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Unpaired  Multimodal Representation Learning
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Figure 1: Text provides complementary information beyond images, even when not paired directly;
We introduce Unpaired multimodal representation learning, a framework that leverages unpaired
multimodal data to improve unimodal representations

Abstract

Traditional multimodal frameworks emphasize learning unified representations for
tasks such as visual question answering, typically requiring paired, aligned data.
However, an overlooked yet powerful question remains: can one leverage auxiliary
unpaired multimodal data to directly enhance representation learning in an indi-
vidual modality? To explore this, we propose UML: UNPAIRED MULTIMODAL
LEARNER, a modality-agnostic training paradigm in which a single model alter-
nately processes inputs from different modalities—including images, text, audio,
or video—while sharing model weights across these modalities. Our approach
exploits shared structure in unaligned multimodal signals, eliminating the need for
paired data. We show that unpaired text improves image classification, and that
other auxiliary modalities likewise enhance both image and audio tasks.

1 Introduction

The pursuit of a succinct representation of reality across text, images, and audio has long guided
efforts in building intelligent agents. Recent web-scale multimodal learning aligns diverse modalities
in a shared latent space [Radford et al., 2021, Singh et al., 2022, Mizrahi et al., 2023, Girdhar et al.,
2023a, Bachmann et al., 2022, Li et al., 2023, Bachmann et al., 2024, Jia et al., 2021], capturing cross-
modal structure and surpassing unimodal baselines in zero-shot transfer and cross-modal retrieval.

Proceedings of the III edition of the Workshop on Unifying Representations in Neural Models (UniReps 2025).



Yet most approaches overwhelmingly rely on massive paired corpora (e.g., image–caption data) to
learn such representations, limiting scalability in specialized or low-resource domains, where paired
data is costly. While paired data is expensive to collect and curate, unpaired data is naturally abundant.
This raises a critical question:

Can we move beyond the rigid paradigm of paired learning and meaningfully enhance unimodal
representations by accessing unpaired data from other modalities?

Recent work posits a shared statistical model of reality—an empirical echo of Plato’s ideal
Forms—where embeddings across modalities converge toward a unified representation as networks
scale [Huh et al., 2024, Huang et al., 2021]. Thus, with paired supervision, models can exploit natural
co-occurrence to capture shared semantics more accurately. Crucially, however, achieving this conver-
gence does not necessarily require explicit pairs; if each modality samples the same underlying latent
space, aligning their marginal distributions can reveal the common semantic structure [Timilsina
et al., 2024, Sturma et al., 2023].

Building on this insight, we introduce Unpaired Multimodal Representation Learning, a framework
leveraging unpaired multimodal data to improve unimodal representations. We first show that
theoretically, under linear assumptions, this yields more informative representations than single-
modality learning. In some cases, adding complementary modalities yields more accurate ground-
truth estimates than merely enlarging the primary dataset—for example, an image classifier may
benefit more per sample from training on sentences than on additional images, even when evaluated on
images. We instantiate this idea with UML: UNPAIRED MULTIMODAL LEARNER, a shared-weight
network that processes diverse modalities with shared weights, distilling synergistic knowledge
without explicit pairings. We start with state-of-the-art image and text encoders (e.g., DINOv2,
OpenLLaMa) and train a shared network that treats projected data from the second modality as
extra training samples, yielding substantial gains on 10 image and audio benchmarks. We further
show effective knowledge transfer by initializing vision models with pretrained language model
weights. Finally, we quantify an “exchange rate” between images and sentences, measuring how
many sentences equal one image for optimal performance. Together, these results show that fully
unpaired data from one modality can strengthen another, enabling robust multimodal training without
paired supervision.

To summarize, the contributions of our work are:

• We introduce UML: a modality-agnostic shared-weight framework that leverages unpaired
auxiliary modalities as extra training data, enriching unimodal features and delivering strong
gains across 11 image and audio benchmarks with pretrained encoders (e.g., DINOv2,
AudioCLIP). We also quantify conversion ratios between images and sentences, mapping
how data from one modality substitutes for another in training.

• Theoretically, under a linear data-generating model, we prove that unpaired auxiliary modal-
ities can strictly reduce estimator variance, yielding more informative representations than
any single-modality training.

2 Unpaired Multimodal Representation Learning
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Figure 2: (Left) Traditional paired multimodal learn by maximizing the alignment of paired data
across modalities; (Right) We propose UML, which learns from unpaired multimodal data via weight
sharing, allowing information flow across modalities to enrich unimodal representations.
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We assume an existence of an underlying reality Z∗ observed through different projections (modal-
ities) such as images, text, or audio [Huh et al., 2024, Timilsina et al., 2024, Sturma et al., 2023].
Each modality is represented by a random variable, e.g., X for images and Y for text, producing
observations x ∈ X and y ∈ Y .

Multimodal representation learning seeks encoders fθx : X → Z and fθy : Y → Z mapping each
modality into a shared embedding space Z . In the standard setting, training relies on paired data, i.e.,
samples (x, y) drawn from the joint distribution P (X ,Y), which are assumed to be aligned views of
the same underlying entity in Z∗ [Radford et al., 2021, Zhai et al., 2023, Jia et al., 2021, Singh et al.,
2022, Li et al., 2019, Lu et al., 2019, Bachmann et al., 2022, Roy et al., 2025, Wang et al., 2024,
Liang et al., 2023].

In contrast, here we study the setting where such pairs are absent. Crucially, observations x ∼ P (X )
and y ∼ P (Y) are drawn independently, with no guarantee of correspondence. Our objective is still
to learn fθx and fθy into a common space Z that captures the shared structure across modalities. We
refer to this setting as Unpaired Multimodal Representation Learning. The key insight is that even
when unpaired, modalities could carry complementary signals about the same underlying reality Z∗.
For example, shuffling text captions across an image dataset destroys pairwise correspondences but
still preserves distributional cues that can guide representation learning. We formalize this framework
under linear assumptions in Appendix C. Here, estimating the underlying reality is governed by the
Fisher information matrix, which measures how sharply the likelihood “curves” around the true θ.
Because the two modalities are independent conditioned on Z , their curvature contributions add
pointwise, resulting in the joint Fisher information being simply the sum of the unimodal blocks.
Thus, loosely speaking, any nonzero contribution from the unpaired Y-samples strictly increases
curvature—and thus strictly tightens the variance bound—along those directions. Building on this,
we show in Appendix E.10 that the effect can be so pronounced that a single Y sample may contribute
more information than an additional X sample—i.e., the effective exchange rate between modalities
can be below one, even when evaluation is on X .

3 UML: UNPAIRED MULTIMODAL LEARNER

Suppose we train on a primary modality X while leveraging unpaired data from an auxiliary modality
Y . We assume access to pretrained encoders fθx and fθy that capture the semantic structure of each
modality. Our algorithm maps embeddings from both modalities into a shared latent space and trains
a single head hθ across them. Concretely, given batches bx ∼ P (X ) and by ∼ P (Y), we compute
embeddings zx = fθx(bx) and zy = fθy (by). These are then passed through the shared head to
produce hθ(zx) and hθ(zy), each supervised with its own task-specific loss. For classification tasks,
this specializes to

L = ℓCE(hθ(zx), cx) + ℓCE(hθ(zy), cy),

where cx and cy are the corresponding class labels for bx (say images) and by (say texts) respectively.

Although supervision is modality-specific, the shared head hθ receives updates from both modalities.
Consequently, gradients from hθ also flow into fθx , effectively transferring information from fθy . To
distill knowledge from text into vision, for example, we freeze the text encoder fθy and use it as a
stable semantic source. This shared-weight design allows knowledge from Y to regularize and enrich
representations of X , even without paired samples. Pseudocode is provided in Appendix D.

4 Experimental Results and Discussion

We evaluate UML on visual classification in two settings: (1) Full fine-tuning: initializing from a
pretrained vision backbone and updating all parameters on the target dataset. (2) Few-shot linear
probing: freezing the vision backbone and training a linear classifier on k labeled samples per
class (k = 4). In both cases, we enrich image representations with unpaired text embeddings, using
DINOv2 as the vision encoder and OpenLLaMA as the text encoder. To construct conceptually related
yet unpaired text data, we generate text templates with varying amounts of semantic information
about the dataset. For further details and specific prompts, refer to Appendix B.3. Our method has
two variants: Ours (UML) where we alternately train with both image and unpaired text data (see ??)
and Ours (init) where we initialize the linear classifier with the average text embedding of each class,
providing a strong prior to align image and class level information.
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Shot Method Cars FGVC DTD UCF101

N/A
Unimodal 79.45 66.99 72.16 83.18
Ours 84.87 ↑ 71.54 ↑ 74.14 ↑ 84.77 ↑
Ours (init) 86.39 ↑ 73.44 ↑ 74.27 ↑ 84.69 ↑

4
Unimodal 38.76 32.10 59.69 67.75
Ours 41.69 ↑ 33.38 ↑ 61.58 ↑ 69.60 ↑
Ours (init) 43.17 ↑ 33.86 ↑ 62.43 ↑ 71.13 ↑

Table 1: Full finetuning (Shot = N/A) and 4-
shot linear probing with ViT-S/14 DINOv2
and OpenLLaMA-3B.

Distribution Shift Results

Shot-4

Figure 3: Robustness under test-time distribution
shifts. Our approach is more robust than its unimodal
counterpart across distribution-shifted test sets.

Unpaired Textual Data Improves Visual Classification. As shown in Table 1, across both full fine-
tuning and 4-shot linear probing, UML consistently improves over unimodal baselines on Stanford
Cars, FGVC Aircraft, DTD, and UCF101. Results on other shots, datasets, model scales, and prompt
variants are reported in Appendix E. We also evaluate the robustness of UML-trained models under
test-time distribution shifts. A 4-shot linear probe with DINOv2 is trained on ImageNet and tested on
ImageNet-Sketch and ImageNet-A. UML consistently outperforms the unimodal baseline (Figure 3),
showing that language priors yield more transferable features. Additional robustness results are
provided in Appendix E.3.

Unpaired Image and Text Data Improves Audio Classification. We extend this analysis beyond
image and text modalities to ImageNet-ESC-27 benchmark [Lin et al., 2023]. As shown in Figure 4,
UML leverages unpaired image and text data to consistently improve 4-shot audio classification over
unimodal baselines. Symmetrically, audio and text also improve image classification, with detailed
results, including other shot counts, dataset variants, and model settings, reported in Appendix E.9.

Audio Benchmarks

Figure 4: UML improves
audio classification using
unpaired image and text
samples
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Figure 5: Image classifier
trained from BERT initial-
ization outperforms train-
ing from scratch

Figure 6: 1 img ≈ 1034 words (DI-
NOv2)

Transfer Learning. Thus far, we have explored how co-training with multiple unpaired modalities
improves the learned representation. Here, we study if transferring knowledge from one modality
can enhance performance in another by initializing a ViT [Dosovitskiy et al., 2020] with pretrained
BERT [Devlin et al., 2019] weights and evaluating on ImageNet (details in Appendix B.4.3). As
shown in Figure 5, initializing with BERT weights boosts performance for both frozen and unfrozen
backbones. Our results indicate that the semantic knowledge of language models provides a strong
initialization for vision.

