
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WizardMath: EMPOWERING MATHEMATICAL REASON-
ING FOR LARGE LANGUAGE MODELS VIA Reinforced
Evol-Instruct

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs), such as GPT-4, have shown remarkable perfor-
mance in natural language processing (NLP) tasks, including challenging mathe-
matical reasoning. However, most existing open-source models are only pre-trained
on large-scale internet data and without math-related optimization. In this paper,
we present WizardMath, which enhances the mathematical CoT reasoning abilities
of LLMs without using external python tools, by applying our proposed Reinforce-
ment Learning from Evol-Instruct Feedback (RLEIF) method to the domain of
math. Through extensive experiments on two mathematical reasoning benchmarks,
namely GSM8k and MATH, we reveal the extraordinary capabilities of our model.
Remarkably, WizardMath-Mistral 7B surpasses top-tier open-source LLMs by a
substantial margin with higher data efficiency. Furthermore, WizardMath 70B
even outperforms GPT-3.5-Turbo, Claude 2, Gemini Pro and GPT-4-early-version.
Additionally, our preliminary exploration highlights the pivotal role of instruction
evolution and process supervision in achieving exceptional math performance.

1 INTRODUCTION

Recently, Large-scale language models (LLMs) have garnered significant attention and become
the go-to approach for numerous natural language processing (NLP) tasks, including open domain
conversation (Ouyang et al., 2022; OpenAI, 2023; Touvron et al., 2023a), coding (Chen et al., 2021;
Wang et al., 2021; Li et al., 2023b) and math (Taylor et al., 2022; Lewkowycz et al., 2022; Shao
et al., 2024; Yang et al., 2024). A conspicuous example is ChatGPT1 , developed by OpenAI. This
model uses extensive pre-training on large-scale internet data and further fine-tuning with specific
instruction data and methods. As a result, it achieves state-of-the-art zero-shot performance on
various benchmarks. Subsequently, Anthropic, Google, and Meta also launched their competitive
products one after another. Notably, Meta’s series of Llama (Touvron et al., 2023a;b; Dubey et al.,
2024) have sparked an open-source revolution and quickly narrowed the gap with those closed-source
LLMs. This trend also gradually stimulates the releases of Mistral (Jiang et al., 2023), Alpaca (Taori
et al., 2023), Vicuna (Chiang et al., 2023), and WizardLM (Xu et al., 2023), etc. However, these open
models still struggle with the scenarios which require complex multi-step quantitative reasoning,
such as solving mathematical and science challenges (Ahn et al., 2024; Long et al., 2024).

Chain-of-thought (CoT) (Wei et al., 2022) proposes to design better prompts to generate step-by-
step solutions, which can lead to improved performance. Self-Consistency (Wang et al., 2022)
also achieves remarkable performance on many reasoning benchmarks, which generates several
possible answers from the model and selects the correct one based on majority vote (Fu et al., 2022).
Llemma (Azerbayev et al., 2023) and MathPile (Wang et al., 2023f) continue pretraining LLMs with
math corpus to improve domain capacity. MetaMath (Yu et al., 2023b) and Xwin-Math (Li et al.,
2024a) bootstraps mathematical questions by augmenting the question from multiple perspectives.
MAmmoTH (Yue et al., 2023) and TORA (Gou et al., 2023) presents a unique hybrid of CoT and
program-of-thought (PoT) to ensure extensive coverage of diverse fields in math. Recently, Evol-
Instruct is an effective method for large-scale data synthesis using LLMs. It has been widely verified
and proven to be effective in enhancing the model’s instruction following capability. It employs

1 https://openai.com/

1

https://openai.com/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SFT

B C

D E

C > A = E > B = D

Instruction Ranking Step-Level Labeling

PPO

IRM PRM

C > A = E > B = D

IRM PRM

𝑟𝑞 𝑟𝑎

𝑟 = 𝑟𝑞 ∙ 𝑟𝑎

Step 1:

Math Evol-Instruct and

supervised fine-tuning.

Step 2:

Instruction Reward Model (IRM) and

Process-supervised Reward Model (PRM).

Step 3:

Reinforcement Learning

with IRM and PRM.

Math Evol-Instruct

A

Figure 1: A diagram illustrating the three steps of our Reinforcement Learning from Evol-Instruct
Feedback (RLEIF)

In-depth Evolving and In-breadth Evolving to automate the generation of diverse and complex
open-domain instructions using LLMs, instead of relying on human-crafted instruction datasets. In-
depth Evolving incrementally enhances instruction complexity by introducing additional constraints,
deepening, concretizing, increasing reasoning steps, and complicating input. In-breadth Evolving
focuses on improving topic diversity and dataset richness by creating entirely new instructions. To
enhance the correctness of each step in the model’s generation process, (Wang et al., 2024a; Chen
et al., 2024a; Lightman et al., 2023) finds that process supervision with reinforcement learning
significantly outperforms outcome supervision for solving challenging MATH problems.

Inspired by Evol-Instruct and Process-supervised Reinforcement Learning, this work aims to enhance
the mathematical reasoning abilities of the LLMs. As shown in the Figure 1, we propose a new method
named Reinforcement Learning from Evol-Instruct Feedback (RLEIF), which could firstly generate
diverse math instructions data by brand-new Math Evol-Instruct, which includes two downward
evolution and upward evolution progress to produce the grade school math and challenging high
school math respectively. However different from WizardLM (Xu et al., 2023) and WizardCoder (Luo
et al., 2023), which mainly focus on the SFT stage and are susceptible to learning hallucinated
information from the teacher model, we innovatively introduce PRM to address the False-Positive
issue in the problem-solving process. Moreover, to prevent instruction evolution from spiraling out
of control, we incorporate an instruction reward model (IRM) as a mitigating strategy. Thus, we
train an instruction reward model (IRM) and a process-supervised reward model (PRM) (Lightman
et al., 2023; Uesato et al., 2022; Wang et al., 2024a; Chen et al., 2024a), the former indicates the
quality of the evolved instruction and the latter offers feedback for each reasoning step in the solution.
Initially, we finetune LLMs with the evolved math data. Immediately, we leverage GPT-4 to produce
the ranking order of instructions, and the correctness of each reasoning step, then optimize the LLMs
to obtain the reward models. Finally, we implement the step-by-step PPO to train our WizardMath.

We perform experiments on two widely used mathematical reasoning benchmarks, namely
GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) covering math problems from grade
to high school levels, the results show that our WizardMath outperforms all other open-source LLMs
at the same model size, achieving state-of-the-art performance. For instance, WizardMath-70B signif-
icantly outperforms MetaMath-70B by a significant margin on GSM8k (92.8 vs. 82.3) and on MATH
(58.6 vs. 26.6). Specifically, WizardMath-Mistral-7B observed a substantial improvement in pass@1
with an increase of +12.8 (90.7. vs. 77.9) on GSM8k, and +26.8 (55.4 vs. 28.6) on MATH compared
to MetaMath-Mistral-7B. Notably, our 70B model even also significantly surpasses those powerful

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

proprietary LLMs, such as GPT-3.5-Turbo, Claude 2 (Bai et al., 2022), Mistral Medium (Jiang et al.,
2024a), Gemini-Pro (Team, 2023), PaLM-2 (Anil et al., 2023) and GPT-4-early-version.

The main contributions of this work are as follows:

• We introduce WizardMath model, which enhances the LLMs’ mathematical reasoning
abilities across a range of problem difficulties, from grade to high school levels.

• We propose a new fully AI-powered automatic reinforcement learning method, Reinforce-
ment Learning from Evol-Instruct Feedback (RLEIF), alongside Math Evol-Instruct and
Process Supervision, for improving reasoning performance.

• WizardMath surpasses top-tier open-source LLMs by a substantial margin with higher data
efficiency and also significantly outperforms various proprietary LLMs on both GSM8k and
MATH, demonstrate the effectiveness of our RLEIF.

2 RELATED WORK

Large Language Models. LLMs have significantly advanced Natural Language Processing, with
models like OpenAI’s GPT Series (Brown et al., 2020a; OpenAI, 2023), Anthropic’s Claude (Bai
et al., 2022), Google’s PaLM (Chowdhery et al., 2022; Anil et al., 2023), Gemini (Team, 2023),
and Gemma (Team et al., 2024) featuring billions of parameters and trained on massive textual
datasets. The AI field has also seen a rise in open-source LLMs such as Mistral (Jiang et al., 2023),
Llama Series (Touvron et al., 2023a;b; Dubey et al., 2024; Taylor et al., 2022), DeepSeek (Bi et al.,
2024; Shao et al., 2024), Qwen (Bai et al., 2023; Yang et al., 2024) etc. Notably, Llama serves as a
foundational model for supervised fine-tuning, leading to the development of models like Alpaca,
Vicuna (Taori et al., 2023; Chiang et al., 2023).

Large Language Models For Mathematical reasoning. NLP models face challenges with complex
reasoning, including mathematical (Long et al., 2024; Zhang et al., 2024c; Xia et al., 2024), common-
sense (Talmor et al., 2019). Significant research focuses on Mathematical Word Problems (MWP),
which demand understanding of mathematical concepts and multi-step reasoning (Zheng et al., 2023;
Zhao et al., 2023; Yuan et al., 2023a). Models are tested on various MWP benchmarks (Roy &
Roth, 2015; Hendrycks et al., 2021). Techniques like Chain-of-Thought Prompting (Wei et al., 2022),
Least-to-Most prompting (Zhou et al., 2022), and Complex CoT (Fu et al., 2022) enhance reasoning
by introducing multiple steps and breaking problems into sub-problems. There are some models
aimed at improving math CoT reasoning skills such as MetaMath (Yu et al., 2023b), MathScale (Tang
et al., 2024), Xwin-Math (Li et al., 2024a), DART-Math (Tong et al., 2024) etc. Some models
enhance mathematical reasoning by integrating python tools, such as TORA (Gou et al., 2023),
MAmmoTH (Yue et al., 2023), Openmathinstruct (Toshniwal et al., 2024), NuminaMath (Li et al.,
2024c) etc. In our work, we mainly improve the CoT reasoning ability of mathematics without using
external Python tools.

Reinforcement Learning for Large Language Models. State-of-the-art models often display logical
errors and illusions, particularly in domains requiring complex, multi-step reasoning, leading to
significant challenges (Bubeck et al., 2023; Maynez et al., 2020). Strategies such as training reward
models help discriminate between desirable and undesirable outputs (Lightman et al., 2023; Wu
et al., 2023b; Chen et al., 2024b). Historically, outcome-based approaches focused on algorithmic
tasks (Li et al., 2016; Cai et al., 2017; Yu et al., 2023a), while recent research demonstrates the
efficacy of reward models or validators in enhancing model performance (Cobbe et al., 2021; Wang
et al., 2023c;d; Li et al., 2022a). Reward models have also been incorporated into reinforcement
learning pipelines and employed in rejection sampling to align Large Language Models (LLMs)
with human preferences (Shen et al., 2021; Bai et al., 2022; Yuan et al., 2023c; Dong et al., 2023;
Song et al., 2023; Touvron et al., 2023b; Rafailov et al., 2024; Meng et al., 2024). A contrast is
drawn between outcome-supervised and process-supervised reward models, with the latter being
more effective at addressing discrepancies arising from incorrect reasoning paths leading to correct
outcomes (Uesato et al., 2022; Zelikman et al., 2022; Creswell et al., 2022). Recent advances have
promoted process-based supervision through manual annotation, significantly benefiting LLMs over
outcome-based approaches (Lightman et al., 2023; Wang et al., 2024a; Sun et al., 2024; Chen et al.,
2024a; Wang et al., 2024b; Zhang et al., 2024a). In this paper, we leverage AI models like ChatGPT
to automatically offer process annotation to improve the efficiency of this research line.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

In this section, we elaborate on the details of our WizardMath. Following WizardLM and PRMs (Light-
man et al., 2023), we propose Reinforcement Learning from Evol-Instruct Feedback (RLEIF) method,
which integrates the math Evol-Instruct and reinforced instruction and process supervision to evolve
GSM8k and MATH, and fine-tune the pre-trained language models with the evolved data and reward
models.

3.1 MATH EVOL-INSTRUCT

Motivated by the Evol-Instruct (Xu et al., 2023) method proposed by WiazrdLM and its effective
application on WizardCoder (Luo et al., 2023), this work attempts to make math instructions with
various complexities and diversity to enhance the pre-trained LLMs. Specifically, we adapt Evol-
Instruct to a new paradigm including two evolution lines:

1) Downward evolution: It enhances instructions by making the questions easier. For example i):
revising high difficulty questions to lower difficulty, or ii) producing a new and easier question with
another different topic.

2) Upward evolution: Derived from original Evol-Instruct method, it deepens and generates new and
harder questions by i) adding more constraints, ii) concretizing, iii) increasing reasoning.

The complete prompts of above evolution are shown in Appendix A.1. For each instruction, we use
GPT-4 to evolve 5 rounds (2 downward and 3 upward) of new instructions progressively, each new
one is generated by the previous round of evolution.

3.2 REWARD MODELS

Considering the necessity of quality control for evolved instructions and inspired by PRMs (Lightman
et al., 2023), we train two reward models to predict the quality of the instructions and the correctness
of each step in the answer respectively:

Instruction Reward Model (IRM) This model aims to judge the quality of the evolved instructions
on two aspects: i) Difficulty, and ii) Definition. To produce the ranking list training data of IRM, we
leverage GPT-4 to rank the quality between those evolved instructions and original instruction. The
one with high difficulty and clear definition will deserve a higher ranking. The detailed prompt of
above ranking process is shown in the Appendix A.2.

Specifically, given an math instructions q, IRM (Q → R) assigns a score to q to indicate its quality.
We optimize ORM via the following pairwise ranking loss:

LIRM = − log σ(rqj − rqk −m) (1)

where rqj is the reward of chosen instruction and rqk is the reward of rejected instruction, m is the
margin.

Process-supervised Reward Model (PRM) As there is no simple way to support highly precise
process supervision without professional and expensive human-labelers, we depend on GPT-4 to
provide process supervision, and ask it to assess the correctness of each step in the solutions generated
by our model to produce PRM training data. The detailed prompt of above step level labeling process
is shown in the Appendix A.3.

For exactly, given an math instructions q and its answer a, PRM (Q×A → R+) assigns a score to
each step of a, we train PRM with the following cross-entropy loss:

LPRM =

L∑
i=1

yi log r
a
i + (1− yi) log(1− rai) (2)

where L is the reasoning steps of answer a. yi is the ground-truth label of the i-th step of answer a,
yi = 1 if ai is correct, otherwise yi = 0. rai is the reward score (assigned by PRM) of the i-th step of
answer a.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 REINFORCEMENT LEARNING WITH IRM AND PRM

Immediately, we exploit reinforcement learning to optimize LLMs. Following (Lightman et al.,
2023), we employ step by step Proximal Policy Optimization (PPO) to reward both instruction and
each reasoning step.

For each math instruction q and generated answer a, we use IRM to assign instruction reward rq , and
use the minimum score across all reasoning steps to represent the final reward score ra of the answer
a assigned by PRM. Then we apply a product as the final reward of this instruction-answer pair:

r = rq · ra (3)

3.4 PRM FOR VERIFICATION

Following (Lightman et al., 2023) and (Li et al., 2023c), we leverage both majority voting and PRM
verifier to aggregate the predictions of different reasoning paths.

