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ABSTRACT

Graph domain adaptation (GDA) emerges as an important problem in graph ma-
chine learning when the distribution of the source graph data used for training
is different from that of the target graph data used for testing. While much of
the prior work on GDA has focused on the idea of aligning node representations
across source and target domains, recent studies show that such approaches can
be suboptimal in the presence of conditional structure shift (CSS), where the dis-
tribution of graph edges conditioned on labels changes across domains. In this
work, we develop a unified framework to solve CSS and show that existing GDA
methods for CSS arise as special cases of our framework. This framework further
allows us to develop a new method, Pairwise-Likelihood maximization for graph
Structure Alignment (PLSA), which uses rich information from pairwise nodes
and edges to improve the estimation of target connection probabilities. We es-
tablish conditions under which our method is identifiable and introduce a simple
edge reweighting scheme based on importance weights to align the source and tar-
get graphs. Theoretically, under the contextual stochastic block model (CSBM),
we derive finite-sample guarantees using recent results in matrix concentration in-
equalities for U-statistics. We complement our theoretical results with empirical
studies that demonstrate the effectiveness of our method.

1 INTRODUCTION

With the growing prevalence of graph-structured data across domains, graph neural networks
(GNNs) have emerged as powerful tools for achieving remarkable performance in many graph ma-
chine learning tasks (Kipt & Welling} 2017} [Zhang & Chen, [2018; (Chami et al., [2022). Despite
their empirical successes, a key challenge arises when the distribution of data available for train-
ing (source) is different from that encountered at test time (target) (Wu et al.| 2024; [You et al.,
2023). Such distributional shifts may occur due to changes in node attributes, class proportions,
or the graph structure that encodes dependencies between nodes. These discrepancies can result in
significant degradation in model performance, limiting the reliability of GNNs in real-world deploy-
ments (Liu et al.} 2024bjc Zhu et al.,2021a)). Graph domain adaptation (GDA) seeks to address this
challenge by transferring knowledge from a source domain with sufficient supervision to a target
domain with no labels (Cai et al.| 2024; Liu & Ding} 2024; Ma, [2024)).

Unlike the classical domain adaptation (DA) problem which typically involves (marginal or con-
ditional) feature shift or label shift, GDA is more complicated because it must also account for
the shift in the graph structure. Existing GDA methods are largely motivated by domain-invariant
representation learning (Ganin et al.| |2016; Hoffman et al) 2018)) and generally aim to align the
source and target distributions of node representations after aggregating neighborhood information
in GNNs (Zhu et al., [2021a}; [Xiao et al.l 2022; [You et al., 2023} [Liu et al., 2024aib). However, it
remains unclear under which assumptions these approaches succeed; in particular, since classical
domain-invariant representation methods are known to fail in the presence of label-flipping fea-
tures (Zhao et al.,[2019; |Johansson et al., 2019; |Wu et al.,|2025)) or label shift (Wu et al.,[2019; /Chen
& Biihlmann, 2021)), it is natural to expect that GDA methods based on the similar principle may
also fail in such scenarios.
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Recent studies further show that when there is a conditional structure shift (CSS)—that is, when
the conditional edge probabilities connecting nodes change across domains—aligning the marginal
node representations across source and target becomes inefficient and yields suboptimal prediction
performance in the target domain (Liu et all 2023} 2024c). Motivated by this observation, sev-
eral methods have been proposed, including reweighting the source graph (Liu et al., [2023) and
using a pairwise moment-matching based estimator to correct CSS (Liu et al.| [2024c). The latter
approach, called Pairwise Alignment (Pair-Align), further integrates existing label shift correction
methods (Lipton et al.,|2018)) to simultaneosuly solve the CSS and label shift problems for GDA.

In this work, we focus primarily on CSS, assuming that the joint distribution of features and labels
are invariant across source and target domains. This assumption allows us to isolate CSS from
other types of shifts and study CSS more directly. In this setting, we propose Pairwise-Likelihood
maximization for graph Structure Alignment (PLSA), a new method for estimating and correcting
CSS in node classification tasks. We show that existing methods for CSS arise as special cases
of a broader framework to solve CSS, and that PLSA is another instantiation of this framework
that exploits more information from the data to improve estimation accuracy. Theoretically, when
data are generated from the contextual stochastic block model (CSBM), we give upper bounds on
the estimation error of PLSA using recently developed matrix concentration inequalities for U-
statistics, even when dependencies exist between node attributes and edges. Our main contributions
are summarized as follows.

* We develop a unified framework for correcting CSS from a distribution matching point of
view and show that existing methods can be viewed as special cases of this framework.

* We propose PLSA, a new instantiation of this framework based on pairwise likelihood
maximization with a calibrated predictor, and provide conditions to ensure its identifiability.

* We introduce an edge reweighting scheme for the source graph to improve downstream
node classification and establish finite-sample guarantees under CSBM. We further validate
our method through empirical studies.

2 RELATED WORK

Graph domain adaptation Graph domain adaptation (GDA) extends classical DA to the setting
where data are graph-structured. One popular way to formulate DA is to assume the existence of
invariant representations across domains (Ben-David et al., [2010; |Ganin et al.| 2016)), which has
inspired many GDA methods that adapt this idea to graph setting. For instance,|Zhu et al.|(2022)) use
central moment discrepancy to align node representations of GNNs, and [You et al.| (2023) propose
a spectral regularization framework that enforces invariance by controlling spectral smoothness and
maximum frequency response of GNNs. [Liu et al.| (2024b)) provide the GDABench benchmark
and show that simple GNN-based baselines with vanilla DA often outperform more sophisticated
GDA methods. For a comprehensive review of invariance-based GDA methods, we refer readers to
recent surveys (Liu & Ding},2024;|Ma, 2024). Beyond invariance-based approaches, other directions
in GDA include causal-based methods (Wu et al.|, [2022; [Luo et al [2025), generative modeling
approaches (Cai et al.,|2024), and methods that align homophilic signals (Fang et al., 2025)).

Conditional structure shift Conditional structure shift (CSS) refers to the type of shift where the
conditional distribution of edges given node labels is different across domains (Zhu et al., 2023} Liu
et al., |2023). Unlike covariate or label shift, CSS is unique to the graph-structured data since the
connectivity patterns between nodes, given labels, can vary even when the node features and label
distributions are invariant. Recent studies show that ignoring CSS can make marginal alignment of
node representations ineffective. To mitigate such issue, [Liu et al.| (2023) propose Structural Re-
weighting, which reweights source graph so that the neighborhood statistics of source nodes mimic
those in the target domain. Building on this idea, [Liu et al.| (2024c) introduce Pairwise Alignment
(Pair-Align), a method that simultaneously accounts for both CSS and label shift by formulating the
estimation of edge and label shift weights as solutions to linear systems. Following this line of work,
we provide a unified framework for CSS with a principled approach and finite-sample guarantees.

Label shift Inrecent years, label shift has been extensively studied in the anticausal setting (Lipton
et al.,|2018;|Azizzadenesheli et al.,|2019), where the label distribution changes while the conditional
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distribution z | y is invariant. Label shift can also arise in GDA, where existing correction methods
have been used to address it (Liu et al., [2024c). In label shift, two dominant approaches are Black
Box Shift Estimation (BBSE) (Lipton et al., 2018} |Azizzadenesheli et al., 2019) and Maximum
Likelihood Label Shift (MLLS) (Saerens et al., 2002} |Garg et al., 2020). BBSE uses a black box
classifier h trained on the source data to estimate the confusion matrix and construct a linear system,
whose solution provides an estimate of the importance weights. In contrast, MLLS formulates the
label shift problem as a maximum likelihood estimation and directly optimizes the likelilhood of
target predictions to recover the importance weights. (Garg et al.| (2020) show that BBSE is roughly
equivalent to MLLS under coarse calibration, explaining MLLS’s superior empirical performance.
At a high level, our method builds on the idea of MLLS but is developed in the context of CSS.

3 PRELIMINARIES AND PROBLEM SETUP

3.1 CONTEXTUAL STOCHASTIC BLOCK MODEL (CSBM)

In this work, we consider the Contextual Stochastic Block Model (CSBM) introduced by Deshpande
et al. (2018). CSBM is an extension of the classical stochastic block model (SBM) by coupling each
node with a feature vector, and has been widely used to study the generalization performance of
GNNs (Baranwal et al., 202 1;|Wang & Wangl [2024) as well as different types of distributional shifts
in GDA (Zhu et al.l [2023; [Liu et al., 2023; [2024c). Concretely, in CSBM, each node u € [n] is
assigned a label y,, € Y = {1,..., L} drawn i.i.d. from a categorical distribution p(y). Conditioned
on the labels, the edge a,, between node u and v (u < v) is generated independently according to
up | (Yu, Yo) ~ Ber(q(yu,yy)), where g : Y x YV — [0, 1] is the symmetric connection probability
function. We then define the adjacency matrix A = (a,,) € R™*™ by setting @y, = @y, foru < v
and a,,, = 0 for all u, i.e., A is symmetric with zero diagonal. Given its label, each node u € [n]
is also associated with a feature vector x,, € X drawn independently from the class-conditional
distribution z,, ~ p(z | y,,). Hence, CSBM is fully specified by the class prior p(y), the conditional
connection probabilities ¢(y, y'), and the class-conditional distribution p(z | y).

3.2 GRAPH DOMAIN ADAPTATION SETUP

We describe the GDA setting that we consider in this work. For the source domain, we observe

a labeled source graph with n(%) nodes, {(m&o),yﬁo))gi);’ (a,fﬁ,))lguggnm)}, which is generated

from a CSBM with class prior p(®) (y), class-conditional distribution p(°)(z | y), and connection
probability function ¢(®)(y, y’). Independently of the source dataset, in the target domain, we are

e 1
( (1)

given an unlabeled target graph with n") nodes, {(x,(}))u:l, Auv )1 <u<v<n@ f, drawn from a

CSBM with class prior p!) (%), class-conditional distribution p*) (2 | ), and connection probability
function ¢! (y,y'). The target labels are unobserved.

In DA, assumptions relating the source and target distributions are needed to make the DA problem
tractable. In the setting of GDA, |Liu et al.|(2023) introduce the notion of graph structure shift, where
the distributions of labels and edges change across domains while the class-conditional distribution
is invariant. This shift can be further decomposed into two types: label shift (changes in the marginal
class prior), and conditional structure shift (CSS; changes in the edge distribution given labels).
While label shift has been widely studied in the DA literature, CSS has received relatively little
attention. To address this gap, in this work we focus on CSS by making the following assumption.

