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ABSTRACT

One of the pivotal recent challenges in the field of neural network interpretability
is polysemanticity, where a single neuron is activated by multiple, often unrelated
concepts. This phenomenon obstructs a straightforward functional understand-
ing of individual neurons. Despite its significance, polysemanticity has not yet
been examined in a systematic and comprehensive manner. In this paper, we pro-
vide the first in-depth analysis of how polysemanticity emerges across different
architectures and layers. Our key contributions are as follows: (1) we introduce
effective methods to disentangle visual concept clusters encoded within a single
neuron across diverse model architectures; and (2) using this approach, we con-
duct the systematic investigation of polysemanticity, spanning from its properties
across models to the pathways underlying its formation. We believe that this work
underscores the necessity of shifting the unit of analysis from individual neurons
to the concept clusters they encode.

1 INTRODUCTION

Deep learning models have achieved remarkable performance across a wide range of applications,
but their rapidly increasing complexity and scale have made it ever more difficult to understand their
underlying mechanisms (Arrieta et al., 2020). As a result, interpretability research—which seeks
to clarify the internal representations and computational processes learned by models—has become
increasingly important and is now an active area of study. In particular, mechanistic interpretability,
which examines the functions of neurons and modules in storing and processing knowledge, has
emerged as one of the most prominent research directions in the field (Olah et al., 2017; 2020;
Bereska & Gavves, 2024; Elhage et al., 2021).

In the vision domain, such research has been actively pursued, with approaches like Bau et al.
(2017); Oikarinen & Weng (2022) analyzing models at the level of individual neurons by identifying
shared visual features among the samples that strongly activate them. This approach rests on the
implicit assumption that each neuron corresponds to a single function. Recent studies, however,
have shown that multiple concepts often coexist within a single neuron—a phenomenon known
as polysemanticity (Elhage et al., 2022; Dreyer et al., 2024). As a result, single-neuron analysis
faces fundamental limitations in faithfulness, and such interpretations alone are insufficient to fully
explain the underlying mechanisms of deep models.

To account for polysemanticity, several approaches have been proposed, such as training inter-
pretable Sparse Autoencoders (SAEs) to indirectly explain internal features of foundation models,
or tracing the circuit paths involved in specific decisions under the assumption of distributed repre-
sentation (Cunningham et al., 2023; Thasarathan et al., 2025; Zaigrajew et al., 2025; Kwon et al.,
2025; Rajaram et al., 2024; Wang et al., 2022). However, SAE-based approaches have the limita-
tion that they do not directly reveal the intrinsic structural flow of the network, while circuit-based
approaches are largely confined to sample-specific analyses and have been studied mainly in the lan-
guage domain, thus remaining at an early stage for uncovering the global mechanisms of a model.
There has been some work attempting to measure and analyze polysemanticity (Dreyer et al., 2024;
Yu et al., 2025; Sawmya et al., 2024; Hesse et al., 2025), but these approaches either suffer from
limited applicability—for example, by assumptions such as neuron separability constraints or by
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(a) Polysemantic Neuron #652 (b) Representational Footprints
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Figure 1: An overview of our methodology for disentangling concepts within a polysemantic neuron
and tracing their compositional origins. (a) We begin with a polysemantic neuron (e.g., ResNet-50,
Layer4.2, #65) that responds to a diverse set of images. (b) For each activating image, we compute
its representational footprint using attribution methods. These footprints, projected here by UMAP,
reveal a clear cluster structure. (c) Clustering these footprints successfully disentangles the neuron’s
mixed selectivity into coherent conceptual groups (e.g., distinct types of birds and mushrooms). (d)
By analyzing the origin of each concept cluster, our method naturally reveals the underlying concept
pathways, showing how the neuron’s selectivity is constructed from concepts in preceding layers.

restrictions on model architectures—or fall short of providing a deeper analysis of polysemanticity
itself. Given these limitations, prior research has primarily focused on confirming the existence of
polysemanticity or attempting to separate it indirectly, while its internal organization and structural
mechanisms remain only partially understood.

Therefore, in this work, we aim to provide a comprehensive understanding of polysemantic neurons
by disentangling the visual concept clusters of individual neurons based on their attribution foot-
prints. The proposed method can be applied across diverse models in both efficient and effective
way, enabling a systematic investigation of the formation patterns of polysemanticity and their inter-
nal structure. (See Figure 1.) Beyond extending interpretability, this analysis offers novel insights
into the fundamental principles by which deep vision models organize and represent concepts.

