

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPROVING CLASSIFIER-FREE GUIDANCE IN MASKED DIFFUSION: LOW-DIM THEORETICAL INSIGHTS WITH HIGH-DIM IMPACT

Anonymous authors

Paper under double-blind review

ABSTRACT

Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and its extensions to discrete diffusion has recently started to be investigated. In order to improve the algorithms in a principled way, this paper starts by analyzing the exact effect of CFG in the context of a low-dimensional masked diffusion model, with a special emphasis on the guidance schedule. Our analysis shows that high guidance early in sampling (when inputs are heavily masked) harms generation quality, while late-stage guidance improves it. These findings provide a theoretical explanation for empirical observations in recent studies on guidance schedules. The analysis also reveals an imperfection of the current CFG implementations. These implementations can unintentionally cause imbalanced transitions, such as unmasking too rapidly during the early stages of generation, which degrades the quality of the resulting samples. To address this, we draw insight from the analysis and propose a novel classifier-free guidance mechanism. Intuitively, our method smooths the transport between the data distribution and the initial (masked) distribution, resulting in improved sample quality. Remarkably, our method is achievable via a simple one-line code change. Experiments on conditional image and text generation empirically confirm the efficacy of our method.

1 INTRODUCTION

Continuous-state diffusion models (Ho et al., 2020; Song et al.) have proven effective in both unconditional and conditional generation tasks, such as generating data from natural language prompts. Prominent examples include text-to-image and text-to-video models like Stable Diffusion, Sora, and others (Rombach et al., 2022; Esser et al., 2024; Brooks et al., 2024). More recently, progress in discrete diffusion modeling (Campbell et al., 2022; Lou et al., 2023; Huang et al., 2023; Gruver et al., 2023; Ou et al., 2024; Shi et al., 2024; Sahoo et al., 2024) has extended the applicability

images/Promo.png

Figure 1: We proposed an improved guidance mechanism through column normalization. Our method produces sharper images while being more stable to the guidance strength. Notably, it requires only a minor code modification.

of diffusion-based generation to new domains, including molecular design, protein synthesis, and languages.

Despite their success, these models often produce outputs that lack fine detail or strong alignment with conditioning inputs (e.g., text prompts). A widely adopted technique to address this issue is classifier-free guidance (CFG) (Ho and Salimans, 2021), which improves fidelity but typically at the cost of reduced sample diversity (Karras et al., 2024).

A growing body of work has sought to understand the theoretical foundations of CFG in diffusion models (Chidambaram et al., 2024; Pavasovic et al., 2025; Bradley and Nakkiran, 2024; Ye et al., 2025), while others have developed improved guidance algorithms (Karras et al., 2024; Li et al., 2024). Classifier-free guidance has also been adapted to discrete diffusion models (Nisonoff et al., 2024; Schiff et al., 2024), yielding promising empirical gains.

Among these improvements, dynamic guidance schedules—where guidance strength varies over the generation trajectory—have shown especially effective. Strategies such as guidance intervals (Kynkänniemi et al., 2024) and gradually increasing schedules (Xi et al., 2024) can significantly enhance sample quality and are increasingly adopted in practice (Hoogeboom et al., 2024; Yu et al., 2024; Karras et al., 2024). However, such scheduling techniques remain exclusive to the continuous setting.

While recent adaptations of CFG to discrete diffusion have improved empirical performance, defining and optimizing effective guidance strategies in discrete spaces remains a fundamentally challenging and open research problem.

In our work we aim to better understand the mechanisms by which guidance affects the sampling process in discrete diffusion. Specifically, we aim to answer the following questions:

- How does the guidance schedule affect the distribution of the generated samples?
- Is it possible to characterize properties of good guidance schedules?

To do so, we start by deriving explicit formulas for the sampled distribution under varying guidance schedules in 1 and 2 dimensions. Our analysis not only reveals flaws in current CFG implementations, but also leads to effective design principles for effective guidance schedules in masked diffusion. Our contributions can be summarized as:

- We identify a key flaw in existing discrete guidance mechanisms that complicates simulation, and provide a theoretical explanation of its cause.
- To address the flaw, we propose a novel classifier-free guidance mechanism based on a simple yet principled column normalization of the rate matrix. This change is theoretically justified, easy to implement (pseudocode in Sec.1), and compares favorably to existing approaches in practice.
- The first theoretical justifications to characterize guidance schedules and the mechanisms by which they improve sample generation

```
095 def normalized_guidance_euler_transition(
096     x, c, t, dt, w
097     ):
098     uncond = model(x, cond=None)
099     cond = model(x, cond=c)
100     logits = w * cond + (1 - w) * uncond
101     p_theta = logits.softmax(dim=-1)
102     s, s_bar = sigma(t), sigma_bar(t)
103     change = dt * s * (1 - exp(-s_bar))
104     return sample(delta(x) + change * p_theta)
```

Listing 1: Our guidance in the special case of masked diffusion using Euler transitions. Our method is a simple one line change *but clearly motivated by theory*

```
def other_guidance_euler_transition(
    x, c, t, dt, w
    ):
    uncond = model(x, cond=None)
    cond = model(x, cond=c)
    logits = w * cond + (1 - w) * uncond
    p_theta = logits.exp()
    s, s_bar = sigma(t), sigma_bar(t)
    change = dt * s * (1 - exp(-s_bar))
    return sample(delta(x) + change * p_theta)
```

Listing 2: Unlocking/Simple guidance for the special case of masked diffusion using Euler transitions.

108

2 PRELIMINARIES

109

110 This paper considers a vocabulary of size M and state space $S = \{1, 2, \dots, M\}^d$, with each element
111 being a sequence of tokens. The number of tokens d will also be referred to as the dimension. Each
112 probability distribution on S is represented as a vector in \mathbb{R}^{M^d} whose entries sum to one.
113

114

2.1 INTRODUCTION TO DISCRETE DIFFUSION VIA CTMC

115

116 Given an initial distribution $p \in \mathbb{R}^{M^d}$, discrete diffusion is defined by considering a rate matrix
117 $R_t \in \mathbb{R}^{M^d \times M^d}$ and defining a continuous time Markov chain (CTMC):
118

119
$$\frac{dp_t}{dt} = R_t p_t, \quad p_0 = p. \quad (1)$$
120

121 we pick R_t such that when $t \rightarrow \infty$, p_t converges to a simple distribution. Additionally, R_t must
122 satisfy that its non-diagonal entries are non-negative and each column must add up to zero. The time
123 reversal of this process corresponds to a different CTMC given by:
124

125
$$\frac{dp_{T-t}}{dt} = \bar{R}_{T-t} p_{T-t}. \quad (2)$$
126

127 This process is considered as the time reversal since it has the same law as (1) for all values of t and
128 the reverse transition matrix can be found through the following identities:
129

130
$$\bar{R}_t(y, x) = R_t(x, y) \cdot \frac{p_t(y)}{p_t(x)}, \quad \bar{R}_t(x, x) = - \sum_{y \neq x} \bar{R}_t(y, x). \quad (3)$$
131

132 The ratios $\frac{p_t(y)}{p_t(x)}$ are called the concrete score and they enable sampling through Euler schemes,
133 τ -leaping (Lou et al., 2023) or higher order methods (Ren et al., 2025).

134 **Masked Discrete Diffusion** is a special case of diffusion where a clean sequence x_0 is gradually
135 corrupted over time by randomly masking some of its entries. Typically, the forward process is
136 chosen such that at time $t = 0$, the data is completely unmasked, and at $t = T$ the data is completely
137 masked. Formally, the distribution of each token can be written in a simple form:
138

139
$$p_t(x_t^i | x_0) = \begin{cases} x_0^i & \text{with probability } e^{-\bar{\sigma}_t} \\ M & \text{with probability } 1 - e^{-\bar{\sigma}_t} \end{cases}$$
140

141 Where $\bar{\sigma}_t$ is an increasing function that defines the unmasking schedule. The forward dynamics
142 are defined such that tokens transition only from a clean state to a masked state, remaining masked
143 thereafter. Generation is achieved by starting from a fully masked state and iteratively unmasking
144 tokens until a clean sequence is recovered by following Equation (2).

145 Masked diffusion enjoys a simple and structured design, which has enabled its successful scaling to
146 large practical tasks (Nie et al.; Xie et al., 2025; Ou et al., 2024; Sahoo et al., 2024; Shi et al., 2024;
147 Campbell et al., 2022). For this reason, we adopt it as the primary setting for our analysis.
148

149

2.2 CLASSIFIER-FREE GUIDANCE

150

151 Classifier-free guidance (CFG) (Ho and Salimans, 2021) was introduced to improve conditional
152 diffusion models, like generating images from class labels or text. Models often failed to capture
153 fine details, which led to less accurate and misaligned samples (Karras et al., 2024).

154 CFG tackles this by comparing predictions with and without conditioning, and biasing generation
155 toward the conditional signal. Formally, the method defines a reweighted distribution:
156

157
$$p^{(w)}(x|y) \propto p^w(x|y) p^{1-w}(x)$$
158

159 Where w is called the guidance strength. Setting $w = 1$ recovers the usual conditional distribution
160 $p(x|y)$ while $w = 0$ corresponds to unconditional sampling. The crucial insight is that by setting
161 $w > 1$ it is possible to emphasize the conditional part, effectively pulling the generation closer to
162 satisfying the required condition. CFG is now a standard tool in conditional diffusion models, more
163 controllable generations across tasks such as text-to-image synthesis.

162 While the original formulation contrasted the conditional model against its unconditional counter-
 163 part, later works recognized that this can be extended by replacing the unconditional distribution
 164 with other distributions. For example, [Karras et al. \(2024\)](#) used a weaker conditional model as the
 165 guiding distribution. This view has led to the understanding that the essence of guidance lies in
 166 balancing a **target distribution** p with a **guiding distribution** q .

$$p^{(w)}(x) \propto p^w(x)q^{1-w}(x) \quad (4)$$

169 This view highlights that the unconditional model is simply one possible choice of q . By carefully
 170 selecting q recent works ([Karras et al., 2024](#); [Li et al., 2024](#); [Rojas et al., 2025](#)) have proposed novel
 171 guidance strategies that further improve sample quality and control.

173 2.3 GUIDANCE FOR DISCRETE DIFFUSION MODELS

175 In parallel to advances in continuous domains, discrete diffusion models have emerged as powerful
 176 generative models, enabling diffusion-based approaches on modalities that were previously out of
 177 reach—most notably, text. Improving the fidelity and controllability of these models is crucial, and
 178 guidance offers a natural path forward. Extending classifier-free guidance to the discrete setting has
 179 therefore become an active line of research with two main approaches having been proposed, which
 180 we describe below, followed by a discussion in Section 3.3 comparing them to our method.

