bar = sigma(t), sigma_bar(t)
change = dt * s * (1 - exp(-s_bar))
return sample(delta(x) + change * p_theta)

Listing 1: Our guidance in the special case of
masked diffusion using Euler transitions. Our
method is a simple one line change but clearly
motivated by theory
.

def other_guidance_euler_transition(
x, c, t, dt, w

):
uncond = model(x, cond=None)
cond = model(x, cond=c)
logits = w * cond + (1 - w) * uncond

p_theta = logits.exp()

s, s_bar = sigma(t), sigma_bar(t)
change = dt * s * (1 - exp(-s_bar))
return sample(delta(x) + change * p_theta)

Listing 2: Unlocking/Simple guidance for the
special case of masked diffusion using Euler
transitions.
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2 PRELIMINARIES

This paper considers a vocabulary of size M and state space S = {1, 2, . . . ,M}d, with each element
being a sequence of tokens. The number of tokens d will also be referred to as the dimension. Each
probability distribution on S is represented as a vector in RMd

whose entries sum to one.

2.1 INTRODUCTION TO DISCRETE DIFFUCION VIA CTMC

Given an initial distribution p ∈ RMd

, discrete diffusion is defined by considering a rate matrix
Rt ∈ RMd×Md

and defining a continuous time Markov chain (CTMC):

dpt
dt

= Rtpt, p0 = p. (1)

we pick Rt such that when t → ∞, pt converges to a simple distribution. Additionally, Rt must
satisfy that its non-diagonal entries are non-negative and each column must add up to zero. The time
reversal of this process corresponds to a different CTMC given by:

dpT−t

dt
= RT−tpT−t. (2)

This process is considered as the time reversal since it has the same law as (1) for all values of t and
the reverse transition matrix can be found through the following identities:

Rt(y, x) = Rt(x, y) ·
pt(y)

pt(x)
, Rt(x, x) = −

∑
y ̸=x

Rt(y, x). (3)

The ratios pt(y)
pt(x)

are called the score and they enable sampling through Euler schemes, τ -
leaping (Lou et al., 2023) or higher order methods (Ren et al., 2025).

Masked Discrete Diffusion is a special case of diffusion where a clean sequence x0 is gradually
corrupted over time by randomly masking some of its entries. Typically, the forward process is
chosen such that at time t = 0, the data is completely unmasked, and at t = T the data is completely
masked. Formally, the distribution of each token can be written in a simple form:

pt(x
i
t|x0) =

{
xi
0 with probability e−σt

M with probability 1− e−σt

The forward dynamics are defined such that tokens transition only from a clean state to a masked
state, remaining masked thereafter. Generation is achieved by starting from a fully masked state and
iteratively unmasking tokens until a clean sequence is recovered by following Equation (2).

Masked diffusion enjoys a simple and structured design, which has enabled its successful scaling to
large practical tasks (Nie et al.; Xie et al., 2025; Ou et al., 2024; Sahoo et al., 2024; Shi et al., 2024;
Campbell et al., 2022). For this reason, we adopt it as the primary setting for our analysis.

2.2 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance (CFG) (Ho and Salimans, 2021) was introduced to improve conditional
diffusion models, like generating images from class labels or text. Models often failed to capture
fine details, which led to less accurate and misaligned samples (Karras et al., 2024).

CFG tackles this by comparing predictions with and without conditioning, and biasing generation
toward the conditional signal. Formally, the method defines a reweighted distribution:

p(w)(x|y) ∝ pw(x|y)p1−w(x)

Where w is called the guidance strength. Setting w = 1 recovers the usual conditional distribution
p(x|y) while w = 0 corresponds to unconditional sampling. The crucial insight is that by setting
w > 1 it is possible to emphasize the conditional part, effectively pulling the generation closer to
satisfying the required condition. CFG is now a standard tool in conditional diffusion models, more
controllable generations across tasks such as text-to-image synthesis.

3
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While the original formulation contrasted the conditional model against its unconditional counter-
part, later works recognized that this can be extended by replacing the unconditional distribution
with other distributions. For example, Karras et al. (2024) used a weaker conditional model as the
guiding distribution. This view has led to the understanding that the essence of guidance lies in
balancing a target distribution p with a guiding distribution q.

p(w)(x) ∝ pw(x)q1−w(x) (4)

This view highlights that the unconditional model is simply one possible choice of q. By carefully
selecting q recent works (Karras et al., 2024; Li et al., 2024; Rojas et al., 2025) have proposed novel
guidance strategies that further improve sample quality and control.

2.3 GUIDANCE FOR DISCRETE DIFFUSION MODELS

In parallel to advances in continuous domains, discrete diffusion models have emerged as powerful
generative models, enabling diffusion-based approaches on modalities that were previously out of
reach—most notably, text. Improving the fidelity and controllability of these models is crucial, and
guidance offers a natural path forward. Extending classifier-free guidance to the discrete setting has
therefore become an active line of research with two main approaches having been proposed, which
we describe below, followed by a discussion in Section 3.3 comparing them to our method.

Unlocking Guidance (Nisonoff et al., 2024) introduced the first classifier-free guidance mecha-
nisms for discrete diffusion models. Inspired by the continuous case, they constructed a guided
backwards transition by interpolating between two transition matrices in equation 2, yielding

R
(w)

t (y, x) = Rt(x, y) ·
(pt(y)
pt(x)

)w( qt(y)
qt(x)

)1−w

, R
(w)

t (x, x) = −
∑
y ̸=x

R
(w)

t (y, x), (5)

where pt, qt follows the forward CTMC (1). Here p0 = p is the distribution that we want to generate
from and q serves as the guiding distribution. 1. Notice how the products mimic those present in
equation 4. A useful way to interpret this is by introducing the notion of the tilted distribution:

p(w)(y) = Z−1
w pw(y) · q1−w(y), Zw =

∑
y∈S

pw(y) · q1−w(y).

The generation process follows the dynamics induced by the guided transition matrix substituted in
equation 2. Nisonoff et al. (2024) showed that guidance in the discrete setting serves a role analogous
to its continuous counterpart—steering the model toward more faithful conditional samples—thus
providing an important step toward improving the quality of discrete diffusion generations.