Assumption 3.1 (Conditional structure shift (CSS)) The class prior and the class-conditional
features are invariant across domains, while the conditional edge distributions changes. Formally,

PO (y) = pW(y) and p (z | y) = pW (x| y), while ¢ (y,y") # ¢V (y,y).

Under Assumption [3.1] the only shift between source and target is in the label-conditioned edge
structure. While this assumption may seem restrictive, it isolates CSS from other types of shift and
allows for simplified analysis, though our theory can be extended to settings where both CSS and
label shift exist (see Appendix [B). A convenient way to represent the structural mismatch between
source and target graphs is via the importance weight matrix W}, € R2XLXL "\here the entries

of Wy, are defined as (Wi )a .y = p'(a,,9')/p*(a,y,y'). Because the class prior p(y) is

1w
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invariant, this ratio is equivalent to p(a | y,4")/p®(a | y,3'). In Section|4.3] we show how the
importance weight matrix can be used to correct structural mismatches between the source and target
graphs.

Notation Throughout, we use p(®) and p(!) to denote the source and target distributions. When a
distribution is invariant across domains, we omit the superscript and simply write p, e.g., under As-
sumptionB.1] p® () = p(y) = p(y) and p© ( | y) = pO(a | y) = p(x | y). Whenever these
distributions involve both discrete and continuous variables, they are understood as densities with
respect to the product of counting measure ;i and Lebesgue measure 17,; for instance, p(!) (z,2,a)
(two node features x, 2" and their connecting edge a) is a density with respect to ur, @ pr ® pc.

4 PROPOSED METHOD

In this section, we introduce Pairwise-Likelihood maximization for graph Structure Alignment
(PLSA), a method to estimate the target connection probabilities under CSS. Before presenting our
method, we recall the definition of calibration. A predictor f : X — ALl .= {z ¢ RF . 2 >
0, Zi z; = 1} is called canonically calibrated (Vaicenavicius et al.,|2019) if

Ply=j| f(x)) = fj(x) forallz € X andforallj € ). (D

In words, the predicted probabilities match the true conditional probabilities given the prediction
score vector (Guo et al., 2017; [Kumar et al.,|2019). In our analysis, we assume access to a predic-
tor f that is (approximately) calibrated on the source domain—this assumption ensures that PLSA
correctly identifies the target connection probabilities under CSS.

4.1 DISTRIBUTION MATCHING FOR GRAPH STRUCTURE ESTIMATION

Let f : X — Z be a feature map and write the latent variable z = f(z). Let S denote the set of
L x L symmetric matrices, and define W := {W € S¥ : 0 < W < 1}. For any node pair u < v,
consider the family of distributions on (2, 2y, yy) € Z x Z x {0,1},

L
7) = {pW(ZuvzvvauU) = Z p(ZU7Z1)ayu7yv) [(liauu)(l7Wyuy1,)+au1)w/yu,yv] : W S W}

Yu Yo =1

Under CSS, p(zy, 2y, Yu, Yo) is invariant across source and target (since p(y) and p(x | y) are
invariant), and for each W € W, (1 — ayo)(1 — Wy, 4, ) + GuoWy,y, is the pmf of Bernoulli for
@y With parameter W, ., . Hence every py € P is a valid density on Z x Z x {0,1}.

Now let W* € S’ denote the matrix of target connection probabilities, with entries Wy =

¢ (y,y"). Clearly W* € W, and because (zy,2,) L auy | (Yu,¥s) and p(2u; 2o, Yu, Yo ) is
shared across domains, the target distribution satisfies p(*) (Zus Zuy Qup) = Pw (Zu, Zv, Quy ). Thus,
W™* is the solution to the following distribution matching equation

p(l)(zuazv,auv) = pW(ZmZvaauv) for all (Zuazmauv) €ZxZx {07 ]-} )

Although multiple W € W may also satisfy this equation, the following proposition shows that
under mild conditions on p(y), ¢ (y,4'), and p(z | y), W* is the unique solution to .

Proposition 4.1 (Identifiability) Suppose Assumption holds. Assume p(y) > 0 forally € Y
and 0 < ¢V (y,y') < 1forally,y €Y. Then any W € W satisfying (2)) equals W* if and only if
{p(z|y),y =1,..., L} is linearly independent (as functions on Z).

The conditions in Proposition ensure that every class should appear with positive probability,
and for each label pair, both edges and non-edges occur with positive probability. We assume these
conditions throughout the paper. Under this setting, the linear independence condition rules out the
possibility that any class-conditional distribution can be expressed as a nontrivial linear combination
of the others, which is precisely what guarantees identifiability. When f is chosen as a calibrated
predictor, Garg et al.[(2020, Proposition 1) show that linear independence holds if E[zz "] is invert-
ible; we return to this point in Section[5](c.f. Proposition[5.4). Under these assumptions, equation
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suggests we can estimate 1W* by aligning pyy (2., 2y, aye ) to the target distribution p (Zus Zvy Q)
Following |Garg et al.[(2020) for label shift, we use a KL-divergence criterion and estimate W™* by
minimizing the KL-divergence between p'!) (2, 2y, Gyy) and py (2u, Zv, Guy), Which leads to the
pairwise likelihood formulation (see Section[d.2)).

4.1.1 EDGE-CONDITIONED DISTRIBUTION MATCHING

Here, we derive a conditional variant of the distribution matching (2)) by conditioning on the presence
of an edge. Define the family
L

Peon = {pW(Zu»Zv | Qo = 1) = Z p(o)(zuazvvyuvyv | Gy = 1) - Wiy, : W E Wcon}7

Yu Yo =1

where the parameter space is Weon = {W € ST : Zi“yv:lp(o) (Yur Yo | Guo = 1) - Wy, =
(

1,W > 0}, so that py(-,- | au, = 1) integrates to one (we use the notation p(®) since con-
ditioned on a,, = 1, the pairs (zy,2,) and (y,,y,) are not invariant). Let W} € W, de-
note the edge-conditioned importance weight matrix, with (y,,v,) entry defined as p™ (y, . |

Ayy = 1) /p(o) (Yu, Yo | @un = 1). Since z,, | y, is invariant across domains, we can check that

pw (Zus 20 | Gup = 1) = pM (24, 2y | Guy = 1). Therefore, in order to estimate W, we can find
W € Weon that satisfies the edge-conditioned matching equation
p(l)(zu,zv | o = 1) = pw (24, 20 | auw = 1) for all (z,,2,) € Z X Z. 3)

Now let h : X — ) be a black-box classifier and set z = h(xz) € Y (so Z = ). Define
¥ e RL2><L2 and v € ]RLQ by 2(zfl,z}’),(y,y’) = p(o)(h(xu) = il\,h(l’v) = @\layu =Y Yo = y/ |
auy = 1) and vy 5y = pY (h(zy) = §, h(2y) = §' | @uw = 1). Then the equation (3) becomes the
linear system X - vec(W) = v subject to W € W, where vec(W) is the vectorization of W. This
is precisely the formulation of Pair-Align introduced in |Liu et al.|(2024c). Furthermore, |Liu et al.
(2024c) observe that Structural Re-weighting (StruRW) (L1u et al., 2023) is a special case of Pair-
Align under the additional assumptions of no label shift and perfect prediction on the target graph.
Hence both StruRW and Pair-Align can be viewed as edge-conditioned distribution matching in the
latent space with black-box classifier h.

Finally, comparing the two formulations () and (3), we make the following observations: (i) un-
like (2), the edge-conditioned version uses only connected node pairs while discarding uncon-
nected pairs. This can substantially reduce effective sample size and increase variance, particularly
when graph is sparse. (ii) the unconditioned equation with W = W* holds under CSS (both
p(y) and p(z | y) invariant), whereas equation (3) with W = W requires only the invariance of
p(z | y) and thus it is still valid under label shift; however, an alternative parameterization of P also
allows for extending the unconditioned matching equation to incorporate label shift; see Appendix [B]

for details.

4.2 PAIRWISE LIKELTHOOD MAXIMIZATION FOR GRAPH STRUCTURE ALIGNMENT

We begin with the population formulation of PLSA. By Proposition .1} the target connec-
tion probabilities W* minimize the KL-divergence Dk, (p(l)(zu, Zuy Guw) || PW (2, 20, aw)) =

E[log(p™® (2, 2V, al) /pw (20, 20 al))]. Since p(zu, 20 Yus o) = pWu | 2u) p(yo |

2y) P(2u) p(2,), substituting this into py and ignoring terms that do not depend on W yields the
equivalent maximization problem

L
W* = argmaxE|[log Y p(y | 20)p(y’ | 20)[(1 = alD)(1 = Wyy) +alWyl]. @)
Wew
y,y'=1
In practice, p(y | z) is unknown, so we approximate it with a probabilistic predictor f : X — AL~1

trained on the labeled source data. If f is (canonically) calibrated on the source (equation ) (so
Z=AE"1) thenp(y | 2) = p(y | f(z)) = f,(x). Plugging this into (4) gives
L

Wi argmaxE[log 30 £,y (@)1 - o)1= W)+ alBWl]. )
€ yy'=1
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The objective in (5) is well defined for any predictor f. When f is calibrated, it coincides with
(). Hence, if W* is the unique solution to (4)), we must have Wy = W*. This is formalized in the
following proposition.

Proposition 4.2 Suppose f : X — AL~ is canonically calibrated on the source distribution. If
{p(z|y),y=1,..., L} is linearly independent, then W* = Wr.

Having introduced the population formulation, we now define the finite-sample PLSA estimator
based on the unlabeled target data {(z (1))3(:1)1, (a(l))1<u<v<n<1>}

Wf _argmax( <1)> Zlog Z fy(z (1) fy (z 5;1))[(1 —a&lv))(l—Wyy/)—i—aSU)Wyy/D. (©6)

u<v y,y'=1

The feasible set WV is convex, and the objective in @ is concave in W, so equation@ 1S a convex
program, which can be solved using any convex optimization algorithms. We use the projected
gradient descent method in our numerical experiments. Note that the source data is not directly used
in formulating the objective (6) while it is only used to pre-train the calibrated predictor f.

Our proposed PLSA with source-calibrated predictor is inspired by |Garg et al.| (2020) where they
develop maximum likelihood estimation procedure with calibrated predictor f for label shift esti-
mation (MLLS). In contrast, Pair-Align adopts a moment-matching approach based on the (edge-
conditioned) confusion matrix that is analogous to BBSE (Lipton et al.| |2018). As noted by |Garg
et al.| (2020), MLLS typically outperforms BBSE due to the information loss by coarse calibration
in BBSE. Hence, we can expect a similar advantage for PLSA over Pair-Align in the GDA setting.