181 **Unlocking Guidance** ([Nisonoff et al., 2024](#)) introduced the first classifier-free guidance mecha-
 182 nisms for discrete diffusion models. Inspired by the continuous case, they constructed a guided
 183 backwards transition by interpolating between two transition matrices in equation 2, yielding

$$\bar{R}_t^{(w)}(y, x) = R_t(x, y) \cdot \left(\frac{p_t(y)}{p_t(x)} \right)^w \left(\frac{q_t(y)}{q_t(x)} \right)^{1-w}, \quad \bar{R}_t^{(w)}(x, x) = - \sum_{y \neq x} \bar{R}_t^{(w)}(y, x), \quad (5)$$

187 where p_t, q_t follows the forward CTMC (1). Here $p_0 = p$ is the distribution that we want to generate
 188 from and q serves as the guiding distribution. ¹. Notice how the products mimic those present in
 189 equation 4. A useful way to interpret this is by introducing the notion of the **tilted distribution**:

$$p^{(w)}(x) = Z_w^{-1} p^w(x) \cdot q^{1-w}(x), \quad Z_w = \sum_{y \in S} p^w(y) \cdot q^{1-w}(y).$$

193 The generation process follows the dynamics induced by the guided transition matrix substituted in
 194 equation 2. [Nisonoff et al. \(2024\)](#) showed that guidance in the discrete setting serves a role analogous
 195 to its continuous counterpart—steering the model toward more faithful conditional samples—thus
 196 providing an important step toward improving the quality of discrete diffusion generations.

197 **Simple Guidance.** Concurrently, [Schiff et al. \(2024\)](#) proposed an alternative formulation of
 198 classifier-free guidance for discrete diffusion. Rather than interpolating the rate matrices as in
 199 [Nisonoff et al. \(2024\)](#), they directly interpolate the transition probabilities themselves. Specifically,
 200 when transitioning from time t to time $s < t$, the following transition was proposed:

$$p_{\text{simple}}^{(w)}(z_s | z_t) \propto p^w(z_s | z_t) p^{1-w} q(z_s | z_t). \quad (6)$$

203 As before, increasing w biases towards the target distribution p . Although the construction appears
 204 different, in the limit $s \rightarrow t$ the transitions coincide with those of [Nisonoff et al. \(2024\)](#). In practice,
 205 however, a finite number of steps is used, and the resulting methods are distinct. To implement these
 206 transitions, one can use equation (2) together with a suitable numerical integration scheme.

208 2.4 DYNAMIC GUIDANCE SCHEDULES

210 In our work we will consider dynamic guidance schedules, i.e. making w a function of time. Such
 211 schedules have become more popular in practice. For instance, guidance interval ([Kynkänniemi
 212 et al., 2024](#)) only applies guidance on a segment of the generation process. Doing so produces
 213 a boost in the performance of diffusion models. However, existing work on dynamic guidance

214 ¹In existing literature, p is usually a class-conditional distribution, and q is an unconditional distribution.
 215 We adopt the general setup since recent works have shown that q can be chosen in different ways ([Karras et al.,
 2024](#); [Li et al., 2024](#); [Rojas et al., 2025](#)).

216 schedules (Kynkäanniemi et al., 2024; Xi et al., 2024) has been limited to a continuous (state-space)
 217 diffusion models. It remains unclear whether such schedules are also effective in discrete state
 218 diffusion—a question that serves as the main focus of our investigation.

219 Specifically, this work will consider $w : [0, T] \rightarrow \mathbb{R}$, i.e. guidance strength as a function of time,
 220 referred to as the guidance schedule. The schedule induces a generative process given by:
 221

$$\frac{dp_{T-t}}{dt} = \bar{R}_{T-t}^{(w_{T-t})} p_{T-t} \quad (7)$$

224 Understanding which schedules result in the best generation is of crucial importance to further im-
 225 prove the sample accuracy of discrete diffusion models.
 226

227 3 METHODOLOGY

230 We begin by analyzing the guided process in the simplest case of a single token in Section 3.1,
 231 which already reveals a key limitation of existing guidance. We then introduce our proposed remedy
 232 in Section 3.2 via column normalization. Afterwards, we analyze the effect of guidance schedules
 233 on two tokens in Section 3.4. Finally, we present experimental results of our methods in Section 4.

235 3.1 IDENTIFYING AN ISSUE IN THE GUIDANCE OF DISCRETE DIFFUSION

236 We start by studying guidance in the case where $d = 1$ where exact analysis is possi-
 237 ble. The following result characterizes the distribution at time t under constant guidance:
 238

239 **Theorem 3.1.** *(Informal) Along the dynamics of equa-
 240 tion (7), starting from a fully masked state, the distri-
 241 bution at time t is given by:*

$$243 p_t = \left(1 - \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_T}} \right)^{Z_w} \right) \cdot p^{(w)} \quad (8)$$

246 We present a full proof, as well as a more general result
 247 for varying guidance schedules in Theorem B.1. This
 248 shows that for $d = 1$ the guided process exactly recov-
 249 ers the tilted distribution, with the unmasking speed
 250 controlled by the factor in front of $p^{(w)}$. Although
 251 low-dimensional, this result already reveals important
 252 properties of the guided backwards process.

253 Crucially, the partition function Z_w appears in the
 254 exponent of the rate term, meaning that even small
 255 changes in w can result in fast changes in the sam-
 256 pling rate. Figure 2 shows the percentage of tokens
 257 that remain masked as a function of time $p_t(M)$ for different values of Z_w . Applying guidance
 258 can significantly accelerate unmasking rates. While this can lead to faster generation, it may also
 259 introduce stiffness (Rathinam et al., 2003) and inefficiencies if not properly controlled.

261 3.2 IMPROVED GUIDANCE MECHANISMS FOR DISCRETE DIFFUSION VIA COLUMN 262 NORMALIZATION

264 In order to alleviate the *unintentional* fast unmasking rates, we propose a simple yet effective change
 265 to the guidance mechanism. To understand where this issue is coming from, we explicitly write the
 266 transition rates between a masked state M a nonmasked state:

267 **Lemma 3.1.** *The transition rates between a masked state and an unnormalized state are given by:*

$$269 \bar{R}_t^{(w)}(y, M) = R_t(x, y) \frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} Z_w p^{(w)}(y)$$

268 Figure 2: We plot the unmasking rates as
 269 a function of time under guidance. Faster
 270 unmasking ($Z_w > 1$) leads to worse nu-
 271 merical solvers, demonstrating an issue in
 272 the existing guidance mechanism.

270
 271
 272
 273
 274 images/Tilted-distribution-w=1-comparison.pdf
 275
 276
 277
 278
 279

280 Figure 3: Tilted distributions for varying values of w . A large w produces a large concentration on
 281 one mode.

282
 283
 284 Notice how Z_w appears directly as a multiplying factor in the transition rate. However, when $w =$
 285 1, (i.e. the conditional setup) this constant would play no role! This elucidates the effect we observe
 286 in Figure 2, the **rates are being increased disproportionately** due to the multiplication by the constant.
 287 To fix this, we must normalize the columns of the transition rate matrix appropriately. In the case of
 288 masked diffusion this can be achieved in a very simple fashion as follows:

$$289 \quad \bar{R}_{\text{nor},t}^{(w)}(\hat{\mathbf{x}}, \mathbf{x}) = \frac{R_t(\mathbf{x}, \hat{\mathbf{x}}) e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} \text{Softmax}(w \log p_0(\hat{\mathbf{x}}^i | \mathbf{x}^{\text{UM}}) + (1 - w) \log q_0(\hat{\mathbf{x}}^i | \mathbf{x}^{\text{UM}})). \quad (9)$$

290 The new rate matrix is normalized via the softmax function and fixes the issue introduced by the
 291 guidance mechanism. For the case of other discrete diffusions we refer the reader to Appendix E
 292 where we present a simple way of performing the normalization in general.

293 The normalization introduced in (9) has the effect of smoothing the transport between the starting
 294 distribution and the data distribution. This simple change stabilizes the sampling process and allows
 295 for a cleaner theory. Notably, this change can be done with a simple one line change to the code as
 296 presented in the pseudocode in 1. We further elaborate on the experimental benefits on Section 4.

297 3.3 COMPARISON OF GUIDANCE MECHANISMS

300 We now clarify the distinctions between the various classifier-free guidance mechanisms. While
 301 some differences between our method and that of Nisonoff et al. (2024) were already discussed,
 302 we further highlight how our formulation also differs from the approach of Schiff et al. (2024). To
 303 better understand these differences, we begin by comparing the unlocking guidance mechanism of
 304 Nisonoff et al. (2024) with the simple guidance proposed by Schiff et al. (2024). For this analysis,
 305 we keep the guidance strength fixed throughout. Notice that: $p(x_s | x_t) = \exp\left(\int_s^t \bar{R}_\tau^{(w)} d\tau\right) p_t$.
 306 Therefore, if p_t denotes the law of x_t , we can write the transition probabilities for each method:

$$307 \quad p_{\text{unlocking}}(x_s | x_t) = \exp\left(\int_s^t \bar{R}_\tau^w(\cdot | c) \bar{R}_\tau^{1-w}(\cdot) d\tau\right) p_t,$$

$$311 \quad p_{\text{simple}}(x_s | x_t) = Z_{\text{simple}} \left(\exp\left(\int_s^t \bar{R}_\tau(\cdot | c) d\tau\right) p_t \right)^w \left(\exp\left(\int_s^t \bar{R}_\tau(\cdot) d\tau\right) p_t \right)^{1-w}.$$

313 where Z_{simple} is a normalizing constant. Now we look at the w -dependence inside the exponential.
 314 For $\log p_{\text{unlocking}}$, the w -dependence is *exponential* as it appears in the exponent of the rate matrices,
 315 while for $\log p_{\text{simple}}$, the w -dependence is *linear*. Therefore, the transitions induced by the unlocking
 316 guidance method get much more aggressive when w increases. On the other hand, our normalization
 317 (depending on w) normalizes the columns so that it maintains the smoothness of the transition when
 318 w increases. Therefore, our method approximates the convergence rates of the original process.