â = argmax
a

N∑
i=1

Iai=a · PRM(q, ai) (4)

where PRM(q, ai) is the score of the i-th reasoning path assigned by PRM for instruction q. Iai=a

is an indicator function that returns 1(or 0) if ai = a.

4 EXPERIMENT

This section provides a comprehensive overview of the baseline models. Subsequently, we mainly
elucidate the performance metrics of our models on two prevalent mathematical benchmarks from
grade to high school problems: GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021).

4.1 BASELINES

Our proposed method undergoes comparison with: (i) proprietary models, including GPT-4, GPT-3.5-
Turbo, PaLM 2, Gemini, Claude, Mistral Medium and Minerva; (ii) publicly available models such
as MPT, GAL, Llama-2, Mistral, and Qwen; (iii) Rejection Sampling Fine-Tuning models, which
generates and aggregates accurate reasoning paths as augmented data for fine-tuning, as seen in RFT
and MuggleMATH; (iv) MAmmoTH which combines CoT and PoT; (v) MetaMath, employing a
bootstrapping approach to rewrite mathematical questions from multiple perspectives.

4.2 EXPERIMENTAL SETUP

SFT Training Data. Firstly, use the GSM8k and MATH training sets as the initial seed collection,
then employ both upward and downward math Evol-Instruct approach for five rounds. Each round
need to evolve the initial instructions 6 times, and the temperature parameter is set to 0.7. Next,
we remove duplicate instructions 17k. Hence, a total of 448k unique instructions were obtained.
Subsequently, 30k data were excluded by the data filtering method to avoid contamination, ultimately
leaving 418k data. Finally, we use GPT-4-0613 to generate the answer with a step-by-step format,
and leverage them for supervised fine-tuning.

Reward Models Training Data. To train the reward models, We conducted additional 5 rounds
of evolution on the initial instruction set and obtain 90k instructions. we use GPT-4-0613 to rank
each instruction list with the quality from 1 to 6 as the training data of IRM. To obtain the training
data of PRM, We use our Llama-2 70B SFT model to generate 5 answers for each instruction, and
GPT-4-0613 is employed to assign correctness judgement for each reasoning step.

Implementation Details. We employ our method on two open-source foundational models Llama
2 (Touvron et al., 2023b) and Mistral-7B (Jiang et al., 2023). Llama 2 encompasses three distinct
parameter sizes: 7B, 13B, and 70B. We utilize GPT-4-0613 for instruction evolution and the training
data construction of reward models. For SFT, we train 3 epochs, and the learning rate is 2e-5, 1e-5
and 5e-6 for Llama 2 7B/13B, 70B and Mistral-7B. The batch size is 512, and the sequence length is
2048. For the reward model, we train Llama 2 and Mistral-7B with learning rate 4e-6 and 1e-6 for
one epoch. For RL, the lr is 4e-7 and 1e-7 for Llama 2 and Mistral-7B and train one epoch.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 MAIN RESULTS
Table 1: The models’ CoT pass@1 results on GSM8k
and MATH without using any external python tool.

Model Base Params GSM8k MATH
Proprietary models

GPT-o1 (OpenAI, 2023) - - - 94.8
GPT-o1-mini - - - 90.0
Gemini-1.5 002 - - - 86.5
Claude 3.5 Sonnet (Bai et al., 2022) - - 96.4 71.1
GPT-4o-2024-0513 - - 96.1 76.6
GPT-4-turbo-0125 (OpenAI, 2023) - - 94.2 64.5
GPT-4-0314 - - 94.7 52.6
GPT-4 (original version) - - 92.0 42.5
Baichuan-3 (Yang et al., 2023) - - 88.2 49.2
GLM-4 (GLM et al., 2024) - - 87.6 47.9
Gemini Pro (Team, 2023) - - 86.5 32.6
Claude2 - - 85.2 32.5
GPT-3.5-Turbo - - 81.6 43.1
PaLM2 (Anil et al., 2023) - - 80.7 34.3
Minerva (Lewkowycz et al., 2022) - 540B 58.8 33.6
GPT3.5 (Brown et al., 2020a) - - 57.1 -

Open-Source Models (0.1B-3B)

GPT-2-Small (Brown et al., 2020b) - 0.1B 6.9 5.4
GPT-2-Medium (Brown et al., 2020b) - 0.3B 11.2 6.2
GPT-2-Large (Brown et al., 2020b) - 0.7B 13.6 6.4
GPT-2-XL (Brown et al., 2020b) - 1.5B 15.4 6.9
WizardMath-GPT GPT-2-Small 0.1B 26.4 12.3
WizardMath-GPT GPT-2-Medium 0.3B 38.7 15.6
WizardMath-GPT GPT-2-Large 0.7B 50.1 21.2
WizardMath-GPT GPT-2-XL 1.5B 58.9 25.4

WizardMath-Qwen Qwen-Math-2.5 1.5B 86.7 68.6

Llama-3.2-Instruct (Dubey et al., 2024) Llama 3.2 1B 44.4 30.6
WizardMath-Llama Llama 3.2 1B 63.3 33.5
Llama-3.2-Instruct Llama 3.2 3B 77.7 48.0
WizardMath-Llama Llama 3.2 3B 85.5 49.9

Open-Source Models (7B-8B)

Llama-2 (Touvron et al., 2023b) - 7B 14.6 2.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 7B 50.5 10.4
MathScale (Tang et al., 2024) Llama-2 7B 66.3 31.1
MetaMath (Yu et al., 2023b) Llama-2 7B 66.5 19.8
MuggleMath (Li et al., 2023a) Llama-2 7B 68.4 -
Skywork-Math (Zeng et al., 2024) Llama-2 7B 72.9 47.7
Math-Shepherd (Wang et al., 2024a) Llama-2 7B 73.2 21.6
Xwin-Math (Li et al., 2024a) Llama-2 7B 82.6 40.6
WizardMath-Llama Llama-2 7B 84.1 43.5

Mistral-v0.1 (Jiang et al., 2023) - 7B 42.9 12.9
MathScale (Tang et al., 2024) Mistral-v0.1 7B 74.8 35.2
MMIQC (Liu & Yao, 2024) Mistral-v0.1 7B 74.8 36.0
MetaMath (Yu et al., 2023b) Mistral-v0.1 7B 77.9 28.6
KPMath-Plus (Huang et al., 2024b) Mistral-v0.1 7B 82.1 46.8
DART-Math (Tong et al., 2024) Mistral-v0.1 7B 82.6 43.5
Skywork-Math (Zeng et al., 2024) Mistral-v0.1 7B 83.9 51.2
Math-Shepherd (Wang et al., 2024a) Mistral-v0.1 7B 84.1 33.0
MAmmoTH2-Plus (Yue et al., 2024) Mistral-v0.1 7B 84.7 45.0
JiuZhang3.0 (Zhou et al., 2024) Mistral-v0.1 7B 88.6 52.8
Xwin-Math (Li et al., 2024a) Mistral-v0.1 7B 89.2 43.7
WizardMath-Mistral Mistral-v0.1 7B 90.7 55.4
WizardMath-Mistral Mistral-v0.3 7B 90.4 55.6
WizardMath-Mathstral Mathstral-v0.1 7B 93.8 70.9

WizardMath-Qwen Qwen2.5-Math 7B 93.9 77.8
WizardMath-Qwen Qwen2.5 7B 94.0 74.5

DeepSeekMath-Base (Shao et al., 2024) - 7B 64.2 36.2
NuminaMath-CoT (Li et al., 2024c) DeepseekMath 7B 75.4 55.2
MMIQC (Liu & Yao, 2024) DeepSeekMath 7B 79.0 45.3
KPMath-Plus (Huang et al., 2024b) DeepSeekMath 7B 83.9 48.8
DeepSeekMath-RL (Shao et al., 2024) DeepSeekMath 7B 88.2 51.7
DART-Math (Tong et al., 2024) DeepSeekMath 7B 88.2 52.9
WizardMath-DeepSeek DeepSeekMath 7B 91.0 64.6

MetaMath (Yu et al., 2023b) Llama 3 8B 77.3 20.6
MMIQC (Liu & Yao, 2024) Llama 3 8B 77.6 29.5
DART-Math (Tong et al., 2024) Llama 3 8B 82.5 45.3
MAmmoTH2-Plus (Yue et al., 2024) Llama 3 8B 84.1 42.8
Llama 3.1-Instruct (Dubey et al., 2024) Llama 3 8B 84.5 51.9
JiuZhang3.0 (Zhou et al., 2024) Llama 3 8B 88.6 51.0
WizardMath-Llama Llama 3 8B 90.3 58.8

Open-Source Models (13B)

Llama-2 (Touvron et al., 2023b) - 13B 28.7 3.9
MAmmoTH-CoT (Yue et al., 2023) Llama 2 13B 56.3 12.9
MathScale (Tang et al., 2024) Llama 2 13B 71.3 33.8
MetaMath (Yu et al., 2023b) Llama 2 13B 72.3 22.4
MuggleMath (Li et al., 2023a) Llama 2 13B 74.0 -
KPMath-Plus (Huang et al., 2024b) Llama 2 13B 81.6 41.0
Xwin-Math (Li et al., 2024a) Llama 2 13B 88.1 44.9
WizardMath-Llama Llama 2 13B 89.7 50.6

Open-Source Models (70B)

Llama-2 (Touvron et al., 2023b) - 70B 56.8 13.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 70B 72.4 21.1
MetaMath (Yu et al., 2023b) Llama-2 70B 82.3 26.6
KPMath-Plus (Huang et al., 2024b) Llama-2 70B 87.4 48.6
Xwin-Math (Li et al., 2024a) Llama-2 70B 90.6 52.8
WizardMath-Llama Llama-2 70B 92.8 58.6

Table 1 shows the CoT (Wei et al., 2022)
pass@1 results of the current state-of-the-art
models on GSM8k and MATH. In this study,
to ensure equitable and cohesive evaluations,
we report the socres of all models within the
settings of greedy decoding and CoT with-
out using any external python tool.

Comparing with the proprietary Models.
As shown in the Table 1, our WizardMath
demonstrates notable superiority over various
proprietary LLMs on the GSM8k and MATH
benchmarks in terms of pass@1:

1) WizardMath-Llama 70B, the largest
model, demonstrated exceptional perfor-
mance on the GSM8k and MATH , surpass-
ing earlier versions of GPT-4, Claude-2, and
Gemini Pro, and performing on par with GPT-
4-0314. It significantly outperformed GPT-
3.5-Turbo by 11.2% on GSM8k and by 15.5%
on MATH.

2) WizardMath-Mistral 7B, the smaller-
sized model, outperformed Baichuan 3
on GSM8k (90.7 vs. 87.6) and sur-
passed GPT-4-0314 on MATH (55.4 vs.
52.6), significantly exceeding the perfor-
mance of GPT-3.5-Turbo and Gemini Pro.
Meanwhile, WizardMath-Mathstral, trained
on Mathstral-7B-v0.1, demonstrated perfor-
mance comparable to GPT-4-turbo-0125. Ad-
ditionally, WizardMath-Qwen, trained on
Qwen2.5-Math, surpassed GPT-4-2024-0513
on MATH (77.8 vs. 76.6).

Comparing with the Open-Source Models.
The results presented in Table 1 unequivo-
cally indicate that our WizardMath-Llama
70B exhibits a significant performance supe-
riority over strong models in both the GSM8k
and MATH benchmarks with higher data ef-
ficiency across the range from 0.1B to 70B
parameters. The detailed results are as fol-
lows:

1) With the same model parameter size, our
model surpasses the previous best model such
as MetaMath, MAmmoTH2-Plus, Xwin-
Math. Particularly, WizardMath-Llama 70B
achieves a substantial improvement of 10.5%
on GSM8K and 32.0% on MATH compared
to MetaMath-Llama 70B in testing accuracy.
In the Table 2, we show the detailed results of
MATH subtopics with our WizardMath 70B
model. Specifically, WizardMath-Mistral 7B
also surpasses top-tier open source models, outperforming MetaMath-Mistral 7B with a notable
margin (90.7 vs 77.9 on GSM8k) and (55.4 vs 28.6 on MATH). It demonstrats the effectiveness

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Results of pass@1 (%) on MATH
subtopics (i.e., Intermediate Algebra, Geome-
try) with WizardMath 70B model.

MATH subtopics WizardMath 70B
Intermediate Algebra 36.3
Precalculus 38.9
Geometry 48.3
Number Theory 58.5
Counting & Probability 54.8
Prealgebra 74.6
Algebra 78.5

Overall 58.6

Table 3: Explore the effects of PRM and IRM during
PPO training.

Models GSM8K MATH

GPT-2-XL-1.5B: WizardMath-SFT 51.9 18.3

+ PRM 55.8 22.1
+ PRM + IRM 58.9 25.4

Llama2-7B: WizardMath-SFT 77.4 35.6

+ PRM 81.7 39.9
+ PRM + IRM 84.1 43.5

Mistral-7B: WizardMath-SFT 82.8 48.1

+ PRM 87.2 52.7
+ PRM + IRM 90.7 55.4

of our RLEIF method in enhancing mathematical reasoning capabilities across a range of problem
difficulties, from grade to high school levels.

2) By employing diverse pre-trained models (i.e., GPT-2, Llama 2, Mistral, Qwen, DeepSeek) as base
models, WizardMath demonstrated notable advancements on the GSM8k and MATH benchmarks.
Specifically, WizardMath-Llama2-7B, based on Llama2-7B, improved performance by 69.5% on
GSM8k and 41.0% on MATH. Similarly, WizardMath-GPT2-XL, built on GPT2-XL, achieved a
43.5% improvement on GSM8k and 18.5% on MATH, performing on par with Llama2-70B and
outperforming GPT-3.5 on GSM8k. This demonstrates that our RLEIF method is equally effective
for smaller models in enhancing mathematical reasoning capabilities, proving its scalability and
robustness across various model backbones.

4.4 ANALYSIS

15k 30k 60k 120k 200k 300k 390k
Data Size

56

62

68

74

80

86

GS
M

8K
(%

)

13

21

28

36

44

51

M
AT

H(
%

)

GSM8K(Ours)
GSM8K(MetaMath)
MATH(Ours)
MATH(MetaMath)

Figure 2: Accuracy of Mistral-7B fine-tuned in different
sizes of augmentation data on GSM8K and MATH

The impact of training data size

We are curious about to how the training
data size of different dataset construction
methods impact the reasoning capacity of
LLMs. Thus we conduct different num-
ber of training instances from ours evolved
data and MetaMathQA to fine tune Mistral
7B. As shown in the Figure 2, Math Evol-
Instruct achieves superior data efficiency.
Specifically, our model constantly outper-
forms MataMath by more than 3% ∼ 6%
on GSM8k and 15% ∼ 20% on MATH un-
der the same number of conditions. Our
findings indicate that Math Evol-Instruct
exhibits a higher potential upper bound
compared to MetaMath, thus demonstrat-
ing the effectiveness of Evol-Instruct for
math reasoning senario.