4.3 REWEIGHTING THE SOURCE GRAPH

We describe a simple sampling-based procedure to adjust the source graph so that under CSS,
its edge distribution matches the target graph. The idea is to reweight source edges using impor-
tance ratios between target and source connection probabilities. For labels y,y" € [L], let 1y, =
W) 1w =3y, v')/q (y,y'). Here ¢V is estimated by PLSA, and ¢(*) can be estimated by
Sy Hu =y, v =y a{) =1}

the empirical edge ratio in the labeled source graph, §(*) (y,v) == S 1=y sy
u<v v

Thus 7y, is observable from labeled source and unlabeled target graph.

Fix a pair u < v with (y,,v,) = (y,y’) and write a = a,(fi) ~ Ber(¢%(y,7/)). (i) Case Tyy < 1
draw z ~ Ber(ry,) independently andset@ = a-z. ThenP(a =1 |y,y') =Pla= 1|y, )P(z =
1) = ¢y, y") ryy = ¢P(y,y'). (i) Case 1, > 1: draw z ~ Ber(ay,,/) with

o 1Vy) —d O y)
Y 1=y

independently and set @ = max{a, z}. Then P(@ =1 | y,v') = ¢9 (v, ")+ (1—¢ D (y, "))y, =

¢ (y,y'). (iii) Case Ty = 1: set @ = a. By construction, for every (y,y’), we have a9 | (yu =

v,y = ') ~ Ber(¢™M(y,y’)). Under CSS, since p(y) and p(z | y) are invariant, replacing

SP) by a(o) ensures that the joint distribution of (x,(t ), xf,o),~g?,y&0),y,go)) matches that of the

target. Consequently, any GNN trained on the adjusted source graph data is aligned with the target
distribution and generalizes to the target data.

€ [0,1],

5 THEORETICAL RESULTS

We now develop theoretical error bounds for the PLSA estimator when the data are generated from
CSBM. Our analysis proceeds by identifying two sources of errors in estimating W*: (i) the finite-
sample error (i.e., the gap between optimizing the population objective (3] and the empirical objec-
tive (6)), and (ii) the error due to miscalibration of the predictor f (i.e., the objectives (@) and (3] are
different when f is not perfectly calibrated).

To facilitate our analysis, we impose the following assumption on the pairwise likelihood objective.
For a given predictor f, define St(W;z,2’,a) := f(x) " ((1 —a)(1 — W) +aW) f(z').
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Assumption 5.1 There exists a constant Ty, > 0 such that for all (z,2',a) € X x X x {0,1} in
the support ofp(l)(xu, Ty Ay ), we have Sg(Wr; x, 2’ a) > Tiin, and Sy(W*; z, 2’ a) > Tiin-

Assumption is analogous to Condition 1 in |Garg et al. (2020) for label shift: if f is perfectly
calibrated, we have W* = W;. In this case, whenever the objective E[log S¢(Wr; 1:&1), xgl), aq(fv))]
is finite, S¢(Ws; 2, 2, a) (and hence S¢(W*; z,2’, a)) must be bounded away from zero with high
probability, since it is always upper bounded. When f is miscalibrated but sufficiently close to a
calibrated predictor, Assumption [5.1]is still reasonable to make because in practice post-hoc recali-

bration on the source data is performed to improve the calibration of f.

We now state our main theoretical results. For a symmetric W € S, let vech(W) € RE(E+1)/2
denote the half-vectorization (Magnus & Neudecker, 2019, Chapter 3.8), obtained by stacking the
upper-triangular entries of . Define ¢;(W) = Ellog S¢(WV; a2, aq(}v))] and let Apins > 0

denote the minimum eigenvalue of —V2¢¢(W;) where the Hessian is taken with respect to vech(W).

Theorem 5.2 Suppose the target data is generated according to CSBM and the predictor f satis-
fies Assumption Then there exist universal constants c,c’ > 0 such that for § € (0,1/2), if

n) > max {eTmin Amin,r) "2 1og(8L2/6), (log(3L?))? log(8/4) }, with probability at least 1 — 26,

—~ 1 L2
Hvech(VVf) — vech(Wf)H2 < c’TnTir?l’(/\mimf)_l\/ w.
n

Theorem @] shows that when the parameters Tmin, Amin,t > O are constants, the unlabeled target
sample size of n) > O (log L) suffice to guarantee small finite-sample error. In proving Theo-
rem[5.2] the main technical challenge is that the empirical objective in (6) does not fit the classical
U-statistics framework, because the pairwise node features (., z,) and the edge a.,, are depen-
dent through the node labels. Consequently, standard concentration tools for U-statistics based on
independent random variables do not directly apply. To deal with this, we exploit the conditional in-
dependence structure of (z,,, ;) and a,,, given labels under CSBM, together with the matrix-valued
concentration bounds for U-statistics (Minsker & Wei, [2019)), to obtain the needed bounds.

Next, given f, define the new predictor f*(x) = p(y | f(x)). By construction, f* is canonically cal-
ibrated and can be viewed as the closest calibrated version of f (Vaicenavicius et al., 2019} Equation
(4)). Our next theorem controls the error due to the miscalibration of f on the source.

Theorem 5.3 Suppose the source and target data are generated according to CSBM, and addition-

ally Assumptions[3.1} 5.1 hold. Then there exists a universal constant ¢ > 0 such that
[vech(IW5) — vech(W*)> < et Cin) - MC(f).

where MC(f) := E, ) () [| f(z) — f*(x)[|1] is the miscalibration of f in terms of £1 norm.

For binary classification problems (L = 2), MC(f) is also known as expected calibration error
(ECE) (Guo et al,2017). For multiclass problems (L > 2), MC(f) has been used as a miscalibra-
tion metric in the literature (e.g. Vaicenavicius et al.|(2019)); Popordanoska et al.| (2022)).

In both Theoremand Theorem the error bounds crucially depend on A ¢. The next theorem
provides a sufficient condition to ensure Amin ¢ is strictly positive.

Proposition 5.4 Suppose that there exists Apin > 0 such that E[f (x&l)) I (xgl))T] > Aminlz. Then

. —2 . —2
Amin,f IS lower bounded by A, i.e., Amint = Apin-

Under CSS, if the condition E[f(z3"”)f(z")T] = Aminly is satisfied, E[f(z{)f(z{")T] is also
invertible. According to|Garg et al.[(2020, Proposition 1), if f is perfectly calibrated, this condition
implies that {p(f(z) | y),y = 1,..., L} is linearly independent, and therefore W* is the unique
maximizer of £¢(TW') due to Proposition Theorem |5.3| and Proposition |5.4|show that when f is
miscalibrated, the same condition further guarantees that the population-based estimator Wk is close
to W* where the difference depends on the miscalibration error.

Combining together Theorem Theorem and Proposition it follows that the estimation
error of the finite-sample PLSA estimator is bounded as (assuming T,i, and L are constants)

i+ (0 (1/Va) +- ().
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Figure 1: Estimation error of the importance weights as the target connection probability varies
under CSBM with binary classes and a uniform class prior. The results are averaged over 10 trials.

If f assigns nonvanishing probability mass to each class, Ay, is bounded away from zero and does
not significantly degrade the rate of estimation error.

6 NUMERICAL EXPERIMENTS

In this section, we evaluate the empirical performance of our method on both simulated data from
CSBM and the Airport dataset. In all experiments, we solve the convex program (6) via projected
gradient descent and apply post-hoc recalibration on a held-out source calibration dataset using
Bias-Corrected Temperature Scaling (BCTS) (Alexandari et al.| 2020).

CSBM experiments We first study the behavior of our method on simulated data. Both source
(training and calibration) and target data are generated from CSBM with 5000 nodes each. The
node labels are sampled uniformly, and for each node, we generate 20-dimensional Gaussian fea-
tures from N (u,, 0°l), where o = 1 and for each label y € Y, p, is drawn from N(0,1/20).
In the first setting, we consider binary classes (L = 2) and vary the target connection prob-
abilities so that CSS is present between source and target graphs. Specifically, for the source
graph, we fix ¢(9(1,1) = ¢(©(2,2) = 0.02 and ¢(¥(1,2) = ¢(®(2,1) = 0.005, while for the
target graph, we vary ¢((1,1) € {0.01,0.015,...,0.03}, ¢/V(1,2) € {0.0025,0.0075}, and
¢ (2,2) € {0.01,0.015}.

In the second setting, we vary the number of nodes in both the source and target graphs with
n® nM e {1000, 1250, ...,10000}. We consider both binary and three-class (L = 3) cases where
we fix the source connection probabilities as ¢(?) (y, ) = 0.02 for y = 3’ and ¢'*) (y,%') = 0.005
for y # 3/, while the target connection probabilities are set differently so that the source and target
graphs are different. Additional details are given in Appendix [C|

The results for these two settings are shown in Figure([I|and Figure[2] respectively. In Figure[T| PLSA
consistently outperforms Pair-Align in estimating the importance weights ((W'ifv)l’y}y/)j’y,:l, mea-
sured by the relative {5 norm error on the half-vectorized weights. The performance gap is especially
pronounced when ¢()(1, 1) is small. Since Pair-Align only uses connected edges to estimate the
importance weights, its accuracy significantly degrades when the graph becomes sparser; whereas
PLSA exhibits stable performance due to its use of all pairwise nodes. Overall the performance
of both methods also improve when cross-class connection probabilities are small (compare panels
(a),(b) vs. (¢),(d)) and when within-class connection probabilities increase (compare panels (a),(c)
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Figure 2: Estimation error of the importance weights as the number of source and target graph nodes
varies under CSBM with binary or three classes and a uniform class prior. The results are averaged
over 10 trials.

vs. (b),(d)). In Figure E], we observe that as the number of nodes increases, the error of PLSA
decreases rapidly, while Pair-Align shows limited improvement. This indicates that for Pair-Align,
the connection probabilities (i.e., edge density) are more critical than the graph size, whereas PLSA
benefits from larger number of nodes as predicted by our theory. Additional results are also provided
in Appendix [D]

Airport experiments To illustrate the application of our method, we consider the Airport
dataset (Zhu et al., 2021b). This dataset contains three domains, Brazil (B), Europe (E), and the
USA (U), where nodes represent airports and edges denote flight connections. Labels correspond to
airport activity levels, measured by flight counts and passenger numbers. Since the original dataset
does not contain node features, we synthetically generate 32-dimensional features from a Gaussian
distribution N (4,1, 0%I), where p,, € {—0.5,0,0.5,1} and o = 1. As noted by [Liu et al.|(2024b),
the Airport dataset is dominated by structural shift, which makes it well-suited for studying CSS.