319 3.4 ANALYSIS OF GUIDANCE SCHEDULES IN 2D

320 Having addressed the existing issue we switch our focus to the analysis of guidance schedules in the
 321 case of two tokens. Although the analysis can be extended to higher-dimensions, the complexity of
 322 the problem grows exponentially with the dimension, leading to increasingly intricate expressions

324
325
326
327
328
329
330
331
332
333

images/efficient_evolution_fixed_t2.pdf

Figure 5: Evolution of the coefficients in Corollary 3.1 for different values of t_2 . Notice that we must have $t_1 \leq t_2$. We observe that for moderate t_2 no coefficient dominates others, resulting in a balanced target distribution.

and reduced interpretability. This low-dimensional analysis already reveals the underlying mechanisms that define a good guidance schedule, and its impacts in high-dimensions are remarkable.

We start by stating our main theorem, in a simple to understand case that is used in practice. This simplification doesn't result in loss of generality, but significantly increases the interpretability of the results. We present a more general version in Theorem C.1.

Corollary 3.1. *Consider a time partition $0 = t_0 < t_1 < t_2 < t_3 = T$ with guidance w_i in the interval $[t_i, t_{i+1})$. With $\bar{\sigma} = -\log(1 - \delta t)$ and $p_T(M, M) = 1$. Then the sampled distribution follows the following formula:*

$$p_{t_0}(i, j) = \left(\frac{t_3 - t_2}{t_3}\right)^2 p^{(w_2)}(i, j) + \left(\frac{t_2 - t_1}{t_3}\right)^2 p^{(w_1)}(i, j) + \left(\frac{t_1 - t_0}{t_3}\right)^2 p^{(w_0)}(i, j) \\ + \frac{(t_3 - t_2)(t_2 - t_1)}{t_3^2} p^{(w_1, w_2)}(i, j) + \frac{(t_3 - t_2)(t_1 - t_0)}{t_3^2} p^{(w_0, w_2)}(i, j) + \frac{(t_2 - t_1)(t_1 - t_0)}{t_3^2} p^{(w_0, w_1)}(i, j),$$

where $p^{(w, \gamma)}(i, j) = p^{(w)}(i, j | X_1 = i)p^{(\gamma)}(X_1 = i) + p^{(w)}(i, j | X_2 = j)p^{(\gamma)}(X_2 = j)$, notice that this is not exactly a probability distribution as it is not normalized, but we will refer to it as one.

This theorem states that guidance schedules induce an interpolation of different distributions, which depend only on the guidance strengths and that the portion assigned to each one depends on the time parameters. We analyze the role of each component separately.

images/Combined-distribution-comparison

Figure 4: Notice that when $\omega < \gamma$ the combined distribution doesn't bias the leftmost mode, making this setting less efficient for guidance.

effective schedules have higher guidance at the final and middle phases of the generation while keeping early guidance small.

The role of the time parameters: As observed in corollary 3.1, the time parameters set the proportion of each distribution that will contribute towards the final output. As observed in Figures 3, 4, biasing just one of the distributions usually results in oversampling from a certain area. A good schedule is one that appropriately balances the contribution of each distribution.

We fix several values of t_2 and plot the coefficients as a function of t_1 in Figure 5. When $t_2 = 1$, we only have two intervals, and the curves change quickly; this implies that finding the right balance requires more careful tuning. On the other hand when $t_2 = .75$, many values of t_1 result in balanced combinations of all distributions, which ensures that we sample in a balanced way.

Figure 7: Evaluation of different guidance mechanisms and schedules on Imagenet

Which schedules perform best? Our theoretical analysis provides several insights into the design of effective guidance schedules. As discussed earlier, schedules that apply stronger guidance **during the middle and later stages** of the sampling process, while keeping early guidance small, tend to perform better. These selections seem to be the most critical, as they govern which distributions are mixed. Moreover, our theory predicts that using all **three intervals** (early, middle, and late) in the schedule facilitates **easier tuning** and yields more balanced output distributions. Based on these principles, we evaluate (according to our theory) various guidance schedules for discrete diffusion in Table 1, and we validate these predictions empirically in Section 4.2.

Table 1: Comparison of several guidance schedules.

	Low G. Beg	High G. Mid	High G. End	# Params	Tune	Difficulty to Tune
Constant	✗	✓	✓	1		High
Interval	✓	✓	✗	3		Low
Increasing	✓	✓	✓	1		Low
Decreasing	✗	✓	✗	1		Low

4 NUMERICAL RESULTS

In this section, we examine whether the theoretical insights from low dimensions extend to high-dimensional image and text domains. On Section 4.1 we study the effect of our normalization and in Section 4.2 the impact of different guidance schedules. We present more details and samples of different methods in Appendix H including experiments with Show-O Xie et al..

4.1 EFFECT OF NORMALIZATION

Recall that our theory predicted that failing to normalize complicates the simulation, so normalization should improve results in practice, which we confirm below.

Testing on Imagenet: We assess MaskGIT on the ImageNet dataset (Deng et al., 2009) and evaluate FID on ImageNet-256 using 50K samples, following standard practices. For our method and for the Unlocking Guidance baseline (Nisonoff et al., 2024), we use the τ -leaping sampler. For Simple Guidance (Schiff et al., 2024), we interpolate Euler transitions. For all methods, we use 50 steps. Figure 7a shows FID as a function of guidance strength using a constant schedule. Our experiments demonstrate that *failing to normalize can substantially degrade sample quality* as suggested by our theory.

Testing on text-to-image: We evaluate our method on the GenEval benchmark (Ghosh et al., 2023) using the pre-trained Meissonic model (Bai et al., 2024). This benchmark provides a comprehensive measure of both prompt alignment and perceptual image quality.

Figure 6: MATH-500 performance for LLada-8B-Instruct under a simple sampler without remasking to isolate the effect of the guidance mechanism. Normalization always yields better results.

432
 433
 434
 435 images/clean_horizontal_difference_heatmap.pdf
 436
 437
 438

439
 440 Figure 8: GenEval with and without normalization. Red denotes an improved performance due to
 441 normalization. Normalization leads to more faithful prompt adherence and image quality.

442 Figure 12 compares generations with and without normalization. Red regions indicate prompts
 443 where normalization improved the score. Overall, we observe consistent gains: *normalization en-*
 444 *hances prompt adherence* and yields images that better match the target distribution.

445 **Testing on text generation:** To assess the effectiveness of normalization in the text generation
 446 domain, we evaluated using LLaDA-8B-Instruct (Nie et al.) on the MATH-500 dataset, generating
 447 up to 256 tokens. We sample autoregressively in blocks of 32 tokens using a simple Euler sampler
 448 with 32 denoising steps per block, resulting in a total of 256 steps for the full generation.

449 Figure 6 presents the results of such an experiment. The results clearly show that *normalization*
 450 *consistently improves performance across all guidance strengths*. We note that the results are not
 451 directly comparable to those reported in the LLaDA paper; we use a simple Euler sampler without
 452 remasking to better isolate the effect of guidance and normalization in a simple setting.

453 **Empirical effect of normalization:** All our empirical findings demonstrate that including normal-
 454 ization is a helpful step in improving the simulation of classifier-free guidance for discrete diffusion.
 455 This aligns with our low-dimensional theoretical analysis in Section 3.1, demonstrating that *low-*
 456 *dimensional studies can have a significant impact in high dimensions*.

4.2 STUDY OF GUIDANCE SCHEDULES

460 Previously, our theory predicted that increasing
 461 schedules improve discrete diffusion while decreas-
 462 ing ones degrade generation. We test this theory on
 463 Imagenet-256 with 10K samples. For precise for-
 464 mulas for the schedules, see Table 2. When testing
 465 increasing schedules (Ramp-Up and Right Interval)
 466 in 7b, we observe that both schedules can significantly improve the results. Furthermore, the Right
 467 Interval schedule exhibits a convex trend with respect to r , while the Ramp-Up schedule is mono-
 468 tone in r , and reaches a lower FID value, indicating that a gradual, linear increase in guidance
 469 outperforms abrupt alternatives. When testing the decreasing schedules (Left interval and Ramp-
 470 Down), we observe that they consistently damage the generation as seen in Figure 7c. Overall, *our*
 471 *experiments confirm our theory* that increasing schedules are most effective for masked diffusion.

5 CONCLUSIONS

472 In this work, we introduced a framework for analyzing guidance schedules in masked diffusion.
 473 Our analysis led to a novel approach for classifier-free guidance in the discrete setting. We validate
 474 the effectiveness of our method through experiments and show that guidance applied near $t = T$
 475 is harmful to the generation quality while near $t = 0$ can improve the it. This insights enabled
 476 us to identify effective scheduling strategies. Our theoretical insights align closely with empirical
 477 observations, bridging the gap between theory and practice.

478 **Limitations and Future work.** While our framework provides a principled and tractable approach
 479 to CFG in discrete diffusion, our theoretical analysis is currently limited to masked diffusion in
 480 low-dimensional settings. Although the method is applicable to more complex real-world settings,
 481 our current theoretical study does not cover such regimes. Promising directions include extending
 482 the framework to other forms of discrete diffusion, such as uniform diffusion, scaling to higher
 483 dimensions, and analyzing the role of score estimation error in the guidance dynamics.

Table 2: Description of guidance schedules.

Schedule	Formula $w(t)$
Left Interval	$w \cdot \mathbf{1}_{[0,l]}(t)$
Right Interval	$w \cdot \mathbf{1}_{[r,1]}(t)$
Ramp-Up	$\min\left(w, w \cdot \frac{1-t}{1-r}\right)$
Ramp-Down	$\min\left(w, w \cdot \frac{t}{\ell}\right)$

486 REFERENCES
487

488 J. Bai, T. Ye, W. Chow, E. Song, X. Li, Z. Dong, L. Zhu, and S. Yan. Meissonic: Revitalizing
489 masked generative transformers for efficient high-resolution text-to-image synthesis. *arXiv
490 preprint arXiv:2410.08261*, 2024.

491 A. Bradley and P. Nakkiran. Classifier-free guidance is a predictor-corrector. *arXiv preprint
492 arXiv:2408.09000*, 2024.

493 T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Tay-
494 lor, T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh. Video gen-
495 eration models as world simulators. [https://openai.com/research/
496 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators), 2024.

497 A. Campbell, J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet. A continu-
498 ous time framework for discrete denoising models. *Advances in Neural Information Processing
499 Systems*, 35:28266–28279, 2022.

500 M. Chidambaram, K. Gatmiry, S. Chen, H. Lee, and J. Lu. What does guidance do? a fine-grained
501 analysis in a simple setting. In *The Thirty-eighth Annual Conference on Neural Information
502 Processing Systems*, 2024.