Simple Guidance. Concurrently, Schiff et al. (2024) proposed an alternative formulation of
classifier-free guidance for discrete diffusion. Rather than interpolating the rate matrices as in
Nisonoff et al. (2024), they directly interpolate the transition probabilities themselves. Specifically,
when transitioning from time t to time s < t, the following transition was proposed:

p
(w)
simple(zs|zt) ∝ pw(zs|zt)p1−wq(zs|zt). (6)

As before, increasing w biases towards the target distribution p. Although the construction appears
different, in the limit s → t the transitions coincide with those of Nisonoff et al. (2024). In practice,
however, a finite number of steps is used, and the resulting methods are distinct. To implement these
transitions, one can use equation (2) together with a suitable numerical integration scheme.

2.4 DYNAMIC GUIDANCE SCHEDULES

In our work we will consider dynamic guidance schedules, i.e. making w a function of time. Such
schedules have become more popular in practice. For instance, guidance interval (Kynkäänniemi
et al., 2024) only applies guidance on a segment of the generation process. Doing so produces
a boost in the performance of diffusion models. However, existing work on dynamic guidance

1In existing literature, p is usually a class-conditional distribution, and q is an unconditional distribution.
We adopt the general setup since recent works have shown that q can be chosen in different ways (Karras et al.,
2024; Li et al., 2024; Rojas et al., 2025).
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schedules (Kynkäänniemi et al., 2024; Xi et al., 2024) has been limited to a continuous (state-space)
diffusion models. It remains unclear whether such schedules are also effective in discrete state
diffusion—a question that serves as the main focus of our investigation.

Specifically, this work will consider w : [0, T ] → R, i.e. guidance strength as a function of time,
referred to as the guidance schedule. The schedule induces a generative process given by:

dpT−t

dt
= R

(wT−t)

T−t pT−t (7)

Understanding which schedules result in the best generation is of crucial importance to further im-
prove the sample accuracy of discrete diffusion models.

3 METHODOLOGY

We begin by analyzing the guided process in the simplest case of a single token in section 3.1,
which already reveals a key limitation of existing guidance. We then introduce our proposed remedy
in Section 3.2 via column normalization. Afterwards, we analyze the effect of guidance schedules
on two tokens in Section 3.4. Finally, we present experimental results of our methods in Section 4.

3.1 IDENTIFYING AN ISSUE IN THE GUIDANCE OF DISCRETE DIFFUSION

We start by studying guidance in the case where d = 1 where exact analysis is possi-
ble. The following result characterizes the distribution at time t under constant guidance:

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

p t
(M

)

Zw=1
Zw=2
Zw=3
Zw=4
Zw=10

Figure 2: We plot the unmasking rates as
a function of time under guidance. Faster
unmasking (Zw > 1) leads to worse nu-
merical solvers, demonstrating an issue in
the existing guidance mechanism.

Theorem 3.1. (Informal) Along the dynamics of equa-
tion (7), starting from a fully masked state, the distri-
bution at time t is given by:

pt =

(
1−

(
1− e−σt

1− e−σT

)Zw
)

· p(w) (8)

We present a full proof, as well as a more general result
for varying guidance schedules in Appendix B. This
shows that for d = 1 the guided process exactly recov-
ers the tilted distribution, with the unmasking speed
controlled by the factor in front of p(w). Although
low-dimensional, this result already reveals important
properties of the guided backwards process.

Crucially, the partition function Zw appears in the
exponent of the rate term, meaning that even small
changes in w can result in fast changes in the sam-
pling rate. Figure 2 shows the percentage of tokens
that remain masked as a function of time pt(M) for different values of Zw. Applying guidance
can significantly accelerate unmasking rates. While this can lead to faster generation, it may also
introduce stiffness (Rathinam et al., 2003) and inefficiencies if not properly controlled.

3.2 IMPROVED GUIDANCE MECHANISMS FOR DISCRETE DIFFUSION VIA COLUMN
NORMALIZATION

In order to alleviate the unintentional fast unmasking rates, we propose a simple yet effective change
to the guidance mechanism. To understand where this issue is coming from, we explicitly write the
transition rates between a masked state M a nonmasked state:

Lemma 3.1. The transition rates between a masked state and an unormalized state are given by:

R̄
(w)
t (y,M) = Rt(x, y)

e−σ̄t

1− e−σ̄t
Zwp

(w)(y)

5
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Figure 3: Tilted distributions for varying values of w. A large w produces a large concentration on
one mode.

Notice how Zw appears directly as a multiplying factor in the transition rate. However, when w =
1,(i.e. the conditional setup) this constant would play no role! This elucidates the effect we observe
in Figure 2, the rates are being increased disproportionately due to the multiplication by the constant.
To fix this, we must normalize the columns of the transition rate matrix appropriately. In the case of
masked diffusion this can be achieved in a very simple fashion as follows:

R
(w)

nor,t(x̂,x) =
Rt(x, x̂) e

−σt

1− e−σt
Softmax(w log p0(x̂

i|xUM) + (1− w) log q0(x̂
i|xUM)). (9)

The new rate matrix is normalized via the softmax function and fixes the issue introduced by the
guidance mechanism. For the case of other discrete diffusions we refer the reader to Appendix E
where we present a simple way of performing the normalization in general.

The normalization introduced in (9) has the effect of smoothing the transport between the starting
distribution and the data distribution. This simple change stabilizes the sampling process and allows
for a cleaner theory. Notably, this change can be done with a simple one line change to the code as
presented in the pseudocode in 1. We further elaborate on the experimental benefits on Section 4.

3.3 COMPARISON OF GUIDANCE MECHANISMS

We now clarify the distinctions between the various classifier-free guidance mechanisms. While
some differences between our method and that of Nisonoff et al. (2024) were already discussed,
we further highlight how our formulation also differs from the approach of Schiff et al. (2024). To
better understand these differences, we begin by comparing the unlocking guidance mechanism of
Nisonoff et al. (2024) with the simple guidance proposed by Schiff et al. (2024). For this analysis,
we keep the guidance strength fixed throughout. Notice that: p(xs|xt) = exp

( ∫ t

s
R

(w)

τ dτ
)
pt.