The dataset contains 131 nodes for Brazil, 399 nodes for Europe, and 1190 nodes for the USA.
Since a sufficiently large source data is needed to train a calibrated predictor, we use the USA as the
source domain and Brazil and Europe as the target domains. We split the source nodes into 80% for
training and 20% for post-hoc recalibration. After we estimate the importance weights, we apply
the edge reweighting scheme in Section 43| to adjust the source graph and then train GNNs on the
adjusted source graph data for target label prediction. The results are shown in Table[I] where ERM
denotes a GNN trained on the source data and applied to the target without reweighting. We find
that GNNs trained with PLSA-based graph reweighting achieve the best target performance on both
target domains, demonstrating that with sufficient source data and calibrated predictors, PLSA is an
effective approach for correcting CSS.

Method U—B U—E

ERM 5336 £6.45 45.06 +6.80
Pair-Align  48.86 =4.85 45.16 £ 6.66
PLSA 60.92 £4.29 50.20 +3.54

Table 1: Target accuracy for Airport where the results are averaged over 10 trials.

7  DISCUSSION

In this paper, we present a unified framework for addressing CSS by formulating CSS estimation
as distribution matching over node-pair features and edges in the latent space. This framework pro-
vides a principled way to view existing methods for CSS as special cases, while also motivating our
new method, PLSA, which benefits from calibrated source predictors for more accurate estimation.
Our theoretical and empirical results demonstrate that PLSA accurately estimates CSS and enables
source graph reweighting, allowing downstream GNNs to achieve strong target prediction perfor-
mance. An interesting future direction is to extend PLSA beyond CSBM to richer random graph
models, such as graphon models, where heterogeneity and sparsity better reflect real networks.
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A ERROR BOUNDS FOR ESTIMATING IMPORTANCE WEIGHTS

For GNNs to perform well on the target domain for downstream tasks, we need to reweight the
source graph using the importance weights

M (y,y)
O (y,y')’

as described in Section[4.3] In this section, we briefly explain how to obtain theoretical error bounds
for estimating these importance weights.

Yy = (W*) Lyy —

The PLSA estimator provides estimates of the target connection probabilities, W, = a(y,y)
for y,y’ € V. Consider the estimator

o 7V (y,y)
w0 (y, )

where ¢V (y,y) = (’Wf)yy/ is the (y,7') entry of the PLSA estimator, and g(%) (y, ) is the empir-
ical edge ratio in the source graph, as defined in Section[d.3] i.e.,

Zu<v 1{y’L(LO) =Y, y’t()O) = y auv = 1}

Suco Ut =y, " =)
Since we already have error bouds for 6(1)(;1;7 y') from Section we only need to control the er-
ror between ¢(¥) (y,4') and ¢(®)(y, ). Both the numerator and denominator of 7 (y,y') are U-

statistics, so concentration bounds (see Lemmain Appendix imply that g% (y, /) converges
to ¢ (y,%/) at the parametric rate 1/v/n(0).

g

(y,9) =

12
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Combining with the theoretical results in Theorem[5.2)and Theorem[5.3] we can obtain the following
(asymptotic) error bound for the estimated importance weights:

o, (\/7% + \/%) +MC(f).

Since the result follows in a straightforward manner, we omit the detailed proof.

B DISTRIBUTION MATCHING IN THE PRESENCE OF BOTH CSS AND LABEL
SHIFT

Consider the case where both CSS and label shift are present across domains, i.e., q(o)(y7 y') #
¢ (y,y') and p© (y) # p(y) while p© (x | y) = pV (z | y) = p(x | y). In this setting, because
of label shift, W* no longer solves the matching equation (2, so the PLSA estimator based on that
equation is not consistent for W*. One way to fix this is to reweight class priors in the considered
family of distributions. Specifically, let (w,), := p(*)(y)/p®)(y) denote the importance weights

for the class priors, and define the modiﬁed“flamily of distributions
L
Pw (2us 2oy Quw) = Z p(o) (Zus Zvs Yus yv)(wl*w)y(w;;v)y’ [(1 — Q) (1= Wyuyv) + aquyuyv] )
YusYo=1

for W € W. Under CSBM, we can verify
p(()) (Zm Zvs Yus yv)(witv)y(wi’:w)y/ = p(zu | y?t)p(zv | yv)p(o) (yu)p(o) (yv)(w:w)y(w:w)y/
= p(zu | yu)P(z0 | 0)P™ (9)p™ (y)
= p(l)(zlu Zvy Yusy yv)a

so W* now becomes a solution to the equation Py (2y, Zy, Guy) = PV (24, Zu, Guy). In the finite-
sample setting, the importance weights w;}, can be estimated via BBSE or MLLS and plugged in to
approximate this family.

Alternatively, we may also parameterize the family of distributions directly through the importance
weights over (ayy, Yu, Yu ). Define

L
Wiw ::{(Wo,Wl) cSt xSt Z Z PO (@, Yus Yo)-
v €40,1} Yu,yo=1

[(1 - auv)(WO)yuyru + auv(Wl)yuyv] =1,Wo, W1 > 0}7

and consider the family parameterized by W € Wiy,

L
pI{)IV/(Zua 2, auv) = Z p(o)(ZU7 Zvy Quvs Yus yv) [(1 - auv)(WO)yuyv + auv(Wl)yqu] .
Yu,rYo=1
For the true importance weights Wiy, write Wiy, = (W o, Wiy, 1) with

(VVi:/,O)yuyv = p(l)(auv =0, Yu, yv)/p(o)(auv =0, Yu, yv)a
(M/i:;/,l)yuy'u :p(l)(auv = 1vyuayv)/p(0)(auv =1, Yu, Yo)-
Then it is straightforward to check that W}, € W,,, and under CSBM, we have

p%‘;(zua Rvs auv)
L
Z p(Zm Rv | yu,yv)p(o)(aw, yu7yv) [(1 - auv)(m/i:/,o)yuyv + auv(wfi:/,l)yuyu]

Yu Yo =1
L
= Y p(zus 20 | Yur 40)D (s Yus ) = PV (2, 20, Qi)
Yu Yo =1

13
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Therefore, this matching equation provides a direct way to estimate the importance weights when
both CSS and label shift occur simultaneously. In principle, one can develop the estimation proce-
dure based on minimizing KL-divergence analogous to PLSA (i.e., minimizing Dxr, (p(l) | p%)).
Theoretical properties in finite-samples can also be analyzed with proofs similar to those used for
the finite-sample PLSA estimator in Section [5] albeit with more involved notation. In this paper, we
instead focus on the formulation (€, which estimates the target connection probabilities W* under
CSS (Assumption [3.1)); this allows for simplifying the presentation while conveying the core idea of
graph structure shift estimation in GDA.

C EXPERIMENTAL DETAILS

C.1 DATASETS

CSBM  We gives details of the simulated data generated from CSBM described in Section [0} In
both settings, we generate two independent source data from CSBM where one is used for training
the source predictor and the other is used for calibrating the predictor via BCTS. We additionally
generate target data from CSBM. The node attributes are 20-dimensional Gaussian features gener-
ated from N (y,,, o), where for each class y, p,, ~ N'(0,1/20) and o = 1.

In the first setting, we generate 5000 nodes for each of the source training, source calibration, and
target data under the binary class case with a uniform class prior. Let Q(®) = (¢(©)(y, / Ny.yelr] €
RE*Eand QW) = (¢W (y,9))y.y ez € RE*F denote the source and target connection probability

matrices. For the source, we fix
Q(O) __(0.02 0.005
—\0.005 0.02 )"

In order to introduce CSS, we vary the entries of the target connection matrix

1 _ (P19

@ (q p2> ’

where ¢ € {0.0025,0.0075}, p2 € {0.01,0.015}, and p; € {0.01,0.015,0.02,0.025,0.03}. The
results are shown in Figure|[T]

In the second setting, we consider both binary and three-class cases with uniform class priors. For
the binary case, we fix

Q(O) _ 0.02 0.005 Q(l) _ 0.03 0.0075
0.005 0.02 /- 0.0075 0.01 /-
For the three-class case, we set

0.02 0.005 0.005 0.03  0.005 0.0025
Q© =1(0.005 002 0005), QM =/0.005 0.015 0.001 |.
0.005 0.005 0.02 0.0025 0.001  0.01

We then vary the number of nodes in both the source and target graphs simultaneously with
n© n(M € {1000,1250,...,10000}, and present the results in Figure

Airport The Airport dataseis areal-world graph dataset consisting of three domains: Brazil, Eu-
rope, and the USA. In each domain, nodes represent airports and edges represent flight connections.
Labels categorize airports into four classes according to their activity level, typically measured by
the number of flights or passenger throughput. Since the dataset does not contain node features, we
generate 32-dimensional features for each node from a Gaussian distribution N (u, 1, 021), where
w1 = —0.5,u2 =0, u3 = 0.5, uy = 1, and o = 1. Here 1 denotes the all-ones vector, so each mean
{4y corresponds to a constant vector.

The dataset statistics of the Aiport dataset are as follows:

* Brazil: 131 nodes, 2,148 edges

'https://github.com/GentleZhu/EGI/tree/main/data
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* Europe: 399 nodes, 11,990 edges
* USA: 1,190 nodes, 27,198 edges

We refer the reader to[Zhu et al.|(2021b); [Liu et al.[(2024b)) for further details on the Airport dataset.

C.2 TRAINING DETAILS AND NETWORK ARCHITECTURES

Both PLSA and Pair-Align need a source predictor (or classifier) for their implementation. In all
experiments, we use a two-layer MLP with ReLU activations and 32 hidden units. The model is
trained on the source data (without the source graph) for 60 epochs using the Adam optimizer with
a learning rate of 10~3. The batch size is set to 256 for CSBM and 64 for Airport. After training,
we apply BCTS calibration on a held-out calibration set to improve the calibration of predictor.

In the Airport experiment, once the importance weights are estimated, we reweight the source graph
following the method in Section [4.3] and train GNNs on the adjusted graph to obtain models for
target label prediction. For the GNN architecture, we use a two-layer Graph Convolutional Network
(GCN) followed by a linear classifier, with 32 hidden units. The GNN is trained for 300 epochs
using the Adam optimizer with a learning rate of 5 x 1073,

D ADDITIONAL EXPERIMENTAL RESULTS

This section gives additional results for CSBM by varying the target connection probabilities under
imbalanced class priors. The setting is identical to the first experiment of CSBM in Section [6]
except that the class prior distribution is changed from uniform to imbalanced, with p(®)(y = 1) =
P (y =1) = 0.2.and p©(y = 2) = p(y = 2) = 0.8. Figure[3| shows the results. The overall
trend of the estimation error is similar to that in Figure [T} that is, PLSA consistently outperforms
Pair-Align, and the latter performs poorly especially when the within-class connection probability
is small (i.e., when the graph is sparse). In contrast, PLSA maintains strong performance across
different within-class probabilities.