Marginal Rate-of-Substitution Between Modalities. How many words is an image worth? Figure 6
illustrates this by plotting test accuracy isolines on Oxford-Pets (few-shot linear probe), effectively
mapping the number of text shots equivalent to a single image shot. Aligned CLIP (1 image ≈ 228
words) as shown in Figure 27 is more efficient than non-aligned DINOv2 (1 image ≈ 1034 words).
Indeed, in some cases, an image may quite literally be worth a thousand words. However, we do
not control for increasing complexity, so adding sentences does not guarantee extra information.
Extended results on aligned CLIP and additional datasets, are provided in Appendix E.4.
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5 Conclusions and Limitations

In this work, we introduced Unpaired Multimodal Representation Learning, showing theoretically
and empirically that unpaired data from auxiliary modalities strengthens unimodal representations
and enables learning a more accurate representation of the underlying reality. Empirically, we show
performance gains across vision and audio classification benchmarks using auxiliary modalities and
estimate useful conversion ratios between them. Our algorithm provides a new perspective on how to
harness the abundance of unpaired data to learn better representations. While our study focuses on
classification, extending to self-supervised objectives (e.g., masked prediction) and text tasks offers
promising directions for future work.
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A Further Related Works

Unpaired Multimodal Learning. Unpaired data has long been used for image-to-image [Zhu et al.,
2017, Liu et al., 2017, Almahairi et al., 2018, Shi et al., 2023] and text-to-text translation [Lample
et al., 2018] . More recently, several works have also proposed learning from unpaired data by
inferring coarse- or fine-grained alignments through distribution matching or optimal transport
objectives [Xi et al., 2024, Demetci et al., 2022, Ryu et al., 2024]. In contrast, we leverage unpaired
data for learning representations without the need for explicit or inferred alignment. [Timilsina et al.,
2024, Sturma et al., 2023] theoretically analyze the problem of identifying shared latent components
and causal structures in unaligned multimodal mixtures. Most closely related to our work is [Lin et al.,
2023], which leverages coarse-grained text data such as class names to improve image classification
on CLIP using a shared linear head. Another related line of works [Roth et al., 2023, Pratt et al., 2023,
Menon and Vondrick, 2022, Gao et al., 2024] leverage prompting templates and pretrained LLMs to
generate descriptive class captions, showing improved image classification performance with CLIP.
Nonetheless, these methods operate on CLIP with pre-aligned representation spaces, whereas our
approach also learns from unpaired data without assuming prior alignment. Several works have also
proposed learning large multitask multimodal models with joint encoders and unified embedding
spaces [Srivastava and Sharma, 2024, 2023, Zhang et al., 2023, Girdhar et al., 2022, Geng et al.,
2022], often using joint training over separate tasks and/or masked prediction objectives. In a similar
vein, [Chada et al., 2023] uses a stage-wise training strategy with both unpaired and paired data,
and [Girdhar et al., 2023b] trains a single model across visual modalities. However, most of these
methods rely on some amount of paired data for preliminary alignment and then leverage abundant
modality-specific unpaired data for further improvement. In contrast, our approach demonstrates that
a model can implicitly learn cross-modal correlations from purely unpaired data, without requiring
explicit alignment as a prerequisite.

Multimodal Representation Alignment. Our method relies on the notion of shared information
and structure between unaligned modalities. Closely related to this are works demonstrating that
unimodal representations trained without multimodal data are nevertheless converging. Huh et al.
[2024] presents evidence that better-performing language models exhibit increased alignment to
self-supervised vision models. Similarly, [Maniparambil et al., 2024] shows a latent space alignment
between vision and text encoders across backbones and training paradigms, and uses the CKA metric
to connect unaligned encoders zero-shot. Earlier works also note alignment between models trained
with different datasets and modalities [Moschella et al., 2022, Norelli et al., 2023]. Several works
have also shown that a linear projection or MLP is sufficient to stitch together the latent spaces of
pretrained vision and language models [Merullo et al., 2022, Liu et al., 2023, Koh et al., 2023]. Zhai
et al. [2022] extends this to training a text encoder to align to a frozen pretrained image model; this
method was in turn used to integrate DINOv2, a large self-supervised vision model, with a text
encoder [Jose et al., 2024].

B Supplementary Experimental Details and Assets Disclosure

B.1 Assets

We do not introduce new data in the course of this work. Instead, we use publicly available widely
used image datasets for the purposes of benchmarking and comparison.

B.2 Hardware and setup

Each experiment was conducted on 1 NVIDIA Tesla V100 GPUs, each with 32GB of accelerator
RAM. The CPUs used were Intel Xeon E5-2698 v4 processors with 20 cores and 384GB of RAM.
All experiments were implemented using the PyTorch deep learning framework.

B.3 Datasets

B.3.1 Image Classification Benchmarks

We evaluate on the following widely-used classification benchmarks: ImageNet [Deng et al., 2009],
StanfordCars [Krause et al., 2013], UCF101 [Soomro et al., 2012], Caltech101 [Fei-Fei et al., 2004],
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Table 2: Detailed statistics of the 10 datasets for image classification.
Dataset Classes Train Val Test

Caltech101 [Fei-Fei et al., 2004] 100 4,128 1,649 2,465
OxfordPets [Parkhi et al., 2012] 37 2,944 736 3,669
StanfordCars [Krause et al., 2013] 196 6,509 1,635 8,041
Oxford Flowers [Nilsback and Zisserman, 2008] 102 4,093 1,633 2,463
Food101 [Bossard et al., 2014] 101 50,500 20,200 30,300
FGVCAircraft [Maji et al., 2013] 100 3,334 3,333 3,333
SUN397 [Xiao et al., 2010] 397 15,880 3,970 19,850
DTD [Cimpoi et al., 2014] 47 2,820 1,128 1,692
UCF101 [Soomro et al., 2012] 101 7,639 1,898 3,783
ImageNet [Deng et al., 2009] 1,000 1.28M N/A 50,000

Oxford Flowers [Nilsback and Zisserman, 2008], SUN397 [Xiao et al., 2010], DTD [Cimpoi et al.,
2014], FGVCAircraft [Maji et al., 2013], OxfordPets [Parkhi et al., 2012], and Food101 [Bossard
et al., 2014]. More details about the dataset and splits is provided in Table 2.

B.3.2 Constructing text templates

To construct conceptually related yet unpaired text data, we generate text templates that capture
varying granularities of information about the dataset. Our first approach (Vanilla) uses the
straightforward template “a photo of a {}” with a natural language label for each category,
resulting in a basic text description for each class. However, this simple textual corpus lacks
fine-grained information necessary to distinguish between visually similar subcategories or to
resolve contextually ambiguous terms. To address this, for the second template, we draw from
the extensive literature on improving text prompts for zero-shot classification in CLIP [Gao et al.,
2024, Menon and Vondrick, 2022, Pratt et al., 2023, Roth et al., 2023]. Specifically, for the second
approach (GPT-3 Descriptions), we adopt the text prompt generation strategy developed by Pratt
et al. [2023], using large language models such as GPT-3 to generate diverse and contextually
rich prompts for each image category. We use three generic hand-written sentences across the datasets:

Describe what a/the {} looks like:
Describe a/the {} :

What are the identifying characteristics of a/the {}?

The blank portion of each template is populated with the category name, along with the category type
for specialized datasets (e.g., “pet” + {} for Oxford Pets or “aircraft” + {} for FGVC Aircraft). The
type specification is important for disambiguating categories with multiple interpretations. Some
examples of these descriptions are provided in Table 3 for the Oxford Pets dataset.

B.3.3 ImageNet-ESC Dataset

Experimental Setup. We extend our results beyond vision and language to an audiovisual-language
dataset: the ImageNet-ESC benchmark [Lin et al., 2023]. This benchmark combines ImageNet (1000
object categories) and ESC-50 (50 environmental sound classes) by matching classes that logically
correspond. For example, the dog (barking) class from ESC-50 aligns with various dog breeds from
ImageNet, while the clock-alarm sound maps to both analog clock and digital clock. This alignment
captures the relationship between visual objects, their sounds, and their textual descriptions. The
benchmark consists of two versions: 1) ImageNet-ESC-27: A broader set including loosely matched
visual-audio pairs (e.g., drinking-sipping to water bottle); 2) ImageNet-ESC-19: A more precise
subset containing only accurate visual-audio matches.

B.4 Training Protocol

B.4.1 Image Classification using Image and Unpaired Texts

For text, we use OpenLLaMA-3B as our default encoder and ablate against BERT-Large, RoBERTa-
Large, GPT-2 Large, and the pre-aligned CLIP text encoder, keeping the text encoder frozen. For

13



Table 3: Sample text descriptions per class for Oxford Pets dataset
Class Examples
Wheaten Terrier A wheaten terrier is a small, shaggy dog with a soft, silky coat.

A wheaten terrier has a soft, wheat-colored coat that is low-shedding and hypoallergenic.
The wheaten terrier is a medium-sized, hypoallergenic dog breed.
A pet Wheaten Terrier usually has an intelligent expression and a soft, wheat-colored coat.

Great Pyrenees A great pyrenees is a large, white, shaggy-coated dog.
A Great Pyrenees is a large, fluffy dog with a calm, gentle disposition.
The great pyrenees was originally bred to protect livestock from predators.
Great Pyrenees are known for being very large, white dogs with thick fur.

Sphynx A pet Sphynx typically has a small, wrinkled head and a hairless body.
A Sphynx is a hairless cat breed known for its soft, warm skin.
A Sphynx often displays large ears, pronounced cheekbones, and no fur.
Sphynx are unique cats characterized by their lack of coat and wrinkled skin.

Birman A Birman is a long-haired, color-pointed cat with a “mask” of darker fur on its face.
A Birman has silky, pale cream to ivory fur with deep seal- or lilac-colored points.
Birman cats possess striking blue eyes and contrasting white “gloves” on their paws.
They are known for being gentle, affectionate, and smooth-coated companions.

Pomeranian A Pomeranian is a small, fluffy dog with a thick double coat.
Pomeranians are toy-sized, alert dogs with fox-like faces and plumed tails.
A pet Pomeranian often comes in orange, black, white, or mixed coat colors.
They are lively, outgoing, and known for their bold, friendly personalities.

images, our main backbone is ViT-S/14 DINOv2, with ablations across other DINOv2 variants and
the CLIP vision encoder. In the linear-probe setting, all encoder weights stay fixed and we train only
a single linear classification head; in full fine-tuning, we jointly update the image backbone and that
head, while still freezing the text encoder.

We optimize cross-entropy loss via AdamW [Loshchilov and Hutter, 2017] and perform an extensive
grid search over learning rate, weight decay, cosine learning rate scheduling with linear warmup,
dropout, and a learnable, modality-specific scaling on the logits. The results are reported for the
best-performing model on the validation dataset. We report results for the model achieving highest
validation accuracy; the full hyperparameter ranges are in Table 4.

For full fine-tuning, we jointly update the image backbone and classification head with a fixed
learning rate of 5× 10−5, batch size 64, and omit learnable modality-specific scaling, since it showed
no benefit in this setting.