2 HOW CAN WE DISENTANGLE LEARNED CONCEPTS?

To analyze the concepts learned by a neural network, this section details a two-step methodology.
We begin by using attribution maps to characterize the representational footprint of individual con-
cepts. Subsequently, we cluster these maps to disentangle concepts arising from distinct pathways,
allowing for an analysis of their origins.

Identifying Representational Footprints via Attribution The visual concept captured by a sin-
gle neuron is often reflected in the common features of its most highly activated samples across a
given dataset (Bau et al., 2017; Kalibhat et al., 2023; Oikarinen & Weng, 2023). While this ap-
proach identifies what a neuron has learned, in the presence of polysemanticity it is challenging to
disentangle the multiple concepts activated within the same neuron. To further understand how these
concepts are constructed from preceding layers, it is necessary to trace their compositional origins.
To this end, we define a concept’s representational footprint using attribution methods, a technique
widely employed in CNN analysis to map the hierarchical flow of information (Shrikumar et al.,
2017; Selvaraju et al., 2017; Simonyan et al., 2014). These methods explain a neuron’s activation by
propagating its signal backwards, thereby quantifying the contribution of lower-level features. This
principle has been successfully applied in various attribution methods, from LRP-based techniques
like CRP (Achtibat et al., 2023; Dreyer et al., 2024) to gradient-based approaches (Hesse et al.,
2025).

Formally, given a dataset D = {xi} and a network f , we first interpret the concept of a neuron ul in
layer l through its set of most highly activating samples, Dul ⊂ D. We define a neuron based on the
architecture: for CNNs, we consider each channel as a neuron, as it acts as a distinct feature detector
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across spatial locations 1. For Transformers, we consider each hidden representation as a neuron, as
it maintains a distinct representation for each input patch.

Then, to trace the origin of the visual concept in ul, we quantify how each neuron ul−1
j in the

preceding layer, contributes to the activation of neuron ul, denoted aul . The attribution A(ul−1
j →

ul) was obtained following the Input×Gradient method (Shrikumar et al., 2017). For a given input
x, the attribution is calculated as:

A(ul−1
j → ul) = aul−1

j
(x)⊙ ∂aul(x)

∂aul−1
j

(x)
(1)

where ⊙ denotes the element-wise product. Since the resulting attribution from each feature ul−1
j

is a spatial map of dimensions–H ×W for CNN-based networks or the number of patches P for
Transformer-based networks, we aggregate these values into a single scalar representing the to-
tal contribution by summing over all spatial locations. To mitigate anisotropy, which refers to the
concentration of representations along a small number of dominant directions and has been widely
reported in transformer-based models, and to emphasize the distinctiveness of each attribution score,
we normalize the attribution values by subtracting their mean and dividing by their standard devia-
tion (Elhage et al., 2023; Godey et al., 2024). For convenience, we will abbreviate A(ul−1

j → ul)

into Al−1
j .

Disentangling Concepts by Clustering Footprints Having defined the representational foot-
prints, we now introduce our method for disentangling them into distinct concepts. Rather than
assuming a fixed number of underlying concepts, we propose an iterative algorithm that progres-
sively identifies and separates cohesive groups of footprints. As detailed in Algorithm 1, the process
begins by attempting to partition the current set of attributions Au = {Al−1

j |j = [1, ..., d]}, where
d denotes the number of neurons in layer l − 1, into k = 2 clusters. A cluster C is considered a
cohesive concept if its internal coherence, which we define as the average pairwise cosine similarity
between its members, exceeds an adaptive threshold τ . Cohesive concepts are accepted as final and
removed from the working set A′. The algorithm then dynamically adjusts the number of clusters
k and repeats this process on the remaining attributions until no further cohesive concepts can be
disentangled.

A key component is the dynamic calculation of this cohesion threshold τ . A fixed, universal thresh-
old would fail to adapt to the diverse similarity distributions exhibited by the footprints of different
neurons. We therefore compute τ adaptively from the set of footprints currently under analysis,
A′. Our empirical analysis reveals that the character of the similarity distribution systematically
changes with network depth, as illustrated in Figure 5(right). Early layers typically exhibit a uni-
modal, long-tailed distribution of similarities. In contrast, later layers often display a bimodal dis-
tribution, where the emergence of a second peak suggests the formation of distinct, highly cohesive
conceptual groups.