Compared to Figure|l| a notable difference is that under imbalanced class priors, the performance
generally degrades with higher standard deviations. In particular, in panels (a) and (b), the one stan-
dard deviation error bands of PLSA and Pair-Align overlap in most regions. These findings suggest
that balanced class priors yield more stable and reliable performance compared to imbalanced ones.

E CONCENTRATION INEQUALITIES FOR U-STATISTICS UNDER CSBM

We present matrix concentration inequalities for bounded U-statistics under CSBM data generating
process. Throughout we work on a probability space that supports an infinite sequence of labels
(Yu)uen, features (z,,),en, and an infinite upper-triangular array of edges (G, )y < With the CSBM
structure

i.i.d.
Yu = p(y),

Ty | Yu =Y ~ p(x | y)7 Ty AL {x’wyvaavw}v;&u,w | Yu,s
auo | (u =990 =) ~Ber(¢(y,9)),  auo L {aww : (0, 0) # (u,0)} | Yus y0),

with a,, = a4, and a,,, = 0. Existence of such probability space follows from Kolmogorov’s
extension theorem.

Given this setup, for each n € N, the data we observe is the subset with first n nodes,

{(xun yu)1§u§n7 (auv)1§u<v§n}7
which follows the distribution specified by the CSBM with n nodes.

Let P denote the joint distribution of (x,, zy,ay,) under CSBM, and let P, be the empirical
measure based on all node pairs (z, Ty, Gy )1<u<v<n. FOr a matrix-valued measurable function
H:X x X x{0,1} — S¢ (where S? := {B € R™4 : BT = B} is the set of symmetric matrices),

15
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Figure 3: Estimation error of the importance weights as the target connection probability varies
under CSBM with binary classes and an imbalanced class prior (p(®)(y = 1) = p()(y = 1) = 0.2,
p(y =2) = p(M(y = 2) = 0.8). The results are averaged over 10 trials.

define
P(H) := /H(x,x/,a) dP(x,2',a), and

1
P,(H) ::/H(x,x',a) dP,(z,2',a) = — Z H (2, Ty Qi)
(2) 1<u<v<n

The following lemma controls the deviation of P,,(H) from P(H) when H is P-a.e. bounded.
LemmaE.1 Let H : X x X x {0,1} — S? be symmetric in its first two arguments and P-a.e.

bounded, i.e., H(x,2',a) = H(z',z,a) and |H(z,2’,a)|| < M for P-a.e. (x,2',a). Then for
0 € (0,1), ifn > max{log(3d), log(8/9)}, with probability at least 1 — §,

| Pa i) — P < CM( log(8/0) , log(3d) 10g(8/5)> |

n n

where ¢ > 0 is a universal constant.

The proof of Lemma [E.T]is given in Appendix [H.I] The standard U-statistics setting takes z,, =,
i.i.d., whereas P,,(H) couples (,x,) with a,,, so existing matrix-valued concentration bounds,
e.g., Minsker & Wei(2019), do not directly apply. We therefore use Hoeffding’s decomposition and
decouple the dependence between (x,,, x,) and a,,,, by conditioning on the labels.

A useful specialization of the lemma is when H has the block form

H(.’L’,I’l, a) = |:G(aj Ox/ a) G(x7:6/7a)—r c R(d+1)><(d+1),

for some vector-valued measurable G : X' x X x {0, 1} — R that is symmetric and P-a.e. bounded,
ie., G(z,2',a) = G(a',x,a) and |G(x,2’,a)|l2 < M for P-ae. (z,2,a). In this case | H| =
||G]|2, and applying LemmaE.1|to H gives the following corollary (with d + 1 in place of d).

Corollary E.1 Under the conditions stated above on G, for § € (0,1), if n > max{log(3(d +
1)), log(8/d)}, then with probability at least 1 — 4,

log(8(d +1)/9) n log(3(d+1)) 10g(8/5))

n n

|Pu(@) - PG|, < cM<

16
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Notation Definition
[n] {1,...,n}forn €N
x||1 /1 norm of vector x
x|l /5 norm of vector x
|| £+ norm of vector x
S4 set of real d x d symmetric matrices
Amin(4) minimum eigenvalue of symmetric matrix A
Amax (4) maximum eigenvalue of symmetric matrix A
I A] spectral norm/operator norm (=maximum singular value of A)
diag(A) diagonal entries of matrix A
tr(A) trace of matrix A
vec(A) vectorization of matrix A
vech(A) half-vectorization of symmetric matrix A
A*x B the matrix A — B is positive semidefinite
A<B the matrix B — A is positive semidefinite
A® B kronecker product between matrix A and B
7 77
G CHC e universal constants (whose definitions may
orci,cCa,...
change from one result to another)

Table 2: Notation used throughout the proofs.

where ¢ > 0 is a universal constant.

The proof of Corollary [E.1]is immediate from Lemma[E.T|and is therefore omitted.

F PROOF OF THEOREMS

F.1 GRADIENTS AND HESSIANS OF THE PAIRWISE LOG-LIKELIHOOD

Before proving the main theorems, we provide a brief derivation of the gradient and Hessian of the
pairwise log-likelihood. Recall

Se(Wia,2/,a) := f(x) (1 - a)(1 = W)+ aW) f(2'),

so that
Wi = arg maxE [ log Si(W; 21, 21, ol})| = &:(W),
Wew
- 1 .
Wt = argmax —q - Z log S¢(W; (), 2V, al)) =: :(W).
wew (")) =

For any W € SE, let vec(W) € RE* denote its vectorization that stacks columns of . Writing
D = vec(f(a:&l))f(xg}))T),
the gradient and the Hessian of /(W) are calculated as
(2a,(1,l,) —1) Zuy
Se (Wit 2V, aﬁ?)] 7
L7, ]
SEWiald, 2V, al) |

where we use (2a — 1)2 = 1 for a € {0, 1}. Similarly, for the empirical loss,

Vvec(W)gf(I/V) =K

VEEC(W)&C(W) =-E [

-~ 1 (208 — 1) Zuyo
Vvec(W)ef(VV) = )
("y)) i Se(wi 2l 2 all))
> 1 ZuvZuTq,
V360(1/(/')&(‘}[/) == Z .

("(21)) u<v Sf2(W5 xil)’ xg)l)a ag}v))

17
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Since W is symmetric, it is more natural to parameterize it with the half-vectorization opera-
tor (Magnus & Neudecker, 2019, Chapter 3.8). Let vech(TW) € RE(E+1)/2 denote the vector

by stacking the upper-triangular entries of W. Let D; € RL*XL(L+1)/2 pe the duplication ma-
trix (Magnus & Neudecker, [2019, Equation (22)) so that

vec(W) = Dpvech(W), and vech(W) = D! vec(W), (7)

where DI = (D] Dy)~'D] is the Moore-Penrose inverse of D,. Using the relation (7) and the
chain rule, the derivatives with respect to vech(1¥') become

Vieen(w) (W) = DZVvecwv)Ef(W), vvech )ff( ) = DZV3ec(W)£f(W)DL7
and

VVftch(‘/‘/)zf(vv) = DZVvqu)Zf(W% v3ech(W)Zf( )= DEVWW Zf(VV)DL-
Combining with the expressions above for the derivatives with respect to vec(W), we obtain closed

form expressions for the gradient and Hessian with respect to vech(V).

F.2 PROOF OF THEOREM[3.2]

Our proof outline closely follows |Garg et al.| (2020, Lemma 3), where the main difference is from
the concentration inequalities we apply. Classical tools such as Hoeffding’s inequality or results
from standard random matrix theory assume i.i.d. samples and thus do not directly apply to our
setting. Instead we use the concentration bounds specific to CSBM that follow from Lemma [E.T]
and Corollary [E.T]

For notational convenience, write wy = vech(W) and wy = vech(WW;). We also abuse notation and
write

e f), and

14
W

ls
Z (W),

where we suppress the explicit dependence of ¢ and on f.

Since Wy maximizes £ over W, a Taylor expansion gives, for some ¢ € (0, 1),

~ ~

1 —~
= (Vé(wf), ’L/U\f — ’LUf> + 5(@ — wf)TVQE((l — t)'&}\f + twf)(ﬁ}\f — wf). (8)

Observe that for any W € W, we have
S (Wil xfl, all)) = fa) (1= al)) (1 = W)+ al)W) f (V)
)

= (1= af) (1 = W) +aQdW) f({) f ()T
= (vee((L = aly))(1 = W) +all) W), vee(f (V) f(i) 7). )

Applying Holder’s inequality, it follows
2 2
sEWsa®, 2V, ald)) < ||vee((1 = al) (1 = W)+ aW)||”vee(s @) s @) T

< max{llvee(W) %, , 1 —vee(W) I} - [ @) )|

2 2
< s lrem]|, =1, (10)

1 1
where in the second step we use [[vec(ab')||1 = ||a||1][b|1; in the third step, 0 < W, < 1 for

W € W; and in the last step, we use f(z) € AL~ forall z, so || f(z)||; = 1.

18
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Further, by Assumption S?(Wf, xq(}), xg,l), 1(“))) > mm Combining with ( yields

N 1 Zuwn 2},
—V2((1 = t)W¢ + twy) = ——— Y D] - Dy,
(";”) Z P21 = Wi+ Wi 2,2, all))

-
nm > D} ZuwZ,,Dy

( u<v
2 T
Thin Z DT ZuvZ D,
— (n) L
( 21 ) u<v S?(Wf§x&1)axg)7 491)))
= 2.V (wy). (11)

Substituting (TT)) into (8) and rearranging,
~ T2 —~
(VL (wy), Ws — we) > —%(@f — wy) " V2 (wy) (@ — wy).
Since W maximizes ¢ over W and W is convex, the first-order optimality condition gives
(Wr — wy, Ve(wy)) < 0.
Combining with the inequality above, we obtain

<v2(wf)—w(wf),wf—wf>z—%(wf we) TV 20 (wy) (@ — wy).