The impact of PRM and IRM during PPO training

To verify the contributions of the instruction reward model and process-supervised reward model, we
consider the following variants: (1) SFT + PRM: only use PRM in the PPO training. (2) SFT + PRM
+ IRM: use both IRM and PRM in the PPO training. As shown in Table 3, applying PRM alone for
PPO training on GSM8k and MATH yields a 3%-4% improvement. When combined with IRM, an
additional 2.5%-4% gain is observed. Thus, the integration of PRM and IRM results in a substantial
overall improvement of 6%-8%. So, we can conclude that (1) PRM is crucial to WizardMath, since
the variant with PRM significantly outperforms the SFT one without any PPO training (2) IRM also
plays a key role in the success of reinforcement learning, as there is a remarkable improvement when

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

we combine PRM with IRM, further demonstrating the necessity of taking instruction’s quality into
account and correcting false positives in the problem-solving process when we optimize the LLMs.

Table 4: The effect of different reward models
during PPO training

Models GSM8K MATH

Llama2-7B: WizardMath-SFT 77.4 35.6

+ ORM (ours) 79.1 36.8
+ PRM800k 79.7 38.7
+ Math-Shepherd 80.3 38.2
+ PRM (ours) 81.7 39.9

Mistral-7B: WizardMath-SFT 82.8 48.1

+ ORM (ours) 84.6 49.6
+ PRM800k 85.4 50.8
+ Math-Shepherd 86.1 50.3
+ PRM (ours) 87.2 52.7

Table 5: Results of reinforcement learning com-
bined with validation. The SFT and Reward
models are trained based on Mistral-7B. The ver-
ifier is based on 256 sample outputs.

Generators Verifiers GSM8K MATH

SFT
Self-Consistency 90.7 57.5
ORM 93.0 58.3
PRM 93.9 61.7

SFT + ORM
Self-Consistency 91.2 57.7
ORM 93.4 59.4
PRM 94.1 63.3

SFT + PRM
Self-Consistency 92.3 59.3
ORM 94.1 60.8
PRM 95.2 64.7

Table 6: Impact of different Downward and Upward Evol-
Instruct turns on Mistral-7B SFT. D-i refers to the i round of
downward evolution, whereas U-i denotes the i round of upward
evolution. Ori is the original manually annotated 7.5k data of
GSM8k and MATH.

Data
GSM8K MATH

Ori D-1 D-2 U-1 U-2 U-3 pass@1 Ori D-1 D-2 U-1 U-2 U-3 pass@1
Ori ✓ ✗ ✗ ✗ ✗ ✗ 59.7 ✓ ✗ ✗ ✗ ✗ ✗ 15.1

Math
Evol

✓ ✓ ✗ ✗ ✗ ✗ 71.9 ✓ ✓ ✗ ✗ ✗ ✗ 30.3
✓ ✗ ✓ ✗ ✗ ✗ 70.5 ✓ ✗ ✓ ✗ ✗ ✗ 28.7
✓ ✗ ✗ ✓ ✗ ✗ 73.7 ✓ ✗ ✗ ✓ ✗ ✗ 33.4
✓ ✗ ✗ ✗ ✓ ✗ 71.6 ✓ ✗ ✗ ✗ ✓ ✗ 32.6
✓ ✗ ✗ ✗ ✗ ✓ 70.2 ✓ ✗ ✗ ✗ ✗ ✓ 30.9
✓ ✓ ✓ ✗ ✗ ✗ 74.5 ✓ ✓ ✓ ✗ ✗ ✗ 34.7
✓ x x ✓ ✓ x 77.1 ✓ x x ✓ ✓ x 38.6
✓ x x ✓ ✓ ✓ 78.6 ✓ x x ✓ ✓ ✓ 42.5
✓ ✓ ✓ ✓ ✗ ✗ 76.6 ✓ ✓ ✓ ✓ ✗ ✗ 40.3
✓ ✓ ✓ ✓ ✓ ✗ 79.8 ✓ ✓ ✓ ✓ ✓ ✗ 44.6
✓ ✓ ✓ ✓ ✓ ✓ 81.2 ✓ ✓ ✓ ✓ ✓ ✓ 46.2

The impact of Evol-Instruct turns. Ta-
ble 6 illustrates the impact of combining
downward and upward evolution in SFT
training. Two rounds of downward evo-
lution improved GSM8k by 14.8% (74.5
vs. 59.7) and MATH by 19.6% (34.7 vs.
15.1) over the original. Three rounds of
upward evolution yielded a 18.9% im-
provement on GSM8k (78.6 vs. 59.7)
and a 27.4% improvement on MATH
(42.5 vs. 15.1). Furthermore, combining
downward evolution based on upward
evolution resulted in an additional 2.6%
improvement on GSM8k (81.2 vs. 78.6),
a total improvement of 21.5% over the
original. Similarly, a 1.9% improvement
on MATH (46.5 vs. 42.5), a 31.4% total
improvement. These results underscore
the complementary and significant effectiveness of upward and downward evolution.

ORM v.s. PRM; Human v.s. AI. The Table 4 presents the performance of different answer
reward methods for LLMs in terms of pass@1. As is shown: 1) Our step-by-step PRM significantly
enhances the performance of both Llama and Mistral based SFT models. Specifically, the Mistral-7B
powered by our PRM achieves 87.2% and 52.7% on GSM8k and MATH respectively. 2) PRM
models consistently outperforms ORM on both GSM8k and MATH, indicating the effectiveness of
step-by-step supervision. 3) The PRM trained on our fully AI-labeled data outperforms both the
manually annotated PRM800k and Math-Shepherd, which utilizes MCTS tree search for annotation.
When training WizardMath-Mistral-SFT with PPO, our PRM improves upon PRM800k by 1.8% and
Math-Shepherd by 1.1% on GSM8k, while surpassing PRM800k by 1.9% and Math-Shepherd by
2.4% on MATH. This demonstrates powerful AI can also provide good process supervision quality,
highlighting the effectiveness of utilizing AI to construct PRM training data.

PRM as Verifier. Table 5 presents the performance comparison of various generators with different
verifiers on GSM8K and MATH in terms of pass@256. We find that: 1) PRM verifier consistently
demonstrates superior performance compared to Self-Consistency and ORM. Specifically, our SFT
+ PRM generator, enhanced by the PRM verifier, achieves 95.2% and 64.7% accuracy on GSM8K
and MATH respectively. 2) When compared to ORM, PRM exhibits a more significant advantage
on the more challenging MATH dataset which aligns with the findings in (Uesato et al., 2022) and
(Lightman et al., 2023). This can be attributed to the fact that GSM8K involves fewer and less
complex steps in problem-solving than MATH. 3) Particularly, the generator with PRM PPO training

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 4 8 16 32 64 128 192 256
N = number of solutions per problem

82

84

86

88

90

92

94
%

 P
ro

bl
em

s S
ol

ve
d

(B
es

t-o
f-N

)

GSM8k
SC
ORM
PRM (ours)

1 4 8 16 32 64 128 192 256
N = number of solutions per problem

48

50

52

54

56

58

60

62

%
 P

ro
bl

em
s S

ol
ve

d
(B

es
t-o

f-N
)

MATH

SC
ORM
PRM800k
PRM (ours)

Figure 3: Performance of Mistral-7B SFT with different verification strategies.

surpasses those SFT and ORM PPO trained generators regardless of employing Self-Consistency,
ORM, and the PRM verifiers. This further demonstrates the effectiveness of our PRM.

Figure 3 also shows the performance of different Verification strategies across a range of candidate
numbers from 1 to 256 on two benchmarks. The main observations are as follows: 1) PRM verifiers
consistently achieves superior performance compared to both ORM and majority voting, and this
superiority becomes more evident as N increases. 2) For MATH benchmark, our PRM trained on the
AI-annotated datasets slightly surpassed the human-annotated PRM800K.

Table 7: Performance of WizardMath on the 7 out-of-
domain evaluation results covering K-12, college, and
competition level math problems. The results of models
in the table refer to MWPBENCH (Tang et al., 2024).
“AGIE” stands for AGIEval. We report the models’ CoT
pass@1 results on MwpBench without using any external
python tool

Models College
Math TAL Math23k Ape210k

Gaokao
Bench
Math

AGIE
Gaokao
Math

AGIE
SAT
Math

AVG

Proprietary models
GPT-4 24.4 51.8 76.5 61.5 35.4 28.2 68.6 49.5
GPT-3.5-Turbo 21.6 42.9 62.5 44.0 23.2 15.3 55.8 37.9

Models based on LLaMA-2 13B
LLaMA-2 13B 1.2 6.3 9.5 7.9 0.7 0.4 6.8 4.7
MAmmoTH-CoT 6.5 17.3 39.5 28.1 5.9 4.9 20.5 17.5
GAIR-Abel 7.9 21.1 42.2 27.8 7.0 4.9 30.3 20.2
MetaMath 10.1 25.4 48.6 31.6 9.6 5.6 38.2 24.2
MathScale 13B 20.4 38.1 61.1 43.7 20.0 12.3 55.8 35.9
WizardMath 22.9 43.3 70.3 50.8 33.1 25.7 64.7 44.4

Models based on LLaMA-2 7B
LLaMA-2 7B 2.3 7.6 6.8 7.3 2.1 2.9 2.9 4.6
MAmmoTH-CoT 6.2 13.3 34.6 21.4 3.9 2.7 19.6 14.5
GAIR-Abel 6.6 18.3 35.4 24.5 4.3 4.4 23.5 16.7
MetaMath 9.4 22.5 44.0 29.9 5.9 5.1 36.2 21.9
MathScale 7B 20.9 35.2 59.0 41.8 19.6 12.6 57.8 35.3
WizardMath 21.2 40.2 67.3 46.1 28.9 18.7 62.7 40.7

Models based on Mistral 7B
Mistral 7B 7.5 17.9 18.5 15.5 6.2 5.9 22.5 13.4
MetaMath Mistral 15.7 31.4 55.1 38.1 15.3 10.1 50.9 30.9
MathScale Mistral 21.8 39.9 64.4 46.0 21.4 14.3 57.8 37.9
WizardMath Mistral 24.8 44.8 71.2 52.6 37.2 24.5 64.7 45.7

Performance of Out-of-Domain. Ta-
ble 7 presents the results of Wizard-
Math on the 7 out-of-domain evalu-
ation results covering K-12, college,
and competition level math problems,
highlighting the following salient obser-
vations: (1) With math Evol-Instruct
and reinforcement learning, WizardMath
consistently surpasses prior state-of-the-
art open-source models (e.g. Meta-
Math, MathScale) across all scales, and
achieves improvement of 5%-10% across
7 tasks on average. (2) The accuracy
of WizardMath-Mistral is about 5.0%
higher than WizardMath-Llama on the
same size. Especially it exceeds GPT-3.5-
Turbo (45.7 vs. 37.9) while being compa-
rable to GPT-4. This also indicates that
Mistral-7B has more potential in math-
ematical reasoning. (3) Especially on
difficult benchmarks (i.e., College Math,
AGIE Gaokao Math), WizardMath out-
performs MetaMath by a significant mar-
gin . This demonstrates our model and
RLEIF method has stronger robustness
and better significant generalization abil-
ity for invisible mathematical problems.

Employ Open-source Model to Math Evol-Instruct. In Table 33, we investigate the use of
open-source models (i.e., Llama-3-70B-Instruct) as a substitute for GPT-4 during the SFT stage for
Evol Instruct, employing the same evolution strategy. The results demonstrate that WizardMath-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 9: A case study from GSM8k test set. We rate the response using PRM and ORM. Red text
denotes the wrong reasoning steps which PRM successfully detected, but ORM failed.

Question The farm has 30 cows and the zoo has 20 sheep. The zoo has twice as many cows as the farm
does. The farm has half as many sheep as the zoo does. How many animals do the farm and zoo
have combined? Ground truth answer: 120

Steps

Step 1: we know that the farm has 30 cows. PRM Score: 0.95.
Step 2: we are told that the zoo has twice as many cows as the farm does. PRM Score: 0.97.
Step 3: So, we can calculate the number of cows in the zoo by multiplying the number of cows
in the farm by 2. So, 2 * 30 = 60, So, the zoo has 60 cows. PRM Score: 0.97.
Step 4: we know that the farm has half as many sheep as the zoo does. PRM Score: 0.96.
Step 5: So, we can calculate the number of sheep in the farm by dividing the number of sheep in
the zoo by 2. So, 20 / 2 = 10. So, the farm has 10 sheep. PRM Score: 0.93.
Step 6: Now, we can calculate the total number of animals in the farm and the zoo by adding the
number of cows and the number of sheep in both places. PRM Score: 0.92.
Step 7: So, 30 (farm’s cows) + 60 (zoo’s cows) + 10 (farm’s sheep) = 100. PRM Score: 0.11.
Step 8: So, the farm and the zoo have a total of 100 animals combined. PRM Score: 0.10.
Step 9: Therefore, the final answer is 100 . The answer is: 100. PRM Score: 0.06. ORM Score:
0.89.

Table 8: The impact of using open source models
for Math-Evol and use Mistral-7B-v0.1 for SFT .

Models GSM8k MATH

Mistral-7B-v0.1 42.9 12.9

WizardMath-SFT-GPT-4-Evol 82.8 48.1
WizardMath-SFT-Llama3-Evol 76.7 43.5

Llama3-Evol achieved a 33.8% improvement on
GSM8k and a 30.6% improvement on MATH,
indicating that the math evol instruct strategy
remains effective on open-source models. How-
ever, compared to GPT-4 evolution, there is still
a 5%-6% performance gap. Despite this, the
strategy shows significant potential in balancing
computational cost and accuracy.

4.5 MORE DISCUSSION.

Due to limited space, we place more discussion in the appendix. (1.) Appendix A.4 explores the
effect of math evol-instruct during the SFT and RL stages, showing that math evol-instruct is highly
efficient in SFT and RL stages. (2.) Appendix A.5 explores the difference between Math Evol-
Instruct and WizardLM Evol-Instruct, showing math evol-instruct is more efficient than WizardLM.
(3.) Appendix A.8 explores the impact of the different round for upward and downward evol-instruct.
(4.) Appendix A.9 explores the impact of the scoring aggregation strategy at each step of the PRM
for RL training. (5.) Appendix A.11 explores the data contamination check to prevente data leakage.

4.6 CASE STUDY

Evol-Instruct. The Examples 3 and 4 in the Appendix A.1 shows the prompt and corresponding
cases of GSM8k and MATH instruction evolution, demonstrating that the evolved instructions exhibit
more complexity and diversity than the original training set.

PRM v.s. ORM. We present a comprehensive case study to illustrate the effectiveness of our PRM.
As delineated in Table 9, PRM demonstrates precise performance on a challenge math problem from
the GSM8k test set. Remarkably, our PRM effectively distinguished the incorrect solution, in the
meanwhile the ORM struggled in this task. Furthermore, PRM demonstrated exceptional insight by
accurately detecting the incorrect steps of the solution chosen by ORM, specifically the steps 7, 8,
and 9. Subsequently, PRM also assigned lower score logits to these erroneous steps.