Table 4: Hyperparameter grid for linear probing.
Hyperparameter Values
Optimizer adamw
Learning rate {0.001, 1e-4}
Weight decay {0.0, 0.01, 0.001}
LR scheduler cosine
Batch size {8, 32}
Max iterations 12,800
Warmup iterations 50
Warmup type linear
Warmup min LR 1e-5
Dropout {0.0}
Modality-specific learnable scaling {False, True}
Early-stop patience 10
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B.4.2 Evaluation on ImageNet-ESC

Similar to our vision-language experiments, we perform few-shot evaluation using the 5-fold splits
defined in the benchmark. Each fold contains 8 samples per class, with one fold used for training
and validation and the remaining four for testing. We repeat the process over 5 random splits and
report the average performance. For audio encoding, we use AudioCLIP with an ES-ResNeXT
backbone [Guzhov et al., 2021]. AudioCLIP is pretrained on AudioSet and generates audio em-
beddings in the same representation space as CLIP. Following the instructions in [Guzhov et al.,
2021, Lin et al., 2023], we use train() mode in Pytorch to extract the features since eval() mode
yields suboptimal embeddings. We evaluate our models on two tasks—audio classification and
image classification—comparing the unimodal baseline against two multimodal variants in which the
primary modality is each time augmented by one of the other modalities.

B.4.3 Transfer Learning from Language to Vision

To adapt a language model to image classification, we embed image patches using a linear projection
and add positional encodings to capture spatial structure. We then use transformer layers initialized
from pretrained BERT, and finally, a 2-layer MLP classification head. Specifically, we split each
image of size 224 × 224 into patches of size 16 × 16 with 196 patch tokens. Each patch is then
projected into the model’s embedding space of dimension d(e.g. d=768 for GPT-2, d = 1024
for BERT) via a learned linear layer. We then prepend a learnable “[CLS]” token, add learned
positional embeddings of shape (N + 1) × d, and apply dropout with probability p = 0.1. This
(N +1)× d sequence is passed into the pretrained transformer stack (either GPT-2 or BERT), using a
full bidirectional attention mask over all patch tokens and the CLS token. We extract the final hidden
state corresponding to the CLS token and feed it through a two-layer MLP classification head.

During training, we evaluate two scenarios: 1) one where the pretrained backbone is frozen and only
the patch embedding and linear head are trained, and 2) another where the backbone is initially frozen
to align the trainable layers (patch embedding and head) with the pretrained language backbone, and
then unfrozen after 2000 steps for end-to-end training. This approach allows us to test whether the
semantic richness captured by language models provides a strong initialization, leading to better
convergence and performance compared to training ViT from scratch.

C Proofs of Theoretical Results

In this section, we present complete derivations and proofs of the main theoretical claims. Ap-
pendix C.1 gathers all definitions and background required for our arguments. Appendix C.2
formalizes the linear data-generating model, derives closed-form maximum-likelihood estimators for
each modality and their joint estimator, and computes the corresponding block-wise Fisher informa-
tion. Finally, Appendix C.3 provides the detailed proofs of our variance-reduction claims, showing
rigorously how unpaired multimodal estimation strictly lowers estimator variance.

C.1 Background and Definitions

In this section we revisit the mathematical definitions used in our theoretical analysis, including
matrix-orderings, characterization of symmetric matrices and Fisher information.

Definition 1 (Positive Semidefinite Matrix). A real symmetric matrix A ∈ Rd×d is positive semidefi-
nite if for all vectors v ∈ Rd, v⊤Av ≥ 0. Equivalently, all eigenvalues of A are nonnegative. We
denote the set of all d× d symmetric, positive-semidefinite matrices as Sd

⪰0.

Definition 2 (Positive Definite Matrix). A real symmetric matrix A ∈ Rd×d is positive definite if
for every nonzero v ∈ Rd, v⊤Av > 0. Equivalently, all eigenvalues of A are strictly positive. We
denote the set of all d× d symmetric, positive definite matrices as Sd

≻0.

Definition 3 (Loewner Order). For two real symmetric matrices A,B ∈ Rd×d, we write A ⪯
B ⇐⇒ B − A is positive semidefinite and A ≺ B ⇐⇒ B − A is positive definite. This defines
a partial order on the cone of symmetric matrices.
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Definition 4 (Fisher Information Matrix). Given a parametric family of densities p(x; θ) on data x,
the Fisher information matrix at parameter θ is

I(θ) = Ex∼p(·;θ)
[
∇θ log p(x; θ)∇θ log p(x; θ)

⊤].
Equivalently, for regular models, I(θ) = −E

[
∇2

θ log p(x; θ)
]
.

C.2 Maximum Likelihood Estimators and Fisher Contributions

In this section we revisit our linear data–generating model, introduce notations for the X–only,
Y –only and joint likelihoods, derive the closed-form MLEs θ̂X , θ̂Y and θ̂X,Y , and formalize their
information contributions towards estimating the ground truth parameters θ ≡ [θc, θx, θy]

⊤.

Data Generating Process. Recall our linear data-generating process: Assume that all factors of
variation in reality live in a single d-dimensional space Z∗ ≡ θ ∈ Rd modeled using a linear
data-generating pipeline. This parameter can further be decomposed as θ ≡ [θc, θx, θy]

⊤ where
θc ∈ Rdc , θx ∈ Rdx , θy ∈ Rdy and dc + dx + dy = d. Here, θc captures the common (shared)
parameters that affect both modalities, θx denotes the parameters that only affect modality X , and
θy denotes the parameters that only affect modality Y . We observe two independent datasets, one
from each modality {Xi}Nx

i=1 ∈ Rm and {Yj}
Ny

j=1 ∈ Rn, each reflecting partial measurements of the
ground truth latent space Z∗:

Xi = Ac,i θc + Ax,i θx + ϵX,i, ϵX,i ∼ N
(
0, σ2

xImi

)
(1)

Yj = Bc,j θc + By,j θy + ϵY,j , ϵY,j ∼ N
(
0, σ2

yInj

)
. (2)

Here, Ac,i, Ax,i, Bc,j , By,j are known design blocks capturing how each sample probes the latent
factors and εX,i,εY,j represent the independent measurement noise.

In our linear setting, estimating the true latent state θ—and hence the underlying reality Z∗—is
governed by the Fisher information matrix I(θ) = −E

[
∇2

θ ℓ(θ)
]
, which measures how sharply the

likelihood “curves” around the true θ. High curvature along a particular axis means the data tightly
constrain that component, driving down estimator variance there.

Unimodal Estimators. We first estimate θ using only the X–dataset. Stacking {Xi}Nx
i=1 yields a

design matrix A with block rows [Ac,i, Ax,i, 0]. The least-squares solution

θ̂X = argmin
θ

Nx∑
i=1

∥∥Xi −Ac,i θc −Ax,i θx
∥∥2

omits θy entirely. Consequently, the Fisher information on θy vanishes, making it unidentifiable.

Analogously, stacking {Yj}
Ny

j=1 defines B with block rows [Bc,j , 0, By,j ] and yields

θ̂Y = argmin
θ

Ny∑
j=1

∥∥Yj −Bc,j θc −By,j θy
∥∥2.

This estimator doesn’t depend on θx, providing zero coverage for that component. Thus, each
unimodal estimator entirely fails to recover the parameters exclusive to the omitted modality.

Multimodal Estimators. Despite the lack of one-to-one pairing, both {Xi} and {Yj} share the
common parameters θc. Since the two distributions are independent, the joint likelihood factorizes as

Nx∏
i=1

p(Xi | θc, θx) ×
Ny∏
j=1

p(Yj | θc, θy).

Maximizing this yields the combined estimator

θ̂X,Y = arg min
θc,θx,θy

{Nx∑
i=1

∥Xi −Ac,i θc −Ax,i θx∥2 +

Ny∑
j=1

∥Yj −Bc,j θc −By,j θy∥2
}
.
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Intuitively, there is no requirement to match up individual (Xi, Yj) pairs. Instead, the estimate for θc
is improved by both modalities while remaining unpaired.

Fisher Information. In our linear model, each dataset contributes block-structured Fisher information.
For the X–dataset:

IX =

Nx∑
i=1

A⊤
c,iAc,i A⊤

c,iAx,i 0
A⊤

x,iAc,i A⊤
x,iAx,i 0

0 0 0

 ,

and for the Y –dataset:

IY =

Ny∑
j=1

B⊤
c,jBc,j 0 B⊤

c,jBy,j

0 0 0
B⊤

y,jBc,j 0 B⊤
y,jBy,j

 .

Because X and Y samples are independent, their curvature contributions add pointwise, resulting in
the joint Fisher information being simply the sum of the unimodal blocks.

IX,Y = IX + IY =


∑

i A
⊤
c,iAc,i +

∑
j B

⊤
c,jBc,j ∗ ∗

∗
∑

i A
⊤
x,iAx,i 0

∗ 0
∑

j B
⊤
y,jBy,j

 ,

where “∗” denotes the cross-modal blocks. In particular, we have the shared-parameter block as

(IX,Y )θc,θc =

Nx∑
i=1

A⊤
c,iAc,i +

Ny∑
j=1

B⊤
c,jBc,j ,

C.3 Theorems and Proofs

The aim of this section is to detail the proofs of the theoretical results presented in the main manuscript
The key theoretical tools driving our analysis are already prepared in Appendix C.1 and Appendix C.2.
Core to our theoretical analysis are a few lemmas around the Loewner-order monotonicity result for
inverses that we prove below.

Lemma 1 (Loewner Order reversal for inverses). Let M,N ∈ Sd≻0 with M ≺ N (or M ⪯ N ). Then
N−1 ≺ M−1 (or N−1 ⪯ M−1) .

Proof. Since N ≻ 0, N−1/2 exists and is nonsingular. Define C := N−1/2MN−1/2 ≺ I . Because
a congruence with an invertible matrix preserves positive-definiteness, C ≻ 0; hence C−1 is well
defined and C−1 ≻ I (the scalar map x 7→ x−1 is strictly decreasing on (0,∞)). Undoing the
congruence gives

M−1 = N−1/2C−1N−1/2 ≻ N−1/2IN−1/2 = N−1.

Lemma 2 (Inverse–monotonicity of the Moore–Penrose pseudoinverse). Let M,N ∈ Sd⪰0 satisfy
M ≺ N and kerM = kerN =: K. Then their pseudoinverses obey N† ≺ M†.

Proof. Set S := K⊥ and let P := PS be the orthogonal projector onto S. Because M and N vanish
on K, we have the decompositions M = PMP and N = PNP . Restricted to S both matrices are
positive–definite:

M̃ := PMP, Ñ := PNP ∈ SdimS
≻0 , M̃ ≺ Ñ .

Apply Lemma 1 to M̃, Ñ to obtain Ñ−1 ≺ M̃−1 on S. The Moore–Penrose pseudoinverse equals
the ordinary inverse on S and is zero on K:

M† = PM̃−1P, N† = PÑ−1P.

Therefore N† = PÑ−1P ≺ PM̃−1P = M†.

Lemma 3 (Directional Loewner Order reversal). Let M,N ∈ Sd≻0 with M ⪯ N . If a non-zero
vector v satisfies v⊤Mv < v⊤Nv, then
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1. For the vector v, it holds that v⊤M−1v ≥ v⊤N−1v, with strict inequality v⊤M−1v >
v⊤N−1v if and only if (N −M)M−1v ̸= 0.