Applying the Cauchy—Schwarz inequality to the left-hand side,

~

- 2
IV E&(wr) — Ve(wy) |2 [[@f — well, > —7“2““ (@ — wr) " V2 wp) (@ — wy). (12)

We use the following concentration bounds whose proofs are deferred to Appendix [H]

Lemma F.1 Suppose that f satisfies Assumption|5.1| There exists a universal constant ¢ > 0 such
that for 6 € (0, 1), if n™ > (log(3L?))?log(8/8), with probability at least 1 — 6,

log(8L2/9)

mm( \% f(wf)) > )\min( v g(wf)) CTmin n)

Lemma F.2 Suppose that | satisfies Assumption[5.1} There exists a universal constant ¢ > 0 such
that for 6 € (0, 1), if n™™ > (log(3L2))?log(8/8), with probability at least 1 — 6,

HVZ(’wt) — Vf(wf)H2 < cer! M

min n(l)

Applying Lemma|F.1] Lemma[F2] and a union bound, with probability at least 1 — 24,

log(8L2/5 2 log(8L2/0
08BLY/0) 3y — ], > s <)\min,fC1Tr;iz Og@/)> @ — wll?

2Tmin n nM

. . 4c27 - *log(8L% /5 .
for some universal constants ¢;,co > 0. Since n(!) > Mgfﬁ/) by assumption of the

theorem, rearranging and simplifying the above inequality yields

N deat 2 [log(8L2/6)
||’lUf - wf||2 < Amm7f n@ )

which completes the proof of the theorem.
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F.3 PROOF OF THEOREM[3.3]

We adapt the proof of |Garg et al.|(2020, Lemma 4) to our setting. For notational convenience, write
wy = vech(Wy) and w* = vech(W*). We also abuse notation and write

Uwr) == 6(Wr), L(w*) := L(W™), and £*(w*) := by (W*).

Taylor expansion gives, for some ¢ € (0, 1),
1
wr) = L(w*) + (VO(w”), wr — w*) + §(U)f —w*) TV2((1 — t)wr + tw*) (wy — w*).

Observe that under Assumption[5.1] the argument used in (TT) can be applied to yield
—V2((1 = tyws + tw*) = =12, V2 (wy).

Plugging this into the above inequality, we have
2.
(wr) < L(w*) + (VH{w™), ws — w*) + %(Wf —w*) T V20 (wy) (wr — w*).
Since £(wr) > ¢(w*) by optimality and w " V2£(wg)w < —Amin¢||w]|3 for all vectors w, it follows

7_2

A
0 < (VA(w), w — w*) — et

Because W* maximizes ¢* over convex WV, the first-order optimality condition gives

Jwr — w*3.

(wp — w*, V& (w*)) <0.

Combining with the inequality above and rearranging,

2 Ao
(VE(w*) = VO (w*), ws — w*) > w”uﬁ —w*||3.
Applying Cauchy-Schwarz inequality and simplifying, we get
* 27—[1:15 * * *
e = w¥la < 328 J[VE(w?) = VEw)]l, (13)

It remains to bound ||V{(w*) — V£*(w*)||,. Using the closed form gradient from Section
VE(w™) = VI (w?)],
DJE [m&? — Dvee(f(r) f)T) (20l - 1>vec<f*<x&”>f*<x£”m]

Si w2l 2V, o) S (W2l 2l al)

2
vee(f(2) (@) T)  vee(f* (@) (@)T)
<2|E DENOINONE D o, || (14)
Sf(W*;iru y Lo ;auv) Sf*(W*;iru y Lo aauv) 2

where in the last step we use the fact that || Dy || < 2and [2a — 1| < 1 fora € {0, 1}.

For shorthand, write S; := Sf(W*;xgl),xgl),aw) and S = Sf*(W*;xgl),osg,l),agv)). By As-
sumption [5.1] both satisfy Sf > Tinin and Sp+ > Tinin, hence

g |veef @) @) ve0(f*(w53))f*(xi”)T)]
Sf Sf*
2
_|lg [veets @) @) T) S — vee(f* (@i f* @) ) s;
B S¢S )
< ot [ [vee(s (@) £@D) ) (St = )+ (vee( S (#D) f(alD)T) = vee( £ (@) (@) ) si) |-

5)
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From equation (10}, [|vec(f(z)f(z)T)|2 < 1, and so

| [vee( @) s @) (s = 0] |, <ElISe - il

= B [|(vee((1 = af) (1 = W) + al) W), vee(f* (@) £ (@) ) = vee( f(a) (24 T))]
_|eetr @y @) T = vee(f @) || |
<E [[vec(s @) @) —vee(f@)f )| .

where the first step applies Jensen’s inequality, the second step follows from (9), and the third step
applies Holder’s inequality. Additionally, since S, Sp+ < 1 by equation (T0) and Jensen’s inequality,

B [(vee(f @) £t T) = vee(* (@) £ () T s
<E[|Si]- [vee(£@)f @{)T) = vee(f* (@) @) 7))

<E [||vec(f @) f@)T) = vee(* @) () D) |-
1
Plugging these into (T3] and using triangle inequality,

E [VeC(f(xﬁ”)f(xi”)T) ) vec(f*(x&”)f*(m&“)U]

<E [|[vee((1 - af)(1 = W) + 0l W)

St S

2
< 27 2E [[|vee(£(@t)) @) T) = vee( £ @) @) )| |- a6)
To control the right-hand side term, we invoke the followng lemma.

Lemma F.3 For any vectors wy, we, w], wh € R™, we have

Ivee(wiwy ) — vee(wiw) )1 < [lwy

l1llwa = whly + [[wyla[lwy — whl]s-
The proof is given in Appendix

Applying Lemma|F.3|and noting that || ()|, = 1 and || f*(z)||1 = 1, it follows

. lveC(f(a:&”)f(wi”)T) B VeC(f*(xi”)f*(:cE”)T)]

< 4 |1 @) = £ @) ]
2

Sf Sf*
Substituting this into (T4), we get
IV8w*) — e (w)ll, < 872E [ @) - £ @)l ]

— min

Finally combining with (I3) and using the fact that the node feature x,, has the same distribution
across source and target domains under CSS, we conclude the proof.

G PROOF OF PROPOSITIONS

G.1 PROOF OF PROPOSITION[4.T]

First, we assume {p(z | y),y = 1,..., L} is linearly independent. Suppose that two solutions exist,
W, W* € W, which both satisfy equation H ie., forW e {W, W*},
p(l)(zu,zv,auv) = pw (2u, Zv, Quy) for all (zy, 24, auy) € Z x Z x {0, 1}.
Setting the two expressions for py;; and pw« to be equal, we get
L —_—
Z p(zua Zvs Yuy yv)[(2a’UU - 1)(Wyuy1, - W;uyv)]
Yu,Yo=1
L —~
= Y p(zu | 3Pz | 40)PWa)P(W) (2000 — 1) Wy, — Wi, )],

Yu,Yo=1

0
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where the second step follows since the pairs (2y, ¥u.), (24, Y ) are independent. Since {p(z | y),y =
1,..., L} is linearly independent, the set of product densities {p(z., | ¥u)P(2v | Yo), Yus Yo =
1,..., L} is also linearly independent. This implies

PY)P(Y0) (2000 — D)Wy, — Wi, )] = 0 forall ay, € {0,1}, yu, yo € V.

Since p(y) > 0 for all y € Y by assumption, it follows that Wyuyv =Wy, forall (yu,y,), which
concludes W = W*,

Next, we show that if {p(z | y),y = 1,..., L} is linearly dependent, there exists a solution W #+
W™* € W that satisfies equation (2)) and therefore the solution is not unique. To see this, the linear
dependence of {p(z | y),y = 1,..., L} implies that there exists a nonzero vector v = (vy,...,vr)
such that 25:1 vyp(z | y) = 0 for all z € Z. Then we construct W = W* + ¢A where ¢ > O is a
small constant, and A is a nonzero symmetric matrix defined as

Ayoy, = % for all y,,, v, € V.
To verify that W also satisfies equation , we need to show
L —~
Z p(Zu ‘ Yu)P (20 ‘ yv)p(yu)p(yv)(Wyuyv - W;uyv) =0.
Yu,Yo=1

Substituting our definitions for W and A, the left-hand side becomes

L
Z p(zu | yu)p(zv | yv)p(yu)p(yv)(wyuyv - nguyv)
Yu,Yo=1
L
= > p(u | v)p(zo | 90)P(Ya)D(U0) Ay,
Yu,Yo=1
L
=€ Z p(zu | yu)p(zv |y’U)vyuvyv =0.
Yu, Yo =1

This proves that pg; (2w, 2v; Guv) = Pw+(2u, 2, Guy) = P (24, 2, Guy). Furthermore, by as-
sumption of the proposition, each element of W* is strictly between O and 1, i.e., 0 < W7, <1. So
we can always choose a sufficiently small non-zero € such that the entries of W = W* + €A remain
in the interval (0, 1), which ensures W € W. This complete the proof of the proposition.

G.2 PROOF OF PROPOSITION[4.2]

The proposition follows directly from the definition of canonical calibration. Since f is calibrated,
fy(x) = p(y | f(z)). By substituting this into the objective (5) and applying a change of variables
from x to z = f(x), the objective function for Wr is exactly identical to the objective for W* given

in @, i.e.,

L
E{log Z fy(xgtl))fy’ (xg)l))[(l - aq(}v))(l — Wyy) + aglv)Wyy’}]

yy'=1
L
= E[log > oy | z0py' | 21— al) (1 = Wyy) + a&ﬁ?Wyy']]
y,y'=1

Since Proposition 4.1| guarantees that W* is the unique maximizer, it follows that Wy = W™.

G.3 PROOF OF PROPOSITION[5.4]

Here we prove a more general statement: if E[f (xqgl)) f (m&l))T} > Aminlz, then for any W € W,
we have

—2
_v\Qzech(W)éf(W) = AminlL(L41)/2-
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Recall from Section [EI] that
L2, T

i\ SV D o0 0y |

vec(W) éf( )

where Z,, = vec(f(x&l))f(xq(jl))T). By equation (10), S?(W; zy, Wzl ),afw)) < 1forany W €
W, so we trivially have

Vi iW) = E [ 24 Z,,] - (17)

Next, for any vectors a, b, Vec(abT) = b® a. Then

E(ZuvZyy) = Elvee(f(x()) £ () Nvee(f () f(2iP) )]

[ v
= E[(f(z") ® f(@))(f (sv(1 )® f(z)]
=E[(f(e{") @ f@)(F @) T © faP) )]
=E[(f(a{)f (i) ) @ (feD) (@) ),

where we use the identity (a ® b)(a @ b)T = (a®b)(a” @b") = (aa’) @ (bb"). Since 2 and

( ) are independent given labels y,,, y,,, the tower property gives

E[ZuuZy,) = Z E[ @) @ (F) @) | 6D =55 =o' | ply, o)
L

E [f( @) |60 =y B [T | v = y] pwipy)
L

#)FE)T 5 =] wty (ZE[ 2)f <1>>T\y$}>=y}p<y>>

=E[f wg )@ E[f (@) f ()],
By assumption of the lemma, E[f (J;S)) f (x&l))T] > Aminlz, SO it follows

E[ZuwZ,,] = )\mmHLz,

where we use the fact that Apin(A ® A) = Amin(A)? for any positive semidefinite matrix A. Com-
bining with (T7), we get

7v3€c(W)£f(W) = )‘mm]IL2‘
Finally, we have
v

—2 —2
wyle(W) = =D Vi &eW) D1 = X Df Di = Al L(241) /25

vech( c(

where the last step uses that DZD 1, is a diagonal matrix with entries either 1 or 2 (see the proof
of Lemma [H.3). This completes the proof.