503 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
504 image database. In *2009 IEEE conference on computer vision and pattern recognition*, pages
505 248–255. Ieee, 2009.

506 P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz, A. Sauer,
507 F. Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-
508 first international conference on machine learning*, 2024.

509 D. Ghosh, H. Hajishirzi, and L. Schmidt. Geneval: An object-focused framework for evaluating
510 text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:52132–52152,
511 2023.

512 N. Gruver, S. Stanton, N. Frey, T. G. Rudner, I. Hotzel, J. Lafrance-Vanassee, A. Rajpal, K. Cho,
513 and A. G. Wilson. Protein design with guided discrete diffusion. *Advances in neural information
514 processing systems*, 36:12489–12517, 2023.

515 J. Ho and T. Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on Deep
516 Generative Models and Downstream Applications*, 2021.

517 J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. *Advances in neural infor-
518 mation processing systems*, 33:6840–6851, 2020.

519 E. Hoogeboom, T. Mensink, J. Heek, K. Lamerigts, R. Gao, and T. Salimans. Simpler diffusion
520 (sid2): 1.5 fid on imagenet512 with pixel-space diffusion. *arXiv preprint arXiv:2410.19324*,
521 2024.

522 H. Huang, L. Sun, B. Du, and W. Lv. Conditional diffusion based on discrete graph structures for
523 molecular graph generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
524 volume 37, pages 4302–4311, 2023.

525 T. Karras, M. Aittala, T. Kynkänniemi, J. Lehtinen, T. Aila, and S. Laine. Guiding a diffusion
526 model with a bad version of itself. *Advances in Neural Information Processing Systems*, 37:
527 52996–53021, 2024.

528 T. Kynkänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila. Improved precision and recall metric
529 for assessing generative models. *Advances in neural information processing systems*, 32, 2019.

530 T. Kynkänniemi, M. Aittala, T. Karras, S. Laine, T. Aila, and J. Lehtinen. Applying guidance in a
531 limited interval improves sample and distribution quality in diffusion models. In *Conference on
532 Neural Information Processing Systems*, 2024.

540 T. Li, W. Luo, Z. Chen, L. Ma, and G.-J. Qi. Self-guidance: Boosting flow and diffusion generation
 541 on their own. *CoRR*, 2024.

542

543 A. Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the data
 544 distribution. *arXiv preprint arXiv:2310.16834*, 2023.

545 S. Nie, F. Zhu, Z. You, X. Zhang, J. Ou, J. Hu, J. ZHOU, Y. Lin, J.-R. Wen, and C. Li. Large
 546 language diffusion models. In *ICLR 2025 Workshop on Deep Generative Model in Machine
 547 Learning: Theory, Principle and Efficacy*.

548

549 H. Nisonoff, J. Xiong, S. Allenspach, and J. Listgarten. Unlocking guidance for discrete state-space
 550 diffusion and flow models. *arXiv preprint arXiv:2406.01572*, 2024.

551 J. Ou, S. Nie, K. Xue, F. Zhu, J. Sun, Z. Li, and C. Li. Your absorbing discrete diffusion secretly
 552 models the conditional distributions of clean data. *arXiv preprint arXiv:2406.03736*, 2024.

553

554 K. L. Pavasovic, J. Verbeek, G. Biroli, and M. Mezard. Understanding classifier-free guidance:
 555 High-dimensional theory and non-linear generalizations. *arXiv preprint arXiv:2502.07849*, 2025.

556

557 R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chemistry structures and
 558 properties of 134 kilo molecules. *Scientific Data*, 1, 2014.

559

560 M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie. Stiffness in stochastic chemically reacting
 561 systems: The implicit tau-leaping method. *The Journal of Chemical Physics*, 119(24):12784–
 12794, 2003.

562

563 Y. Ren, H. Chen, Y. Zhu, W. Guo, Y. Chen, G. M. Rotskoff, M. Tao, and L. Ying. Fast solvers
 564 for discrete diffusion models: Theory and applications of high-order algorithms. *arXiv preprint
 565 arXiv:2502.00234*, 2025.

566

567 K. Rojas, Y. Zhu, S. Zhu, F. X. Ye, and M. Tao. Diffuse everything: Multimodal diffusion models
 568 on arbitrary state spaces. In *Forty-second International Conference on Machine Learning*, 2025.

569

570 R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
 571 with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and
 572 pattern recognition*, pages 10684–10695, 2022.

573

574 L. Ruddigkeit, R. Van Deursen, L. C. Blum, and J.-L. Reymond. Enumeration of 166 billion organic
 575 small molecules in the chemical universe database gdb-17. *Journal of chemical information and
 576 modeling*, 52(11):2864–2875, 2012.

577

578 S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov. Sim-
 579 ple and effective masked diffusion language models. *Advances in Neural Information Processing
 580 Systems*, 37:130136–130184, 2024.

581

582 Y. Schiff, S. S. Sahoo, H. Phung, G. Wang, S. Boshar, H. Dalla-torre, B. P. de Almeida, A. Rush,
 583 T. Pierrot, and V. Kuleshov. Simple guidance mechanisms for discrete diffusion models. *arXiv
 584 preprint arXiv:2412.10193*, 2024.

585

586 J. Shi, K. Han, Z. Wang, A. Doucet, and M. Titsias. Simplified and generalized masked diffusion
 587 for discrete data. *Advances in neural information processing systems*, 37:103131–103167, 2024.

588

589 Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gener-
 590 ative modeling through stochastic differential equations. In *International Conference on Learning
 591 Representations*.

592

593 W. Xi, N. Dufour, N. Andreou, C. Marie-Paule, V. F. Abrevaya, D. Picard, and V. Kalogeiton. Anal-
 594 ysis of classifier-free guidance weight schedulers. *Transactions on Machine Learning Research*,
 595 2024.

596

597 J. Xie, W. Mao, Z. Bai, D. J. Zhang, W. Wang, K. Q. Lin, Y. Gu, Z. Chen, Z. Yang, and M. Z.
 598 Shou. Show-o: One single transformer to unify multimodal understanding and generation. In *The
 599 Thirteenth International Conference on Learning Representations*.

594 Z. Xie, J. Ye, L. Zheng, J. Gao, J. Dong, Z. Wu, X. Zhao, S. Gong, X. Jiang, Z. Li, et al. Dream-coder
595 7b: An open diffusion language model for code. *arXiv preprint arXiv:2509.01142*, 2025.
596

597 H. Ye, R. Kevin, and T. Molei. What exactly does guidance do in masked discrete diffusion models.
598 *arXiv preprint arXiv:2506.10971*, 2025.

599 S. Yu, S. Kwak, H. Jang, J. Jeong, J. Huang, J. Shin, and S. Xie. Representation alignment for gener-
600 ation: Training diffusion transformers is easier than you think. *arXiv preprint arXiv:2410.06940*,
601 2024.

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A NOTATION AND GENERAL RESULTS**
 649

650 **A.1 SPECIAL PROPERTIES OF MASKED DIFFUSION**
 651

652 We will use the following notations specific to masked diffusion. Let $\mathbf{x}_t = (\mathbf{x}_t^1, \dots, \mathbf{x}_t^d)$ denote
 653 a random variable on S , and M be the masked token. We will write \mathbf{x}^{UM} for the set of elements
 654 such that $\mathbf{x}_t^i \neq M$, meaning the entries that are not the masked token. Additionally, we will denote
 655 $\bar{\sigma}_t = \int_0^t \sigma_s ds$.

656 Masked diffusion has several appealing properties, one being the following shown by [Ou et al. \(2024\)](#):
 657

658 **Lemma A.1.** *Along the dynamics (1) given by the masked rate matrix, if $\mathbf{x}_t = (\mathbf{x}_t^1, \dots, \mathbf{x}_t^d)$ and
 659 $\hat{\mathbf{x}}_t = (\mathbf{x}_t^1, \dots, \hat{\mathbf{x}}_t^i, \dots, \mathbf{x}_t^d)$ in such a way that $\hat{\mathbf{x}}_t^i \neq M$ and $\mathbf{x}_t^i = M$, we have the following identity
 660 for the score*

$$662 \frac{p_t(\hat{\mathbf{x}}_t)}{p_t(\mathbf{x}_t)} = \frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} p_0(\hat{\mathbf{x}}_t^i | \mathbf{x}^{UM}).$$

665 This result is of great importance, as it tells us that it is possible to decompose the scores as a
 666 probability distribution independent of time multiplied by a time-dependent term.

667 **B PROOFS IN 1D**
 668

669 We first prove a small lemma:

670 **Lemma B.1.** *Given a matrix of the form*

$$673 \quad A = \begin{pmatrix} 0 & \dots & 0 & v_1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & v_n \end{pmatrix}$$

677 If $v_n \neq 0$, then its matrix exponential is given by $e^A = I + A \cdot \frac{e^{v_n} - 1}{v_n}$.
 678

679 *Proof.* First notice that for $k > 0$ it holds that $A^k = v_n^{k-1} A$ then we can write:
 680

$$681 \quad e^A = I + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \dots \\ 682 \quad = I + A + \frac{1}{2!} A v_n + \frac{1}{3!} A v_n^2 + \dots \\ 683 \quad = I + A \left(1 + \frac{1}{2!} v_n + \frac{1}{3!} v_n^2 + \dots \right) \\ 684 \quad = I + A \left(1 + \frac{1}{v_n} \left(\frac{1}{2!} v_n^2 + \frac{1}{3!} v_n^3 + \dots \right) \right) \\ 685 \quad = I + A \left(1 + \frac{1}{v_n} \left(-1 - v_n + 1 + v_n + \frac{1}{2!} v_n^2 + \frac{1}{3!} v_n^3 + \dots \right) \right) \\ 686 \quad = I + A \left(1 + \frac{1}{v_n} \left(-1 - v_n + e^{v_n} \right) \right) \\ 687 \quad = I + A \frac{e^{v_n} - 1}{v_n}$$

688 As we wanted. □
 689

690 We now state and prove the general version Theorem 3.1:
 691

692 **Theorem B.1.** *Along the dynamics of equation (7). The distribution p_t is given by:*

$$693 \quad p_t = \left(A_1 \cdot \frac{1 - e^A}{A}, \dots, A_{M-1} \cdot \frac{1 - e^A}{A}, e^A \right)^\top.$$

702 Where, for $i = 0, \dots, M - 1$:

$$704 \quad A_i = \int_t^T \sigma_s \frac{e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_s}} Z_{w_s} \cdot p^{z, w_s}(i) ds, \quad A = - \sum_{i=0}^{M-1} A_i = \int_t^T \sigma_s \frac{e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_s}} Z_{w_s} ds.$$