2. There exists a non-zero vector u ∈ Rd such that u⊤M−1u > u⊤N−1u.

Proof. Denote the Loewner gap ∆ := N − M ⪰ 0. Then, the assumption v⊤Nv > v⊤Mv is
equivalent to v⊤∆v > 0. Introduce the congruence–invariant normalisation C := M−1/2∆M−1/2 ⪰
0. Now, using ∆ = M1/2CM1/2 and properties of inverse,

N = M1/2(I + C)M1/2, N−1 = M−1/2(I + C)−1M−1/2,

since I + C ≻ 0 (because C ⪰ 0 and I ≻ 0). Thus,

M−1 −N−1 = M−1/2
[
I − (I + C)−1

]
M−1/2

= M−1/2C(I + C)−1M−1/2,

because (I − (I + C)−1)(I + C) = C. Finally, evaluating in the direction v, we have

v⊤(M−1 −N−1)v = v⊤M−1/2(I + C)−1CM−1/2v

= u⊤(I + C)−1Cu (where u = M−1/2v)

Now, since (I+C)−1 ∈ S≻0 and C ∈ S⪰0 commute, the matrix (I+C)−1C is positive semidefinite
and it has exactly the same kernel as C. Thus, if C = Qdiag(λi)Q

⊤ (λi ≥ 0), we have

u⊤C(I + C)−1u =
∑
i

λi

1 + λi
(Q⊤u)2i ≥ 0.

This expression is strictly positive exactly when u has a component in any eigen-subspace with
λi > 0 i.e when u ̸∈ ker(C). Since M−1/2 ∈ S≻0, Cu = 0 =⇒ M−1/2∆M−1/2u = 0 =⇒
∆M−1v = 0. Thus, this expression is strictly positive if ∆M−1v ̸= 0.

Now, from the premise v⊤∆v > 0, it follows that ∆ ̸= 0. Since M ≻ 0, M−1/2 is invertible, C
is also not the zero matrix. Since C ⪰ 0, this means that C must have at least one strictly positive
eigenvalue. Let λ > 0 be such an eigenvalue, and let z ̸= 0 be a corresponding eigenvector. Define,
x := M1/2z ̸= 0. Thus, we have x⊤(M−1 −N−1)x = z⊤C(I +C)−1z = λ

1+λ∥z∥
2 > 0, showing

the existence of a non-zero vector x such that x⊤M−1x > x⊤N−1x.

Theorem 1. Let θ̂X , θ̂Y be the least-squares estimators for θ using only {Xi} and only {Yj} and
let θ̂X,Y be the joint estimator using both unpaired datasets. Then, under the assumption that
at least one Bc,j where j ∈ {1, 2, ...Ny} has full rank, the common-factor covariance satisfies
the strict Loewner ordering i.e. Var

(
θ̂X,Y

)
θc,θc

≺ Var
(
θ̂X

)
θc,θc

, or equivalently, the Fisher
information on θc strictly increases when combining both modalities, despite not having sample-wise
pairing:(IX + IY )θc,θc ≻ (IX)θc,θc .

Proof. For any statistic S(θ) = ∇θ log p(x; θ) and vector v,

v⊤I(θ) v = v⊤E[S(θ)S(θ)⊤] v = E
[
(v⊤S(θ))2

]
≥ 0.

Thus, a Fisher Information Matrix is a positive semidefinite matrix.

In our linear–Gaussian model, the X–dataset contributes (IX)θc,θc =
∑Nx

i=1 A
⊤
c,iAc,i and the

Y –dataset gives (IY )θc,θc =
∑Ny

j=1 B
⊤
c,jBc,j . Since at least one Bc,j has full column rank, (IY )θc,θc

is positive-definite on the θc subspace. Now, if at least one Bc,j ∈ Rm×dc has full column rank dc,
then for any v ∈ Rdc \ {0},

v⊤B⊤
c,jBc,j v = ∥Bc,jv∥2 > 0.

Hence, each summand in (IY )θc,θc is positive semidefinite and at least one is positive definite, so
their sum

∑
j B

⊤
c,jBc,j is positive definite on the θc subspace. Thus,
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(IX)θc,θc ≺ (IX)θc,θc + (IY )θc,θc = (IX + IY )θc,θc

Now, for regular exponential families (including Gaussian linear models), the covariance matrix of
the maximum likelihood estimator θ̂ near the true θ0 is (asymptotically) the inverse of the Fisher
information matrix i.e. Var(θ̂) ≈ I(θ0)

−1. Precisely, as the sample size n → ∞, we have:
√
n(θ̂ − θ0)

d→ N (0, I(θ0)
−1),

where θ0 is the true parameter value, I(θ0) is the Fisher Information Matrix evaluated at θ0 and
N (0, I(θ0)

−1) denotes a multivariate normal distribution with mean 0 and covariance matrix I(θ0)
−1.

Thus, we compare variances via the Moore–Penrose pseudoinverse of the information matrices.

Let MX = (IX)θc,θc , MY = (IY )θc,θc and MX,Y = (IX + IY )θc,θc . Since MY ≻ 0, MX,Y =

MX +MY is also positive definite (as MX,Y ⪰ MY ≻ 0). Thus, Var(θ̂X,Y ) = M−1
X,Y . We have

established MX ≺ MX,Y . Assuming MX is positive definite (to define the matrix Var
(
θ̂X,Y

)
θc,θc

),

we apply Lemma 1 to get M−1
X,Y ≺ M−1

X . Thus,

Var
(
θ̂X,Y

)
θc,θc

= M−1
X,Y ≺ M−1

X = Var
(
θ̂X

)
θc,θc

,

This proves the statement under the condition that MX is positive definite. Note here that, on spaces
unidentifiable by X-alone i.e. v ∈ ker(MX), we have Var

(
θ̂X

)
θc,θc

= ∞. Since MX,Y is positive

definite, it has finite variance along such v i.e. Var
(
θ̂X,Y

)
θc,θc

< ∞, thus strictly reducing the
variance of the estimator. Thus, adding the unpaired Y -modality strictly reduces the variance (or,
dually, increases the Fisher information) on the common factors θc.

Theorem 2. Let all notation be as in Theorem 1, and define MX := (IX)θc,θc , MY := (IY )θc,θc ,
and MXY := MX +MY . Let v ∈ Rdc \ {0}. If there exists at least one index j ∈ {1, 2, ...Ny} such
that Bc,jv ̸= 0, then the following hold:

1. The Fisher information strictly increases in direction v i.e. v⊤MXY v > v⊤MXv.

2. The variance of the estimator in direction v is strictly reduced i.e v⊤ Var
(
θ̂X,Y

)
θc,θc

v <

v⊤ Var
(
θ̂X

)
θc,θc

v, if v ̸∈ range(MX). For v ∈ range(MX), this strict inequality holds
for v under an additional invertibility condition and is always guaranteed for some u ∈
range(MX) i.e. ∃u s.t. u⊤ Var

(
θ̂X,Y

)
θc,θc

u < u⊤ Var
(
θ̂X

)
θc,θc

u.

Proof. Define MX := (IX)θc,θc , MY := (IY )θc,θc , andMXY := MX +MY . By assumption, ∃j
such that Bc,jv ̸= 0. Thus:

v⊤MY v =

Ny∑
j=1

∥Bc,jv∥2 ≥ ∥Bc,jv∥2 > 0.

Hence MY is positive-definite in direction v, implying MX,Y ≻ MX in this direction:

v⊤MXY v = v⊤MXv + v⊤MY v > v⊤MXv,

thus proving the first part of the theorem.

Case 1: v /∈ Range(MX). If v /∈ Range(MX), then v has a non-zero component in ker(MX). Let
v = vS + vK , where vS ∈ Range(MX) and vK ∈ ker(MX) with vK ̸= 0. The linear combination
of parameters v⊤θc = v⊤S θc + v⊤Kθc. Since vK ∈ ker(MX), the component v⊤Kθc is not identifiable
by the X-only model. Consequently, the asymptotic variance of an unbiased estimator for v⊤θc using
only the X-dataset is infinite. We denote this as v⊤Var(θ̂X)θc,θcv = ∞.

The strict inequality v⊤MXY v > 0, ensures that v /∈ ker(MXY ), and thus v ∈ Range(MXY ).
Since v ∈ Range(MXY ) and v ̸= 0, M†

XY v is well-defined. Furthermore, because MXY is positive
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semidefinite, M†
XY is also positive semidefinite and shares the same kernel as MXY (since MXY is

symmetric). As v ̸= 0 and v /∈ ker(MXY ), thus v /∈ ker(M†
XY ), which ensures v⊤M†

XY v is a finite
positive value. Thus,

v⊤Var(θ̂X,Y )θc,θcv < ∞.

Comparing this to the variance from the X-only model in this case:

v⊤Var(θ̂X,Y )θc,θcv < ∞ = v⊤Var(θ̂X)θc,θcv,

and the strict inequality holds.

Case 2: v ∈ Range(MX). Let S := Range(MX) and let PS be the orthogonal projector onto S.
Because MX = MXPS and MXY = MX +MY , the restrictions

M̃X := PSMXPS , M̃XY := PSMXY PS = M̃X + PSMY PS

are positive-definite on S; To see this, take any non-zero w ∈ S. Since w ∈ range(MX), PSw = w;
hence

w⊤M̃Xw = w⊤MXw > 0 (PS is identity when restricted to S)

Thus M̃X ≻ 0 on S. Because PSMY PS ⪰ 0, adding it preserves positive-definiteness, so

M̃XY = M̃X + PSMY PS ⪰ M̃X ≻ 0 on S.

Applying Lemma 3(1) to M̃X and M̃XY on S gives us v⊤M̃−1
XY v ≤ v⊤M̃−1

X v. Strict inequality
v⊤M̃−1

XY v < v⊤M̃−1
X v holds if and only if the condition Cv := ((M̃XY − M̃X)M̃−1

X v ̸= 0) is met.
Therefore, if condition Cv holds, the directional variance along this constrained space S is strictly
reduced:

v⊤Var(θ̂X,Y )θc,θcv = v⊤M̃−1
XY v < v⊤M̃−1

X v = v⊤Var(θ̂X)θc,θcv
1.

Further, from Lemma 3(2), there exists some non-zero vector u ∈ S such that u⊤M̃−1
XY u < u⊤M̃−1

X u.
Thus we have,

u⊤Var(θ̂X,Y )θc,θcu < u⊤Var(θ̂X)θc,θcu.

Thus, completing the proof.

Corollary 1. Assume a direction v ∈ Rdc \ {0} with a = v⊤(IX)θc,θc v > 0 and b =
v⊤(IY )θc,θc v > 0 where v is the common eigenvector of (IX)θc,θc and (IY )θc,θc . Then the variance
in direction v contracts by the factor

v⊤Var(θ̂X,Y ) v

v⊤Var(θ̂X) v
=

1/(a+ b)

1/a
=

a

a+ b
< 1,

So the joint estimator achieves strictly lower error along v.

Proof. Let MX = (IX)θc,θc and MY = (IY )θc,θc . By assumption, v is a common eigenvector of
MX and MY . Thus, MXv = λXv and MY v = λY v for some eigenvalues λX and λY . From the
assumptions, we have λX = a/∥v∥2 > 0 and λY = b/∥v∥2 > 0. Since MX is symmetric and
MXv = λXv with λX > 0, the pseudoinverse acts as M†

Xv = λ−1
X v. Therefore, the variance in

direction v for the X-only estimator is

v⊤Var(θ̂X)θc,θc v = v⊤M†
Xv = v⊤(λ−1

X v) = λ−1
X ∥v∥2 = a−1∥v∥4.