Therefore, if pt denotes the law of xt, we can write the transition probabilities for each method:

punlocking(xs|xt) = exp
(∫ t

s

R
w

τ (·|c)R
1−w

τ (·)dτ
)
pt,

psimple(xs|xt) = Zsimple

(
exp

(∫ t

s

Rτ (·|c)dτ
)
pt

)w(
exp

(∫ t

s

Rτ (·)dτ
)
pt

)1−w

.

where Zsimple is a normalizing constant. Now we look at the w-dependence inside the exponential.
For log punlocking, the w-dependence is exponential as it appears in the exponent of the rate matrices,
while for log psimple, the w-dependence is linear. Therefore, the transitions induced by the unlocking
guidance method get much more aggressive when w increases. On the other hand, our normalization
(depending on w) normalizes the columns so that it maintains the smoothness of the transition when
w increases. Therefore, our method approximates the convergence rates of the original process.

3.4 ANALYSIS OF GUIDANCE SCHEDULES IN 2D

Having addressed the existing issue we switch our focus to the analysis of guidance schedules in the
case of two tokens. Although the analysis can be extended to higher-dimensions, the complexity of
the problem grows exponentially with the dimension, leading to increasingly intricate expressions

6
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Figure 5: Evolution of the coefficients in Corollary 3.1 for different values of t2. Notice that we
must have t1 ≤ t2. We observe that for moderate t2 no coefficient dominates others, resulting in a
balanced target distribution.

and reduced interpretability. This low-dimensional analysis already reveals the underlying mecha-
nisms that define a good guidance schedule, and its impacts in high-dimensions are remarkable.

We start by stating our main theorem, in a simple to understand case that is used in practice. This
simplification doesn’t result in loss of generality, but significantly increases the interpretability of
the results. We present a more general version in Theorem C.1.

Corollary 3.1. Consider a time partition 0 = t0 < t1 < t2 < t3 = T with guidance wi in the
interval [ti, ti+1). With σ = − log(1 − δt) and pT (M,M) = 1. Then the sampled distribution
follows the following formula:

pt0(i, j) =
(

t3−t2
t3

)2
p(w2)(i, j) +

(
t2−t1
t3

)2
p(w1)(i, j) +

(
t1−t0
t3

)2
p(w0)(i, j)

+ (t3−t2)(t2−t1)
t23

p(w1,w2)(i, j) + (t3−t2)(t1−t0)
t23

p(w0,w2)(i, j) + (t2−t1)(t1−t0)
t23

p(w0,w1)(i, j),

where p(w,γ)(i, j) = p(w)(i, j|X1 = i)p(γ)(X1 = i) + p(w)(i, j|X2 = j)p(γ)(X2 = j), notice that
this is not exactly a probability distribution as it is not normalized, but we will refer to it as one.

This theorem states that guidance schedules induce an interpolation of different distribu-
tions, which depend only on the guidance strengths and that the portion assigned to each
one depends on the time parameters. We analyze the role of each component separately.
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Figure 4: Notice that when ω < γ the combined dis-
tribution doesn’t bias the leftmost mode, making this
setting less efficient for guidance.

The role of guidance weights: We study
a toy example in 2D containing 4 clusters,
2 of which are intersecting in the middle
(see Appendix D for data visualizations).
Figure 3 shows that increasing w leads
to more concentration of mass in one of
the modes. Similarly, Figure 4 shows that
p(w,γ) strongly resembles the tilted distri-
bution of w. Practically, this means that
the combined distribution will be more
similar to the guidance applied at the be-
ginning of the generation! Therefore, ef-

fective schedules have higher guidance in the beginning and middle phases of the generation, and
their effect towards the end is negligible.

The role of the time parameters: As observed in corollary 3.1, the time parameters set the pro-
portion of each distribution that will contribute towards the final output. As observed in Figures
3,4, biasing just one of the distributions usually results in oversampling from a certain area. A good
schedule is one that appropriately balances the contribution of each distribution.

We fix several values of t2 and plot the coefficients as a function of t1 in Figure 5. When t2 = 1. we
only have two intervals, and the curves change quickly; this implies that finding the right balance
requires more careful tuning. On the other hand when t2 = .75, many values of t1 result in balanced
combinations of all distributions, which ensures that we sample in a balanced way.
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Figure 7: Evaluation of different guidance mechanisms and schedules on Imagenet

Which schedules perform best? Our theoretical analysis provides several insights into the design
of effective guidance schedules. As discussed earlier, schedules that apply stronger guidance during
the middle and later stages of the sampling process, while keeping early guidance small, tend to
perform better. These selections seem to be the most critical, as they govern which distributions
are mixed. Moreover, our theory predicts that using all three intervals (early, middle, and late) in
the schedule facilitates easier tuning and yields more balanced output distributions. Based on these
principles, we evaluate (according to our theory) various guidance schedules for discrete diffusion
in Table 1, and we validate these predictions empirically in Section 4.2.

Table 1: Comparison of several guidance schedules.

Low G. Beg High G. Mid High G. End # Params Tune Difficulty to Tune

Constant × ✓ ✓ 1 High
Interval ✓ ✓ × 3 Low
Increasing ✓ ✓ ✓ 1 Low
Decreasing × ✓ × 1 Low

4 NUMERICAL RESULTS

In this section, we examine whether the theoretical insights from low dimensions extend to high-
dimensional image and text domains. On section 4.1 we study the effect of our normalization and
in section 4.2 the impact of different guidance schedules. We present more details and samples of
different methods in Appendix F

4.1 EFFECT OF NORMALIZATION

1.0 1.5 2.0 2.5 3.0
Guidance Weight w

4
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Pe
rfo
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ce
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)

Performance on MATH-500

With Normalization
No Normalization

Figure 6: MATH-500 performance for
LLada-8B-Instruct under a simple sam-
pler without remasking to isolate the ef-
fect of the guidance mechanism. Nor-
malization always yields better results.

Recall that our theory predicted that failing to normalize
complicates the simulation, so normalization should im-
prove results in practice, which we confirm below.