H PROOF OF LEMMAS

H.1 PrROOF oF LEMMAI[ET]

We first introduce some notation. For each a,, € {0,1}, we write H,,(x,2') = H(x,2', ayy) SO
that H,, depends on a,,. By the symmetry of H, it follows H,,(z,z’) = Hy,(z',x). We also
define conditional expectations with respect to z, or (z, '), where we write

Py(Hoo) (') := / Ho (2,2 )plz | y)da = / Hoo (o 2)p(a | y)dz
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and
Py (Hyy) = /Huv(x,m’)p(x | y)p(z' | y")dzda'.

Let F, := 0 ((§u)uen) denote the o-field generated by the sequence of node labels, and let F,, , :=
0 ((Yu)ueN, (@uv)u<wy) denote the o-field generated by both the node labels and edges.

With this notation, a Hoeffding-type decomposition (Leel 2019)) yields
Z Hyy (T, w0) = Z (Huo(Tu, 2v) = Py, (Hu) (20) = Py, (Huw)(20) + Py, y, (Huo))

u<v u<v

—i(A)
+ Z (Py, (Huw)(@u) = Py, .y, (Huw)) + Z (Py, (Huv)(20) = Py, .y, (Huw)) + Z Py, .y, (Huw) -

u<v u<v u<v

=:(B) =:(C) =:(D)
(18)
Our strategy is to derive concentration bounds for each term.

Term (A) Starting with (A), we condition on F,, 4. For v < v, define
Gy (33733/> = Hyw(z, x/) - Py, (Huv)(x) — Py, (Huv)(m/) + Py, .y, (Huw)-

Yu Yo
Then

/Gyu yﬂ p(z | yu)dx

= /(Huv(x x/) - Py, (Huw)() — Py, (Huv)(x/) + Py, v, (Huw)) p(z | yu)dz
=Py, (Huv)(x/) =Py, .y, (Huv) — Py, (Huv)(xl) + Py, ., (Huw) =0,
and similarly,

/ G (a2 )pla’ | yo)da = 0.

So, conditioned on F 4, the sum

§ : v
GyU/ y’l} IU7 :r/l))7

u<v
is a canonical (matrix-valued) U-statistic of order 2 (Giné & Nickl, [2021, Section 3.4.3). Using
concentration results from|Minsker & Wei/ (2019, Section 3.3 and Section 4), we obtain the following
{ Z Gy e (T, )

Bernstein inequality, whose proof is deferred to the end.
]: y,a} S e_t7
u<v
where cg > 0 is a universal constant, and

B(t) :=log(3d) - n(1 + V) + nt + /n((log d)*/2 + 3/2) 1 12,

Lemma H.1 Forallt > 2, we have

Z C()M . B(t)

By the tower property, taking expectations over F, , then yields the unconditional bound, i.e., for

t>2,
IED{

Setting t = log(8/4), since n > max{log(3d), t}, it follows that \/n((log d)/% + t3/2) + 12 <
2log(3d) - n(1 + /t) + 3nt and the last two terms in B(#) can be absorbed. Since log(8/§) > 2 for
d € (0,1), this yields

]P’{ ZG;“ o (Tus ) || > a1 M <log (3d) - n(1 + +/log(8/0)) + nlog(8/0) )}

u<v
for a universal constant ¢; > 0.

> Gyl (@)

u<v

2 C(]M . B(f)} S e_t

00\04

o (19)
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Terms (B), (C) Combining the sums for (B) and (C), we have

C)= ZZ(PyU(Huv)(xu)_Pyu Yo ZGU (74).

u=1v#u

=:G¥(xy)

Conditional on F ,, the terms G (z,) are independent (but not identically distributed) random
matrices. Since ||H|| < M P-ae., the triangle inequality gives |G (z, )] < 2nM for P-ae.
zy. Thus "' G¥(z,,) is a sum of independent, (conditional) mean-zero random matrices, so the
matrix Bernstein inequa]ity (Tropp et al., 2015, Theorem 6.1.1) applies, i.e, for all ¢ > 0,

> _E[Gh(@u) | Fya]

2
P{ Jzﬂ}f;mump(t/?), (20)
u=1

v+ 2nMt/3
By convexity of the operator norm and Jensen’s inequality, we can further bound

<3 e G0 | Foal| < SE (163w | Foa < 3B [IGE @I | 7]
u=1 u=1

u=1

n

S Gl()

u=1

>t

where

< 4M 2713,
where the first step uses the triangle inequality, and the third step applies the submultiplicativity of

the operator norm. Setting ¢ = 2,/vlog(8d/d) + 2% log(8d/d) in and plugging the above
bound, we obtain the conditional bound
}—y,a} <

P{ > Gilaa)

u=1
By the tower property, taking expectation over JF,, , gives the unconditional bound
{[Sencn

u=1
Term (D) Define the conditional expectation of Py, (Hyy) = Py (H(:, -, Guy)) OVEr Gy, as

)

> AMR/2\/10g(84)8) + ™ 1og(84/6)

IR

»Mcn

Mn
> 4Mn®/%\/log(8d/3) + i 21)

10g(8d/6)}

%g@%:/H@fMMﬂwmfw%@yMMf

+ [ Ha 0)pte | 9pla’ 1)1 = o)’

Because H is symmetric and ¢(y,y') = ¢(v',y), it follows that P, ,,(H) = P, ,(H). Then we
decompose term (D) as

S Py (Hu) =D Py (H( ) = Y (Pyy g (H( o au) = Py, o, (H))

u<v u<v u<v

+Y Py (H). (22)

u<v

Conditional on F,, the a,,, are independent Bernoulli with parameter ¢(y,, y,,). Therefore the first
sum on the right-hand side above is a sum of independent (conditional) mean-zero random matrices
where each summand has operator norm at most 21/ by the triangle inequality. So applying matrix
Bernstein inequality (Tropp et al.,[2015, Theorem 6.1.1) yields for all £ > 0,

2
IP’{ }'y} < 2dexp (—”2> . (23)

>t

Y Py, (H( o Aus)) = Py, (H))

u<<v

V' + 2Mt/3
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where

ZE [ o (H (55 @) = Py, (H))2 ’ ]:y}

u<<v

Taking ¢ = 21/v'1og(8d/) + 23 log(8d/4) in and then averaging over F, gives

"

It can be easily checked that v/ < 2M?n? using the triangle inequality, Jensen’s inequality, and the

submultiplicativity as in the earlier argument for v, which then yields
8SM
> 2v/2Mn+/log(8d/6) + = log(8d/0) p < 5

"
(24)

For the second sum in (22), note that {y,} are iid., so >, _, P,, ., (H) is a matrix-valued U-
statistic of order 2 in (y,,)5—; . Since E[P,, ,,, (H)] = P(H), Hoeffding’s decomposition|Lee|(2019)
can be applied to P, , (H)— P(H), and concentration bounds for each term of the decomposition,
as in the bound of terms (A)-(C), give the following lemma, whose proof is deferred to the end.

ST

Z (Pyuyo (H(, 5 auw)) = Py, y, (H))

u<v

> 24/ log(8d/d) + % 10g(8d/5)} <

Z (Pyuyo (H( 5 @uv)) = Py, y, (H))

u<<v

Lemma H.2 Forany 0 < § < 1, if n > max{log(3d),log(8/9)}, there is a universal constant
c2 > 0 such that

P{ 1Py,.y,(H) = P(H)|| = 02M<10g (3d) - n(1 + +/log(8/6)) + nlog(8/6)

5

+ n?/2\/log(8d/5) + nlog(8d/5)> } < % (25)

Putting everything together Returning to (I8), and combining (I9), 2I)), 24), (23), and simpli-
fying, it follows that with probability at least 1 — 0, there exists a universal constant c¢3 > 0 such
that

Z(Huv(xuvxv) — P(H))

u<v

< esM <n3/2\/log(8d/5) + nlog(3d) 10g(8/6)) ,

where we use the fact that for 6 € (0,1) and d > 1, log(3d) log(8/d) > log(8d/¢). Dividing both
sides by ( ) yields the desired result, therefore completing the proof.

Proof of Lemma Conditional on F, 4, {Zy }1<u<n is independent sequence and H,, is a
deterministic function defined as

H(z,2',0), if ayp =0
Hu’u , / — ) b ) ) uv )
(@,27) {H(a@x’,l), if ayy = 1.

Throughout the proof we work conditionally on F,, ,, so all probabilities and expectations are taken
with respect to the conditional distribution given F, ,.

Since >, _, Gu’, (xy,x,) is a canonical U-statistic of order 2, we can apply the results
from [Minsker & We1 (2019) (see Equation (14), Theorem 4.1, and the subsequent inequalities)
to obtain that, forall ¢ > 1 and ¢ > 2,

]P’{ >c< ZGZ:yv(xu,xv)

u<v

PBLCHMCIER)

u<v

+ AVit+ Bt +Ct3/% + Dt2> } <et,
(26)
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where

A = 2log(de) <Z E.,
viv>u

- (zEzu,xv |
u<v
E., (Gu" ’
Ty \ My sy (T, T0))

C— / logd (Z E,
vIv>Uu

Q> 1/(2q)
. 1/(2q)
uv 2
=2 (Z L (Gyu,yv(xmgcv)) H )

u<v
loe d . 1/(2q)
og 2
+( ) (ZEM o, max |[(G52, @u2)? ) -

Here E,, [-] and E, [-] denote the conditional expectations with respect to x,, and x,,, respectively,
while E,, ., [] denotes the conditional expectation with respect to both x,, and x,,.

To bound A and B, note that || H|| < M, P-a.e., implies ||G,Zf,yv || < 4M, P-a.e., due to the triangle

inequality. By the submultiplicativity of the operator norm, it follows that H Gyl oy || < 16 M2

P-ae.. Applying Jensen’s inequality and the triangle inequality then yields the bounds

uv
§ : Eqg, Gyu Yo xuvxv))

1/2
Z Exu,zv GZ: Yo (muv 1'71))2H> )

u<v

A < 2log(de) (16n(n — 1)M2)"* < 8Mlog(3d) - n, and
B < 2v/8Mn.