5 CONCLUSION

This paper introduces WizardMath, a mathematics model fine-tuned with RLEIF. The experimental
results demonstrate that WizardMath achieves SOTA performance surpassing existing open-source
LLMs on GSM8k and MATH from grade to high school problems. Notably, WizardMath 70B exhibits
superior performance compared to some of the well-known proprietary LLMs, including ChatGPT-
3.5, Claude Instant, PaLM-2, Gemini Pro. Furthermore, our preliminary exploration highlights the
pivotal role of instruction evolution and process supervision in achieving exceptional performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Avinash Anand, Mohit Gupta, Kritarth Prasad, Navya Singla, Sanjana Sanjeev, Jatin Kumar,
Adarsh Raj Shivam, and Rajiv Ratn Shah. Mathify: Evaluating large language models on mathe-
matical problem solving tasks. arXiv preprint arXiv:2404.13099, 2024.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. arXiv preprint arXiv:2310.10631, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenhang Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao
Liu, Chengqiang Lu, K. Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Jian Yang, Shusheng Yang, Shusheng Yang, Bowen
Yu, Yu Bowen, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xing Zhang, Yichang Zhang, Zhenru
Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report.
ArXiv, abs/2309.16609, 2023. URL https://api.semanticscholar.org/CorpusID:
263134555.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

DeepSeek-AI Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi
Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wen-Hui
Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun
Lin, A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu,
Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren,
Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Jun-Mei Song, Xuecheng Su, Jingxiang
Sun, Yaofeng Sun, Min Tang, Bing-Li Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji
Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yi Xiong, Hanwei Xu, Ronald X Xu,
Yanhong Xu, Dejian Yang, Yu mei You, Shuiping Yu, Xin yuan Yu, Bo Zhang, Haowei Zhang,
Lecong Zhang, Liyue Zhang, Mingchuan Zhang, Minghu Zhang, Wentao Zhang, Yichao Zhang,
Chenggang Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou.
Deepseek llm: Scaling open-source language models with longtermism. ArXiv, abs/2401.02954,
2024. URL https://api.semanticscholar.org/CorpusID:266818336.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott

11

https://api.semanticscholar.org/CorpusID:263134555
https://api.semanticscholar.org/CorpusID:263134555
https://api.semanticscholar.org/CorpusID:266818336
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020b.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. arXiv preprint arXiv:1704.06611, 2017.

Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation with
1,000,000,000 personas. arXiv preprint arXiv:2406.20094, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi Zhang, Xiang Li, Bhiksha Raj, and Huaxiu Yao.
Autoprm: Automating procedural supervision for multi-step reasoning via controllable question
decomposition. arXiv preprint arXiv:2402.11452, 2024a.

Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Junchen Wan, Fuzheng Zhang, Di Zhang, and Ji-Rong
Wen. Improving large language models via fine-grained reinforcement learning with minimum
editing constraint. arXiv preprint arXiv:2401.06081, 2024b.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024c.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//vicuna.lmsys.org.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

12

https://vicuna.lmsys.org
https://vicuna.lmsys.org

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. Raft: Reward ranked finetuning for generative foundation model alignment. arXiv
preprint arXiv:2304.06767, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and Jun
Wang. Alphazero-like tree-search can guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Mathematical capabilities of
chatgpt. arXiv preprint arXiv:2301.13867, 2023.

Jiayi Fu, Lei Lin, Xiaoyang Gao, Pengli Liu, Zhengzong Chen, Zhirui Yang, Shengnan Zhang, Xue
Zheng, Yan Li, Yuliang Liu, et al. Kwaiyiimath: Technical report. arXiv preprint arXiv:2310.07488,
2023a.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Yao Fu, Litu Ou, Mingyu Chen, Yuhao Wan, Hao Peng, and Tushar Khot. Chain-of-thought hub:
A continuous effort to measure large language models’ reasoning performance. arXiv preprint
arXiv:2305.17306, 2023b.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions
of the Association for Computational Linguistics, 9:346–361, 2021. doi: 10.1162/tacl_a_00370.
URL https://aclanthology.org/2021.tacl-1.21.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, et al. Chatglm: A family of large language models from glm-130b
to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving, 2023.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 523–533, Doha, Qatar,
October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1058. URL
https://aclanthology.org/D14-1058.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao, and Benyou Wang. Mamo: a mathematical
modeling benchmark with solvers. arXiv preprint arXiv:2405.13144, 2024a.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen.
Key-point-driven data synthesis with its enhancement on mathematical reasoning. arXiv preprint
arXiv:2403.02333, 2024b.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

13

https://aclanthology.org/2021.tacl-1.21
https://aclanthology.org/D14-1058

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024a.

Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James Kwok.
Forward-backward reasoning in large language models for mathematical verification. In Findings
of the Association for Computational Linguistics ACL 2024, pp. 6647–6661, 2024b.

Zhanming Jie, Jierui Li, and Wei Lu. Learning to reason deductively: Math word problem solving as
complex relation extraction. arXiv preprint arXiv:2203.10316, 2022.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang.
Parsing algebraic word problems into equations. Transactions of the Association for Computational
Linguistics, 3:585–597, 2015.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. MAWPS:
A math word problem repository. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1152–1157, San Diego, California, June 2016. Association for Computational Linguistics. doi:
10.18653/v1/N16-1136. URL https://aclanthology.org/N16-1136.

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan, Bing Tian Dai, Yan Wang, Dongxiang Zhang,
and Ee-Peng Lim. Mwptoolkit: an open-source framework for deep learning-based math word
problem solvers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
13188–13190, 2022.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. arXiv preprint arXiv:2206.14858, 2022.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024a.

Chengpeng Li, Zheng Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan, Xiang Wang,
and Chang Zhou. Query and response augmentation cannot help out-of-domain math reasoning
generalization. ArXiv, abs/2310.05506, 2023a. URL https://api.semanticscholar.
org/CorpusID:263830207.

Chengpeng Li, Guanting Dong, Mingfeng Xue, Ru Peng, Xiang Wang, and Dayiheng Liu. Dotamath:
Decomposition of thought with code assistance and self-correction for mathematical reasoning.
arXiv preprint arXiv:2407.04078, 2024b.

Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, and Nate Kushman. Neural
program lattices. In International Conference on Learning Representations, 2016. URL https:
//api.semanticscholar.org/CorpusID:34816748.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. 2024c.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
benchmark for evaluating the robustness of llms as mathematical problem solvers. arXiv preprint
arXiv:2402.19255, 2024d.

14

https://aclanthology.org/N16-1136
https://api.semanticscholar.org/CorpusID:263830207
https://api.semanticscholar.org/CorpusID:263830207
https://api.semanticscholar.org/CorpusID:34816748
https://api.semanticscholar.org/CorpusID:34816748

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023b.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, B. Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2022a. URL https://api.semanticscholar.org/
CorpusID:259370847.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. On the
advance of making language models better reasoners. arXiv preprint arXiv:2206.02336, 2022b.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–5333,
Toronto, Canada, July 2023c. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.291. URL https://aclanthology.org/2023.acl-long.291.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. ArXiv, abs/2308.03281, 2023d.
URL https://api.semanticscholar.org/CorpusID:260682258.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, et al. Rho-1: Not all tokens are what you need. arXiv preprint
arXiv:2404.07965, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. ACL, 2017.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving> 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Haoxiong Liu and Andrew Chi-Chih Yao. Augmenting math word problems via iterative question
composing. arXiv preprint arXiv:2401.09003, 2024.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv preprint
arXiv:2406.15126, 2024.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning for
mathematical reasoning. arXiv preprint arXiv:2212.10535, 2022.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhancing
mathematical reasoning of llms. arXiv preprint arXiv:2402.16352, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. arXiv preprint arXiv:2005.00661, 2020.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. arXiv preprint arXiv:2405.14734, 2024.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Codas,
Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby Rosset, et al. Agentinstruct: Toward generative
teaching with agentic flows. arXiv preprint arXiv:2407.03502, 2024a.

15

https://api.semanticscholar.org/CorpusID:259370847
https://api.semanticscholar.org/CorpusID:259370847
https://aclanthology.org/2023.acl-long.291
https://api.semanticscholar.org/CorpusID:260682258

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024b.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Ansong Ni, Jeevana Priya Inala, Chenglong Wang, Alex Polozov, Christopher Meek, Dragomir
Radev, and Jianfeng Gao. Learning math reasoning from self-sampled correct and partially-correct
solutions. In The Eleventh International Conference on Learning Representations, 2022.

Xinzhe Ni, Yeyun Gong, Zhibin Gou, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. Explor-
ing the mystery of influential data for mathematical reasoning. arXiv preprint arXiv:2404.01067,
2024.

Eric Nichols, Leo Gao, and Randy Gomez. Collaborative storytelling with large-scale neural language
models. In Proceedings of the 13th ACM SIGGRAPH Conference on Motion, Interaction and
Games, pp. 1–10, 2020.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094, 2021.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279,
2015.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pp. 1743–1752, Lisbon,
Portugal, September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1202.
URL https://aclanthology.org/D15-1202.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming Zhang, and Qun Liu. Generate &
rank: A multi-task framework for math word problems. arXiv preprint arXiv:2109.03034, 2021.

16

http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://aclanthology.org/D15-1202

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei Huang, Yongbin Li, and Houfeng Wang.
Preference ranking optimization for human alignment. arXiv preprint arXiv:2306.17492, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Zhaochen Su, Jun Zhang, Tong Zhu, Xiaoye Qu, Juntao Li, Min Zhang, and Yu Cheng. Timo:
Towards better temporal reasoning for language models. arXiv preprint arXiv:2406.14192, 2024.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https:
//aclanthology.org/N19-1421.

Zhengyang Tang, Xingxing Zhang, Benyou Wan, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint arXiv:2403.02884, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
arXiv preprint arXiv:2211.09085, 2022.

Gemini Team. Gemini: A family of highly capable multimodal models, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward self-
improvement of llms via imagination, searching, and criticizing. arXiv preprint arXiv:2404.12253,
2024.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. arXiv preprint arXiv:2407.13690, 2024.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-
man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

17

https://aclanthology.org/N19-1421
https://aclanthology.org/N19-1421
https://github.com/tatsu-lab/stanford_alpaca

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for enhanced
mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023a.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023b.

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai Lin, Yunbo Cao, Tianyu Liu, and Zhifang Sui.
Making large language models better reasoners with alignment. ArXiv, abs/2309.02144, 2023c.
URL https://api.semanticscholar.org/CorpusID:261558535.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. ArXiv, abs/2305.17926, 2023d. URL
https://api.semanticscholar.org/CorpusID:258960339.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR 2023, 2023e. URL https://arxiv.org/abs/2203.11171.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pp. 8696–8708. Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.685. URL https://doi.org/10.
18653/v1/2021.emnlp-main.685.

Zengzhi Wang, Rui Xia, and Pengfei Liu. Generative ai for math: Part i–mathpile: A billion-token-
scale pretraining corpus for math. arXiv preprint arXiv:2312.17120, 2023f.

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
Multi-step problem solving through a verifier: An empirical analysis on model-induced process
supervision. arXiv preprint arXiv:2402.02658, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Shaohua Wu, Xudong Zhao, Shenling Wang, Jiangang Luo, Lingjun Li, Xi Chen, Bing Zhao,
Wei Wang, Tong Yu, Rongguo Zhang, et al. Yuan 2.0: A large language model with localized
filtering-based attention. arXiv preprint arXiv:2311.15786, 2023a.

Yanan Wu, Jie Liu, Xingyuan Bu, Jiaheng Liu, Zhanhui Zhou, Yuanxing Zhang, Chenchen Zhang,
Zhiqi Bai, Haibin Chen, Tiezheng Ge, et al. Conceptmath: A bilingual concept-wise benchmark
for measuring mathematical reasoning of large language models. arXiv preprint arXiv:2402.14660,
2024.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A.
Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better
rewards for language model training. ArXiv, abs/2306.01693, 2023b. URL https://api.
semanticscholar.org/CorpusID:259064099.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
reasoning beyond accuracy. arXiv preprint arXiv:2404.05692, 2024.

18

https://api.semanticscholar.org/CorpusID:261558535
https://api.semanticscholar.org/CorpusID:258960339
https://arxiv.org/abs/2203.11171
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://api.semanticscholar.org/CorpusID:259064099
https://api.semanticscholar.org/CorpusID:259064099

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn
iterative preference learning. arXiv preprint arXiv:2409.02392, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Fei Yu, Anningzhe Gao, and Benyou Wang. Outcome-supervised verifiers for planning in mathe-
matical reasoning. ArXiv, abs/2311.09724, 2023a. URL https://api.semanticscholar.
org/CorpusID:265221057.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2023b.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and Chang Zhou. Scaling
relationship on learning mathematical reasoning with large language models. arXiv preprint
arXiv:2308.01825, 2023a.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large
language models perform in arithmetic tasks? arXiv preprint arXiv:2304.02015, 2023b.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023c.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Liang Zeng, Liangjun Zhong, Liang Zhao, Tianwen Wei, Liu Yang, Jujie He, Cheng Cheng, Rui Hu,
Yang Liu, Shuicheng Yan, et al. Skywork-math: Data scaling laws for mathematical reasoning in
large language models–the story goes on. arXiv preprint arXiv:2407.08348, 2024.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-training
via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024a.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing
gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394, 2024b.

19

https://api.semanticscholar.org/CorpusID:265221057
https://api.semanticscholar.org/CorpusID:265221057

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Jiaxin Zhang, Zhongzhi Li, Mingliang Zhang, Fei Yin, Chenglin Liu, and Yashar Moshfeghi. Geoeval:
benchmark for evaluating llms and multi-modal models on geometry problem-solving. arXiv
preprint arXiv:2402.10104, 2024c.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yueting Zhuang, and Weiming
Lu. Self-contrast: Better reflection through inconsistent solving perspectives. arXiv preprint
arXiv:2401.02009, 2024d.

Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew C Yao. Autonomous data selection with language
models for mathematical texts. In ICLR 2024 Workshop on Navigating and Addressing Data
Problems for Foundation Models, 2024e.

Xu Zhao, Yuxi Xie, Kenji Kawaguchi, Junxian He, and Qizhe Xie. Automatic model selection with
large language models for reasoning. arXiv preprint arXiv:2305.14333, 2023.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Olivier Bousquet, Quoc Le, and Ed Huai hsin Chi. Least-to-most prompting en-
ables complex reasoning in large language models. ArXiv, abs/2205.10625, 2022. URL
https://api.semanticscholar.org/CorpusID:248986239.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng Chen, Wayne Xin Zhao, Jing Sha, Zhichao Sheng,
Shijin Wang, and Ji-Rong Wen. Jiuzhang3. 0: Efficiently improving mathematical reasoning by
training small data synthesis models. arXiv preprint arXiv:2405.14365, 2024.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang, Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and
Yujiu Yang. Solving math word problems via cooperative reasoning induced language models. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.acl-long.
245. URL https://doi.org/10.18653%2Fv1%2F2023.acl-long.245.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

20

https://api.semanticscholar.org/CorpusID:248986239
https://doi.org/10.18653%2Fv1%2F2023.acl-long.245

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MATH EVOLUTION PROMPTS

Example 1: Upward Evolution Prompt

Step 1: Understand the core concept and structure of the "#Instruction#". Identify the key elements
such as variables, conditions, participants, actions, or processes that can be manipulated to increase com-
plexity. Also, recognize the theme of the instruction and ensure it remains consistent throughout the evolution.