To create a robust criterion that accommodates both scenarios, we define the threshold τ as the
maximum of two candidates: (1) the 95th percentile of the pairwise similarity values, and (2) the
value corresponding to the second peak of a Kernel Density Estimate (KDE) fitted to the similarity
distribution. The percentile provides a robust baseline, particularly for the unimodal distributions
in early layers, while the second peak offers a more semantically meaningful partition for the well-
formed concepts in later layers. This dual-criterion approach ensures that our definition of a concept
is contextually grounded across the network’s hierarchy. The sensitivity analysis on the threshold
parameter τ is in Appendix B.

Comparison with Existing Work To demonstrate the effectiveness of our method in disentan-
gling and explaining multiple concepts encoded within a single neuron, we compared it against the
commonly used approach, PURE (Dreyer et al., 2024). Unlike ours, which flexibly determines the
number of clusters per neuron and dataset, PURE requires a pre-defined number of clusters to be
fixed in advance. Accordingly, in Figure 2-(a), we set the parameter k=4 for PURE and compared

1The term ’neuron’ is often used interchangeably with ’feature’ in the literature, or ’channel’ in the context
of CNNs.
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Algorithm 1 A Method for Iterative Concept Disentanglement

Input: A set of attribution footprints Au, a cohesion threshold τ .
Output: A set of disjoint concepts C∗, where each concept is a set of footprints.

1: function DISENTANGLECONCEPTS(Au, τ )
2: A′ ← Au ▷ Initialize the working set of footprints
3: C∗ ← ∅ ▷ Initialize the set of discovered concepts
4: k ← 2
5: while |A′| ≥ k do
6: Let Ccohesive be the set of all clusters C ∈ Cluster(A′, k) where Cohesion(C) > τ .
7: if Ccohesive ̸= ∅ then
8: C∗ ← C∗ ∪ Ccohesive ▷ Add cohesive clusters to the final set
9: A′ ← A′ \

⋃
C∈Ccohesive

C ▷ Remove their members from the working set
10: k ← max(2, k − (|Ccohesive| − 1))
11: else
12: k ← k + 1 ▷ Increase search granularity if no cohesive cluster is found
13: end if
14: end while
15: C∗ ← C∗ ∪ {{a} | a ∈ A′} ▷ Treat remaining footprints as individual concepts
16: return C∗
17: end function

where Cohesion(C) = meanai,aj∈C(sim(ai, aj))
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(a) 4 Clusters in ResNet50 Layer4.2 #1910.

Inter-Cluster Intra-Cluster

PURE 0.79 0.81
Ours 0.41 (▼0.38) 0.88 (▲0.07)

(b) Average CLIP Similarity among concept clusters on
ResNet50 Layer4.2.

Figure 2: Quantitative and Qualitative Comparison with Baseline (Dreyer et al. (2024)).

the extracted visual features with those obtained from our method on neuron #1910, where our ap-
proach also identified four concept clusters. Each row represents representative images of a cluster.
While some clusters (e.g., cluster 1) were consistently identified by both methods, our approach
uniquely revealed additional concept clusters, such as gorilla (cluster 2) and mallard duck (cluster
3). For cluster 4, our method produced a clearer and more compact visual cluster than PURE. We
further performed a quantitative evaluation by comparing inter-cluster and intra-cluster CLIP simi-
larities to assess whether the discovered clusters were semantically coherent and well separated in
Figure 2-(b). Our method consistently achieved lower inter-cluster similarity and higher intra-cluster
similarity, indicating superior performance in both semantic consistency and separability.

3 RESEARCH QUESTIONS & FINDINGS

Recent research has established polysemanticity as a fundamental property of neural networks. Prior
work has largely focused on three main directions: (1) reporting its existence through empirical evi-
dence and qualitative examples (Olah et al., 2017; 2020; Mu & Andreas, 2020); (2) investigating its
theoretical underpinnings, attributing it to phenomena such as superposition (Elhage et al., 2022) or
incidental causes (Lecomte et al., 2024); and (3) developing tools to mitigate or analyze it using met-
rics like Wasserstein distances (Sawmya et al., 2024) or clustering-based disentanglement (Dreyer
et al., 2024; Hesse et al., 2025; Yu et al., 2025). Despite this extensive progress, a detailed analysis
of the internal structure of polysemanticity—how different concepts are organized and relate to each
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Figure 3: Dissecting a polysemantic neuron (#652) from the last transformer block of ViT-B. (a)
UMAP embedding reveals distinct conceptual clusters within the neuron’s representation footprints.
(b) A similarity heatmap quantifies the low inter-cluster and high intra-cluster similarity. (c) A
similarity heatmap using CLIP embeddings quantitatively shows that concepts are semantically dis-
parate. (d) Exemplar images confirm the diverse and disparate visual concepts represented by each
cluster. The neuron responds to diverse visual concepts such as snakeskin (C1), penguins (C2), and
various two-wheeled vehicles (C3-C5).

other within a single neuron—has been relatively underexplored. Building upon foundational work,
this paper provides an in-depth, empirical analysis of these internal characteristics.