Since v is a common eigenvector, it is also an eigenvector of MXY = MX +MY :

(MX +MY )v = MXv +MY v = λXv + λY v = (λX + λY )v.

1We note that true asymptotic variance defined as v⊤Var(θ̂X,Y )θc,θcv = v⊤M†
XY v, v⊤M†

XY v =

v⊤M̃−1
XY v if S is an invariant subspace of MXY and MXY is block-diagonal with respect to S and S⊥

(i.e., PSMXY PS⊥ = 0, which implies PSMY PS⊥ = 0).
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The corresponding eigenvalue is λXY = λX + λY . Since λX > 0 and λY > 0, λXY > 0. Thus,
(MX +MY )

†v = (λX + λY )
−1v. The variance in direction v for the joint estimator is

v⊤Var(θ̂X,Y )θc,θc v = v⊤(MX +MY )
†v = (λX + λY )

−1∥v∥2 = (a+ b)−1∥v∥4.

Now, we form the ratio of these variances:

v⊤Var(θ̂X,Y )θc,θc v

v⊤Var(θ̂X)θc,θc v
=

λX

λX + λY
=

a

a+ b
< 1.

Corollary 2. Assume a direction v ∈ Rdc \ {0} with v⊤(IX)θc,θc v = 0 and v⊤(IY )θc,θc v > 0.
Then v⊤Var(θ̂X) v = ∞ and v⊤Var(θ̂X,Y ) v < ∞ i.e. a direction unidentifiable from X alone
becomes well-posed with even unpaired data from Y .

Proof. This corollary follows directly from Case 1 of Theorem 2. The condition v⊤(IX)θc,θc v = 0
for v ̸= 0 implies v ∈ ker((IX)θc,θc), and thus v ̸∈ range((IX)θc,θc). Given the additional condition
v⊤(IY )θc,θc v > 0, the conclusions of Case 1 of the theorem apply directly.

Corollary 3 (Variance Reduction for Eigenvectors of MX ). Let v ∈ Rdc \ {0} be an eigenvector of
MX = (IX)θc,θc with a corresponding eigenvalue λX > 0. If the Y -dataset provides information
in this direction v (i.e., v⊤MY v > 0, where MY = (IY )θc,θc), then the variance in direction v is
strictly reduced by incorporating the Y -dataset:

v⊤Var(θ̂X,Y )θc,θc v < v⊤Var(θ̂X)θc,θc v.

Specifically, v⊤Var(θ̂X)θc,θcv = λ−1
X ∥v∥2.

Proof. Let MX = (IX)θc,θc and MY = (IY )θc,θc . Since v is an eigenvector of MX with a positive
eigenvalue λX > 0, it follows that v ∈ Range(MX). Let S = Range(MX). The variance using
only the X-dataset in direction v is given by

v⊤Var(θ̂X)θc,θcv = v⊤M†
Xv.

Because v is an eigenvector of MX with λX > 0, M†
Xv = λ−1

X v. Thus,

v⊤Var(θ̂X)θc,θcv = v⊤(λ−1
X v) = λ−1

X ∥v∥2.

This scenario falls under Case 2 of Theorem 2, specifically its conclusion regarding v ∈ S. According
to that theorem, strict variance reduction v⊤Var(θ̂X,Y )θc,θcv < v⊤Var(θ̂X)θc,θcv occurs if the
condition Cv = ((PSMY PS)(MX |S)−1v ̸= 0) holds. Here, PS is the orthogonal projector onto S,
and MX |S is the restriction of MX to S, so (MX |S)−1v = λ−1

X v.

The condition Cv thus becomes (PSMY PS)(λ
−1
X v) ̸= 0. Since λX > 0, this is equivalent to

PSMY PSv ̸= 0. We are given that v⊤MY v > 0. As v ∈ S, PSv = v. Therefore, v⊤MY v =
v⊤PSMY PSv > 0. Let AS = PSMY PS restricted to S. AS is a positive semidefinite operator on
S. The condition v⊤ASv > 0 for v ∈ S, v ̸= 0 implies that ASv ̸= 0 (because if ASv = 0, then
v⊤ASv = 0, which contradicts v⊤ASv > 0). Thus, PSMY PSv ̸= 0, which means the condition Cv

is satisfied.

Since v ∈ S and the condition Cv for strict inequality is met, by Theorem 2, it follows that
v⊤Var(θ̂X,Y )θc,θc v < v⊤Var(θ̂X)θc,θc v.

Theorem 3. Define for any m, I
(m)
X =

∑m
i=1 A

⊤
c,iAc,i and I

(m)
Y =

∑m
j=1 B

⊤
c,jBc,j . If

range
(
I
(m)
Y

)
̸⊆ range

(
I
(m)
X

)
, then there exists a nonzero v ∈ Rdc such that v⊤I(m)

Y v > v⊤I
(m)
X v.
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Proof. Let RX := range
(
I
(m)
X

)
, RY := range

(
I
(m)
Y

)
. By the assumption RY ̸⊆ RX , choose a

vector w ∈ RY \ RX . Since Rdc is a finite dimensional inner product space and RX is its finite
dimensional subspace, we can decompose w = w|| + v with w|| ∈ RX and v ∈ R⊥

X . Because
w /∈ RX , the orthogonal component v is non-zero.

(i) Term from I
(m)
X . From the Fundamental Theorem of Linear Algebra, for any symmetric matrix S,

kerS = range(S)⊥; hence R⊥
X = ker I

(m)
X . Thus

v⊤I
(m)
X v = 0.

(ii) Term from I
(m)
Y . Because w ∈ RY = range(I

(m)
Y ), there exists u with w = I

(m)
Y u. Suppose, for

contradiction, that I(m)
Y v = 0. Then v ∈ ker I

(m)
Y = R⊥

Y , so v ⊥ w. But w · v = (w∥ + v) · v =

w∥·v+∥v∥2 = ∥v∥2 > 0 because v ⊥ w∥ while v ̸= 0. This contradicts v ⊥ w; therefore I(m)
Y v ̸= 0

and, by positive semidefiniteness,
v⊤I

(m)
Y v > 0.

Combining the above inequalities yields v⊤I
(m)
Y v > v⊤I

(m)
X v, with v ̸= 0, which is the desired

inequality.

D UML Algorithm Pseudocode

In this section we present the full pseudocode for UML as shown in ??.

Algorithm 1 Pytorch Pseudocode for UML in the supervised setting

# f_img: image encoder (frozen or trainable)
# f_text: text encoder (frozen)
# is_trainable: True if f_img is trainable else False
# h: classification head

while not converged: # training loop
x_img = fetch_next(image_loader) # image minibatch
x_text = fetch_next(text_loader) # text minibatch (random/unaligned)

z_img = f_img(x_img) # image embeddings
z_text = f_text(x_text) # text embeddings

logits_img = h(z_img) # predict image labels
logits_text = h(z_text) # predict text labels

loss_img = CE(logits_img, labels_img) # image classification loss
loss_text = CE(logits_text, labels_text) # text classification loss
loss = loss_img + lambda * loss_text # total loss

loss.backward() # back-propagate
update(h, f_img) if is_trainable else update(h) # SGD update

# Define Cross-Entropy loss
def CE(logits, labels):

return -sum(labels * log_softmax(logits, dim=1)) / len(labels)

E Additional Experiments

E.1 Improving Image Classification using Unpaired Texts (Unaligned encoders)

In this section we report image-classification results on ten benchmarks (see Appendix B.3), covering
three settings:
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1. Full-dataset fine-tuning: train both the vision backbone and classification head (Ap-
pendix E.1.1).

2. Full-dataset linear probe: train only the classification head (Appendix E.1.2).
3. Few-shot linear probe: train only the classification head under few-shot conditions (Ap-

pendix E.1.3).

In each setting, we compare UML with baselines across all datasets and multiple DINO-initialized
vision backbones.

E.1.1 Supervised Finetuning (across architectures)

In this section, we fine-tune both the vision backbone and the linear classifier on ten downstream
tasks, comparing UML against strong image-only baselines. We evaluate four DINO-initialized
backbones:

• ViT-B/16 in Table 5
• ViT-B/8 in Table 6
• DINOv2 ViT-S/14 in Table 7
• DINOv2 ViT-B/14 in Table 8

Results for DINOv2 ViT-L/14 are omitted due to computational constraints. Across all backbones,
UML consistently improves over the image-only baseline by leveraging unpaired text embeddings. For
some backbones such as DINOv2 VIT-B/16, our head-initialization variant (Ours (init)) outperforms
training using unpaired multimodal data from scratch (Ours), while in others it does not.

Table 5: Full finetuning on classification with ViT-B/16 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.

Dataset
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Unimodal 78.41 63.99 62.12 74.17 81.43 82.38 92.00 98.24 96.31 81.01
Ours 82.56 67.04 67.38 76.42 84.06 81.79 93.20 98.98 97.04 83.16
Ours (init) 81.95 67.12 68.29 73.84 84.31 81.12 92.60 98.73 96.84 82.76
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Table 6: Full finetuning on classification with ViT-B/8 DINO and OpenLLaMA-3B. We compare
our proposed approach with the image-only baseline when fine-tuning on the target dataset. All
vision encoders are initialized from DINO weights, and our approach leverages unpaired text data
using OpenLLaMA-3B embeddings.

Dataset
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Unimodal 85.67 68.04 72.60 76.65 83.94 85.32 93.06 99.22 96.82 84.59
Ours 87.95 70.28 75.31 77.19 85.59 84.83 93.05 99.43 97.12 85.64
Ours (init) 87.44 70.03 76.09 76.24 86.49 84.71 93.81 99.27 97.16 85.69

Table 7: Full finetuning on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.
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Unimodal 79.45 66.20 66.99 72.16 83.18 80.65 90.67 99.18 95.45 81.54
Ours 84.87 66.72 71.54 74.14 84.77 81.16 91.87 99.55 97.03 83.52
Ours (init) 86.39 66.03 73.44 74.27 84.69 81.97 91.72 99.82 97.60 83.99

Table 8: Full finetuning on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from DINOv2 weights, and our approach leverages unpaired text
data using OpenLLaMA-3B embeddings.
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Unimodal 89.62 71.45 77.29 73.88 88.00 82.94 94.55 99.88 97.69 86.14
Ours 90.93 70.97 80.02 75.83 87.52 86.25 94.74 99.88 97.57 87.08
Ours (init) 90.73 70.92 80.23 75.87 87.60 83.43 94.47 99.80 97.93 86.77

E.1.2 Linear Probing (across architectures)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone,
on ten downstream tasks, comparing UML against strong image-only baselines. We evaluate five
DINO-initialized backbones:

• ViT-B/16 in Table 9
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• ViT-B/8 in Table 10
• DINOv2 ViT-S/14 in Table 11
• DINOv2 ViT-B/14 in Table 12
• DINOv2 ViT-L/14 in Table 13

Across all backbones, UML consistently improves over the image-only baseline by leveraging
unpaired text embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms
training using unpaired multimodal data from scratch (Ours).