Testing on Imagenet: We assess MaskGIT on the
ImageNet dataset (Deng et al., 2009) and evaluate FID
on ImageNet-256 using 50K samples, following standard
practices. For our method and for the Unlocking Guidance
baseline (Nisonoff et al., 2024), we use the τ -leaping sam-
pler. For Simple Guidance (Schiff et al., 2024), we inter-
polate Euler transitions. For all methods, we use 50 steps.
Figure 7a shows FID as a function of guidance strength
using a constant schedule. Our experiments demonstrate
that failing to normalize can substantially degrade sample
quality as suggested by our theory.

Testing on text-to-image: We evaluate our method on the
ImageReward benchmark (Xu et al., 2023) using the pre-
trained Meissonic model (Bai et al., 2024). This benchmark provides a comprehensive measure of
both prompt alignment and perceptual image quality.
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Figure 8: ImageReward with and without normalization. Red denotes an improved performance due
to normalization. Normalization leads to more faithful prompt adherence and image quality.

Figure 8 compares generations with and without normalization. Red regions indicate prompts where
normalization improved the score. Overall, we observe consistent gains: normalization enhances
prompt adherence and yields images that better match the target distribution.

Testing on text generation: To assess the effectiveness of normalization in the text generation
domain, we evaluated using LLaDA-8B-Instruct Nie et al. on the MATH-500 dataset, generating up
to 256 tokens. We sample autoregressively in blocks of 32 tokens using a simple Euler sampler with
32 denoising steps per block, resulting in a total of 256 steps for the full generation.

Figure 6 presents the results of such an experiment. The results clearly show that normalization
consistently improves performance across all guidance strengths. We note that the results are not
directly comparable to those reported in the LLaDA paper; we use a simple Euler sampler without
remasking to better isolate the effect of guidance and normalization in a simple setting.

Empirical effect of normalization: All our empirical findings demonstrate that including normal-
ization is a helpful step in improving the simulation of classifier-free guidance for discrete diffusion.
This aligns with our low-dimensional theoretical analysis in 3.1, demonstrating that low-dimensional
studies can have a significant impact in high dimensions.

4.2 STUDY OF GUIDANCE SCHEDULES
Table 2: Description of guidance schedules.

Schedule Formula w(t)

Left Interval w · 1[0,l](t)
Right Interval w · 1[r,1](t)
Ramp-Up min

(
w,w · t

r

)
Ramp-Down min

(
w,w · 1−t

1−ℓ

)
Previously, our theory predicted that increasing
schedules improve discrete diffusion while decreas-
ing ones degrade generation. We test this theory on
Imagenet-256 with 10K samples. For precise for-
mulas for the schedules, see Table 2. When testing
increasing schedules (Ramp-Up and Right Interval)
in 7b, we observe that both schedules can significantly improve the results. Furthermore, the Right
Interval schedule exhibits a convex trend with respect to r, while the Ramp-Up schedule is mono-
tone in r, and reaches a lower FID value, indicating that a gradual, linear increase in guidance
outperforms abrupt alternatives. When testing the decreasing schedules (Left interval and Ramp-
Down), we observe that they consistently damage the generation as seen in Figure 7c. Overall, our
experiments confirm our theory that increasing schedules are most effective for masked diffusion.

5 CONCLUSIONS

In this work, we introduced a framework for analyzing guidance schedules in masked diffusion.
Our analysis led to a novel approach for classifier-free guidance in the discrete setting. We validate
the effectiveness of our method through experiments and show that guidance applied near t = T
is particularly impactful—enabling us to identify effective scheduling strategies. Our theoretical
insights align closely with empirical observations, bridging the gap between theory and practice.

Limitations and Future work. While our framework provides a principled and tractable approach
to CFG in discrete diffusion, our theoretical analysis is currently limited to masked diffusion in
low-dimensional settings. Although the method is applicable to more complex real-world settings,
our current theoretical study does not cover such regimes. Promising directions include extending
the framework to other forms of discrete diffusion, such as uniform diffusion, scaling to higher
dimensions, and analyzing the role of score estimation error in the guidance dynamics.
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A NOTATION AND GENERAL RESULTS

A.1 SPECIAL PROPERTIES OF MASKED DIFFUSION

We will use the following notations specific to masked diffusion. Let xt = (x1
t , . . . ,x

d
t ) denote

a random variable on S, and M be the masked token. We will write xUM for the set of elements
such that xi

t ̸= M , meaning the entries that are not the masked token. Additionally, we will denote
σt =

∫ t

0
σsds.

Masked diffusion has several appealing properties, one being the following shown by Ou et al.
(2024):
Lemma A.1. Along the dynamics (1) given by the masked rate matrix, if xt = (x1

t , . . . ,x
d
t ) and

x̂t = (x1
t , . . . , x̂

i
t, . . . ,x

d
t ) in such a way that x̂i

t ̸= M and xi
t = M , we have the following identity

for the score

pt(x̂t)

pt(xt)
=

e−σt

1− e−σt
p0(x̂

i
t|xUM).

This result is of great importance, as it tells us that it is possible to decompose the scores as a
probability distribution independent of time multiplied by a time-dependent term.

B PROOFS IN 1D

We first prove a small lemma:
Lemma B.1. Given a matrix of the form

A =

0 . . . 0 v1
...

...
...

...
0 . . . 0 vn


If vn ̸= 0, then its matrix exponential is given by eA = I +A · evn−1

vn
.

Proof. First notice that for k > 0 it holds that Ak = vk−1
n A then we can write:

eA = I +A+
1

2!
A2 +

1

3!
A3 + . . .

= I +A+
1

2!
Avn +

1

3!
Av2n + . . .

= I +A(1 +
1

2!
vn +

1

3!
v2n + . . . )

= I +A(1 +
1

vn
(
1

2!
v2n +

1

3!
v3n + . . . )

= I +A(1 +
1

vn
(−1− vn + 1 + vn +

1

2!
v2n +

1

3!
v3n + . . . )

= I +A(1 +
1

vn
(−1− vn + evn)

= I +A
evn − 1

vn

As we wanted.