3.1 DO SEMANTICALLY UNRELATED CONCEPTS COHABIT IN A SINGLE NEURON?

Pay-phone

Dial Telephone

Burrito

Baseball

Mortarboard

Academic gown

#24 #157 #333

Figure 4: Top 20 co-occurrence concept pairs in ViT-B.

A fundamental question in inter-
pretability is whether a single neu-
ron is monosemantic, representing a
single concept, or polysemantic, mul-
tiplexing multiple, often unrelated,
concepts. We begin with a detailed
case study of a single neuron (#652)
from the last block of ViT-B, as il-
lustrated in Figure 3. Our method
disentangles this neuron’s activations
into five distinct conceptual clusters
(Figure 3a). The exemplar images
in Figure 3d reveal a surprising di-
versity: the neuron responds to vi-
sually and semantically disparate cat-
egories, including snakeskin (C1),
penguins (C2), and two-wheeled vehicles (C3-C5). The heatmap of pairwise attribution similar-
ity (Figure 3b) confirms that these clusters are well-separated in the model’s own representation
space, validating our disentanglement approach. To quantitatively verify their semantic dissimilar-
ity, we measured the similarity of the clusters in CLIP’s embedding space. The resulting heatmap
(Figure 3c) shows relatively low similarity between unrelated groups (e.g., C1 vs. C3), providing
strong evidence that this single neuron genuinely encodes semantically distinct concepts.

Through the above analysis, we confirmed that a single neuron can contain both clusters with high
embedding similarity and clusters with low similarity. Building on this, we further investigated
whether certain concept pairs consistently co-occur within the model. The detailed analysis of clus-
ter similarity and its upstream attribution paths is deferred to Section 3.3).

Focusing on the last transformer block of the ViT-B model, we identified the representative concept
labels for each cluster within a neuron and tracked the frequency of co-occurrence across all concept
label pairs. Figure 4 (Top) illustrates the 20 most frequent concept pairs. Three representative cases
with the same co-occurrence frequency are also shown in Figure 4 (Bottom), showing diverse prop-
erties of polysemantic neurons. The pink example (neuron #24) represents phone-related concepts,
even though they have distinct concept label, their semantic meanings are closely related. Similarly,
the yellow example (neuron #333) The blue example (neuron #157) corresponds to the pair bur-
rito and baseball, which are semantically unrelated. In contrast, the pink example (neuron #24)
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Figure 5: Polysemanticity differs across network architectures. (Left) The number of concepts per
neuron gradually decreases in ViTs, while collapsing late in CNNs. (Center) Intra-cluster similarity
remains high in CNNs but follows a U-shaped curve in ViTs. (Right) This reflects a structural evo-
lution where the similarity distribution shifts from unimodal (early layers) to bimodal (late layers),
a transition quantified by skewness and the Dip Test.

corresponds to the pair Pay-phone and Dial Telephone, which are semantically and visually highly
related.

3.2 HOW DOES POLYSEMANTICITY DIFFER ACROSS DIFFERENT NETWORKS?

Having established the existence of polysemanticity, we now investigate how its characteristics vary
with network architecture and depth. Specifically, we examine two key properties: (1) the total
number of concepts per neuron and (2) the internal cohesion of those concept groups.

Figure 5 (left) plots the number of disentangled concepts against normalized network depth, where
we observe two distinct trends. In Vision Transformers (ViT-B, ViT-S), the number of concepts
tends to gradually decrease with depth. In contrast, CNN-based architectures (ResNet, ConvNeXt)
tend to maintain a high number of concepts throughout most of their layers, followed by a sharp
collapse in the final blocks. This suggests that the two architectural paradigms employ different
methods for information abstraction.