Table 9: Full linear probing on classification with ViT-B/16 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.

Dataset
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Unimodal 67.10 64.63 56.02 72.42 81.27 74.96 93.07 98.32 95.01 78.08
Ours 68.71 65.14 57.42 72.95 82.06 75.30 93.18 98.46 96.19 78.82
Ours (init) 68.60 65.59 57.98 73.11 82.40 75.73 93.62 98.42 96.35 79.09

Table 10: Full linear probing on classification with ViT-B/8 DINO and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINO weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 72.01 67.19 62.02 76.18 82.95 78.57 91.99 98.78 96.23 80.66
Ours 72.93 68.17 63.49 77.13 83.16 79.87 92.59 98.50 96.47 81.37
Ours (init) 72.81 68.36 64.09 76.48 83.72 80.01 92.50 98.74 96.43 81.46
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Table 11: Full linear probing on classification with ViT-S/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 77.48 70.72 66.28 78.25 82.64 84.39 94.29 99.62 97.00 83.40
Ours 78.45 71.53 67.33 78.70 83.51 84.67 94.70 99.82 97.11 83.98
Ours (init) 78.58 72.24 67.50 79.51 83.57 84.74 94.78 99.89 97.15 84.22

Table 12: Full linear probing on classification with ViT-B/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 85.46 75.42 72.34 79.73 87.26 88.70 95.56 99.76 97.81 86.89
Ours 85.40 75.22 75.22 80.73 87.21 89.02 95.83 99.88 97.85 87.37
Ours (init) 85.74 75.70 74.17 81.32 87.26 88.78 95.78 99.88 97.93 87.40

Table 13: Full linear probing on classification with ViT-L/14 DINOv2 and OpenLLaMA-3B. We
compare our proposed approach with the image-only baseline when training a linear probe on the
target dataset. All vision encoders are initialized from DINOv2 weights, and our approach leverages
unpaired text data using OpenLLaMA-3B embeddings.
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Unimodal 88.16 77.26 74.32 81.56 89.82 90.95 96.27 99.84 97.97 88.46
Ours 88.45 77.20 76.93 82.39 90.19 91.09 96.51 99.92 98.01 88.97
Ours (init) 87.99 77.75 77.20 82.51 90.17 91.29 96.32 99.92 97.93 89.01
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E.1.3 Few-shot Linear Probing (across architectures)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone,
for few-shot classification on ten downstream tasks, comparing UML against strong image-only
baselines. We evaluate five DINO-initialized backbones: ViT-B/16 in Table 15, ViT-B/8 in Table 14,
DINOv2 ViT-S/14 in Table 16, DINOv2 ViT-B/14 in Table 18, DINOv2 ViT-L/14 in Table 18. Across
all backbones, UML consistently improves over the image-only baseline by leveraging unpaired text
embeddings. For all backbones, our head-initialization variant (Ours (init)) outperforms training
using unpaired multimodal data from scratch (Ours).

Table 14: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/8 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B
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1 Unimodal 7.40 26.37 12.16 28.62 39.75 19.23 42.81 54.97 58.22 74.13 36.37
Ours 7.71 28.01 13.56 33.22 42.08 21.13 43.27 55.85 58.61 77.51 38.10
Ours (init) 9.24 34.23 14.49 36.27 47.55 24.81 46.75 60.09 61.59 80.23 41.52

2 Unimodal 14.43 37.96 20.28 39.80 53.03 30.62 54.75 68.12 77.59 81.91 47.85
Ours 15.71 40.74 21.04 43.74 55.86 33.52 54.49 69.86 77.18 84.52 49.67
Ours (init) 16.94 45.16 22.17 45.43 59.02 35.89 56.78 71.57 77.94 86.06 51.70

4 Unimodal 25.67 49.23 29.39 52.52 64.27 43.82 61.64 75.85 87.41 90.36 58.02
Ours 27.30 51.23 31.43 54.31 66.72 45.58 61.51 77.51 87.96 91.36 59.49
Ours (init) 28.54 53.68 31.31 56.13 67.47 47.40 62.84 79.10 88.29 91.98 60.67

8 Unimodal 41.04 56.86 40.03 61.15 72.39 54.47 66.10 82.30 93.95 92.28 66.06
Ours 43.76 58.14 42.56 63.12 73.13 56.30 66.36 84.27 94.25 92.71 67.46
Ours (init) 44.16 59.80 42.30 64.46 74.30 57.07 67.18 84.85 94.00 93.24 68.14

16 Unimodal 57.72 61.74 52.63 67.69 76.18 62.63 68.87 87.31 96.41 94.27 72.54
Ours 60.11 63.21 54.53 69.33 78.13 63.74 69.44 87.73 96.89 94.54 73.76
Ours (init) 60.36 64.26 54.81 70.27 78.76 64.13 70.05 88.23 96.63 94.73 74.22

Table 15: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-B/16 DINO features. Our method leverages unpaired text data using
OpenLLaMA-3B
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1 Unimodal 6.28 22.43 9.72 29.22 37.85 15.40 38.67 60.12 54.62 73.25 34.76
Ours 7.89 26.08 10.41 32.45 40.27 18.14 39.28 60.88 58.32 75.66 36.94
Ours (init) 8.96 31.34 12.12 34.22 44.32 21.46 42.68 66.39 60.37 79.74 40.16

2 Unimodal 12.64 35.64 14.98 38.93 51.14 26.05 50.34 70.84 75.61 83.16 45.93
Ours 14.38 38.62 17.00 40.37 54.28 29.24 50.83 72.88 77.14 85.95 48.07
Ours (init) 15.99 42.31 17.65 42.89 56.46 32.15 52.90 74.82 77.32 87.34 49.98

4 Unimodal 22.60 45.95 24.27 50.30 63.00 38.51 57.99 80.14 85.60 89.67 55.80
Ours 24.83 48.62 25.76 52.64 64.39 40.74 57.96 80.92 87.20 91.17 57.42
Ours (init) 25.83 51.01 26.35 55.06 65.86 42.69 59.32 82.23 87.83 91.99 58.82

8 Unimodal 37.68 52.94 33.67 59.18 70.62 49.48 62.97 85.26 92.83 93.17 63.78
Ours 39.31 55.31 35.56 60.48 71.88 50.46 63.08 86.25 93.23 93.47 64.90
Ours (init) 40.50 57.03 35.64 62.27 73.18 51.50 64.09 86.93 93.59 93.71 65.84

16 Unimodal 52.48 58.27 45.34 64.81 75.72 56.24 66.36 88.57 95.90 94.27 69.80
Ours 55.84 60.57 47.70 66.21 76.81 58.26 66.47 89.60 96.55 95.12 71.31
Ours (init) 55.82 61.73 48.14 67.02 77.39 58.76 67.08 90.53 96.62 94.98 71.81
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Table 16: Linear evaluation of frozen features on 11 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen VIT-S/14 DINOv2 features. Our method leverages unpaired text data using
OpenLLaMA-3B
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1
Unimodal 13.18 34.15 14.09 36.60 46.74 35.18 36.48 63.51 89.62 76.66 44.62
Ours 14.95 37.25 14.88 38.93 49.18 37.91 38.35 68.92 91.42 84.04 47.58
Ours (init) 16.49 41.79 15.63 42.04 52.33 42.27 42.69 73.59 93.64 84.52 50.50

2
Unimodal 24.68 47.88 23.09 47.75 56.81 48.54 50.41 75.32 96.02 86.90 55.73
Ours 26.93 49.65 24.29 50.99 61.67 51.77 51.31 79.44 96.90 89.80 58.28
Ours (init) 28.65 53.15 24.78 53.25 63.86 54.44 54.21 81.41 97.63 90.55 60.19

4
Unimodal 38.76 57.51 32.10 59.69 67.75 60.79 58.73 83.89 98.59 93.48 65.12
Ours 41.69 58.87 33.38 61.58 69.60 62.69 59.69 86.27 98.84 94.56 66.71
Ours (init) 43.17 60.89 33.86 62.43 71.13 63.88 61.38 87.36 99.17 94.96 67.82

8
Unimodal 54.56 63.00 45.05 64.78 74.19 68.06 64.53 88.68 99.27 94.35 71.65
Ours 56.27 64.57 45.98 66.31 75.19 69.22 65.14 89.78 99.27 95.42 72.71
Ours (init) 57.91 65.82 47.40 67.81 75.99 69.71 66.40 90.29 99.54 95.84 73.67

16
Unimodal 67.96 67.35 55.89 71.36 77.92 73.24 68.14 90.73 99.63 96.43 76.22
Ours 69.42 68.50 58.54 72.24 78.69 73.80 68.70 91.87 99.72 96.63 77.80
Ours (init) 70.32 69.19 58.74 73.17 79.58 74.51 69.44 92.47 99.82 96.80 78.81

Table 17: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-B/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-B/14 DINOv2 features. Our method leverages
unpaired text data using OpenLLaMA-3B
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1 Unimodal 22.42 43.03 15.79 38.85 58.57 48.71 52.26 76.47 97.12 83.64 53.69
Ours 23.10 45.12 16.22 42.69 61.05 51.30 52.45 78.14 98.08 87.68 55.58
Ours (init) 25.47 48.56 16.83 45.31 63.53 54.16 55.56 81.08 97.94 88.13 57.66

2 Unimodal 35.17 55.41 25.54 51.16 69.49 62.13 62.35 84.31 99.58 89.55 63.47
Ours 37.38 56.98 25.88 54.65 70.61 63.89 63.21 85.50 99.70 92.02 64.98
Ours (init) 38.78 59.81 26.00 55.61 71.38 66.54 65.06 86.49 99.62 92.79 66.21

4 Unimodal 51.40 63.68 34.25 61.25 76.32 71.60 68.86 89.05 99.76 94.51 71.07
Ours 54.26 64.65 35.52 62.63 76.87 72.33 69.14 90.00 99.70 95.51 72.06
Ours (init) 55.01 66.55 35.14 63.97 77.57 73.25 70.30 90.31 99.57 95.65 72.73

8 Unimodal 66.01 68.88 48.17 66.67 79.92 76.26 72.48 90.97 99.80 95.54 76.47
Ours 68.53 69.75 50.88 68.46 81.44 77.34 73.12 92.39 99.70 96.20 77.78
Ours (init) 67.91 70.66 51.26 69.56 81.85 77.95 73.75 92.50 99.68 96.51 78.16

16 Unimodal 77.31 72.17 62.38 73.76 83.80 80.74 75.15 93.34 99.81 97.40 81.59
Ours 78.92 72.80 64.51 75.16 84.62 81.00 75.46 92.92 99.59 97.38 82.24
Ours (init) 78.52 73.18 65.81 75.65 84.77 81.18 75.82 93.28 99.78 97.57 82.56
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Table 18: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning with DINOv2 ViT-L/14. We compare our proposed approach with the image-only baseline
by training a linear classifier on top of frozen VIT-L/14 DINOv2 features. Our method leverages
unpaired text data using OpenLLaMA-3B
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1 Unimodal 24.89 48.36 17.69 38.77 66.46 59.27 57.50 79.83 98.13 82.96 57.39
Ours 25.88 49.63 18.08 42.93 69.18 60.12 58.37 83.51 98.42 86.23 59.24
Ours (init) 27.90 52.86 18.95 43.18 70.98 63.17 60.80 83.86 98.59 88.17 60.85