707 *Proof.* Recall that the rate matrix in the one-dimensional case is:

$$709 \quad \bar{R}_t^{(w_t)} = \sigma_t \frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} Z_{w_t} \begin{pmatrix} 0 & 0 & \cdots & 0 & p^{(w_t)}(1) \\ 0 & 0 & \cdots & 0 & p^{(w_t)}(2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & p^{(w_t)}(M-1) \\ 0 & 0 & \cdots & 0 & -1 \end{pmatrix} \quad (10)$$

715 By direct integration we know that:

$$717 \quad p_t = \exp \left(\int_t^T \bar{R}_\tau^{(w_\tau)} d\tau \right) p_T.$$

720 Therefore applying Lemma B.1 we get that (in vector notation):

$$722 \quad p_t = p_T + p_T(M) \left(\int_t^T \sigma_s \frac{e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_s}} Z_{w_s} \cdot p^{z, w_s} ds \cdot \frac{1 - e^A}{A} \right),$$

725 with

$$727 \quad A = - \sum_{i=0}^{M-1} A_i = \int_t^T \sigma_s \frac{e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_s}} Z_{w_s} ds.$$

730 The result is proved. \square

731 We can now use the previous theorem to compute the distribution under constant guidance:

732 **Corollary B.1.** *If we start with a distribution p_t and keep guidance to be constant w . Then at time s the distribution is given by:*

$$736 \quad p_s(i) = p_t(i) + p_s(M) \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_s}} - 1 \right)^{Z_w} p^{(w)}(i)$$

$$739 \quad \text{for } i \neq M \text{ and } p_s(M) = \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_s}} - 1 \right)^{Z_w} p_t(M)$$

741 *Proof.* The proof follows by keeping w constant in the above theorem:

$$743 \quad p_s = p_t + p_t(M) \left(\int_s^t \sigma_s \frac{e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_s}} Z_{w_s} \cdot p^{z, w_s} ds \cdot \frac{1 - e^A}{A} \right)$$

$$744 \quad = p_t + p_t(M) \left(\int_t^T \sigma_s \frac{e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_s}} Z \cdot ds \cdot \frac{1 - e^A}{A} p^{(w)} \right)$$

$$745 \quad = p_t + p_t(M) \left(\frac{(1 - e^A) p^{(w)}}{e^A} \right)$$

752 Substituting A gives the desired result. \square

754 We can now chain the above argument to obtain a result for general piece-wise constant guidance 755 schedules:

Theorem B.2. Let $\delta = t_0 < t_1 < \dots < t_k = T$ be a time partition and let w_i the guidance strength on the interval $(t_i, t_{i+1}]$. Along the dynamics of equation (7), the sampled distribution p_δ is given by:

$$p_\delta = p_T + \sum_{i=0}^{k-1} p_{t_{i+1}}(M) \cdot \left(1 - \left(\frac{1 - e^{-\bar{\sigma}_{t_i}}}{1 - e^{-\bar{\sigma}_{t_{i+1}}}} \right)^{Z_{w_i}} \right) p^{(w_i)}. \quad (11)$$

Additionally, probability mass at M at different time satisfies $p_{t_i}(M) = p_{t_{i+1}}(M) \left(\frac{1 - e^{-\bar{\sigma}_{t_i}}}{1 - e^{-\bar{\sigma}_{t_{i+1}}}} \right)^{Z_{w_i}}$ for all $i = 0, 1, \dots, k-1$.

Lemma B.2. The transition rates between a masked state and an unnormalized state are given by:

$$\bar{R}_t^{(w)}(y, M) = R_t(x, y) \frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} Z_w p^{(w)}(y)$$

Proof. Using Lemma A.1 we can write:

$$\begin{aligned} \bar{R}_t^{(w)}(y, M) &= R_t(M, y) \cdot \left(\frac{p_t(x)}{p_t(M)} \right)^w \left(\frac{q_t(x)}{q_t(M)} \right)^{1-w} \\ &= R_t(M, y) \cdot \left(\frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} p_0(y) \right)^w \left(\frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} q_0(y) \right)^{1-w} \\ &= R_t(x, y) \frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} p_0^w(y) q_0^{1-w}(y) \\ &= R_t(x, y) \frac{e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} Z_w p^{(w)}(y) \end{aligned}$$

□

The results for the normalized process are identical to the ones above, so we omit them for brevity.

C PROOFS IN 2D

We begin by writing a simple lemma that will come in handy later.

Lemma C.1. Given a matrix of the form

$$A = \begin{pmatrix} 0 & a & b & 0 \\ 0 & -1 & 0 & c \\ 0 & 0 & -1 & d \\ 0 & 0 & 0 & -2 \end{pmatrix}$$

Then for any $\alpha \in \mathbb{R}$, its matrix exponential is given by:

$$\exp(\alpha A) = \begin{pmatrix} 1 & a(1 - e^{-\alpha}) & b(1 - e^{-\alpha}) & \frac{(ac+bd)(e^\alpha - 1)^2 e^{-2\alpha}}{2} \\ 0 & e^{-\alpha} & 0 & c(e^\alpha - 1) e^{-2\alpha} \\ 0 & 0 & e^{-\alpha} & d(e^\alpha - 1) e^{-2\alpha} \\ 0 & 0 & 0 & e^{-2\alpha} \end{pmatrix}$$

Proof. The proof of the above statement is easy by noticing that $A = PDP^{-1}$ with:

$$\begin{aligned} P &= \begin{pmatrix} \frac{ac}{2} + \frac{bd}{2} & -a & -b & 1 \\ -c & 1 & 0 & 0 \\ -d & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \\ D &= \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

Then $\exp(\alpha A) = P \exp(\alpha D) P^{-1}$ and the result follows. □

Now for the main proof we start by explicitly writing down the rate matrix in the case of two tokens. In this case the rate matrix will have the following structure:

$$\bar{R}_{\text{nor},t}^{(w)} = \frac{\sigma_t e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} \begin{pmatrix} D_1 & \mathbf{0} & \dots & C_1 \\ \mathbf{0} & D_2 & \dots & C_2 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & L \end{pmatrix} := \frac{\sigma_t e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_t}} \bar{R}_{\text{nor}}^{(w)},$$

where each block is an $M \times M$ matrix given by the following formulas:

$$D_i = \begin{pmatrix} 0 & \dots & 0 & p^{(w)}(X_2 = 1 \mid X_1 = i) \\ 0 & \dots & 0 & p^{(w)}(X_2 = 2 \mid X_1 = i) \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & p^{(w)}(X_2 = M-1 \mid X_1 = i) \\ 0 & \dots & 0 & -1 \end{pmatrix}$$

$$C_i = \begin{pmatrix} p^{(w)}(X_1 = i \mid X_2 = 1) & 0 & & \dots & 0 \\ \vdots & \ddots & & \vdots & 0 \\ 0 & \dots & p^{(w)}(X_1 = i \mid X_2 = M-1) & 0 & 0 \\ 0 & \dots & \dots & 0 & p^{(w)}(X_1 = i) \end{pmatrix}$$

$$L = \begin{pmatrix} -1 & 0 & \dots & 0 & p^{(w)}(X_2 = 1) \\ 0 & -1 & \dots & 0 & p^{(w)}(X_2 = 2) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & -1 & p^{(w)}(X_2 = M-1) \\ 0 & \dots & 0 & 0 & -2 \end{pmatrix}$$

We can now state the main theorem:

Theorem C.1. *Given a starting distribution p_t following the dynamics given by (7) the distribution at time s is given by:*

$$p_s(i, j) = \begin{cases} p_t(i, j) + \left(1 - \frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}}\right)^2 p^{(w)}(i, j) p_t(M, M) \\ \quad + \left(1 - \frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}}\right) \left[p^{(w)}(X_2 = j \mid X_1 = i) p_t(i, M) \right. \\ \quad \left. + p^{(w)}(X_1 = i \mid X_2 = j) p_t(M, j) \right] & \text{if } i, j \neq M \\ \left(\frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}} \right) p_t(i, M) \\ \quad + \left(\frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}} \right)^2 \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_s}} - 1 \right) p^{(w)}(X_1 = i) p_t(M, M) & \text{if } i \neq M, j = M \\ \left(\frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}} \right) p_t(M, j) \\ \quad + \left(\frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}} \right)^2 \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_s}} - 1 \right) p^{(w)}(X_2 = j) p_t(M, M) & \text{if } i = M, j \neq M \\ \left(\frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}} \right)^2 p_t(M, M) & \text{if } i = j = M \end{cases}$$

Proof. By direct integration we know that:

$$p_s = \exp \left(\int_s^t \frac{\sigma_\tau e^{-\bar{\sigma}_\tau}}{1 - e^{-\bar{\sigma}_\tau}} d\tau \bar{R}_{\text{nor}}^{(w)} \right) = \exp \left(\ln \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_s}} \right) \bar{R}_{\text{nor}}^{(w)} \right).$$

864
865Due to the block structure of $\bar{R}_{\text{nor}}^{(w)}$, it is enough to be able to compute the exponential of:

866

867

$$\begin{array}{c} 868 \\ 869 \\ 870 \\ 871 \\ 872 \\ 873 \\ 874 \\ 875 \\ 876 \\ 877 \end{array} \left(\begin{array}{cc} D_i & C_i \\ \mathbf{0} & L \end{array} \right) = \left[\begin{array}{cc|ccccc} 0 & \dots & 0 & p^{(w)}(X_2 = 1 \mid X_1 = i) & p^{(w)}(X_1 = i \mid X_2 = 1) & 0 & \dots & 0 \\ 0 & \dots & 0 & p^{(w)}(X_2 = 2 \mid X_1 = i) & \vdots & \ddots & \vdots & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & -1 & 0 & \dots & 0 & p^{(w)}(X_1 = i) \\ \hline 0 & \dots & 0 & 0 & -1 & 0 & \dots & p^{(w)}(X_2 = 1) \\ 0 & \dots & 0 & 0 & 0 & -1 & \dots & p^{(w)}(X_2 = 2) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & -2 \end{array} \right]$$

878

879

where once again we can exploit the structured form of the matrix to simplify the calculation. It is clear that when computing products of this matrix, coordinates will only get affected by the smaller subblocks:

882

883

884

$$\begin{array}{c} 885 \\ 886 \\ 887 \\ 888 \end{array} \left(\begin{array}{cc|cc} 0 & p^{(w)}(X_2 = j \mid X_1 = i) & p^{(w)}(X_1 = i \mid X_2 = j) & 0 \\ 0 & -1 & 0 & p^{(w)}(X_1 = i) \\ \hline 0 & 0 & -1 & p^{(w)}(X_2 = j) \\ 0 & 0 & 0 & -2 \end{array} \right)$$

889

890

This is not only clear from the structure, but it also reveals a true intuitive understanding. The probability mass at a given position can only be affected by those states that are reachable from the current state by masking or unmasking the entries. We can now use Lemma C.1 to find the exponential:

894

895

896

$$\begin{array}{c} 897 \\ 898 \\ 899 \\ 900 \end{array} \left(\begin{array}{cc|cc} 1 & p^{(w)}(X_2 = j \mid X_1 = i)(1 - e^{-\alpha}) & p^{(w)}(X_1 = i \mid X_2 = j)(1 - e^{-\alpha}) & p^{(w)}(i, j)(e^\alpha - 1)^2 e^{-2\alpha} \\ 0 & e^{-\alpha} & 0 & p^{(w)}(X_1 = i)(e^\alpha - 1) e^{-2\alpha} \\ 0 & 0 & e^{-\alpha} & p^{(w)}(X_2 = j)(e^\alpha - 1) e^{-2\alpha} \\ 0 & 0 & 0 & e^{-2\alpha} \end{array} \right)$$

901

902

903

where $\alpha = \ln \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_s}} \right)$ and we used that $2p^{(w)}(i, j) = p^{(w)}(X_2 = j \mid X_1 = i)p^{(w)}(X_1 = i) + p^{(w)}(X_1 = i \mid X_2 = j)p^{(w)}(X_2 = j)$. Putting this together, we get that exponentiation each block we get:

907

908

909

$$\begin{array}{c} 910 \\ 911 \\ 912 \\ 913 \\ 914 \\ 915 \\ 916 \\ 917 \end{array} \left[\begin{array}{cc|ccccc} 1 & \dots & 0 & p^{(w)}(X_2 = 1 \mid X_1 = i)(1 - e^{-\alpha}) & p^{(w)}(X_1 = i \mid X_2 = 1)(1 - e^{-\alpha}) & \dots & p^{(w)}(i, 1)(e^\alpha - 1)^2 e^{-2\alpha} \\ 0 & \dots & 0 & p^{(w)}(X_2 = 2 \mid X_1 = i)(1 - e^{-\alpha}) & \vdots & \ddots & p^{(w)}(i, 1)(e^\alpha - 1)^2 e^{-2\alpha} \\ \vdots & \vdots & \vdots & \vdots & 0 & & \vdots \\ 0 & \dots & 0 & e^{-\alpha} & 0 & \dots & p^{(w)}(X_1 = i)(1 - e^\alpha) e^{-2\alpha} \\ 0 & \dots & 0 & 0 & e^{-\alpha} & \dots & p^{(w)}(X_2 = 1)(1 - e^\alpha) e^{-2\alpha} \\ 0 & \dots & 0 & 0 & 0 & e^{-\alpha} & p^{(w)}(X_2 = 2)(1 - e^\alpha) e^{-2\alpha} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & 0 & \dots & e^{-2\alpha} \end{array} \right]$$

With this, we have a full characterization of the matrix exponential. Therefore, we can simply write down the probability distribution by multiplying by p_t :

$$p_s(i, j) = \begin{cases} p_t(i, j) + (1 - e^{-\alpha})^2 p^{(w)}(i, j) p_t(M, M) \\ \quad + (1 - e^{-\alpha}) [p^{(w)}(X_2 = j \mid X_1 = i) p_t(i, M) \\ \quad + p^{(w)}(X_1 = i \mid X_2 = j) p_t(M, j)] & \text{if } i, j \neq M \\ e^{-\alpha} p_t(i, M) \\ \quad + e^{-2\alpha} (e^\alpha - 1) p^{(w)}(X_1 = i) p_t(M, M) & \text{if } i \neq M, j = M \\ e^{-\alpha} p_t(M, j) \\ \quad + e^{-2\alpha} (e^\alpha - 1) p^{(w)}(X_2 = j) p_t(M, M) & \text{if } i = M, j \neq M \\ e^{-2\alpha} p_t(M, M) & \text{if } i = j = M \end{cases}$$

We can now replace $\alpha = \ln \left(\frac{1 - e^{-\bar{\sigma}_t}}{1 - e^{-\bar{\sigma}_s}} \right)$ into the formula above to obtain the result. \square

Corollary C.1. *Given a starting distribution p_t following the dynamics given by (7) with $\bar{\sigma}_t = -\log(1 - \delta t)$ the distribution at time s is given by:*

$$p_s(i, j) = \begin{cases} p_t(i, j) + \left(\frac{t-s}{t} \right)^2 p^{(w)}(i, j) p_t(M, M) \\ \quad + \left(\frac{t-s}{t} \right) [p^{(w)}(X_2 = j \mid X_1 = i) p_t(i, M) \\ \quad + p^{(w)}(X_1 = i \mid X_2 = j) p_t(M, j)] & \text{if } i, j \neq M \\ \frac{s}{t} \cdot p_t(i, M) + \left(\frac{s}{t} \right)^2 \left(\frac{t-s}{s} \right) p^{(w)}(X_1 = i) p_t(M, M) & \text{if } i \neq M, j = M \\ \frac{s}{t} \cdot p_t(M, j) + \left(\frac{s}{t} \right)^2 \left(\frac{t-s}{s} \right) p^{(w)}(X_2 = j) p_t(M, M) & \text{if } i = M, j \neq M \\ \left(\frac{s}{t} \right)^2 p_t(M, M) & \text{if } i = j = M \end{cases}$$

Proof. Notice that under this schedule we have that:

$$\frac{1 - e^{-\bar{\sigma}_s}}{1 - e^{-\bar{\sigma}_t}} = \frac{\delta s}{\delta t} = \frac{s}{t}$$

Substituting this in gives the corollary above. \square

Proof of Corollary 3.1. We track the changes in the distribution in every time interval. This can be found by plugging in the result of the corollary above. Firstly, on the interval $T \rightarrow t_2$ we obtain:

$$p_{t_2}(M, M) = \left(\frac{t_2}{T} \right)^2$$

$$\begin{aligned}
972 \quad p_{t_2}(M, j) &= \left(\frac{t_2}{T}\right)^2 \left(\frac{T-t_2}{t_2}\right) p^{(w_2)}(X_2 = j) \\
973 \quad p_{t_2}(i, M) &= \left(\frac{t_2}{T}\right)^2 \left(\frac{T-t_2}{t_2}\right) p^{(w_2)}(X_1 = i) \\
974 \quad p_{t_2}(i, j) &= \left(\frac{T-t_2}{T}\right)^2 p^{(w_2)}(i, j)
\end{aligned}$$

975 Then on the interval from $t_2 \rightarrow t_1$ we get:

$$\begin{aligned}
976 \quad p_{t_1}(M, M) &= \left(\frac{t_1}{T}\right)^2 \\
977 \quad p_{t_1}(M, j) &= \left(\frac{t_1}{t_2}\right) p_{t_2}(M, j) + \left(\frac{t_1}{t_2}\right)^2 \left(\frac{t_2-t_1}{t_1}\right) p^{(w_1)}(X_2 = j) p_{t_2}(M, M) \\
978 \quad p_{t_1}(i, M) &= \left(\frac{t_1}{t_2}\right) p_{t_2}(i, M) + \left(\frac{t_1}{t_2}\right)^2 \left(\frac{t_2-t_1}{t_1}\right) p^{(w_1)}(X_1 = i) p_{t_2}(M, M) \\
979 \quad p_{t_1}(i, j) &= p_{t_2}(i, j) + \left(\frac{t_2-t_1}{t_2}\right)^2 p^{(w_1)}(i, j) p_{t_2}(M, M) \\
980 \quad &+ \left(\frac{t_2-t_1}{t_2}\right) [p^{(w_1)}(X_2 = j | X_1 = i) p_{t_2}(i, M) + p^{(w_1)}(X_1 = i | X_2 = j) p_{t_2}(M, j)]
\end{aligned}$$

981 Replacing the values for p_{t_1} into this equation we get:

$$\begin{aligned}
982 \quad p_{t_1}(M, M) &= \left(\frac{t_1}{T}\right)^2 \\
983 \quad p_{t_1}(M, j) &= \left(\frac{t_1(T-t_2)}{T^2}\right) p^{(w_2)}(X_2 = j) + \left(\frac{t_1}{T}\right)^2 \left(\frac{t_2-t_1}{t_1}\right) p^{(w_2)}(X_2 = j) \\
984 \quad p_{t_1}(i, M) &= \left(\frac{t_1(T-t_2)}{T^2}\right) p^{(w_2)}(X_1 = i) + \left(\frac{t_1}{T}\right)^2 \left(\frac{t_2-t_1}{t_1}\right) p^{(w_2)}(X_1 = i) \\
985 \quad p_{t_1}(i, j) &= \left(\frac{T-t_2}{T}\right)^2 p^{(w_2)}(i, j) + \left(\frac{t_2-t_1}{t_2}\right)^2 \left(\frac{t_2}{T}\right)^2 p^{(w_1)}(i, j) \\
986 \quad &+ \left(\frac{t_2-t_1}{t_2}\right) \left(\frac{t_2}{T}\right)^2 \left(\frac{T-t_2}{t_2}\right) p^{(w_1)}(X_2 = j | X_1 = i) p^{(w_2)}(X_1 = i) \\
987 \quad &+ \left(\frac{t_2-t_1}{t_2}\right) \left(\frac{t_2}{T}\right)^2 \left(\frac{T-t_2}{t_2}\right) p^{(w_1)}(X_1 = i | X_2 = j) p^{(w_2)}(X_2 = j) \\
988 \quad &= \left(\frac{T-t_2}{T}\right)^2 p^{(w_2)}(i, j) + \left(\frac{t_2-t_1}{T}\right)^2 p^{(w_1)}(i, j) + \frac{(t_2-t_1)(T-t_2)}{T^2} p^{(w_1, w_2)}
\end{aligned}$$