We now state and prove the general version Theorem 3.1:
Theorem B.1. Along the dynamics of equation (7). The distribution pt is given by:

pt =

(
A1 ·

1− eA

A
, · · · , AM−1 ·

1− eA

A
, eA

)⊺

.
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Where, for i = 0, . . . ,M − 1:

Ai =

∫ T

t

σs
e−σs

1− e−σs
Zws · pz,ws(i)ds, A = −

M−1∑
i=0

Ai =

∫ T

t

σs
e−σs

1− e−σs
Zwsds.

Proof. Recall that the rate matrix in the one-dimensional case is:

R
(wt)

t = σt
e−σt

1− e−σt
Zwt


0 0 · · · 0 p(wt)(1)
0 0 · · · 0 p(wt)(2)
...

...
. . .

...
...

0 0 · · · 0 p(wt)(M − 1)
0 0 · · · 0 −1

 (10)

By direct integration we know that:

pt = exp
(∫ T

t

R
(wτ )

τ dτ
)
pT .

Therefore applying Lemma B.1 we get that (in vector notation):

pt = pT + pT (M)

∫ T

t
σs

e−σs

1−e−σs Zws · pz,wsds · 1− eA

A
eA

 ,

with

A = −
M−1∑
i=0

Ai =

∫ T

t

σs
e−σs

1− e−σs
Zws

ds.

The result is proved.

We can now use the previous theorem to compute the distribution under constant guidance:

Corollary B.1. If we start with a distribution pt and keep guidance to be constant w. Then at time
s the distribution is given by:

ps(i) = pt(i) + ps(M)
(1− e−σt

1− e−σs
− 1
)Zw

p(w)(i)

for i ̸= M and ps(M) =
(

1−e−σt

1−e−σs − 1
)Zw

pt(M)

Proof. The proof follows by keeping w constant in the above theorem:

ps = pt + pt(M)

∫ t

s
σs

e−σs

1−e−σs Zws
· pz,wsds · 1− eA

A
eA


= pt + pt(M)

∫ T

t
σs

e−σs

1−e−σs Z · ds · 1− eA

A
p(w)

eA


= pt + pt(M)

(
(1− eA)p(w)

eA

)
Substituting A gives the desired result.

We can now chain the above argument to obtain a result for general piece-wise constant guidance
schedules:
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Theorem B.2. Let δ = t0 < t1 < · · · < tk = T be a time partition and let wi the guidance strength
on the interval (ti, ti+1]. Along the dynamics of equation (7), the sampled distribution pδ is given
by:

pδ = pT +

k−1∑
i=0

pti+1
(M) ·

(
1−

( 1− e−σti

1− e−σti+1

)Zwi

)
p(wi). (11)

Additionally, probability mass at M at different time satisfies pti(M) =

pti+1
(M)

( 1− e−σti

1− e−σti+1

)Zwi

for all i = 0, 1, · · · , k − 1.

Lemma B.2. The transition rates between a masked state and an unnormalized state are given by:

R̄
(w)
t (y,M) = Rt(x, y)

e−σ̄t

1− e−σ̄t
Zwp

(w)(y)

Proof. Using Lemma A.1 we can write:

R̄
(w)
t (y,M) = Rt(M,y) ·

(
pt(x)

pt(M)

)w (
qt(x)

qt(M)

)1−w

= Rt(M,y) ·
(

e−σ̄t

1− e−σ̄t
p0(y)

)w (
e−σ̄t

1− e−σ̄t
q0(y)

)1−w

= Rt(x, y)
e−σ̄t

1− e−σ̄t
pw0 (y)q

1−w
0 (y)

= Rt(x, y)
e−σ̄t

1− e−σ̄t
Zwp

(w)(y)

The results for the normalized process are identical to the ones above, so we omit them for brevity.

C PROOFS IN 2D

We begin by writing a simple lemma that will come in handy later.
Lemma C.1. Given a matrix of the form

A =

0 a b 0
0 −1 0 c
0 0 −1 d
0 0 0 −2


Then for any α ∈ R, it’s matrix exponential is given by:

exp(αA) =


1 a(1− e−α) b(1− e−α) (ac+bd)(eα−1)2e−2α

2
0 e−α 0 c (eα − 1) e−2α

0 0 e−α d (eα − 1) e−2α

0 0 0 e−2α


Proof. The proof of the above statement is easy by noticing that A = PDP−1 with:

P =


ac
2 + bd

2 −a −b 1
−c 1 0 0
−d 0 1 0
1 0 0 0



D =

−2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0


Then exp(αA) = P exp(αD)P−1 and the result follows.
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Now for the main proof we start by explicitly writing down the rate matrix in the case of two tokens.
In this case the rate matrix will have the following structure:

R
(w)

nor,t =
σt e

−σ̄t

1− e−σ̄t


D1 0 . . . C1

0 D2 . . . C2

...
...

. . .
...

0 0 0 L

 :=
σt e

−σ̄t

1− e−σ̄t
R

(w)

nor ,

where each block is an M ×M matrix given by the following formulas:

Di =


0 . . . 0 p(w)(X2 = 1 | X1 = i)
0 . . . 0 p(w)(X2 = 2 | X1 = i)
...

...
...

...
0 . . . 0 p(w)(X2 = M − 1 | X1 = i)
0 . . . 0 −1



Ci =


p(w)(X1 = i | X2 = 1) 0 . . . 0

...
. . .

... 0
0 . . . p(w)(X1 = i | X2 = M − 1) 0
0 . . . 0 p(w)(X1 = i)



L =


−1 0 . . . 0 p(w)(X2 = 1)
0 −1 . . . 0 p(w)(X2 = 2)
...

...
. . .

...
...