2 Unimodal 39.95 58.95 26.87 50.18 75.79 70.74 67.14 84.71 99.74 89.82 66.39
Ours 41.22 60.82 27.15 53.01 76.61 72.07 67.90 86.07 99.72 91.95 67.65
Ours (init) 42.93 63.36 28.14 54.96 77.72 73.87 69.20 87.13 99.81 91.71 68.88

4 Unimodal 56.49 66.37 38.59 59.08 80.84 77.39 72.41 89.90 99.73 94.44 73.52
Ours 58.19 67.36 39.57 61.78 81.36 78.19 72.82 90.99 99.76 95.27 74.53
Ours (init) 58.60 68.84 39.19 62.77 81.50 78.99 73.63 90.74 99.88 96.02 75.02

8 Unimodal 70.00 70.71 51.57 66.47 83.84 81.69 76.02 93.53 99.89 95.55 78.93
Ours 71.63 71.59 55.13 67.91 84.47 82.12 76.43 93.62 99.88 96.36 79.91
Ours (init) 72.02 72.51 55.49 69.03 84.57 82.52 76.78 93.80 99.89 96.73 80.33

16 Unimodal 80.84 73.83 64.13 73.96 87.43 84.58 77.78 94.69 99.91 97.36 83.45
Ours 81.85 74.39 69.45 74.70 87.35 84.58 78.35 94.59 99.89 97.61 84.28
Ours (init) 82.76 74.80 69.42 74.88 87.65 84.96 78.58 94.42 99.81 97.62 84.49

E.2 Improving Image Classification using Unpaired Texts (Aligned encoders)

E.2.1 Supervised Finetuning

In this section, we fine-tune both the vision backbone and the linear classifier on nine downstream
tasks, comparing UML against strong image-only baselines. We evaluate two different backbones:
ResNet-50 and VIT-B/16.

As shown in Table 19, across all backbones, UML consistently improves over the image-only
baseline by leveraging unpaired text embeddings. Further, our head-initialization variant (Ours (init))
outperforms training using unpaired multimodal data from scratch (Ours).

Table 19: Supervised finetuning on 9 fine-grained classification benchmarks with CLIP. We
compare our proposed approach with the image-only baseline when fine-tuning on the target dataset.
All vision encoders are initialized from CLIP ResNet50 weights, and our approach leverages unpaired
text data using the corresponding CLIP text encoder.
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Unimodal 36.12 25.93 37.70 51.06 52.49 69.24 63.17 88.42 83.61 56.42
Ours 37.00 24.05 41.34 55.67 60.48 69.77 74.49 92.57 84.79 60.02
Ours (init) 72.75 62.33 66.58 56.50 67.54 76.95 86.97 94.80 87.95 74.71
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Table 20: Full linear probing on classification with CLIP ResNet-50 Image Encoder and Text
encoder. We compare our proposed approach with the image-only baseline when training a linear
probe on the target dataset. All vision encoders are initialized from ResNet-50 weights, and our
approach leverages unpaired text data using the corresponding CLIP text embeddings.
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Unimodal 76.36 70.97 41.88 72.81 81.23 81.60 88.39 97.89 92.78 78.21
Ours 77.23 71.18 42.66 71.81 81.81 81.51 87.84 97.65 93.01 78.30
Ours (init) 79.14 73.83 42.81 73.76 82.13 82.44 90.90 97.69 94.19 79.65

E.2.2 Linear Probing

In this section, we train only the linear classifier, on top of the frozen vision and language backbone
from CLIP, on ten downstream tasks, comparing UML against strong image-only baselines. We
evaluate two different backbones: ResNet-50 and VIT-B/16.

As shown in Table 20, across both backbones, UML consistently improves over the image-only
baseline by leveraging unpaired text embeddings. Further, our head-initialization variant (Ours (init))
outperforms training using unpaired multimodal data from scratch (Ours).

E.2.3 Few-shot linear Probing (across architectures)

In this section, we train only the linear classifier, on top of the frozen vision and language backbone
from CLIP, for few-shot classification on ten downstream tasks, comparing UML against strong
image-only baselines. We evaluate two different backbones: ResNet-50 and VIT-B/16.

As shown in Table 21 and Table 22, across both backbones, UML consistently improves over the
image-only baseline by leveraging unpaired text embeddings. Further, our head-initialization variant
(Ours (init)) outperforms training using unpaired multimodal data from scratch (Ours).

E.3 Improving Visual Robustness Using Unpaired Texts

In this section, we evaluate the robustness of models trained with UML to test-time distribution shifts.
We train a k-shot linear probe (where k ∈ {1, 2, 4, 8}) with DINOv2 on ImageNet and evaluate
across four distribution-shifted target datasets: ImageNet-V2, ImageNet-Sketch, ImageNet-A, and
ImageNet-R. Our method consistently improves robustness over the unimodal baseline (Figure 7,
Figure 8, Figure 9 and Figure 10) across different training shots, indicating that language priors help
capture more transferable features.

Distribution Shift Results

Shot-1

Shot-2

Figure 7: Robustness under test-time distribution shifts. Our approach (trained on 1-shot) is much
more robust than its unimodal counterpart across four distribution-shuffled target test sets.
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Table 21: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP ResNet50 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder
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1 Unimodal 23.24 29.14 12.38 30.24 37.55 27.26 34.61 21.36 59.07 66.52 34.14
Ours 36.32 45.40 16.84 40.92 53.19 49.76 53.03 36.48 68.56 76.80 47.73
Ours (init) 57.88 64.59 22.23 50.85 65.99 76.73 86.59 60.92 81.08 83.79 65.06

2 Unimodal 38.37 43.83 18.63 40.33 53.25 44.60 47.75 32.62 75.03 78.90 47.33
Ours 46.64 53.53 20.81 48.35 62.01 56.67 60.64 42.21 77.97 84.58 55.34
Ours (init) 61.86 65.90 24.19 55.30 70.39 77.07 87.40 61.40 86.20 85.94 67.57

4 Unimodal 51.34 54.38 23.08 52.07 64.06 57.29 61.32 41.72 86.16 85.41 57.68
Ours 55.21 59.48 24.77 56.78 67.65 62.68 67.31 47.04 86.46 87.23 61.46
Ours (init) 65.80 68.11 27.49 60.13 73.62 77.79 86.54 62.37 91.60 87.57 70.10

8 Unimodal 61.74 61.47 30.22 60.15 70.16 64.63 68.94 49.48 92.20 89.14 64.81
Ours 62.75 63.70 30.69 61.84 70.74 67.73 73.62 52.14 92.31 89.89 66.54
Ours (init) 69.78 69.61 31.62 64.13 77.24 78.58 89.07 63.34 94.21 91.58 72.92

16 Unimodal 70.94 65.53 35.91 64.30 75.13 70.67 78.49 55.07 95.21 91.26 70.25
Ours 71.58 67.08 36.23 65.62 76.09 71.63 79.52 56.92 95.44 91.94 71.20
Ours (init) 74.56 71.33 37.13 68.09 78.66 79.06 89.71 64.31 96.17 93.31 75.23

Table 22: Linear evaluation of frozen features on 10 fine-grained benchmarks for few-shot
learning. We compare our proposed approach with the image-only baseline by training a linear
classifier on top of frozen CLIP VIT-B/16 features. Our method leverages unpaired text data using
the corresponding CLIP text encoder
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1 Unimodal 31.53 33.51 17.76 31.72 43.64 39.40 37.43 27.65 67.95 71.68 40.23
Ours 48.28 53.44 22.06 47.04 63.40 63.92 60.95 47.35 77.82 83.14 56.74
Ours (init) 67.76 70.13 32.26 55.16 75.02 84.25 90.91 69.50 87.58 88.87 72.14

2 Unimodal 48.45 48.70 23.38 42.04 60.08 58.30 53.56 41.68 82.01 83.20 54.14
Ours 57.89 59.95 27.19 52.27 69.60 71.18 66.78 54.24 87.43 90.20 63.67
Ours (init) 70.75 71.52 33.99 60.17 78.37 85.39 90.67 70.19 92.18 90.09 74.33

4 Unimodal 61.64 60.66 31.01 54.37 70.49 71.91 69.35 52.15 90.99 91.08 65.36
Ours 66.24 65.56 32.98 59.95 74.16 76.19 75.92 58.50 91.32 93.23 69.40
Ours (init) 74.58 73.54 37.38 64.30 81.10 86.05 91.64 70.89 94.80 93.70 76.80

8 Unimodal 71.76 66.67 38.47 61.96 77.11 78.16 78.25 59.90 95.20 92.98 72.05
Ours 72.77 69.50 39.09 64.89 79.01 80.07 80.85 62.63 94.98 94.36 73.82
Ours (init) 78.43 75.07 41.77 68.50 83.41 86.87 92.55 71.97 96.94 95.27 79.08

16 Unimodal 78.76 71.49 44.74 68.79 80.43 82.08 85.16 63.87 96.97 94.54 76.68
Ours 79.40 72.19 45.06 69.41 81.97 82.12 85.92 64.93 96.49 95.28 77.28
Ours (init) 82.38 76.51 47.14 72.13 84.66 86.60 92.68 72.79 97.70 96.08 80.87
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Distribution Shift Results

Shot-1

Shot-2

Figure 8: Robustness under test-time distribution shifts. Our approach (trained on 2-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

Distribution Shift Results

Shot-4

Shot-8

Figure 9: Robustness under test-time distribution shifts. Our approach (trained on 4-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

Distribution Shift Results

Shot-4

Shot-8

Figure 10: Robustness under test-time distribution shifts. Our approach (trained on 8-shots) is
much more robust than its unimodal counterpart across four distribution-shuffled target test sets.

E.4 Marginal Rate-of-Substitution Between Modalities

How many words is an image worth? In this section, we extend our results to evaluate image-text
conversion ratios using test accuracy isolines on the remaining eight datasets. We measure these
global equivalence ratios by fitting a plane to the accuracy values given the number of image and
text shots. Figures 11 to 18 demonstrate the conversion ratios for DINOv2 VIT-S/14 as the vision
backbone and OpenLLaMa-3B as the text backbone (unaligned encoders). Analogously, Figures 19
to 26 show the same ratios for CLIP ResNet-50 as the vision and text encoders (aligned encoders).
As expected, with the fully aligned CLIP backbone, each image equates to far fewer text prompts
than under the unaligned DINO setting, showing the higher efficiency of aligned embeddings.