Step 2: Formulate a comprehensive plan to increment the complexity of the "#Instruction#" based on the
identified elements in Step 1. The plan should involve modifying or expanding at least three components
from the list. It is crucial to ensure that all components in the instruction are logically interconnected and that
the complexity increase is coherent and justified. The plan should avoid introducing variables or conditions
without clear criteria for determining their values or without contributing to the overall complexity. In this
step, consider adding more real-world constraints and dependencies between variables to make the problem
more challenging. And you can also add more constraints, concretizing, increasing reasoning.

Step 3: Implement the plan step by step to create the "#Rewritten Instruction#". Ensure the rewritten
instruction maintains a logical sequence and avoids ambiguity or confusion. If additional variables or
conditions are introduced, provide clear and unambiguous methods or criteria for determining their values.
The "#Rewritten Instruction#" should not exceed the original "#Instruction#" by more than 30 words to
ensure readability and comprehension.

Step 4: Review the "#Rewritten Instruction#" thoroughly to identify any unreasonable elements or
inconsistencies. Make sure the "#Rewritten Instruction#" is a more complex version of the "#Instruction#",
and that it accurately reflects the intended increase in complexity. Adjust any part of the instruction that
may lead to misunderstanding or ambiguity, and provide the "#Finally Rewritten Instruction#" without any
supplementary explanation.

Please reply strictly in the following format:
Step 1
#Elements Identified#:
Step 2
#Plan#:
Step 3
#Rewritten Instruction#:
Step 4
#Finally Rewritten Instruction#:

#Instruction#:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Example 2: Downward Evolution Prompt

Step 1: Understand the "#Instruction#" and identify all the components that can be modified to decrease
complexity, so that it makes the instruction easier. These components can be variables, conditions,
participants, actions, etc. The key is to keep the core scenario unchanged while ensuring that any new
elements introduced do not cause ambiguity or confusion.

Step 2: Develop a comprehensive plan to decrease the complexity of the "#Instruction#" based on the
components identified in Step 1. The plan should involve modifying at least three components from the
list. It is important to ensure that all components in the instruction are logically interconnected and that the
complexity decrease is justifiable. The plan should avoid introducing variables or conditions without clear
criteria for determining their values. Our goal is revising high difficulty questions to lower difficulty, or
producing a new and easier question with another different topic.

Step 3: Implement the plan step by step to create the "#Rewritten Instruction#". Make sure the rewritten
instruction maintains a logical sequence and avoids ambiguity or confusion. If additional variables or
conditions are introduced, provide clear and unambiguous methods or criteria for determining their values.
The "#Rewritten Instruction#" should not exceed the original "#Instruction#" by more than 20 words.

Step 4: Review the "#Rewritten Instruction#" thoroughly to identify any unreasonable elements. Make sure
the "#Rewritten Instruction#" is a easier version of the "#Instruction#". Adjust any part of the instruction that
may lead to misunderstanding or ambiguity, and provide the "#Finally Rewritten Instruction#" without any
explanation.

Please reply strictly in the following format:
Step 1
#Elements Identified#:
Step 2
#Plan#:
Step 3
#Rewritten Instruction#:
Step 4
#Finally Rewritten Instruction#:

#Instruction#:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Example 3: GSM8k Evol Instruction Case

Original Instruction 1: Bill is trying to decide whether to make blueberry muffins or raspberry muffins.
Blueberries cost $5.00 per 6 ounce carton and raspberries cost $3.00 per 8 ounce carton. If Bill is going to
make 4 batches of muffins, and each batch takes 12 ounces of fruit, how much money would he save by using
raspberries instead of blueberries?
Evol Instruction 1: Bill and Jane are contemplating between blueberry and raspberry muffins. Blueberries
are $5.00 for a 6 ounce carton, with a 20% bulk discount. Raspberries are $3.00 for an 8 ounce carton. If
they each make 6 batches of muffins, with each batch requiring 12 ounces of fruit, calculate the total money
they would save by choosing raspberries over the discounted blueberries, given Jane’s inclination towards
raspberries.

Original Instruction 2: A snake’s head is one-tenth its length. If a snake is 10 feet long, calculate the length
of the rest of its body minus the head.
Evol Instruction 2: Given a snake’s head is a certain fraction of its total length, and the snake’s total length
is a positive integer, determine the length of the snake’s head by multiplying the total length by the fraction.
Subtract this value from the total length to calculate the length of the rest of the snake’s body.

Original Instruction 3: Thomas is training at the gym to prepare for a competition. He trained for 5 hours
every day for a month (30 days). If he continues to train for the next 12 days, how many hours will he spend
on training in total?
Evol Instruction 3: Thomas and James are preparing for a competition by training at the gym. They trained
for 5 hours daily for a month (30 days), excluding a rest day each week. If they persist in training for the
subsequent 12 days, adding an extra hour of training each week, what will be the total hours they have spent
training?

Original Instruction 4: Travis is hired to take 638 bowls from the factory to the home goods store. The
home goods store will pay the moving company a $100 fee, plus $3 for every bowl that is delivered safely.
Travis must pay the home goods store $4 each for any bowls that are lost or broken. If 12 bowls are lost, 15
bowls are broken, and the rest are delivered safely, how much should Travis be paid?
Evol Instruction 4: Travis and his team are tasked with moving 1000 bowls and 500 plates from the factory
to a home goods store. The store agrees to pay a $200 fee, plus $4 for each safely delivered bowl and $2 for
each plate. However, Travis must compensate the store $5 for each lost or broken bowl and $3 for each plate.
If they lose 20 bowls and 10 plates, and break 25 bowls and 15 plates, how much should the store pay Travis
and his team?

Original Instruction 5: Gary is buying chlorine for his rectangular pool, which is 10 feet long, 8 feet wide,
and 6 feet deep. Gary needs to buy one quart of chlorine for every 120 cubic feet of water in his pool. If
chlorine costs $3 a quart, how much does Gary spend on chlorine?
Evol Instruction 5: Gary and John are purchasing chlorine for their cylindrical pools, with diameters of 12
feet and 10 feet, and depths of 8 feet and 6 feet respectively. They require one quart of chlorine per 100 cubic
feet of pool water. Given that chlorine is priced at $4 per quart, calculate the total expenditure on chlorine for
both Gary and John.

Original Instruction 6: Ken likes to bike when it’s raining and can cycle 30 miles in 20 minutes during this
time. However, when it’s snowing Ken can’t stand the cold and can only cycle 10 miles in 20 minutes. If it
rains 3 times and snows 4 times in one week, how many miles did Ken reach if he cycles 1 hour a day?
Evol Instruction 6: In varying weather conditions, Ken’s biking speed differs. He can cycle 30 miles in 20
minutes when it’s raining, 10 miles in 20 minutes when it’s snowing, and 20 miles in 20 minutes on sunny
days. In a week, if it rains 4 times, snows 3 times, and is sunny 2 times, and Ken cycles for 1.5 hours each
day, how many miles did he cover? Remember, after cycling for an hour, his speed decreases by 10%.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Example 4: MATH Evol Instruction Case

Original Instruction 1: Find the smallest positive integer whose cube ends in 888.
Evol Instruction 1: Determine the least positive whole number, denoted by ’x’, whose cube terminates in
888 and is divisible by 3. Verify the result by checking the divisibility of the cube by 9.

Original Instruction 2: The sum of all the positive factors of integer x is 24. If one of the factors is 3, what
is the value of x?
Evol Instruction 2: Given that the summation of all positive factors of an integer x is 24, and considering x
is a positive integer divisible by 3 with one of its factors being 3, determine the value of x by first calculating
the variable S representing the sum of factors, and then solving for x.

Original Instruction 3: What is 2−1 + 2−2 + 2−3 + 2−4 + 2−5 + 2−6 (mod 13)? Express your answer
as an integer from 0 to 12, inclusive.
Evol Instruction 3: Let S be the sum of the series 2−1 + 2−2 + 2−3 + 2−4 + 2−5 + 2−6. Calculate S by
finding the sum of each term, then determine the value of S (mod 13). Utilize the properties of modular
arithmetic and provide a step-by-step solution. Express the final answer as an integer from 0 to 12, inclusive.

Original Instruction 4: Find the greatest common divisor of 40304 and 30203.
Evol Instruction 4: Determine the greatest common divisor of the integers 40304 and 30203 by employing
the Euclidean algorithm. Utilize prime factorization, considering the Fundamental Theorem of Arithmetic,
and verify if both numbers are divisible by the same prime factors.

Original Instruction 5: Find the remainder when 2× 12× 22× 32× . . .× 72× 82× 92 is divided by 5.
Evol Instruction 5: First, let P represent the product of the series, which can be expressed as
P =

∏9
n=1(2 + 10n). Next, calculate the value of P . Then, determine the remainder, denoted as R, when

P is divided by 5. Ensure that R is a positive integer.

Original Instruction 6: Is the function f(x) = ⌊x⌋+ 1
2

even, odd, or neither? Enter odd, even, or neither.
Evol Instruction 6: Determine if the function f(x) = ⌊x⌋ + 1

2
exhibits parity (evenness or oddness) or

neither, considering the mathematical definitions of even and odd functions. If x > 0, introduce a variable y
and compare f(x) with g(y) = y2. Provide a brief explanation for your answer.Enter f(x) is even, f(x) is
odd, or f(x) is neither even nor odd.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.2 IRM PROMPT

Example 5: Instruction Quality Ranking Prompt

You are a senior mathematics grading teacher in university, very skilled in high difficulty fields such as
Intermediate Algebra, Precalculus, Prealgebra, Number Theory, Geometry, Counting & Probability, Algebra
and so on.
Your task is to act as an impartial judge to evaluate the quality of math problems based on their definition
completeness and difficulty and rank a set of maths problems according to these criteria. Make sure that your
assessment takes into account the following rules:

1.** Problem statement completeness and correctness:**
• Assess the clarity and accuracy of the definition of each math problem. Ensure that the problem

statement provides sufficient information, conditions, and constraints.

• Consider whether the problem allows for multiple interpretations or if further clarification is needed.

• Evaluate the clarity of mathematical notation and terminology used in the problem.

2.**Conceptual difficulty:**
• Evaluates the complexity of each mathematical problem in terms of the underlying concepts

involved. Ensure a solid and sound understanding of the underlying principles, or advanced
mathematical concepts.

• Consider the depth of mathematical knowledge required to address and solve each problem.

• Assess whether the problem encourages critical thinking and the application of mathematical
principles.

3.**Computational complexity:**
• Examine the computational complexity of each problem. Judge whether it involves complex

calculations, algebraic operations, or non-trivial numerical operations.

• Consider whether the problem requires sophisticated computational techniques or algorithms or
whether it can be answered with existing mathematical knowledge.

4.** Problem contextualisation:**
• Consider the relevance of each mathematical problem in the given context or practical application.

as well as being relevant or having a meaningful meaning in the practical context.

• Evaluate whether the theory of the mathematical problem is detached from the facts, spurious, and
non-existent.

Avoid any position biases and ensure that the order in which the math problems were presented does not
influence your decision.
Do not allow the length of the problems to influence your evaluation.
Do not favor certain mathematical theory of the problems. Be as objective as possible.

Below is a list of a set of math problems that you need to rank according to the rules above from
most complete and clear (1) to least complete and clear (N) based on the comprehensiveness and difficulty
level of the maths problem. Also, consider the difficulty level from most challenging (1) to easiest (N). Your
output needs to be placed in the <Rank> </Rank>section.
And Your output is in JSON list format, where each element is a dictionary with three keys:

• instruction: represents the math problem.

• score: represents the result of your ranking for the problem.

• reason: provide your explanation in detail for your ranking result.

[### Math Problems List ###]: <PROBLEMS_HERE >

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Math instructions

GPT-4 Ranking

Instruction 1. Write x10 + x5 + 1 as the product of two polynomials with integer coefficients. Rank: 2. Reason: The
problem is well-defined and clear. It requires a deep understanding of polynomial factorization, making it conceptually
difficult. The computational complexity is high as it involves the factorization of a high-degree polynomial.

Instruction 2. Express the following sum as a common fraction:

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · · +

1

9 · 10
.

Rank: 1. Reason: This problem is clear and complete, with a well-defined mathematical notation. It requires a good
understanding of series and fractions, making it conceptually challenging. The computational complexity is moderate as
it involves the summation of fractions.

Instruction 3. Given that I read 6 to 8 novels monthly, each novel having 200 to 350 pages, and considering a year may
have 12 or 13 months due to a leap year or a year when I choose to read more, also taking into account that my reading
speed can fluctuate between 1 to 2 novels per day, and the number of days in a month can be 28, 30, or 31, and the genre
of the novel can influence the number of pages (for instance, a thriller may contain 300 to 350 pages, while a romance
novel may contain 200 to 250 pages), calculate the total pages of novels I will read in a year. Rank: 3. Reason: This
problem is complex and requires multiple steps to solve, making it conceptually and computationally challenging. It is
well-contextualized and relevant, but the problem statement could be clearer and more concise.

Instruction 4. James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does
he run a week? Rank: 4. Reason: This problem is clear, com plete, and well-contextualized. However, it is conceptually
and computationally less challenging than the others, as it only requires basic multiplication.

Instruction 5. What is
√
2 times

√
3? Rank: 5. Reason: This problem is clear and complete, but it lacks a practical

context. It is conceptually and computationa lly less challenging than the others, as it only requires knowledge of the
multiplication of square roots.

Instruction 6. What is
√
−2 times

√
3? Rank: 6. Reason: This problem is clear and complete, but it lacks a practical

context. It is conceptually challenging as it involves the multiplication of a real number and an imaginary number.
However, the computational complexity is low.

Table 10: A case study GPT-4 scoring the evolved instructions from two aspects:i) Difficulty, and ii)
Definition.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.3 PRM PROMPT

Example 6: PRM Step Level Labeling Prompt

You are a senior mathematics grading teacher in university, very skilled in high difficulty fields such as
Intermediate Algebra, Precalculus, Prealgebra, Number Theory, Geometry, Counting & Probability, Algebra
and so on. Below is a mathematical problem and its corresponding solution, as well as a JSON list format for
the solution, where each element is a dictionary with two keys:

• idx: represents the number of each step.

• value: represents each step in the problem-solving process.

Firstly please provide your judgement whether the solution is correct. Your judgment (which must be only
True or False) needs to be placed in the <Judge> </Judge>section.
And then you need to judge whether each step is correct and give a score for each solving step in the JSON
list which needs to be placed in the <Scores> </Scores>section.
There are three kinds of scores below:

• 1: indicates that the step is correct.

• 0: indicates that the step is ambiguity, meaningless, or subtly misleading, or not helpful to the
entire problem-solving process.

• -1: indicates that the step is incorrect.

If this step leads to a final wrong answer, then rate -1. If not, rate 1 or 0.
Here are some rules about whether the solution’s each step is correct:

• ## Problem-Solving Thoughts ##: You should first think about how to solve this problem, and then
judge whether this step is correct.

• ## Calculation Accuracy ##: You should carefully check and verify whether each step is calculated
correctly, including various mathematical numerical calculations. Notablely you don’t need to
consider simplification.

• ## Logical Coherence ##: You should judge whether each step is logically coherent and reasonable.

• ## Basic Theories and Principles ##: You should judge whether each step correctly is using basic
mathematical theories, principles, or formulas.