Furthermore, the function ||-||9 is convex for ¢ > 1, so we have

q .
ZE% %)ZEI (n-u Y |

uv uv 2|4
Z ]Ex” Gyu yv xu’xv)) Ty G mlﬂx’v)) H

viv>u viv>u
(“)
ZE n—u)'k1 Z E,, (styyv(acu,xv))zuq
viv>u
< Z na 1169027 < 16902+ M2,

u<v

where step () follows from Minkowski’s inequality and step (i¢) follows from Jensen’s inequality.
Using this bound, C' can be bounded as

oo

Since this holds for any g > 1, taking ¢ — oo yields
C < 8M+/n.

2
E uv
}E:EU Gyu y'U xu7 x'l}))

viv>u

qy\ 1/(29) lowd
) < 8My/1+ 08¢ +m:,
q

Finally, D can be bounded as

1/(2q)
—1 1
D<?2 <n(n2)16qM2q) + (1 n 0§d> (16qM2qn)1/(2q)

< 8Mn'/7 4+ 4M (1 + bgd) nl/(29)
q

and letting ¢ — oo gives
D < 12M.
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Combining together the bounds for A, B, C, D, and plugging into (26)), yields

IE"{ > G (T, x) >c[ > G (2 wy)

u<v u<v
It remains to bound E|| 3

+ Mlog(3d) - nv/t + Mnt

} <e t. (27)

(2w, zy)||. By (Minsker & Weil, 2019, Equation (12)), we have

>1/2

S (G, (1))

viv>u

+ M/nt3? + M¢?

uv
u<v ywyn

< 'logd <Z E.,

1/2

E|| > Gy, (s w)

u<v

2
S B (G, (r) \

vIv>U

1D Eova, (G, (@0 20)°

u<v

>1/2

Using Jensen’s inequality and the triangle inequality, we can bound the right-hand side similarly to
the term A, to get

Z Gyu»yz xu’xv)

u<<v

+ +/logd <Ewu)xv max
u

< ¢"logd (2\/8n(n “1)M2 + /log d\/16(n — 1)M2)

<M (logd -n+ (logd)®/? . \/ﬁ) :
Plugging into and simplifying, we obtain

{ > G (T, x)

u<v
which completes the proof of the lemma.

> "M [log(?)d)-n(l—f—\/i)—f—nt—i—\/ﬁ((log d)3/2443/2) 42

} é 6_t7

Proof of Lemma For notational convenience, write H (yy, ) := P,, ,, (H). Let
u<v
Since H is symmetric (H (yu, o) = H (ys, yu)), Hoeffding’s decomposition [Lee (2019) gives
Un - E[Un] = Z (ﬁ(yun yv) - IEyu [ﬁ(yu7 yv):| - Eyv [ﬁ(yu7 yv):| + Eyu,yv [ﬁ(yuy yv)})

u<v

=:T,

(n—1 zn:( [ yu,yv)] —Ey, .y, [ﬁ(yu,yv)D,

=T
where [, [] denotes expectation over y,,, and E, . [-] denotes expectation over v, .

The term 77 is a canonical U-statistic of order 2. So applying the same argument from Lemma [H.T]
(now without conditioning on F, ,), we can obtain

P{|Ta] = coM - B(t)} <e™,

where ¢y > 0 and B(t) are as defined in Lemma Setting t = log(8/4), as long as n >
max{log(3d), log(8/4)}, the same reasoning below Lemma [H.1] gives

{||T1H >caM <log (3d) - n(1 + /log(8/9)) + nlog(8/d) )}

For T3, we follow the same reasoning that yields (ZT) (again without condmomng on Fy o), to get

1og<8d/6>} <9

8M
P{||T2||24Mn3/2 log(3d/0) +

Combining the two bounds gives the desired result.
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H.2 PROOF oF LEMMA [E1]

pefine (f(2) fla’) T Ivee( f(x) f(z')T)T

We first show that H is symmetric, i.e., H(z,2',a) = H(2',z,a). By Magnus & Neudecker{(2019,
Theorem 3.14), for any matrix B, we have

D] vec(B) = vech(B + B" — diag(B)).
Since diag(B) = diag(B "), it follows that D] vec(B) = D] vec((B + BT)/2). Writing M, ,» =
f(x)f(2")" and M = (M, ,» + M,/ ,;)/2, we obtain
D] vec(f(x) f(a') T vee(f(x)f (o)) Dy, = D vee(My.or)vee(M, )T Dy
= D; vec(M)vec(M)' Dy,

Dr.

This expression is clearly unchanged if we swap z and 2’. Moreover, S¢(W; 2,2/, a) = f(z) T ((1—
a)(1 — Ws) + aW;) f(2') also does not change if we swap x and 2’ since Wt is symmetric. Hence
H(z,2',a) = H(z',x,a).

Next the following lemma states that H is bounded in the support of the target distribution, whose
proof is deferred to the end.

Lemma H.3 Under the condition ofLemmafor all (x,2',a) € X x X x {0,1} in the support
ofp(l)(xu, Ty, Gy, ||H (2,2, a)|| < 27};13'

Observe that

~ 1
VZ(w) = —E[H (=M, 2V, a(}))], and VZ0(wy) = ———— Z H(z®, 2V, o).

(")) &=

Then H satisfies the conditions of Lemma Since ") > (log(3L?))?log(8/§) by assumption
of lemma, applying Lemma with d = L(L + 1)/2 < L? yields that with probability at least
1 — 4, there exists a universal constant ¢; > 0 such that

) ( log(8L2/5)  log(3L?) 10g(8/5)> .

HVQE(wf) - VQZ('LUf)H < C1Thin M n(1)

Using n") > (log(3L?))? log(8/4) again, the second term on the right-hand side is dominated by
the first term and so we obtain

HVQE(wf) - VQZ(’IUf)H < 2e17 24/ w.
n

Finally, Weyl’s inequality yields
Amin(—V22(w1)) > Amin(—V26(wy)) — Her(wf) - v22(wf)H

_o [log(8L2/4
> )\min(_VQE(wf)) - 2cl7—mir21 %

This completes the proof of the lemma.

Proof of Lemma First, by Assumption St(We;z,2',a) > Tmin on the support of
@) Sin
p (xuamvaau'u)- ce

[vec(f () f(«") 2 = [1f(z") @ f(@)]l2 = I (@)]l2[l £ (2")]|2,
we have

1
Se(Wrz, ', a)

[veet )7 )M, = gy @ ) e

< Toin 1@ £ @ = T (28)
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where the last two steps use the fact that ||-||2 < |||y and ||f(z)]s = 1 for all z € X. Since
|lww || = |Jw||? for any vector w, it follows

2 AT 2
H (2,2, a)] < D] [|vee(f @) @) D,

211D |12
a SfQ(VVf;ZHJU/?a) — "min H LH s

where the first step uses the submultiplicativity of the operator norm. To bound || Dy ||, note that

since Dy, has full column rank,
HDLH Y, Amax (DIDL)

We claim that D] Dy, is a diagonal matrix with entries equal to either 1 or 2. If so, | Dz || < v/2 and
by the calculation above, we conclude

1H (z,2",a)|| < 27,
which proves the lemma.

It remains to prove the claim. Recall that for any symmetric matrix B, vec(B) = Dy vech(B) by
definition of Dy,. Note that each column of Dy, corresponds to one coordinate in vech(B): (1) If the
coordinate of vech(B) corresponds to the diagonal entry (i,7) of B, the corresponding column of
Dy, contains a single nonzero entry equal to 1 located at the vectorized position of (4, 7). Its squared
norm is therefore 1; (2) If the coordinate of vech(B) corresponds to an off-diagonal entry (4, j) with
1 < j, the corresponding column of Dy, has exactly two nonzero entries, both equal to 1, located at
the vectorized positions of (¢, j) and (j, ¢). Its squared norm is therefore 2.

Moreover, two different columns of Dy must have disjoint supports, so they are orthogonal. It
follows that D] Dy, is diagonal with entries equal to 1 or 2. This establishes the claim and completes
the proof.

H.3 PROOF OF LEMMA

Define

(2a — 1)vee(f(x)f(2")")

Si(Wg 2,2/, a) '
Following the same reasoning used in the proof of Lemma we can easily check that
G(x,2',a) = G(z',x,a). Furthermore, since [2a — 1| < 1 for a € {0, 1}, combining with
yields

G(z,2',a) == D]

|G (x,2',a)||, < 7k forall (z,2',a) € X x X x {0,1} in the support of p") (y,, Ty, Gyy)-

— ‘min
Now observe that

Ve(wy) = E[G(x), oV, af))),
1

S ON Z G($£1)7 335;1)7 aq(}u))-

("2) i=e

Since n(Y) > (log(3L?))?log(8/8) > max{log(3L?),1og(8/5)} by assumption of lemma and

L(L+1)/2+ 1 < L? for L > 2, the conditions of Corollary [E.1|hold. Therefore, Corollary

gives that with probability at least 1 — 4,

-~

Vf(wf) =

0 log(8L2%/4 log(3L?%)log(8/6
Vi) — Vilwy)|| < eyrt (/108BL/0) | 1osBLT) log(8/9) )
2 n(®) )

for some universal constant ¢; > 0. Under the assumption n") > (log(3L?))? log(8/4), the second
term on the right-hand side is dominated by the first term, so the above bound simplifies to

HVE(wf) - Vz(wf)H2 < 2c170/ log(:(ﬂ.

30
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H.4 PROOF OF LEMMA [FJ3]

We begin by expanding the /; norm
[vec(wiwy ) — vee(wywh )|l = ZZ| wi)i(wa); — (wy)i(wh);]-

Adding and subtracting the term (w1 );(w5); inside the absolute value, we have
Ivec(wiwy ) — vee(wywy ")l

=D wn)iwa); = (wn)alwh); + (wn)s(wh); — (w)i(wh),|
< D203 (lwn)iCwa); = (wn)i(wh);| + |(wn)s(wh); = (wi)i(w);))
= 32 3 (lCwill(wa); = ()] + () llwn); = (i)

where the second step follows from triangle inequality. Simplifying the right-hand side yields

Ivec(wiwy ) — vee(whu, )l

=<Z|<w1>z~|) S lwa); — ()] | + | Do 1h); (Zuwl)i—(wam)

j
= [Jwi |1 lwa = wall1 + [Jwgll1]|wy —wil.

This proves the lemma.

I USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs solely to aid in correcting typos and checking grammar.
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