E.4.1 Unaligned Encoders
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Figure 11: SUN397. 1 img ≈ 1568 words Figure 12: Caltech101. 1 img ≈ 1248 words

Figure 13: Stanford Cars. 1 img ≈ 1799 words Figure 14: DTD. 1 img ≈ 2309 words

Figure 15: FGVC Aircraft. 1 img ≈ 3220 words Figure 16: Oxford Flowers. 1 img ≈ 1895 words

Figure 17: Food101. 1 img ≈ 2608 words Figure 18: UCF101. 1 img ≈ 2617 words
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E.4.2 Aligned Encoders (CLIP)

Figure 19: SUN397. 1 img ≈ 221 words Figure 20: Caltech101. 1 img ≈ 256 words

Figure 21: Stanford Cars. 1 img ≈ 649 words Figure 22: DTD. 1 img ≈ 228 words

Figure 23: FGVC Aircraft. 1 img ≈ 691 words Figure 24: Oxford Flowers. 1 img ≈ 851 words
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Figure 25: Food101. 1 img ≈ 202 words Figure 26: UCF101. 1 img ≈ 393 words

Figure 27: Oxford Pets. 1 img ≈ 228 words

E.5 Impact of Scaling Vision Backbone

In this section, we study how our method’s performance scales with the size and architecture of the
vision backbone. In addition to ViT-S/14 DINOv2, we extend our analysis to a range of ViT-based
architectures, including ViT-B/14 and ViT-L/14 DINOv2 and ViT-B/16 and ViT-B/8 DINO models.
To ensure a fair comparison, we follow the same training protocol as in previous experiments. Our
method consistently outperforms the unimodal baselines in every setting. In few-shot linear probing
across ViT-B/8, ViT-B/16, DINOv2-ViTs and ViT-L/14 backbones (Tables 14 to 18), we see clear
gains. The same holds for full-dataset end-to-end fine-tuning of both encoder and head (Tables 5, 6
and 8 and ??), and even when only the linear classifier is trained on the full splits (Tables 9 to 13).

E.6 Impact of Varying Text Encoders

In this section, we study how our method’s performance varies with different language models used
for generating text embeddings. Through this experiment, we aim to understand how differences in
embedding quality and model capacity affect the integration of textual information in our multimodal
setup. Specifically, we cover LLMs with diverse architectures and scales, including BERT-Large,
RoBERTa-Large and GPT-2 Large. As shown in Figure 28, adding unpaired text embeddings shows
a significant boost in 1-shot accuracy and still decent gains at 16 shots on SUN397 dataset. Overall,
OpenLLaMA-3B outperforms all other language models.
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Figure 28: Few-shot classification accuracy on SUN397 using UML with unpaired, frozen embeddings
from various pretrained language models.

E.7 Learning with Coarse-Grained vs. Fine-Grained Textual Cues

Understanding the type of information extracted from textual cues is crucial to assessing the effective-
ness of our multimodal approach. A key question is whether the model merely utilizes class names or
goes beyond to capture richer, more descriptive features. To investigate this, we compare the perfor-
mance of our method using two types of text templates: a vanilla template that consists solely of the
class name (e.g., "a photo of a [class]") and descriptive templates generated from GPT-3, as detailed
in Section ??. As shown in ?? and Figure 30, both multimodal approaches consistently outperform
the unimodal baseline, with descriptions from GPT-3 offering a more substantial performance gain.
This shows that leveraging richer, contextually diverse text cues can significantly enhance model
performance, even in low-shot learning scenarios.
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Figure 29: Few-shot SUN397 accuracy with UML
using two levels of textual granularity: (a) vanilla
class descriptions and (b) GPT-3–generated fine-
grained descriptions.
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Figure 30: Few-shot SUN397 accuracy with
UML (init) using two levels of textual granular-
ity: (a) vanilla class descriptions and (b) GPT-
3–generated fine-grained descriptions.

E.8 Impact on Performance with Increasing Unpaired Text Prompts

Here, we investigate how classification accuracy evolves as we augment each image with an increasing
number of unpaired text prompts . Figure 31 shows these accuracy curves as we vary the number of
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unpaired text prompts per image shot across five image-shot budgets. In every regime, our multimodal
initialization (“Ours (init)”) outperforms training the head from scratch, with most of the gain coming
from the first few prompts and gains tapering off thereafter. Note that we do not enforce diversity or
novelty in the unpaired text prompts—simply adding more sentences does not guarantee additional
information.
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Figure 31: Classification accuracy as a function of the number of text prompts per image shot for the
SUN397 Dataset.

E.9 Additional Experiments for Audio-Visual Setting

In this section, we extend our unpaired multimodal framework to the tri-modal ImageNet–ESC
benchmark, examining how unpaired audio and text signals can enhance image classification under
both aligned (Appendix E.9.2) and unaligned encoders(Appendix E.9.1). We then reverse the
setting, showing that unpaired visual and textual context likewise improves audio classification
(Appendix E.9.3).

E.9.1 Improving Image Classification with Unpaired Audio and Text (Unaligned encoders)

Image Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Image (DINO)

Figure 32: UML improves image classification using unpaired audio and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of DINOv2 VIT-S/14
and OpenLLaMa-3B.

E.9.2 Improving Image Classification with Unpaired Audio and Text (Aligned encoders)
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Image Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Image (RN50 CLIP)

Figure 33: UML improves image classification using unpaired audio and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.9.3 Improving Audio Classification with Unpaired Image and Text (Aligned encoders)

Audio Benchmarks (Appendix)

(a) ImageNet-ESC-19 (b) ImageNet-ESC-27

Audio (RN50 CLIP)

Figure 34: UML improves audio classification using unpaired image and text samples on both
ImageNet-ESC-19 and ImageNet-ESC-27 benchmarks when trained on top of CLIP ResNet-50
image and text encoders

E.10 Gaussian Experiments

Here, we shift our attention to a more nuanced and intriguing question: can incorporating unpaired
multimodal data actually improve the reconstruction quality of a single modality? At first glance, this
seems unlikely—why would adding data from a different modality make X reconstruction better than
training with X? Moreover, we push this question further: can incorporating data from a different
modality, while keeping the total dataset size fixed, still improve the reconstruction of X compared to
using the same number of samples X dataset alone? This setup isolates the importance of multimodal
information from mere data scaling, and surprisingly, our experiments show that this improvement is
indeed possible.

To investigate this, we design a synthetic experiment inspired by our theoretical framework in ??. We
generate data from two partially overlapping modalities, X and Y , derived from a shared latent space
θc, while also containing unique components (θx and θy). The observations follow the same linear
structure as in our theory:

Xi = Ac,iθc +Ax,iθx + ϵX,i

Yj = Bc,jθc +By,jθy + ϵY,j

The overlap ratio, denoted as p, controls how much of the shared latent dimensions are jointly
captured by both X and Y . We set p = 0.2, meaning that only 20% of the shared latent dimensions
are observed by both modalities, while the remaining 40% are exclusively captured by X and Y
respectively. This structured overlap ensures that neither modality alone can fully reconstruct the
shared latent space, forcing the model to integrate complementary information from both.

Our architecture consists of a shared autoencoder with separate input projections for X and Y . Each
modality is first encoded through a modality-specific linear projection layer, followed by a shared
latent encoder composed of two layers with ReLU nonlinearity. The encoded representation is
then passed through a decoder, also consisting of two linear layers, to reconstruct the input. We
use separate heads for the final reconstruction, while keeping the latent space shared to promote
cross-modal alignment.
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As shown in Figure 35, the surprising outcome is that training on both modalities, even when they are
unpaired, consistently improves the reconstruction of X compared to training solely on X . More
strikingly, this improvement holds even when the total number of training samples is fixed, with
half the data coming from X and half from Y ; showing that the model is not just benefiting from
increased data quantity but from the diversity and complementary information provided by the second
modality.
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Figure 35: Training on N/2 samples from X and N/2 unpaired samples from Y improves test
reconstruction on X , more than training on N samples from X .

F Analysis of the Learned Classifier

F.1 Change in Decision Boundaries with Unpaired Data from Another Modality

Our decision boundary visualizations are constructed by projecting the high-dimensional embedding
space of a given classifier to a 2D plane. Axis 1 is computed as the normalized difference between
the classifier weights of the two selected classes, representing the primary decision direction. Axis
2 is chosen to be orthogonal to Axis 1, constructed from the difference between the class mean
embeddings after removing the component parallel to Axis 1. This orthogonalization ensures that the
two axes capture complementary aspects: Axis 1 reflects the primary model decision boundary, while
Axis 2 captures the variation orthogonal to that decision. The final 2D projection matrix combines
these two vectors as columns, and embedding vectors are then mapped to this plane using a simple
dot product. Figure 36 and Figure 37 show the change in decision boundary when adding unpaired
textual information for 2-shot classification on top of frozen CLIP ResNet-50 features for DTD and
Oxford Flowers datasets.

F.2 What do models learn from unpaired data?

To understand what the model is truly learning and how its weights evolve, we develop and analyze
three key metrics: functional margin, silhouette score, and class-prototype vectors. These metrics
inform on how well the model distinguishes between classes and how text information influences the
structure of feature-space

Functional margin. This quantifies how confidently a model separates a given sample from the
decision boundary. For a sample i belonging to class y, we calculate the margin relative to the
next highest competing class. Specifically, we identify the second-highest logit among the incorrect
classes, denoted as class j∗, and compute the functional margin as

γi =
wT

y xi − wT
j∗xi

∥wy − wj∗∥2
(3)

where wT
y xi represents the logit for the true class, while wT

j∗xi represents the highest logit among the
competing classes. Larger margins indicate more confident and robust classification, while smaller
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(a) Unimodal (b) Ours

Train Image Test Image Knitted Cobwebbed Decision Boundary

Additional Plots: DTD

Cobwebbed texture looks 
like a spiderweb.

The knitted texture 
looks like a series of 
interconnected loops.

Figure 36: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between knitted and cobwebbed. (Right) Adding
unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar categories

(a) Unimodal (b) Ours

Train Image Test Image Ball Moss Passion Flower Decision Boundary

The flower 
passion flower 
looks like a 
purple and 
white flower.

Ball moss is a 
small greenish-
brown plant

Additional Plots: Flowers

Figure 37: Impact of unpaired text on decision boundaries (CLIP ResNet50). (Left) Visual
features alone learn ambiguous class boundaries between ball moss and passion flower. (Right)
Adding unpaired text sharpens the boundary, leveraging semantic cues to better distinguish similar
categories

margins imply that the sample lies closer to a misclassification boundary. As shown in Figure 38, both
Ours and Ours (init) exhibit substantially larger classification margins than the unimodal baseline,
demonstrating that augmenting primary-modality training with unpaired multimodal data improves
confidence in predictions over the primary modality.

Figure 38: Functional margin of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.

Silhouette Score and DB-Index. The Silhouette Score indicates how well-separated the clusters
are, while the DB-Index measures intra-class compactness versus inter-class separation. Higher
silhouette and lower DB-Index values mean better-defined clusters, indicating that text helps tighten
intra-class spread and widen inter-class gaps. As shown in Figure 39 and Figure 40, both Ours
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and Ours (init) exhibit reduced intra-class distances and increased inter-class separations, further
confirming improved class separability.

Figure 39: Silhouette Score of the linear head trained on SUN397 dataset for few-shot classification
significantly increases when training with both UML and UML with linear head initialization.

Figure 40: DB-Index of the linear head trained on SUN397 dataset for few-shot classification
significantly improves when training with both UML and UML with linear head initialization.

Class-Prototype Vectors. These vectors are the rows of the final linear layer’s weight matrix,
representing the class centroids in the shared embedding space. We compute a heatmap of inner
products between class prototypes and average text embeddings of the corresponding class to assess
how well text features align with class centers. This helps reveal how the model organizes multimodal
information. Figure 41 shows a pronounced diagonal structure, indicating that each class’s text
embedding aligns closely with the learned weights of the model.

Figure 41: Inner products between each linear-head weight vector and its class’s mean text embedding,
demonstrating that text features align well with class prototypes.
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