You need to constantly verify and check repeatedly whether each step is correct. And rate each step carefully,
honestly, and without bias, order, or discrimination.
Your output is a JSON list format, where each element is a dictionary with three keys:

• idx: represents the number of each step.

• score: represents your rating for this step, which can only be -1, 0 and 1.

• reason: provide your explanation in detail for your rating whether each step of the problem-solving
process is correct.

[### Problem ###]: <INSTRUCTION_HERE >

[### Solution JSON List ###]: <Solution JSON List >

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Question John and his two brothers decide to split the cost of an apartment. It is 40% more expensive than John’s old apartment
which costs $1200 per month. How much does John save per year by splitting the apartment compared to living alone?

GPT-4 Labeling

Step 1: Calculate the cost of John’s old apartment. John’s old apartment costs $1200 per month. Score: 1.

Step 2: Calculate the cost of the new apartment. Score: 1.

Step 3: The new apartment costs 40% more than John’s old apartment, so we need to find 40% of $1200 and add that to
the cost of the old apartment. Score: 1.

Step 4: 40% of $1200 is (40/100) * $1200 = $480. So the new apartment costs $1200 + $480 = $1680 per month. Score:
1.

Step 5: Calculate the savings for John by splitting the apartment. Score: 1.

Step 6: If John lived alone, he would pay $1680 per month for the new apartment. Score: 1.

Step 7: However, since he splits the cost with his two brothers, he only needs to pay 1/3 of the total cost. Score: 1.

Step 8: So, John’s share of the cost is $1680 / 3 = $560 per month. Score: 1.

Step 9: Calculate the savings per year for John. Score: 1.

Step 10: There are 12 months in a year, so the total savings for John in a year would be 12 * $560 = $6720. Score: -1.
Reason: The step is incorrect. The calculation is wrong. The total savings for John in a year should be calculated as
the difference between what he would pay living alone and what he pays when splitting the cost, multiplied by 12. The
correct calculation should be (1200 - 560) * 12 = $7680.

Step 11: So, John saves $6720 per year by splitting the apartment compared to living alone. Score: -1. Reason: The step
is incorrect. The final answer is wrong. The correct answer should be $7680.

Step 12: The answer is: 6720. Score: -1. Reason: The step is incorrect. The final answer is wrong. The correct answer
should be $7680.

Table 11: A case study from Mistral-7B model on GSM8k training set. Red text denotes the incorrect
steps that GPT-4 to successfully label errors.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Question Compute cos 120◦.

GPT-4 Labeling

Step 1: First, we need to find a right triangle with an angle of 120◦ and then use the Pythagorean theorem to find the
length of the hypotenuse. Score: 0.

Step 2: The first step is to visualize a rig ht triangle that has an angle of 120◦. Score: -1. Reason: This step is incorrect.
A right triangle cannot have an angle of 120 degrees.

Step 3: We can do this by drawing a line and then rotating it 120◦ around the midpoint of the line. Score: -1. Reason:
This step is incorrect. Rotating a line around its midpoint does not create a right triangle with an angle of 120 degrees.

Step 4: This will give us a triangle with two 60◦ angles and one 120◦ angle. Score: -1. Reason: This step is incorrect.
A triangle with two angles of 60 degrees and one angle of 120 degrees is not a right triangle.

Step 5: Next, we need to find the length of the hypotenuse of this triangle. Score: 0.

Step 6: We can do this by using the Pythagorean theorem, which stat es that in a right triangle, the square of the length of
the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. Score: 0.

Step 7: In this case, the other two sides of the triangle are the two legs of the 60◦ angles, which are each 1 unit long.
Score: -1. Reason: This step is incorrect. The sides of a right triangle do not correspond to the legs of the 60 degree
angles in this context.

Step 8: So, we have h2 = 1 + 1 = 2. This means that the length of the hypotenuse h is
√
2.’, ’Now, we need to find

the cosine of 120◦. Score: -1. Reason: This step is incorrect. The calculation is based on incorrect assumptions from
previous steps.

Step 9: The cosine of an angle is defined as the ratio of the length of the side opposite the angle to the length of the
hypotenuse. Now, we need to find the cosine of 120◦. Score: -1. Reason: This step is incorrect. The cosine of 120
degrees is not 1/sqrt(2).

Step 10: The cosine of an angle is defined as the ratio of the length of the side opposite the angle to the length of the
hypotenuse. Score: 1.

Step 11: In this case, the opposite side is the leg of the 60◦ angle, which is 1 unit long. So, we have cos 120◦ = 1√
2

.
Score: -1. Reason: This step is n ot entirely correct. The cosine of an angle is defined as the ratio of the adjacent side to
the hypotenuse, not the opposite side to the hypotenuse.

Step 12: Finally, we need to simplify thi s expression. The square root of 2 is usually written as
√
2, so we can rewrite

cos 120◦ as 1√
2

. Score: -1. Reason: This step is incorrect. The cosine of 120 degrees is not 1/sqrt(2).

Step 13: So, the final answer is
1
√
2

. The answer is: 1√
2
. Score: -1. Reason: This step is incorrect. The final answer

is not 1/sqrt(2). The correct answer is -1/2.

Table 12: A case study from Mistral-7B model on MATH training set. Red text denotes the incorrect
steps that GPT-4 to successfully label errors.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

A.4 THE EFFECTS OF MATH EVOL-INSTRUCT IN THE SFT AND RL STAGES.

1. Math Evol-based Instruction works efficiently in the SFT stage.

We innovatively propose two evol instruct strategies for mathematical tasks: upward evolution and
downward evolution. Through five rounds of iterative evolution, we successfully constructed a 210k
dataset. In the supervised fine-tuning (SFT) phase, we conducted a comparative analysis between our
dataset and manually annotated mathematical datasets, including GSM8k and MATH. In Table 13
results reveal that, with an equivalent dataset size of 15k, our evolved instructions yield improvements
of 4.9% on GSM8k and 1.6% on MATH over human instructions. Furthermore, employing our total
210k evolved dataset leads to a 21.1% performance boost on GSM8k and a 15.2% enhancement
on MATH. This substantiates the effectiveness of our mathematical instruction evolution strategies,
significantly diminishing the dependence on laborious manual annotation efforts.

Table 13: Performance comparison on GSM8k and MATH using manually annotated GSM8k and
MATH data and our math evol-instruct dataset. We employ the Mistral 7b model for training in the
SFT stage.

Dataset GSM8k MATH

GSM8k and MATH, Human 15k 59.3 14.5
GSM8k and MATH, Human 7.5k + Evol 7.5k 62.9 15.2
GSM8k and MATH, Evol 15k 64.2 16.1
GSM8k and MATH, Human 15k + Evol 195k 80.4 29.7

2. Math Evol-based Instruction works efficiently in the RL stage.

We propose the innovative use of math evoled instruction data in the reinforcement learning (RL)
stage. In Table 14 we combine manually annotated mathematical data (i.e., GSM8k and MATH) with
our evolved instructions data, utilizing IRM and PRM as reward models. The findings indicate that
with a dataset size of 15k, our evolved instructions achieve a performance improvement of 0.5% on
GSM8k and 0.6% on MATH in RL scenarios. Moreover, utilizing our comprehensive 210k evolved
dataset results in performance gains of 3.3% on GSM8k and 3.9% on MATH during the RL stage.
These outcomes significantly enhance RL model performance, indicating the effectiveness of our
math-evolved instruction data in RL stage and addressing the scarcity of manually curated datasets.

Table 14: Performance comparison on GSM8k and MATH using manually annotated GSM8k
and MATH data and our math evol-instruct dataset for training in the RL stage . We employ the
WizardMath-Mistral 7b as our policy model.

Mistral-7B: WizardMath-SFT GSM8k MATH

GSM8k and MATH, Human 15k for RL 80.9 30.1
GSM8k and MATH, Human 7.5k + Evol 7.5k for RL 81.1 30.5
GSM8k and MATH, Evol 15k for RL 81.4 30.7
GSM8k and MATH, Human 15k + Evol 195k for RL 84.2 34.0

A.5 THE DIFFERENCE BETWEEN MATH EVOL-INSTRUCT AND WIZARDLM EVOL-INSTRUCT.

Inspired by prior studies, our math evol instruct method diverges from Wizardlm’s depth and breadth
evolution strategies used for general tasks and WizardCoder for code task. We focus on both upward
and downward evolution techniques for mathematical tasks, aiming to create a more complex and
diverse math dataset. The Table 15 compares the performance between WizardLM’s original
evol-instruct and our math-evol-instruct, the latter improves 7.8% on the GSM8k and 6.6% on the
MATH. Therefore, it is imperative to utilize the math evol-instruct method specifically designed
for mathematical applications rather than just leverage original evol-instruct. General evol-instruct
strategies in WizardLM do not meet the requirements for the math scenario.

Although WizardLM and WizardCoder have also shown the effectiveness of evol-instruct in enhancing
LLM’s instruction following ability, they just focus on the SFT stage. We not only verified and
improved the effectiveness of math evol-instruct in SFT, but also firstly leveraged the evol-instruct in

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

reinforcement learning : the experimental results demonstrate the evolved data can further improve the
performance of model in RL stage, thus we unlock the data limitations of reinforced math research.

Table 15: Performance comparison of WizardLM evol instruct and our WizardMath evol instruct on
the GSM8k and MATH in SFT stage. The base model is Mistral 7b.

Dataset GSM8k MATH

WizardLM evol instruct, 210k 72.6 23.1
WizardMath evol instruct, 210k 80.4 29.7

A.6 DIFFERENCE BETWEEN CURRENT VERSION AND PREVIOUS VERSIONS.

The current version of WizardMath greatly improves mathematical reasoning skills. The enhancement
in performance can be attributed to three main factors:

• Firstly, the data size was expanded from 96k to 210k entries.
• Secondly, the instruction evolution prompts were refined to be more precise and detailed,

requiring GPT-4 to use a first plan then generate step-by-step approach for instruction
evolution.

• Lastly, the hyper-parameters for RL training were further optimized, including adjustments
to the learning rate, KL coefficients, and training steps.

The Table 16 below presents the performance improvements of the new model over the original
one, utilizing 96k training data (a mix of evolved GSM8k and MATH data) on Llama2-7B: a 5.9%
increase on GSM8k and a 5.7% on MATH during SFT. When including the RL, the overall gains rise
to 6.8% on GSM8k and 6.1% on MATH.

Table 16: Explore the performance improvements of the new model over the original one in the SFT
and RL.

Dataset SFT RL
GSM8k MATH GSM8k MATH

WizardMath-original 96k 52.6 8.6 54.9 10.7
WizardMath-new 96k 58.5 14.3 61.7 16.8

A.7 EXPLORE GPT-4 PER STEP ACCURACY

We use GPT-4 to label randomly selected 200 samples from the PRM800k dataset and compared
the results with Human-labeler, we employ F1 score as the metric to measure GPT-4 and manual
annotations, we observed that GPT-4 exhibits 86% on the GSM8k and 72% consistency on the MATH
with manual annotations, which indicates the effectiveness of our GPT-4 label method.

A.8 THE IMPACT OF THE DIFFERENT ROUND FOR UPWARD AND DOWNWARD EVOL-INSTRUCT

Table 18, Table 17 explore the impact of different rounds of upward and downward instruction
evolution on GSM8k and MATH. By conducting 5 rounds of upward and downward evolution on
GSM8k and MATH, and using the Mistral-7B base model for fine-tuning, we found that: Each round
of upward evolution yielded a 7.5%-11.0% improvement on GSM8k and a 3.1%-7.2% increase on
MATH over the baseline manual data. Similarly, each round of downward evolution demonstrated a
5.7%-10.3% improvement on GSM8k and a 2.1%-5.3% increase on MATH compared to the original
manual data.

When merging the data from 3 rounds of upward evolution, we note peak performance for both
GSM8k and MATH, with subsequent rounds leading to a gradual decline or plateau in performance.
This phenomenon may be attributed to the instructions becoming more complex and abstract, which
increases the rate of invalid instructions beyond GPT-4’s capacity for accurate responses. Similarly,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

when merging the data from 2 rounds of downward evolution, the performance also reaches the
optimal level, but the performance slowly decreases after more than two rounds. This may be due to
excessive evolution leading to instructions becoming too simple, lacking diversity, redundant, which
increases the proportion of invalid data. Consequently, our study chosen three rounds of upward
evolution and two rounds of downward evolution to balance diversity, complexity, and accuracy
effectively.

Table 17: Impact of different Upward Evol-Instruct turns on Mistral-7B SFT.

Data
GSM8K MATH

Original 1st 2nd 3rd 4th 5th pass@1 Original 1st 2nd 3rd 4th 5th pass@1

Original ✓ ✗ ✗ ✗ ✗ ✗ 59.7 ✓ ✗ ✗ ✗ ✗ ✗ 15.1

Upward Evol

✓ ✓ ✗ ✗ ✗ ✗ 70.7 ✓ ✓ ✗ ✗ ✗ ✗ 22.3
✓ ✗ ✓ ✗ ✗ ✗ 70.6 ✓ ✗ ✓ ✗ ✗ ✗ 21.8
✓ ✗ ✗ ✓ ✗ ✗ 69.9 ✓ ✗ ✗ ✓ ✗ ✗ 21.1
✓ ✗ ✗ ✗ ✓ ✗ 68.1 ✓ ✗ ✗ ✗ ✓ ✗ 19.7
✓ ✗ ✗ ✗ ✗ ✓ 67.2 ✓ ✗ ✗ ✗ ✗ ✓ 18.2
✓ ✓ ✓ ✗ ✗ ✗ 73.4 ✓ ✓ ✓ ✗ ✗ ✗ 24.1
✓ ✓ ✓ ✓ ✗ ✗ 75.9 ✓ ✓ ✓ ✓ ✗ ✗ 25.6
✓ ✓ ✓ ✓ ✓ ✗ 75.5 ✓ ✓ ✓ ✓ ✓ ✗ 25.3
✓ ✓ ✓ ✓ ✓ ✓ 75.8 ✓ ✓ ✓ ✓ ✓ ✓ 25.6

Table 18: Impact of different Downward Evol-Instruct turns on Mistral-7B SFT.

Data
GSM8K MATH

Original 1st 2nd 3rd 4th 5th pass@1 Original 1st 2nd 3rd 4th 5th pass@1
Original ✓ ✗ ✗ ✗ ✗ ✗ 59.7 ✓ ✗ ✗ ✗ ✗ ✗ 15.1

Downward Evol

✓ ✓ ✗ ✗ ✗ ✗ 70.0 ✓ ✓ ✗ ✗ ✗ ✗ 20.4
✓ ✗ ✓ ✗ ✗ ✗ 69.8 ✓ ✗ ✓ ✗ ✗ ✗ 19.8
✓ ✗ ✗ ✓ ✗ ✗ 68.5 ✓ ✗ ✗ ✓ ✗ ✗ 19.1
✓ ✗ ✗ ✗ ✓ ✗ 66.9 ✓ ✗ ✗ ✗ ✓ ✗ 18.3
✓ ✗ ✗ ✗ ✗ ✓ 65.4 ✓ ✗ ✗ ✗ ✗ ✓ 17.2
✓ ✓ ✓ ✗ ✗ ✗ 72.1 ✓ ✓ ✓ ✗ ✗ ✗ 23.1
✓ ✓ ✓ ✓ ✗ ✗ 72.1 ✓ ✓ ✓ ✓ ✗ ✗ 22.8
✓ ✓ ✓ ✓ ✓ ✗ 71.9 ✓ ✓ ✓ ✓ ✓ ✗ 22.5
✓ ✓ ✓ ✓ ✓ ✓ 71.8 ✓ ✓ ✓ ✓ ✓ ✓ 23.0

A.9 EXPLORE THE IMPACT OF THE SCORING AGGREGATION STRATEGY AT EACH STEP OF THE
PRM FOR THE RL POLICY TRAINING

Identifying incorrect steps is critical in the step-by-step math problem solving process. Even if the
solution process is mostly correct, a single incorrect step often leads to an incorrect final answer
and thus cannot be based on the number of correct steps. Our aim is to supervise the RL process by
identifying the most error-prone steps, specifically those with the minimum reward scores.