To understand the nature of these concepts beyond their sheer number, we measured their internal
cohesion by calculating the average intra-cluster similarity (Figure 5, center). CNNs exhibit consis-
tently high conceptual cohesion across all layers, implying that tightly grouped features are formed
early on. Notably, for the ResNet models, this high cohesion is punctuated by sharp, sudden drops.
These drops precisely coincide with the boundaries between major convolutional blocks (e.g., from
conv2 x to conv3 x), where the spatial resolution of the feature maps is downsampled. We hypoth-
esize that this abrupt change in resolution induces a significant shift in the representational space,
leading to these transient decreases in similarity. Transformers, however, display a characteristic
U-shaped curve, with lower similarity (i.e., higher diversity) in the middle layers. This suggests that
ViTs may explore a wider range of feature representations before converging on highly cohesive
concepts in the final stages. Figure 7 shows detailed polysemantic neurons of the lowest and highest
similarity layers in each networks, which are represented in Figure 5 (center).

This difference in behavior can be explained by the evolution of the feature similarity distribution,
as shown in Figure 5 (right). In early layers, all models exhibit a unimodal, skewed distribution of
similarities, indicating a lack of clear conceptual separation. In later layers, this distribution becomes
strongly bimodal, reflecting a clear partition into highly similar intra-concept groups and dissimilar
inter-concept groups. We quantify this transition using skewness and Hartigan’s Dip Test (Hartigan
& Hartigan, 1985) for multimodality. The results show a clear trend of decreasing skewness and
increasing multimodality with depth, a signal that is particularly strong in Transformers. The full,
layer-by-layer evolution of these distributions, quantitatively supported by their Dip Test p-values,
is visualized in Appendix C.

In summary, our findings reveal two distinct strategies for hierarchical feature learning. CNNs tend
to maintain a large set of consistently cohesive concepts that collapse abruptly in the final layers. In
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42% of connections 
from the previous 
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18% of connections 
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(b)

(a)

🤖 #514 in blocks.10 shares the abstract pattern of a wide curved 

top + narrow vertical line below with #13 in blocks.11.
🤖 #91 in blocks.10 shows a contextual ‘natural ground’ feature,

which later bifurcates into specialized branches (rabbits, owls).

Inter-Cluster CLIP Similarity

Neuron Index

Figure 6: (Left) Inter-cluster similarity plot computed with CLIP embeddings, where the x-axis de-
notes neurons in ViT-B block 11 sorted by similarity. (Middle) Example of a polysemantic neuron
with low inter-cluster similarity, where the trajectories diverge into separate routes. (Right) Polyse-
mantic neuron with high inter-cluster similarity, where highly attributed nodes largely overlap.

contrast, Transformers undergo a process of representational diversification in their middle layers,
followed by a reconsolidation into a more clearly separated set of concepts. These results sug-
gest that the foundational inductive biases of these architectures—local, spatial convolutions versus
global, token-wise self-attention—give rise to fundamentally different mechanisms for concept for-
mation and abstraction.

3.3 IS ALL POLYSEMANTICITY THE SAME?

Polysemantic neurons can arise in distinct ways: some represent semantically related concepts that
frequently co-occur or share local visual structures, whereas others combine entirely unrelated con-
cepts without apparent commonality 4. A natural question is whether these two types of polyseman-
ticity emerge through different formation mechanisms in the model. To address this, we analyze the
internal pathways that give rise to polysemantic neurons.

In Figure 6-(left), we focus on the last block in ViT-B model and compute inter-cluster similarity
scores using CLIP embeddings, which reveal two contrasting cases: neuron #371, whose clus-
ters encode semantically related features, and neuron #13, whose clusters correspond to entirely
unrelated concepts. To trace how these representations emerge, we visualize the three strongest at-
tribution paths from the previous block. For instance, the parachute cluster of neuron #13 primarily
derives from three upstream neurons (blue), while the clock cluster is formed from three different
upstream neurons (pink). The semantics of each neuron can be conveyed by its strongly activating
images: upstream neuron #230 corresponds to a blue sky, neuron #514 to a curved popsicle, and
neuron #237 to an elongated hot dog. These diverse features converge into neuron #13, which ac-
tivates on parachute images through shared components such as the blue background and the curved
columnar shape of the parachute canopy.

Consistent interpretations are also achievable using a VLM, analogous to prior interpretation ap-
proaches Yu et al. (2025), which provide reasonable explanations when given the activating images.
By supplying GPT-5 Achiam et al. (2023) with four representative images per neuron and querying
the conveyed visual semantics, we obtained reasonable explanations (highlighted with the yellow
box in Figure 6-(bottom)) that were consistent with human interpretation.