0 . . . 0 −1 p(w)(X2 = M − 1)
0 . . . 0 0 −2


We can now state the main theorem:
Theorem C.1. Given a starting distribution pt following the dynamics given by (7) the distribution
at time s is given by:

ps(i, j) =



pt(i, j) +

(
1− 1− e−σ̄s

1− e−σ̄t

)2

p(w)(i, j) pt(M,M)

+

(
1− 1− e−σ̄s

1− e−σ̄t

)[
p(w)(X2 = j | X1 = i) pt(i,M)

+ p(w)(X1 = i | X2 = j) pt(M, j)
]

if i, j ̸= M

(
1− e−σ̄s

1− e−σ̄t

)
pt(i,M)

+

(
1− e−σ̄s

1− e−σ̄t

)2(
1− e−σ̄t

1− e−σ̄s
− 1

)
p(w)(X1 = i)pt(M,M) if i ̸= M, j = M

(
1− e−σ̄s

1− e−σ̄t

)
pt(M, j)

+

(
1− e−σ̄s

1− e−σ̄t

)2(
1− e−σ̄t

1− e−σ̄s
− 1

)
p(w)(X2 = j)pt(M,M) if i = M, j ̸= M

(
1− e−σ̄s

1− e−σ̄t

)2

pt(M,M) if i = j = M

Proof. By direct integration we know that:

ps = exp
(∫ t

s

στe
−στ

1− e−στ
dτR

(w)

nor

)
= exp

(
ln
(1− e−σt

1− e−σs

)
R

(w)

nor

)
.
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Due to the block structure of R
(w)

nor , it is enough to be able to compute the exponential of:

(
Di Ci

0 L

)
=



0 . . . 0 p(w)(X2 = 1 | X1 = i) p(w)(X1 = i | X2 = 1) 0 . . . 0

0 . . . 0 p(w)(X2 = 2 | X1 = i)
...

. . .
... 0

...
...

...
... 0 . . . 0

0 . . . 0 −1 0 . . . 0 p(w)(X1 = i)

0 . . . 0 0 −1 0 . . . p(w)(X2 = 1)
0 . . . 0 0 0 −1 . . . p(w)(X2 = 2)
...

...
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . 0 −2



where once again we can exploit the structured form of the matrix to simplify the calculation. It is
clear that when computing products of this matrix, coordinates will only get affected by the smaller
sublocks:


0 p(w)(X2 = j | X1 = i) p(w)(X1 = i | X2 = j) 0
0 −1 0 p(w)(X1 = i)

0 0 −1 p(w)(X2 = j)
0 0 0 −2



This is not only clear from the structure, but it also reveals a true intuitive understanding. The
probability mass at a given position can only be affected by those states that are reachable from
the current state by masking or unmasking the entries. We can now use Lemma C.1 to find the
exponential:


1 p(w)(X2 = j | X1 = i)(1− e−α) p(w)(X1 = i | X2 = j)(1− e−α) p(w)(i, j)(eα − 1)2e−2α

0 e−α 0 p(w)(X1 = i) (eα − 1) e−2α

0 0 e−α p(w)(X2 = j) (eα − 1) e−2α

0 0 0 e−2α



where α = ln
(1− e−σt

1− e−σs

)
and we used that 2p(w)(i, j) = p(w)(X2 = j | X1 = i)p(w)(X1 =

i) + p(w)(X1 = i | X2 = j)p(w)(X2 = j). Putting this together, we get that exponentiation each
block we get:



1 . . . 0 p(w)(X2 = 1 | X1 = i)(1− e−α) p(w)(X1 = i | X2 = 1)(1− e−α) . . . p(w)(i, 1)(eα − 1)2e−2α

0 . . . 0 p(w)(X2 = 2 | X1 = i)(1− e−α)
...

. . . p(w)(i, 1)(eα − 1)2e−2α

...
...

...
... 0

...
0 . . . 0 e−α 0 . . . p(w)(X1 = i)(1− eα)e−2α

0 . . . 0 0 e−α . . . p(w)(X2 = 1)(1− eα)e−2α

0 . . . 0 0 0 e−α . . . p(w)(X2 = 2)(1− eα)e−2α

...
...

...
...

...
...
. . .

...
0 . . . 0 0 0 . . . e−2α


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With this, we have a full characterization of the matrix exponential. Therefore, we can simply write
down the probability distribution by multiplying by pt:

ps(i, j) =



pt(i, j) + (1− e−α)2 p(w)(i, j) pt(M,M)

+ (1− e−α)
[
p(w)(X2 = j | X1 = i) pt(i,M)

+ p(w)(X1 = i | X2 = j) pt(M, j)
]

if i, j ̸= M

e−αpt(i,M)

+ e−2α(eα − 1) p(w)(X1 = i) pt(M,M) if i ̸= M, j = M

e−αpt(M, j)

+ e−2α(eα − 1) p(w)(X2 = j) pt(M,M) if i = M, j ̸= M

e−2αpt(M,M) if i = j = M

We can now replace α = ln
(1− e−σt

1− e−σs

)
into the formula above to obtain the result.

Corollary C.1. Given a starting distribution pt following the dynamics given by (7) with σt =
− log(1− δt) the distribution at time s is given by:

ps(i, j) =



pt(i, j) +

(
t− s

t

)2

p(w)(i, j) pt(M,M)

+

(
t− s

t

)[
p(w)(X2 = j | X1 = i) pt(i,M)

+ p(w)(X1 = i | X2 = j) pt(M, j)
]

if i, j ̸= M

s

t
· pt(i,M) +

(s
t

)2( t− s

s

)
p(w)(X1 = i)pt(M,M) if i ̸= M, j = M

s

t
· pt(M, j) +

(s
t

)2( t− s

s

)
p(w)(X2 = j)pt(M,M) if i = M, j ̸= M

(s
t

)2
pt(M,M) if i = j = M

Proof. Notice that under this schedule we have that:

1− e−σ̄s

1− e−σ̄t
=

δs

δt
=

s

t

Substituting this in gives the corollary above.