In Table 19, we explore the impact of five score aggregation strategies on RL training:

• Max: uses the maximum of all step scores.

• Mean: calculates the mean of all step scores.

• Product: calculates the product of each step score.

• Dense per-step: considers each step scores to supervise RL training.

• Min: picks the minimum of all step scores.

The experimental results on Mistral-7B show that the Min strategy is the most effective, outperforming
the Dense per-step strategy by 1.3% on GSM8k and 1.5% on MATH. The Max strategy is the worst,
it’s due to Max focus on the maximum reward scores for training, which leads to overlook incorrect
supervisory signals and only the correct steps are mainly reinforced. And Dense per-step reward

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

strategy will diminish supervisory signals for erroneous steps, so we finally use the minimum reward
at the end of the sequence.

Table 19: Explore the impact of the scoring aggregation strategy at each step of the PRM for the RL
policy training. We use the WizardMath-Mistral-7B-SFT base policy model for the RL training.

Scoring Strategies Max Mean Product Dense per-step Min

GSM8k 78.3 82.1 83.6 82.9 84.2
MATH 27.6 32.4 33.7 32.5 34.0

A.10 EXPLORE THE PERFORMANCE ON OUT OF DOMAIN (I.E,MATH) WHEN TRAINING ONLY
GSM8K, AND VICE VERSA.

In Table 20 We only train SFT model on GSM8k data and evaluate out-of-domain performance (i.e.,
on MATH), and our WizardMath-GSM8k model attains a 8.1% accuracy, surpassing the manually
annotated Human-GSM8k by 5.1%, respectively. Conversely, only training on MATH data and
assessing out-of-domain performance (i.e., on GSM8k), WizardMath-MATH achieves a 39.4%
accuracy, outperforming Human-MATH (13.8%) by 25.6%. These findings emphasize that our
method significantly enhances performance on out-of-domain tasks.

Table 20: Explore the performance on out of domain (i.e,MATH) when training only GSM8k, and
vice versa. We use the llama2 7b model for the SFT training.

Dataset GSM8k MATH

Human-GSM8k 41.6 3.0
WizardMath-GSM8k 61.9 8.1

Human-MATH 13.8 4.7
WizardMath-MATH 39.4 20.6

WizardMath 64.2 22.1

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

A.11 DATA CONTAMINATION CHECK

Apart from the performance analysis, we also investigate whether evolution leads to the data contami-
nation between training data and test set. To address this consideration, we employ instructions in the
GSM8k and MATH test set as queries to retrieve the top-5 samples from all evolved training data
with an embedding model, gte-large (Li et al., 2023d). Additionally, we employ GPT-4 to provide
similarity judgement between the test sets and the retrieved samples, and remove the top-2 similar in-
structions. The prompt and details are shown in Appendix A.12. Figure 4 in Appendix illustrates that
the evolution process does not yield higher similarity scores. Furthermore, similarity scores across all
rounds remain relatively low. These findings indicate that the primary source of performance gain
is the introduction of more complex and comprehensive data based on our downward and upward
instruction evolution.

A.12 SIMILARITY CHECKING AND DATA FILTERING

The prompt formats to compute the similarity score between two given math problem tasks are as
follow:

Example 7: System Prompt for Similarity Checking

Your task is to evaluate the similarity of the two given math problems. Please review the two math problem
tasks carefully, paying close attention to the overlap in variables, conditions, participants, actions, or processes,
topics, and contents and core concept and structure. Once you have carefully reviewed both math problem
tasks, provide a similarity score between these two math problem tasks. The score should range from 1 to 10
(1: completely different math problem tasks; 10: identical math problem tasks). You only need to provide
your score without any explanation.
Problem-1
{task1}

Problem-2
{task2}

Your judgement score:

To thoroughly prevent data leakage from the GSM8k and MATH test datasets to the training dataset,
we implemented an additional data filtering step. Utilizing the SOTA embeddings model, gte-large,
we treated all test samples as queries to extract the top 5 samples from the training data. Following
this, GPT-4 was employed to evaluate the similarity between the retrieved samples and the test set.

A.13 DETAIL WORKS

B RELATED WORK

Large Language Models. LLMs have significantly advanced Natural Language Processing, with
models like OpenAI’s GPT Series (Brown et al., 2020a; OpenAI, 2023), Anthropic’s Claude (Bai
et al., 2022), Google’s PaLM (Chowdhery et al., 2022; Anil et al., 2023), Gemini (Team, 2023), and
Gemma (Team et al., 2024) featuring billions of parameters and trained on massive textual datasets.
The AI field has also seen a rise in open-source LLMs such as Mistral (Jiang et al., 2023), Llama
Series (Touvron et al., 2023a;b; Dubey et al., 2024; Taylor et al., 2022), DeepSeek (Bi et al., 2024;
Shao et al., 2024), Qwen (Bai et al., 2023; Yang et al., 2024) etc. (Zeng et al., 2022; Penedo et al.,
2023; Scao et al., 2022). Notably, Llama serves as a foundational model for supervised fine-tuning,
leading to the development of models like Alpaca, Vicuna, Guanaco, and Orca (Taori et al., 2023;
Chiang et al., 2023; Dettmers et al., 2023; Mukherjee et al., 2023).

Large Language Models For Mathematical reasoning. NLP models face challenges with complex
reasoning, including mathematical (Lu et al., 2022; Frieder et al., 2023; Long et al., 2024; Zhang et al.,
2024c; Xia et al., 2024), common-sense (Talmor et al., 2019; Geva et al., 2021). Significant research
focuses on Mathematical Word Problems (MWP), which demand understanding of mathematical
concepts and multi-step reasoning (Koncel-Kedziorski et al., 2016; Patel et al., 2021; Lan et al.,
2022; Cobbe et al., 2021; Jie et al., 2022; Yuan et al., 2023b; Fu et al., 2023b; Zheng et al., 2023;
Zhao et al., 2023; Wang et al., 2023b; Imani et al., 2023; Yuan et al., 2023a; Wang et al., 2023e;

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 4: Average similarity scores between GSM8k, MATH samples and the top-1 retrieved data for
each round.

Ahn et al., 2024). Models are tested on various MWP benchmarks (Hosseini et al., 2014; Roy &
Roth, 2015; Koncel-Kedziorski et al., 2015; Patel et al., 2021; Cobbe et al., 2021; Ling et al., 2017;
Hendrycks et al., 2021; Xia et al., 2024; Huang et al., 2024a; Zhang et al., 2024c; Li et al., 2024d;
Anand et al., 2024). Techniques like Chain-of-Thought Prompting (Wei et al., 2022), Least-to-Most
prompting (Zhou et al., 2022), and Complex CoT (Fu et al., 2022) enhance reasoning by introducing
multiple steps and breaking problems into sub-problems. There are some models aimed at improving
math CoT reasoning skills such as MetaMath (Yu et al., 2023b), MathScale (Tang et al., 2024),
Xwin-math (Li et al., 2024a) etc. (Liu et al., 2023; Liu & Yao, 2024; Jiang et al., 2024b; Xiong et al.,
2024; Chan et al., 2024; Lin et al., 2024; Huang et al., 2024b; Mitra et al., 2024b; Yuan et al., 2023a;
Wu et al., 2024; Mitra et al., 2024a; Zhang et al., 2024e; Fu et al., 2023a; Ni et al., 2024; Tian et al.,
2024; Zhang et al., 2024b; Zeng et al., 2024; Shao et al., 2024; Feng et al., 2023; Wu et al., 2023a;
Tong et al., 2024; Yang et al., 2024; Zhou et al., 2024; Chen et al., 2024c; Zhang et al., 2024d; Su
et al., 2024). Some models enhance mathematical reasoning by integrating python tools, such as
TORA (Gou et al., 2023), MAmmoTH (Yue et al., 2023), Openmathinstruct (Toshniwal et al., 2024),
etc. (Lu et al., 2024; Li et al., 2024c; Yu et al., 2024; Wang et al., 2023a; Li et al., 2024b)

Large Language Models For Reinforcement Learning. State-of-the-art models often display
logical errors and illusions, particularly in domains requiring complex, multi-step reasoning, leading
to significant challenges (Bubeck et al., 2023; Maynez et al., 2020). Strategies such as training reward
models help discriminate between desirable and undesirable outputs (Lightman et al., 2023; Wu
et al., 2023b; Chen et al., 2024b). Historically, outcome-based approaches focused on algorithmic
tasks (Graves et al., 2014; Reed & De Freitas, 2015; Li et al., 2016; Cai et al., 2017; Yu et al., 2023a),
while recent research demonstrates the efficacy of reward models or validators in enhancing model
performance (Cobbe et al., 2021; Wang et al., 2023c;d; Li et al., 2022a;b). Reward models have
also been incorporated into reinforcement learning pipelines and employed in rejection sampling to
align Large Language Models (LLMs) with human preferences (Ziegler et al., 2019; Stiennon et al.,
2020; Nakano et al., 2021; Ouyang et al., 2022; Nichols et al., 2020; Shen et al., 2021; Bai et al.,
2022; Yuan et al., 2023c; Dong et al., 2023; Song et al., 2023; Touvron et al., 2023b). A contrast
is drawn between outcome-supervised and process-supervised reward models, with the latter being
more effective at addressing discrepancies arising from incorrect reasoning paths leading to correct
outcomes (Uesato et al., 2022; Zelikman et al., 2022; Creswell et al., 2022). Recent advances have
promoted process-based supervision through manual annotation, significantly benefiting LLMs over
outcome-based approaches (Lightman et al., 2023; Zhu et al., 2023; Ni et al., 2022; Wang et al.,
2024a; Sun et al., 2024; Chen et al., 2024a; Wang et al., 2024b; Zhang et al., 2024a;b). In this paper,
we leverage AI models like ChatGPT to automatically offer annotation to improve the efficiency of
this research line.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

C WIZARDMATH REBUTTAL

C.1 REVIEWER-8CQG

Dear Reviewer 8CQg,

we thank you for your valuable comments and the time you spent reviewing our work! Your
professional feedback provides valuable guidance for writing a more comprehensive and competitive
paper. Below, we provide detailed responses to the Weaknesses and Questions raised in your review
of our paper, addressing each point systematically.

Meanwhile, in Appendix C.1 of our latest upload of revised paper (pages 36–49, lines 1892–
2589), we also have added the discussions with the Reviewer-8CQg on the weaknesses and questions
of our paper to respond to the Reviewer-8CQg’s comments and to further improve the research work.

C.1.1 WEAKNESSES-1

The primary concern with this paper is the unfair comparison of baseline models in the results.
While the authors claim that both supervised fine-tuning (SFT) with Math Evol-Instruct and
reinforcement learning (RL) with the Instruction Reward Model (IRM) and Process Reward
Model (PRM) are beneficial for enhancing mathematical reasoning, these approaches—SFT
with synthesized data and the use of various reward models for RL—represent parallel research
lines.

We sincerely appreciate your attention to our work and your careful and responsible review and
thank you for your valuable suggestions. To ensure a fair comparison, we conducted evaluations
using WizardMath-SFT against all current state-of-the-art (SOTA) models across different scales
of base models, as presented in Table 21 and Table 22, Appendix C.1.2 of our latest upload
of revised paper (pages 38–39, lines 2009–2105). The results confirm the effectiveness of our
proposed Math Evol-Instruct approach. Meanwhile, during the PPO training stage, we applied IRM
and PRM to different SFT backbones, significantly enhancing the mathematical reasoning ability of
these models. This demonstrates the effectiveness and generalizability of our IRM and PRM methods
refer to Weaknesses1.1-Weaknesses1.4 below for details.

Below, we provide detailed responses to Weaknesses 1.1- Weaknesses1.4 in the order you were
raised.

C.1.2 WEAKNESSES-1.1

In Table 1, the authors compare their model, which has undergone both SFT and RL, with
models that have only undergone SFT. This comparison is unfair because these SFT models
could also be further enhanced with RL techniques to improve mathematical reasoning (e.g.,
using ORM for RL on DartMath). It would be more appropriate to isolate the effects of SFT and
RL for a fair comparison. In Table 1, the authors should compare the performance of models
that have undergone SFT with Math Evol-Instruct against existing baselines such as MetaMath
and DartMath. Additionally, comparisons with baselines like MetaMath and DartMath on the
LLaMA-3.2 backbone would be valuable, as their training data is publicly available.

We sincerely appreciate your insightful questions and detailed observations. To provide a more
comprehensive and fair comparison, we have included the WizardMath-SFT results in Table 21 and
Table 22, Appendix C.1.2 of our latest upload of revised paper (pages 38–39, lines 2009–2105).
These results evaluate the performance of WizardMath-SFT, trained exclusively using SFT, against
current SOTA models across various base models. The key findings are summarized as follows:

1. Performance Comparison:

• On Llama-2-7B and Mistral-7B-v0.1, WizardMath-SFT performs marginally below
SOTA models (i.e.,Xwin-Math and Skywork-Math) and outperforms existing other
excellent models (i.e.,DART-Math).

• On Llama-2-13B and Llama-2-70B, WizardMath-SFT achieves comparable perfor-
mance to Xwin-Math.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

• On all various base models, WizardMath-SFT surpasses most existing SOTA models
trained solely with SFT(i.e.,DART-Math).

Notably, WizardMath-SFT achieves these results using only 418K synthetic data points, a
significantly smaller dataset compared to DART-Math (580k-590k), Xwin-Math (1440K)
and Skywork-Math (2500K).

2. Comparison with advanced data synthesis methods (i.e., DART-Math, MetaMath)
As shown in the following Table 23, DART-Math demonstrates strong performance across
various base models and the data synthesis method proposed by DART-Math shows the
effectiveness and outstanding performance. Meanwhile, WizardMath-SFT demonstrates
comparable or superior performance to advanced data synthesis methods, such as DART-
Math and MetaMath, across all base models. Key observations include:

• On Mistral-7B-v0.1 and DeepSeekMath, WizardMath-SFT performs on par with
DART-Math (Uniform & Prop2Diff) on GSM8k and surpasses DART-Math (Uniform
& Prop2Diff) on MATH;

• On Llama3.2 1B, Llama3.2 3B, Llama3-8B, and Llama3.1-8B, Llama2-7B,
WizardMath-SFT exhibits a 2%–7% improvement over DART-Math (Uniform &
Prop2Diff) on the GSM8k benchmark. On the MATH benchmark, WizardMath-SFT
outperforms DART-Math (Uniform & Prop2Diff) by approximately 5% – 10%.