By contrast, the upstream contributors of the clock cluster primarily represent round-shaped objects,
a semantic dimension distinct from the parachute cluster. When comparing the top-50 attributing
neurons for the two clusters, only 18% overlapped, confirming that the two concepts are largely
constructed from disjoint sets of pathways.

Figure 6-(right) illustrates a different type of polysemantic neuron (#371), where the two clusters
exhibit semantic commonality. In this case, some upstream neurons (e.g., #91, #248) contribute to
both clusters, while others (e.g., #361, #738) contribute selectively. Notably, the attribution paths
overlap by as much as 42%, indicating a high degree of shared formation between clusters.
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These observations suggest that polysemantic neurons are not homogeneous: some emerge through
overlapping semantic circuits, while others are constructed from entirely separate pathways. This
distinction highlights that the functional roles and interpretability of polysemantic neurons may vary
depending on their mode of formation.

4 RELATED WORK

Concept-based Interpretability A significant branch of interpretability research focuses on iden-
tifying human-understandable concepts within neural networks (Bau et al., 2017; Mu & Andreas,
2020; Olah et al., 2017; 2020). The goal of these methods is to associate individual neurons or direc-
tions in activation space with specific visual concepts. This research has expanded from foundational
techniques to more diverse approaches, including automatically identifying concepts without human
supervision (Kalibhat et al., 2023; Oikarinen & Weng, 2022; Yu et al., 2025) and extending the anal-
ysis to the level of circuits (Cao et al., 2025). A key limitation of many of these methods, however,
is their implicit monosemantic assumption—that a single neuron corresponds to a single coherent
concept. In practice, as we will show, many neurons encode multiple, unrelated features, an issue
that undermines the reliability of their explanations.

Theoretical understanding Contemporary theory reframes polysemanticity not as an error, but
as an efficient coding strategy that emerges from data statistics and capacity constraints (Olah et al.,
2018). For instance, work on superposition by Elhage et al. (2022) demonstrates that when a network
must represent more sparse features than available dimensions, it compresses them into an overlap-
ping code. This superposition tolerates interference because the features rarely co-occur, explaining
how sparsity can lead to unrelated concepts being bound to the same neuron. Complementing this,
Marshall & Kirchner (2024) approach the problem through the lens of coding theory, showing how
data statistics directly influence a model’s interpretability. These theoretical perspectives establish
that polysemanticity is a systematic consequence of optimization, motivating the need for analysis
frameworks that move beyond monosemantic assumptions.

Polysemanticity and Disentanglement Building on this understanding, recent work has devel-
oped tools to directly analyze and disentangle polysemantic neurons. Prominent approaches leverage
attribution methods to trace and separate concept pathways within a neuron’s receptive field (Dreyer
et al., 2024; Hesse et al., 2025; Yu et al., 2025). While these methods are powerful for revealing the
components of a neuron’s selectivity, their focus has primarily been on tool development. A persis-
tent challenge is the difficulty in determining the true number of distinct, meaningful concepts, and
a large-scale, comparative analysis of the internal structures these tools uncover has been lacking.
To fill this gap, we propose a principled and data-driven framework that enables a systematic inves-
tigation and comparison of the internal structure of polysemanticity across diverse neural network
architectures.

5 CONCLUSION

In this paper, we provide a comparative analysis with dynamic cohesion thrershold to effectively
capture the dicerse similarity distribution of diferent neurons. Our systematic analysis revealed fun-
damentally different hierarchical learning strategies between architectures. We found that CNNs
maintain a large set of consistently cohesive concepts that collapse late in the network, whereas
Vision Transformers exhibit a U-shaped trend in conceptual diversity, suggesting a distinct ”explo-
ration and reconsolidation” phase. We demonstrated that this behavior is driven by the structural evo-
lution of feature similarity distributions from unimodal to bimodal in Vision Transformers. These
findings offer a new lens through which to understand the internal mechanisms of deep learning
models. They suggest that architectural inductive biases lead to different strategies for concept for-
mation and abstraction. While our analysis spans several common architectures, future work could
extend this framework to other domains, such as language models, or a wider array of model scales.
A particularly exciting direction is to investigate the causal link between these observed structural
properties and downstream model behaviors, such as adversarial robustness or out-of-distribution
generalization.
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Figure 7: Examples of polysematnic neurons of the last block of ViT-B and ResNet-50. Each rows
in a neuron represents a distinct concept.
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