Proof of Corollary 3.1. We track the changes in the distribution in every time interval. This can be
found by plugging in the result of the corollary above. Firstly, on the interval T → t2 we obtain:

pt2(M,M) =

(
t2
T

)2
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pt2(M, j) =

(
t2
T

)2(
T − t2
t2

)
p(w2)(X2 = j)

pt2(i,M) =

(
t2
T

)2(
T − t2
t2

)
p(w2)(X1 = i)

pt2(i, j) =

(
T − t2

T

)2

p(w2)(i, j)

Then on the interval from t2 → t1 we get:

pt1(M,M) =

(
t1
T

)2

pt1(M, j) =

(
t1
t2

)
pt2(M, j) +

(
t1
t2

)2(
t2 − t1

t1

)
p(w1)(X2 = j)pt2(M,M)

pt1(i,M) =

(
t1
t2

)
pt2(i,M) +

(
t1
t2

)2(
t2 − t1

t1

)
p(w1)(X1 = i)pt2(M,M)

pt1(i, j) = pt2(i, j) +

(
t2 − t1

t2

)2

p(w1)(i, j)pt2(M,M)

+

(
t2 − t1

t2

)
[p(w1(X2 = j|X1 = i)pt2(i,M) + p(w1)(X1 = i|X2 = j)pt2(M, j)]

Replacing the values for pt1 into this equation we get:

pt1(M,M) =

(
t1
T

)2

pt1(M, j) =

(
t1(T − t2)

T 2

)
p(w2)(X2 = j) +

(
t1
T

)2(
t2 − t1

t1

)
p(w2)(X2 = j)

pt1(i,M) =

(
t1(T − t2)

T 2

)
p(w2)(X1 = i) +

(
t1
T

)2(
t2 − t1

t1

)
p(w2)(X1 = i)

pt1(i, j) =

(
T − t2

T

)2

p(w2)(i, j) +

(
t2 − t1

t2

)2(
t2
T

)2

p(w1)(i, j)

+

(
t2 − t1

t2

)(
t2
T

)2(
T − t2
t2

)
p(w1)(X2 = j|X1 = i)p(w2)(X1 = i)

+

(
t2 − t1

t2

)(
t2
T

)2(
T − t2
t2

)
p(w1)(X1 = i|X2 = j)p(w2)(X2 = j)

=

(
T − t2

T

)2

p(w2)(i, j) +

(
t2 − t1

T

)2

p(w1)(i, j) +
(t2 − t1)(T − t2)

T 2
p(w1,w2)

Finally, we can proceed with the final step from t1 → t0. In this case, we have:

pt0(M,M) = 0

pt0(M, j) = 0

pt0(i,M) = 0

pt0(i, j) = pt1(i, j) +

(
t1 − t0

t1

)2

p(w0)(i, j)pt1(M,M)

+

(
t1 − t0

t1

)
[p(w0(X2 = j|X1 = i)pt1(i,M) + p(w0)(X1 = i|X2 = j)pt1(M, j)]

Then substituting in the previous results:

pt0(i, j) = pt1(i, j) +

(
t1 − t0

t1

)2(
t1
T

)2

p(w0)(i, j)
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+

(
t1 − t0

t1

)[
p(w0(X2 = j|X1 = i)(

t1(T − t2)

T 2
p(w2)(X1 = i) +

(
t1
T

)2(
t2 − t1

t1

)
p(w2)(X1 = i)

)
+ p(w0)(X1 = i|X2 = j)(
t1(T − t2)

T 2
p(w2)(X2 = j) +

(
t1
T

)2(
t2 − t1

t1

)
p(w2)(X2 = j)

)]
Grouping by coefficient we get:

pt0(i, j) = pt1(i, j) +

(
t1 − t0

t1

)2(
t1
T

)2

p(w0)(i, j)

+

(
t1 − t0

t1

)
·[(

t1(T − t2)

T 2

)
[p(w0)(X2 = j|X1 = i)p(w2)(X1 = i) + p(w0)(X1 = i|X2 = j)p(w2)(X2 = j)]

+

(
t1
T

)2(
t2 − t1

t1

)
[p(w0)(X2 = j|X1 = i)p(w1)(X1 = i) + p(w0)(X1 = i|X2 = j)p(w1)(X2 = j)]

]

= pt1(i, j) +

(
t1 − t0

t1

)2(
t1
T

)2

p(w0)(i, j)

+

(
t1 − t0

t1

)
·
[
t1(T − t2)

T 2
p(w0,w2) +

(
t1
T

)2(
t2 − t1

t1

)
p(w0,w1)

]

Simplifying and substituting the term of pt1 this becomes:

pt0(i, j) =

(
t3 − t2

t3

)2

p(w2)(i, j) +

(
t2 − t1

t3

)2

p(w1)(i, j) +

(
t1 − t0

t3

)2

p(w0)(i, j)

+
(t3 − t2)(t2 − t1)

t23
p(w1,w2)(i, j) +

(t3 − t2)(t1 − t0)

t23
p(w0,w2)(i, j)

+
(t2 − t1)(t1 − t0)

t23
p(w0,w1)(i, j).

D DETAILS ON TOY EXAMPLE

We now present the details of the toy example that we used to demonstrate our theoretical results.
In figure 9 we present plots of each class and the full data distribution. Each cluster is defined via
the following matrix 

0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1
0.2 0.4 0.6 0.7 0.8 0.7 0.6 0.4 0.2
0.3 0.6 0.8 0.9 1.0 0.9 0.8 0.6 0.3
0.4 0.7 0.9 1.0 1.0 1.0 0.9 0.7 0.4
0.5 0.8 1.0 1.0 1.0 1.0 1.0 0.8 0.5
0.4 0.7 0.9 1.0 1.0 1.0 0.9 0.7 0.4
0.3 0.6 0.8 0.9 1.0 0.9 0.8 0.6 0.3
0.2 0.4 0.6 0.7 0.8 0.7 0.6 0.4 0.2
0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2 0.1


Each class is equally weighted. A pseudocode for generating the above dataset is:
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Figure 9: Definitions of the class and unconditional distributions for the toy problem.

height, width = 30, 30

matrix1 = torch.zeros((height, width))
matrix1[1:10, 1:10] = torch.tensor(cluster)
matrix1[9:18, 9:18] = torch.tensor(cluster)

matrix2 = torch.zeros((height, width))
matrix2[11:20, 11:20] = torch.tensor(cluster)
matrix2[19:28, 19:28] = torch.tensor(cluster)

Listing 3: Code to generate our toy dataset
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E NORMALIZATION FOR GENERAL DIFFUSION PROCESSES

In this section we demonstrate how it is possible to extend our normalization to the general class
of diffusion processes. We propose a simple but effective per-column normalization that applies to
different discrete diffusion models (masked/uniform).

pw
t (1)q1−w

t (1)

pw
t (x)q1−w

t (x)
pw
t (2)q1−w

t (2)

pw
t (x)q1−w

t (x)

...
−∑i̸=x

pw
t (i)q1−w

t (i)

pw
t (x)q1−w

t (x)

...
pw
t (M)p1−w

t (M)

pw
t (x)p1−w

t (x)


︸ ︷︷ ︸

Unnormalized vector

=⇒

∑
i̸=x

pt(i)

w∑
i̸=x

qt(i)

1−w

∑
i̸=x

pt(i)
wqt(i)

1−w
·



pwt (1)q1−w
t (1)

pwt (x)q1−w
t (x)

pwt (2)q1−w
t (2)

pwt (x)q1−w
t (x)

...