989 Finally, we can proceed with the final step from $t_1 \rightarrow t_0$. In this case, we have:

$$\begin{aligned}
990 \quad p_{t_0}(M, M) &= 0 \\
991 \quad p_{t_0}(M, j) &= 0 \\
992 \quad p_{t_0}(i, M) &= 0 \\
993 \quad p_{t_0}(i, j) &= p_{t_1}(i, j) + \left(\frac{t_1-t_0}{t_1}\right)^2 p^{(w_0)}(i, j) p_{t_1}(M, M) \\
994 \quad &+ \left(\frac{t_1-t_0}{t_1}\right) [p^{(w_0)}(X_2 = j | X_1 = i) p_{t_1}(i, M) + p^{(w_0)}(X_1 = i | X_2 = j) p_{t_1}(M, j)]
\end{aligned}$$

995 Then substituting in the previous results:

$$996 \quad p_{t_0}(i, j) = p_{t_1}(i, j) + \left(\frac{t_1-t_0}{t_1}\right)^2 \left(\frac{t_1}{T}\right)^2 p^{(w_0)}(i, j)$$

$$\begin{aligned}
& + \left(\frac{t_1 - t_0}{t_1} \right) \left[p^{(w_0)}(X_2 = j | X_1 = i) \right. \\
& \quad \left(\frac{t_1(T - t_2)}{T^2} p^{(w_2)}(X_1 = i) + \left(\frac{t_1}{T} \right)^2 \left(\frac{t_2 - t_1}{t_1} \right) p^{(w_2)}(X_1 = i) \right) \\
& \quad + p^{(w_0)}(X_1 = i | X_2 = j) \\
& \quad \left. \left(\frac{t_1(T - t_2)}{T^2} p^{(w_2)}(X_2 = j) + \left(\frac{t_1}{T} \right)^2 \left(\frac{t_2 - t_1}{t_1} \right) p^{(w_2)}(X_2 = j) \right) \right]
\end{aligned}$$

Grouping by coefficient we get:

$$\begin{aligned}
p_{t_0}(i, j) &= p_{t_1}(i, j) + \left(\frac{t_1 - t_0}{t_1} \right)^2 \left(\frac{t_1}{T} \right)^2 p^{(w_0)}(i, j) \\
&\quad + \left(\frac{t_1 - t_0}{t_1} \right) \cdot \\
&\quad \left[\left(\frac{t_1(T - t_2)}{T^2} \right) [p^{(w_0)}(X_2 = j | X_1 = i) p^{(w_2)}(X_1 = i) + p^{(w_0)}(X_1 = i | X_2 = j) p^{(w_2)}(X_2 = j)] \right. \\
&\quad \left. + \left(\frac{t_1}{T} \right)^2 \left(\frac{t_2 - t_1}{t_1} \right) [p^{(w_0)}(X_2 = j | X_1 = i) p^{(w_1)}(X_1 = i) + p^{(w_0)}(X_1 = i | X_2 = j) p^{(w_1)}(X_2 = j)] \right] \\
&= p_{t_1}(i, j) + \left(\frac{t_1 - t_0}{t_1} \right)^2 \left(\frac{t_1}{T} \right)^2 p^{(w_0)}(i, j) \\
&\quad + \left(\frac{t_1 - t_0}{t_1} \right) \cdot \left[\frac{t_1(T - t_2)}{T^2} p^{(w_0, w_2)} + \left(\frac{t_1}{T} \right)^2 \left(\frac{t_2 - t_1}{t_1} \right) p^{(w_0, w_1)} \right]
\end{aligned}$$

Simplifying and substituting the term of p_{t_1} this becomes:

$$\begin{aligned}
p_{t_0}(i, j) &= \left(\frac{t_3 - t_2}{t_3} \right)^2 p^{(w_2)}(i, j) + \left(\frac{t_2 - t_1}{t_3} \right)^2 p^{(w_1)}(i, j) + \left(\frac{t_1 - t_0}{t_3} \right)^2 p^{(w_0)}(i, j) \\
&\quad + \frac{(t_3 - t_2)(t_2 - t_1)}{t_3^2} p^{(w_1, w_2)}(i, j) + \frac{(t_3 - t_2)(t_1 - t_0)}{t_3^2} p^{(w_0, w_2)}(i, j) \\
&\quad + \frac{(t_2 - t_1)(t_1 - t_0)}{t_3^2} p^{(w_0, w_1)}(i, j).
\end{aligned}$$

□

D DETAILS ON TOY EXAMPLE

We now present the details of the toy example that we used to demonstrate our theoretical results. In figure 9 we present plots of each class and the full data distribution. Each cluster is defined via the following matrix

$$\begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.4 & 0.3 & 0.2 & 0.1 \\ 0.2 & 0.4 & 0.6 & 0.7 & 0.8 & 0.7 & 0.6 & 0.4 & 0.2 \\ 0.3 & 0.6 & 0.8 & 0.9 & 1.0 & 0.9 & 0.8 & 0.6 & 0.3 \\ 0.4 & 0.7 & 0.9 & 1.0 & 1.0 & 1.0 & 0.9 & 0.7 & 0.4 \\ 0.5 & 0.8 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.8 & 0.5 \\ 0.4 & 0.7 & 0.9 & 1.0 & 1.0 & 1.0 & 0.9 & 0.7 & 0.4 \\ 0.3 & 0.6 & 0.8 & 0.9 & 1.0 & 0.9 & 0.8 & 0.6 & 0.3 \\ 0.2 & 0.4 & 0.6 & 0.7 & 0.8 & 0.7 & 0.6 & 0.4 & 0.2 \\ 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.4 & 0.3 & 0.2 & 0.1 \end{bmatrix}$$

Each class is equally weighted. A pseudocode for generating the above dataset is:

```

1080
1081
1082
1083
1084 images/toy_problem_schedules.png
1085
1086
1087
1088
1089

```

Figure 9: Definitions of the class and unconditional distributions for the toy problem.

```

1090
1091
1092
1093     height, width = 30, 30
1094
1095     matrix1 = torch.zeros((height, width))
1096     matrix1[1:10, 1:10] = torch.tensor(cluster)
1097     matrix1[9:18, 9:18] = torch.tensor(cluster)
1098
1099     matrix2 = torch.zeros((height, width))
1100     matrix2[11:20, 11:20] = torch.tensor(cluster)
1101     matrix2[19:28, 19:28] = torch.tensor(cluster)
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```

Listing 3: Code to generate our toy dataset

1134 E NORMALIZATION FOR GENERAL DIFFUSION PROCESSES
1135

1136 In this section we demonstrate how it is possible to extend our normalization to the general class
1137 of diffusion processes. We propose a simple but effective per-column normalization that applies to
1138 different discrete diffusion models (masked/uniform).

$$\begin{aligned}
 & \left[\begin{array}{c} \frac{p_t^w(1)q_t^{1-w}(1)}{p_t^w(x)q_t^{1-w}(x)} \\ \frac{p_t^w(2)q_t^{1-w}(2)}{p_t^w(x)q_t^{1-w}(x)} \\ \vdots \\ -\sum_{i \neq x} \frac{p_t^w(i)q_t^{1-w}(i)}{p_t^w(x)q_t^{1-w}(x)} \\ \vdots \\ \frac{p_t^w(M)p_t^{1-w}(M)}{p_t^w(x)p_t^{1-w}(x)} \end{array} \right] \xrightarrow{\text{Normalized vector}} \underbrace{\frac{\left(\sum_{i \neq x} p_t(i) \right)^w \left(\sum_{i \neq x} q_t(i) \right)^{1-w}}{\sum_{i \neq x} p_t(i)^w q_t(i)^{1-w}}}_{\text{Normalized vector}} \cdot \left[\begin{array}{c} \frac{p_t^w(1)q_t^{1-w}(1)}{p_t^w(x)q_t^{1-w}(x)} \\ \frac{p_t^w(2)q_t^{1-w}(2)}{p_t^w(x)q_t^{1-w}(x)} \\ \vdots \\ -\sum_{i \neq x} \frac{p_t^w(i)q_t^{1-w}(i)}{p_t^w(x)q_t^{1-w}(x)} \\ \vdots \\ \frac{p_t^w(M)p_t^{1-w}(M)}{p_t^w(x)p_t^{1-w}(x)} \end{array} \right].
 \end{aligned} \tag{12}$$

1152 As seen in (12), our normalization applies to general diffusion models as long as we have access
1153 to the scores for models of p, q . For the multiple-token case ($d > 1$), due to the fact that we only use
1154 one column vector that corresponds to a single-dimension jump every time, the normalization for
1155 one-token in (12) can be applied to that column vector.