−
∑

i̸=x

pwt (i)q1−w
t (i)

pwt (x)q1−w
t (x)

...
pwt (M)p1−w

t (M)

pwt (x)p1−w
t (x)


︸ ︷︷ ︸

Normalized vector

.

(12)

As seen in (12), our normalization applies to general diffusion models as long as we have access
the scores for models of p, q. For the multiple-token case (d > 1), due to the fact that we only use
one column vector that corresponds to a single-dimension jump every time, the normalization for
one-token in (12) can be applied to that column vector.

def get_normalized rate(
x, c, t, dt, w

):
# Get scores
log_score_c = get_score(x, t, cond=c)
logs_core_u = get_score(x, t, cond=None)
log_score_w = w * log_score_c + (1-w) * log_score_u

score_c = log_score_c.exp()
score_u = log_score_u.exp()
score_w = log_score_w.exp()

# Set diagonal terms
score_c.scatter_(-1, x[..., None], torch.zeros_like(score_c))
score_u.scatter_(-1, x[..., None], torch.zeros_like(score_u))
score_w.scatter_(-1, x[..., None], torch.zeros_like(score_w))

normalized_rate = edge * score_w
normalized_rate.scatter_(-1, x[..., None], -normalized_rate.sum(dim=-1, keepdim=True))

# Normalize appropriately
sum_c = score_c.sum(-1,keepdim=True) ** w
sum_u = score_u.sum(-1,keepdim=True)
sum_u = torch.where(sum_u > 0, sum_u**(1-w), 0)
sum_w = score_w.sum(-1,keepdim=True)
normalized_rate = (sum_c * sum_u / sum_w) * normalized_rate

return sample(delta(x) + dt * sigma(t) * normalized_rate)

Listing 4: Our guidance in the general case using Euler transitions

E.1 RESULTS ON QM9

We present results using our guidance mechanism in the context of uniform diffusion, applied to
the QM9 small molecule dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). QM9 is a
dataset containing small organic molecules containing up to 9 heavy atoms. We train a conditional
model on QM9 using uniform diffusion, based on the official implementation of Schiff et al. (2024),
without modifying the architecture or hyperparameters. The model is conditioned on the number
of rings in each molecule (ring count). Unlike ImageNet, evaluation on QM9 is more nuanced: we
generate 1,024 samples and assess several metrics. First, generated molecules must satisfy chemical
constraints to be considered valid. Second, a key goal of generative models is to produce novel
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Figure 10: We display the percentage of valid, unique, and novel molecules. We find that our method
is the most robust to an increase in guidance strength.

molecules not found in the training data. Accordingly, we report both validity and novelty, along
with the mean ring count (i.e., the conditioning signal), in Figure 10.

We find that our method is the most robust to increases in guidance strength. However, in general,
all methods perform comparably well across the full range of strengths. This suggests that normal-
ization may have a less pronounced effect in the uniform diffusion setting. Due to the complexity of
evaluating on QM9, further experiments on additional discrete datasets are needed to more conclu-
sively determine the optimal guidance mechanism. We leave this for future work.
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F GENERATED SAMPLES TEXT TO IMAGE

To generate these samples we made use of a single node with 8 NVIDIA A100 GPUs. We present
samples to compare our method against other guidance methods as well as the detailed results of the
ImageReward benchmark in Table 3. The results demonstrate that normalization is key in order to
improve the sample quality.

Table 3: Performance comparison across different guidance weights

Ours Unlocking
Metric w = 1 w = 3 w = 6 w = 9 w = 1 w = 3 w = 6 w = 9
Overall 8.2 40.8 45.9 44.7 8.2 43.1 28.5 19.9
Objects Single 23.8 89.4 91.9 91.2 23.8 88.4 80.0 64.1
Objects Two 3.0 36.9 48.2 48.7 3.0 47.5 23.2 18.2
Counting 0.6 27.2 33.8 28.4 0.6 33.1 11.9 3.1
Position 20.7 72.3 77.4 77.7 20.7 72.3 48.7 29.0
Color Attribution 0.2 8.5 7.8 7.8 0.2 6.2 7.8 3.8
Colors 1.0 10.5 16.5 14.5 1.0 10.8 2.8 1.0

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.1 GENERATED SAMPLES

We now present some samples from our method:

Figure 11: Comparison of samples generated by different guidance methods across various seeds
and configurations.
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Figure 12: Comparison of samples generated by different guidance methods across various seeds
and configurations.
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Figure 13: Comparison of samples generated by different guidance methods across various seeds
and configurations.
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Figure 14: Comparison of samples generated by different guidance methods across various seeds
and configurations.
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Figure 15: Comparison of samples generated by different guidance methods across various seeds
and configurations.
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G GENERATED SAMPLES IMAGENET

G.1 GUIDANCE STRENGTH w = 2

Figure 16: Comparison of samples generated by different guidance methods across various seeds or
configurations.
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G.2 GUIDANCE STRENGTH w = 3

Figure 17: Comparison of samples generated by different guidance methods across various seeds or
configurations.
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G.3 GUIDANCE STRENGTH w = 4

Figure 18: Comparison of samples generated by different guidance methods across various seeds or
configurations.
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G.4 GUIDANCE STRENGTH w = 5

Figure 19: Comparison of samples generated by different guidance methods across various seeds or
configurations.
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STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

This work made use of large language models to assist with proofreading and improving the clarity
of the writing. All research ideas, theoretical development, and experiments were carried out solely
by the authors. When used for coding, it was solely used for plotting purposes.
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