```

1157 def get_normalized_rate(
1158     x, c, t, dt, w
1159     ):
1160     # Get scores
1161     log_score_c = get_score(x, t, cond=c)
1162     log_score_u = get_score(x, t, cond=None)
1163     log_score_w = w * log_score_c + (1-w) * log_score_u
1164
1165     score_c = log_score_c.exp()
1166     score_u = log_score_u.exp()
1167     score_w = log_score_w.exp()
1168
1169     # Set diagonal terms
1170     score_c.scatter_(-1, x[..., None], torch.zeros_like(score_c))
1171     score_u.scatter_(-1, x[..., None], torch.zeros_like(score_u))
1172     score_w.scatter_(-1, x[..., None], torch.zeros_like(score_w))
1173
1174     normalized_rate = edge * score_w
1175     normalized_rate.scatter_(-1, x[..., None], -normalized_rate.sum(dim=-1, keepdim=True))
1176
1177     # Normalize appropriately
1178     sum_c = score_c.sum(-1, keepdim=True) ** w
1179     sum_u = score_u.sum(-1, keepdim=True)
1180     sum_u = torch.where(sum_u > 0, sum_u**(1-w), 0)
1181     sum_w = score_w.sum(-1, keepdim=True)
1182     normalized_rate = (sum_c * sum_u / sum_w) * normalized_rate
1183
1184     return sample(delta(x) + dt * sigma(t) * normalized_rate)

```

1177 Listing 4: Our guidance in the general case using Euler transitions
11781179 E.1 RESULTS ON QM9
1180

1181 We present results using our guidance mechanism in the context of uniform diffusion, applied to
1182 the QM9 small molecule dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). QM9 is a
1183 dataset containing small organic molecules containing up to 9 heavy atoms. We train a conditional
1184 model on QM9 using uniform diffusion, based on the official implementation of Schiff et al. (2024),
1185 without modifying the architecture or hyperparameters. The model is conditioned on the number
1186 of rings in each molecule (ring count). Unlike ImageNet, evaluation on QM9 is more nuanced: we
1187 generate 1,024 samples and assess several metrics. First, generated molecules must satisfy chemical
1188 constraints to be considered valid. Second, a key goal of generative models is to produce novel

Figure 11: We display the percentage of valid, unique, and novel molecules. We find that our method is the most robust to an increase in guidance strength.

F EXTRA EXPERIMENTS ON QM9 FOR MASKED DIFFUSION

We present similar results using our guidance mechanism but in the context of masked diffusion, applied to the QM9 small molecule dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). We train a conditional model on QM9 using uniform diffusion, based on the official implementation of Schiff et al. (2024), without modifying the architecture or hyperparameters. The model is conditioned on the number of rings in each molecule (ring count). We report statistics under the same setting as in Appendix E.

We plot the results in Figure 11, we find that our method is the most robust to increases in guidance strength and generally achieves better results across various guidance strengths. Suggesting that normalization is also a helpful technique on this domain.

G ANALYSIS OF DIVERSITY TRADEOFFS

We present a simple study of the diversity tradeoff when using different guidance mechanisms for discrete diffusion. We leverage the Imagenet dataset as in the main paper, using the same set of hyperparameters. We analyze the precision-recall Kynkänniemi et al. (2019) and report the results in Table 3. Precision measures the proportion of generated images that lie close to the real data manifold (fidelity), while recall quantifies the coverage of the real data distribution (diversity), allowing us to understand this correctly.

As guidance strength increases from $w=1$ to $w=5$, all methods exhibit stable recall, ranging from 0.72 to 0.79. The precision statistic is more revealing: for Unlocking and Simple guidance, using $w \geq 1$ always results in degraded precision (worse fidelity) while our method is capable of improving on it (better fidelity). Putting this together, all methods show similar diversity across guidance strengths. However, only our method can improve the fidelity while maintaining diverse samples.

H GENERATED SAMPLES TEXT TO IMAGE

To generate these samples we made use of a single node with 8 NVIDIA A100 GPUs. We present samples to compare our method against other guidance methods as well as the detailed results of the GenEval benchmark in Table 4 and 5. The results demonstrate that normalization is key in order to improve the sample quality.

Table 3: Performance across guidance strengths w . Each cell shows *Precision/Recall*.

Method / Strength	$w=1$ (no guidance)	$w=2$	$w=3$	$w=4$	$w=5$
Our Method	0.48 / 0.73	0.51 / 0.75	0.51 / 0.75	0.52 / 0.76	0.18 / 0.72
Unlocking Guidance	0.48 / 0.73	0.43 / 0.79	0.29 / 0.77	0.19 / 0.77	0.12 / 0.76
Simple Guidance	0.46 / 0.72	0.45 / 0.79	0.34 / 0.76	0.24 / 0.74	0.19 / 0.72

1296

1297

1298

1299 images/clean_horizontal_difference_heatmap_showo.pdf

1300

1301

1302

1303

Figure 12: GenEval with and without normalization using Show-o as a base model. Red denotes an improved performance due to normalization. Normalization leads to more faithful prompt adherence and image quality.

1306

Table 4: Performance comparison across different guidance weights using Meissonic as a base model

1309

1310

Metric	Ours				Unlocking			
	$w = 1$	$w = 3$	$w = 6$	$w = 9$	$w = 1$	$w = 3$	$w = 6$	$w = 9$
Overall	8.2	40.8	45.9	44.7	8.2	43.1	28.5	19.9
Objects Single	23.8	89.4	91.9	91.2	23.8	88.4	80.0	64.1
Objects Two	3.0	36.9	48.2	48.7	3.0	47.5	23.2	18.2
Counting	0.6	27.2	33.8	28.4	0.6	33.1	11.9	3.1
Position	20.7	72.3	77.4	77.7	20.7	72.3	48.7	29.0
Color Attribution	0.2	8.5	7.8	7.8	0.2	6.2	7.8	3.8
Colors	1.0	10.5	16.5	14.5	1.0	10.8	2.8	1.0

1318

Table 5: Performance comparison across different guidance weights using Show-o as a base model

1319

1320

Metric	Ours				Unlocking			
	$w = 2$	$w = 4$	$w = 6$	$w = 8$	$w = 2$	$w = 4$	$w = 6$	$w = 8$
Overall	56.42	62.46	63.13	63.39	53.73	52.84	52.89	43.96
Objects Single	96.88	98.75	99.06	98.75	95.94	98.44	97.19	86.88
Objects Two	65.66	75.76	78.28	80.05	64.14	61.36	60.61	60.10
Counting	41.56	50.00	50.94	50.94	39.69	35.00	35.00	31.25
Position	78.19	81.38	79.79	81.12	73.14	75.00	76.60	51.33
Color Attribution	22.75	28.5	30.25	27.25	26.25	22.75	22.00	20.25
Colors	33.5	41.5	40.5	42.25	23.25	24.50	26.00	14.00

1330

H.1 GENERATED SAMPLES FROM MEISSONIC

1332

We now present some samples from our method:

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

```
1350
1351
1352
1353
1354
1355
1356
1357
1358 images/meissonic/comparison_00000.jpg
1359
1360
1361
1362
1363
1364
1365
1366
```

```
1367
1368
1369
1370
1371
1372
1373
1374
1375 images/meissonic/comparison_00001.jpg
1376
1377
1378
1379
1380
1381
1382
1383
```

Figure 13: Comparison of samples generated by different guidance methods across various seeds and configurations. Using the prompts: A photo of a bench (top), A photo of a cow (bottom).

H.2 GENERATED SAMPLES FROM SHOW-O

We now present some samples from our method using Show-o [Xie et al.](#):

```
1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412 images/meissonic/comparison_00002.jpg  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420
```

```
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429 images/meissonic/comparison_00003.jpg  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438
```

Figure 14: Comparison of samples generated by different guidance methods across various seeds and configurations. Using the prompts: A photo of a bike (top), A photo of a clock (bottom).

I GENERATED SAMPLES IMAGENET

I.1 GUIDANCE STRENGTH $w = 2$

```
1458  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466 images/meissonic/comparison_00004.jpg  
1467  
1468  
1469  
1470  
1471  
1472  
1473  
1474
```

```
1475  
1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483 images/meissonic/comparison_00005.jpg  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491
```

Figure 15: Comparison of samples generated by different guidance methods across various seeds and configurations. Using the prompts: A photo of a carrot (top), A photo of a suitcase (bottom).

I.2 GUIDANCE STRENGTH $w = 3$

```
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511
```

```
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1520 images/meissonic/comparison_00006.jpg  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528
```

```
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537 images/meissonic/comparison_00007.jpg  
1538  
1539  
1540  
1541  
1542  
1543  
1544  
1545
```

Figure 16: Comparison of samples generated by different guidance methods across various seeds and configurations. Using the prompts: A photo of a fork (top), A photo of a surfboard (bottom).

I.3 GUIDANCE STRENGTH $w = 4$

```
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1560  
1561  
1562  
1563  
1564  
1565
```

```
1566  
1567  
1568  
1569  
1570  
1571  
1572  
1573  
1574 images/meissonic/comparison_00008.jpg  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582
```

```
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591 images/meissonic/comparison_00009.jpg  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599
```

Figure 17: Comparison of samples generated by different guidance methods across various seeds and configurations. Using the prompt: A photo of a refrigerator (top), A photo of a cup (bottom)

1604 I.4 GUIDANCE STRENGTH $w = 5$

```
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619
```

```
1620
1621
1622
1623
1624
1625
1626
1627
1628 images/showo/comparison_00027.jpg
1629
1630
1631
1632
1633
1634
1635
1636
```

```
1637
1638
1639
1640
1641
1642
1643
1644
1645 images/showo/comparison_00028.jpg
1646
1647
1648
1649
1650
1651
1652
1653
```

1654
1655 Figure 18: Comparison of samples generated by different guidance methods across various seeds
1656 and configurations. Using the prompts: A photo of a dog (top), A photo of a tie (bottom).
1657

1658 **STATEMENT ON THE USE OF LARGE LANGUAGE MODELS**

1660
1661 This work made use of large language models to assist with proofreading and improving the clarity
1662 of the writing. All research ideas, theoretical development, and experiments were carried out solely
1663 by the authors. When used for coding, it was solely used for plotting purposes.

```
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
```

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

images/showo/comparison_00029.jpg

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

images/showo/comparison_00030.jpg

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

Figure 19: Comparison of samples generated by different guidance methods across various seeds and configurations. Using the prompts: A photo of a laptop (top), A photo of a computer mouse (bottom).

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744 images/showo/comparison_00031.jpg

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761 images/showo/comparison_00032.jpg

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771 Figure 20: Comparison of samples generated by different guidance methods across various seeds
1772 and configurations. Using the prompts: A photo of a sandwich (top), A photo of a baseball bat
1773 (bottom).

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799 images/showo/comparison_00033.jpg

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816 images/showo/comparison_00034.jpg

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826 Figure 21: Comparison of samples generated by different guidance methods across various seeds
1827 and configurations. Using the prompts: A photo of a train (top), A photo of a cell phone (bottom).

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853 images/showo/comparison_00035.jpg

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870 images/showo/comparison_00036.jpg

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880 Figure 22: Comparison of samples generated by different guidance methods across various seeds
1881 and configurations. Using the prompt: A photo of a chair (top), A photo of a tv (bottom)

1882

1883

1884

1885

1886

1887

1888

1889

```
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899 images/guidance_1/comparison_1.png
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910 images/guidance_1/comparison_20.png
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921 images/guidance_1/comparison_2.png
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932 images/guidance_1/comparison_42.png
1933
1934
1935
1936
1937
1938
1939 Figure 23: Comparison of samples generated by different guidance methods across various seeds or
1940 configurations.
1941
1942
1943
```

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

images/guidance_2/comparison_31.png

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

images/guidance_2/comparison_32.png

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

images/guidance_2/comparison_33.png

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

images/guidance_2/comparison_34.png

1986

1987

1988

1989

1990

1991

1992

1993

1994

Figure 24: Comparison of samples generated by different guidance methods across various seeds or configurations.

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

images/guidance_3/comparison_0.png

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

images/guidance_3/comparison_38.png

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

images/guidance_3/comparison_39.png

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

images/guidance_3/comparison_40.png

2041

2042

2043

2044

2045

2046

2047

Figure 25: Comparison of samples generated by different guidance methods across various seeds or configurations.

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061 images/guidance_4/comparison_43.png

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072 images/guidance_4/comparison_44.png

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083 images/guidance_4/comparison_45.png

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094 images/guidance_4/comparison_54.png

2095

2096

2097

2098

2099

2100

2101 Figure 26: Comparison of samples generated by different guidance methods across various seeds or
2102 configurations.

2103

2104

2105