These findings highlight the effectiveness of the proposed Math Evol-Instruct for enhancing
mathematical reasoning capabilities.

Notably, to ensure the same training settings as in our paper during the SFT stage, we employ a
learning rate of 2e-5 for the Llama series base models (i.e., Llama2 7B, Llama3.1 8B, Llama3.2 1B,
and Llama3.2 3B) and a learning rate of 5e-6 for Mistral-7B-v0.1. All models are trained for 3 epochs
with a batch size of 256, and 4 checkpoints are saved per epoch. Finally, we select the checkpoint
with the highest accuracy on the GSM8k and MATH benchmarks for reporting.

We have added the discussions about the Weaknesses-1.1 in Appendix C.1.2 of our latest upload
of revised paper (pages 36–40, lines 1921–2135)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 21: In the study, we compare the WizardMath-SFT/RL model across various base models
(0.1B-3B) with the SOTA models on the GSM8k and Math benchmarks. We report the Chain of
Thought (CoT) pass@1 results without using any external Python tools. The results from 7B to 70B
are shown in Table 22.

Model Base Params GSM8k MATH
Proprietary models

GPT-o1 (OpenAI, 2023) - - - 94.8
GPT-o1-mini (OpenAI, 2023) - - - 90.0
Gemini-1.5 002 (Team et al., 2023) - - - 86.5
Claude 3.5 Sonnet (Bai et al., 2022) - - 96.4 71.1
GPT-4o-2024-0513 (OpenAI, 2023) - - 96.1 76.6
GPT-4-turbo-0125 (OpenAI, 2023) - - 94.2 64.5
GPT-4-0314 (OpenAI, 2023) - - 94.7 52.6
GPT-4 (original version) (OpenAI, 2023) - - 92.0 42.5
Baichuan-3 (Yang et al., 2023) - - 88.2 49.2
GLM-4 (GLM et al., 2024) - - 87.6 47.9
Gemini Pro (Team, 2023) - - 86.5 32.6
Claude2 (Bai et al., 2022) - - 85.2 32.5
GPT-3.5-Turbo (OpenAI, 2023) - - 81.6 43.1
PaLM2 (Anil et al., 2023) - - 80.7 34.3
Minerva (Lewkowycz et al., 2022) - 540B 58.8 33.6
GPT3.5 (Brown et al., 2020a) - - 57.1 -

Open-Source Models (0.1B-3B)

GPT-2-Small (Brown et al., 2020b) - 0.1B 6.9 5.4
GPT-2-Medium (Brown et al., 2020b) - 0.3B 11.2 6.2
GPT-2-Large (Brown et al., 2020b) - 0.7B 13.6 6.4
GPT-2-XL (Brown et al., 2020b) - 1.5B 15.4 6.9
WizardMath-GPT-SFT GPT-2-Small 0.1B 21.2 9.1
WizardMath-GPT-RL GPT-2-Small 0.1B 26.4 12.3
WizardMath-GPT-SFT GPT-2-Medium 0.3B 30.6 11.4
WizardMath-GPT-RL GPT-2-Medium 0.3B 38.7 15.6
WizardMath-GPT-SFT GPT-2-Large 0.7B 43.7 16.4
WizardMath-GPT-RL GPT-2-Large 0.7B 50.1 21.2
WizardMath-GPT-SFT GPT-2-XL 1.5B 51.9 18.3
WizardMath-GPT-RL GPT-2-XL 1.5B 58.9 25.4

WizardMath-Qwen-SFT Qwen-Math-2.5 1.5B 82.3 62.1
WizardMath-Qwen-RL Qwen-Math-2.5 1.5B 86.7 68.6

Llama-3.2-Instruct (Dubey et al., 2024) Llama 3.2 1B 44.4 30.6
MetaMath (Yu et al., 2023b) Llama 3.2 1B 51.9 15.5
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3.2 1B 49.2 23.4
DART-Math-Uniform (Tong et al., 2024) Llama 3.2 1B 55.8 22.0
WizardMath-Llama-SFT Llama 3.2 1B 57.1 29.7
WizardMath-Llama-RL Llama 3.2 1B 63.3 33.5
Llama-3.2-Instruct (Dubey et al., 2024) Llama 3.2 3B 77.7 48.0
MetaMath (Yu et al., 2023b) Llama 3.2 3B 72.6 25.9
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3.2 3B 74.0 37.8
DART-Math-Uniform (Tong et al., 2024) Llama 3.2 3B 77.8 36.4
WizardMath-Llama-SFT Llama 3.2 3B 80.3 45.2
WizardMath-Llama-RL Llama 3.2 3B 85.5 49.9

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 22: Continue Table 21, in this study, we compare the WizardMath-SFT/RL model across
various base models (7B-70B) with the SOTA models on the GSM8k and Math benchmarks. We
report the Chain of Thought (CoT) pass@1 results without using any external Python tools.

Model Base Params GSM8k MATH
Open-Source Models (7B-8B)

Llama-2 (Touvron et al., 2023b) - 7B 14.6 2.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 7B 50.5 10.4
MathScale (Tang et al., 2024) Llama-2 7B 66.3 31.1
MetaMath (Yu et al., 2023b) Llama-2 7B 66.5 19.8
MuggleMath (Li et al., 2023a) Llama-2 7B 68.4 -
Skywork-Math (Zeng et al., 2024) Llama-2 7B 72.9 47.7
Math-Shepherd (Wang et al., 2024a) Llama-2 7B 73.2 21.6
DART-Math-Prop2Diff (Tong et al., 2024) Llama-2 7B 69.9 30.7
DART-Math-Uniform (Tong et al., 2024) Llama-2 7B 73.8 29.5
Xwin-Math (Li et al., 2024a) Llama-2 7B 82.6 40.6
WizardMath-Llama-SFT Llama-2 7B 77.4 35.6
WizardMath-Llama-RL Llama-2 7B 84.1 43.5

Mistral-v0.1 (Jiang et al., 2023) - 7B 42.9 12.9
MathScale (Tang et al., 2024) Mistral-v0.1 7B 74.8 35.2
MMIQC (Liu & Yao, 2024) Mistral-v0.1 7B 74.8 36.0
MetaMath (Yu et al., 2023b) Mistral-v0.1 7B 77.9 28.6
DART-Math-Prop2Diff (Tong et al., 2024) Mistral-v0.1 7B 81.1 45.5
KPMath-Plus (Huang et al., 2024b) Mistral-v0.1 7B 82.1 46.8
DART-Math-Uniform (Tong et al., 2024) Mistral-v0.1 7B 82.6 43.5
Skywork-Math (Zeng et al., 2024) Mistral-v0.1 7B 83.9 51.2
Math-Shepherd (Wang et al., 2024a) Mistral-v0.1 7B 84.1 33.0
MAmmoTH2-Plus (Yue et al., 2024) Mistral-v0.1 7B 84.7 45.0
JiuZhang3.0 (Zhou et al., 2024) Mistral-v0.1 7B 88.6 52.8
Xwin-Math (Li et al., 2024a) Mistral-v0.1 7B 89.2 43.7
WizardMath-Mistral-SFT Mistral-v0.1 7B 82.8 48.1
WizardMath-Mistral-RL Mistral-v0.1 7B 90.7 55.4
WizardMath-Mistral-SFT Mistral-v0.3 7B 84.5 49.9
WizardMath-Mistral-RL Mistral-v0.3 7B 90.4 55.6
WizardMath-Mathstral-SFT Mathstral-v0.1 7B 88.3 64.2
WizardMath-Mathstral-RL Mathstral-v0.1 7B 93.8 70.9

Qwen2.5-Math-Base (Yang et al., 2024) Qwen2.5-Math 7B 91.6 55.4
WizardMath-Qwen-SFT Qwen2.5-Math 7B 92.3 72.3
WizardMath-Qwen-RL Qwen2.5-Math 7B 93.9 77.8
WizardMath-Qwen-SFT Qwen2.5 7B 89.8 68.1
WizardMath-Qwen-RL Qwen2.5 7B 94.0 74.5

DeepSeekMath-Base (Shao et al., 2024) - 7B 64.2 36.2
NuminaMath-CoT (Li et al., 2024c) DeepseekMath 7B 75.4 55.2
MMIQC (Liu & Yao, 2024) DeepSeekMath 7B 79.0 45.3
KPMath-Plus (Huang et al., 2024b) DeepSeekMath 7B 83.9 48.8
DART-Math-Prop2Diff (Tong et al., 2024) DeepSeekMath 7B 86.8 53.6
DeepSeekMath-RL (Shao et al., 2024) DeepSeekMath 7B 88.2 51.7
DART-Math-Uniform (Tong et al., 2024) DeepSeekMath 7B 88.2 52.9
WizardMath-DeepSeek-SFT DeepSeekMath 7B 88.9 58.2
WizardMath-DeepSeek-RL DeepSeekMath 7B 91.0 64.6

MetaMath (Yu et al., 2023b) Llama 3 8B 77.3 20.6
MMIQC (Liu & Yao, 2024) Llama 3 8B 77.6 29.5
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3 8B 81.1 46.6
DART-Math-Uniform (Tong et al., 2024) Llama 3 8B 82.5 45.3
MAmmoTH2-Plus (Yue et al., 2024) Llama 3 8B 84.1 42.8
Llama 3.1-Instruct (Dubey et al., 2024) Llama 3 8B 84.5 51.9
JiuZhang3.0 (Zhou et al., 2024) Llama 3 8B 88.6 51.0
WizardMath-Llama-SFT Llama 3 8B 88.9 53.3
WizardMath-Llama-RL Llama 3 8B 90.3 58.8

MetaMath (Yu et al., 2023b) Llama 3.1 8B 80.4 35.4
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3.1 8B 84.3 46.5
DART-Math-Uniform (Tong et al., 2024) Llama 3.1 8B 86.7 45.1
WizardMath-Llama-SFT Llama 3.1 8B 89.2 55.8
WizardMath-Llama-RL Llama 3.1 8B 93.4 62.3

Open-Source Models (13B)

Llama-2 (Touvron et al., 2023b) - 13B 28.7 3.9
MAmmoTH-CoT (Yue et al., 2023) Llama 2 13B 56.3 12.9
MathScale (Tang et al., 2024) Llama 2 13B 71.3 33.8
MetaMath (Yu et al., 2023b) Llama 2 13B 72.3 22.4
MuggleMath (Li et al., 2023a) Llama 2 13B 74.0 -
KPMath-Plus (Huang et al., 2024b) Llama 2 13B 81.6 41.0
Xwin-Math (Li et al., 2024a) Llama 2 13B 88.1 44.9
WizardMath-Llama-SFT Llama 2 13B 86.8 46.5
WizardMath-Llama-RL Llama 2 13B 89.7 50.6

Open-Source Models (70B)

Llama-2 (Touvron et al., 2023b) - 70B 56.8 13.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 70B 72.4 21.1
MetaMath (Yu et al., 2023b) Llama-2 70B 82.3 26.6
KPMath-Plus (Huang et al., 2024b) Llama-2 70B 87.4 48.6
Xwin-Math (Li et al., 2024a) Llama-2 70B 90.6 52.8
WizardMath-Llama-SFT Llama-2 70B 89.5 54.4
WizardMath-Llama-RL Llama-2 70B 92.8 58.6

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 23: In this study, we mainly compare the performance of WizardMath-SFT with advanced data
synthesis methods such as DART-Math and MetaMath on different base models under the GSM8k
and MATH benchmarks in the SFT stage. We report the CoT pass@1 results of the model without
relying on any external Python tools.

Model Base Params GSM8k MATH
DART-Math-Prop2Diff Llama 3.2 1B 49.2 23.4
MetaMath Llama 3.2 1B 51.9 15.5
DART-Math-Uniform Llama 3.2 1B 55.8 22.0
WizardMath-Llama-SFT Llama 3.2 1B 57.1 29.7

MetaMath Llama 3.2 3B 72.6 25.9
DART-Math-Prop2Diff Llama 3.2 3B 74.0 37.8
DART-Math-Uniform Llama 3.2 3B 77.8 36.4
WizardMath-Llama-SFT Llama 3.2 3B 80.3 45.2

MetaMath Llama-2 7B 66.5 19.8
DART-Math-Prop2Diff Llama-2 7B 69.9 30.7
DART-Math-Uniform Llama-2 7B 73.8 29.5
WizardMath-Llama-SFT Llama-2 7B 77.4 35.6

MetaMath Mistral-v0.1 7B 77.9 28.6
DART-Math-Prop2Diff Mistral-v0.1 7B 81.1 45.5
DART-Math-Uniform Mistral-v0.1 7B 82.6 43.5
WizardMath-Mistral-SFT Mistral-v0.1 7B 82.8 48.1

DART-Math-Prop2Diff DeepSeekMath 7B 86.8 53.6
DART-Math-Uniform DeepSeekMath 7B 88.2 52.9
WizardMath-DeepSeek-SFT DeepSeekMath 7B 88.9 58.2

MetaMath Llama 3 8B 77.3 20.6
DART-Math-Prop2Diff Llama 3 8B 81.1 46.6
DART-Math-Uniform Llama 3 8B 82.5 45.3
WizardMath-Llama-SFT Llama 3 8B 88.9 53.3

MetaMath Llama 3.1 8B 80.4 35.4
DART-Math-Prop2Diff Llama 3.1 8B 84.3 46.5
DART-Math-Uniform Llama 3.1 8B 86.7 45.1
WizardMath-Llama-SFT Llama 3.1 8B 89.2 55.8

C.1.3 WEAKNESSES-1.2

In analyzing the impact of training data size, the authors should compare their approach with
the best method for SFT using synthesized data, specifically DartMath. MetaMath, which was
developed around a year ago, uses GPT-3.5-turbo for data augmentation, making it an outdated
and potentially unfair baseline.

Thank you for your insightful advice. In Appendix C.1.3 of our latest upload of revised paper
(pages 40–41, lines 2137–2154), Figure 5 , we explore the performance of WizardMath Evol-instruct
in comparison with DART-Math and MetaMath across different training data scales on the GSM8k
and MATH benchmarks in the SFT stage.

As the volume of training data increases, WizardMath-Evol-Instruct consistently improves its per-
formance on the GSM8k and MATH benchmarks, exhibiting a slightly higher growth rate than
DART-Math. In the initial stages, WizardMath slightly underperforms compared to DART-Math.
This advantage may stem from DART-Math being distilled from DeepSeekMath-RL, an advanced
mathematical reasoning model pre-trained on 120B high-quality mathematical tokens, showcasing
exceptional proficiency in mathematical reasoning. However, once the dataset exceeds 60k, its perfor-
mance begins to surpasse DART-Math. At a data scale of 390k, WizardMath slightly outperforms
DART-Math by 2%–3% on GSM8k and by 5%–6% on MATH. Additionally, WizardMath-Evol-
Instruct consistently exceeds MetaMath at the same data scales, achieving increases of 3%–6% on
GSM8k and 15%–20% on MATH. This performance gain is attributed to the efficiency of Math
Evol-Instruct’s upward and downward evolution processes. These findings demonstrate that our Math
Evol-Instruct method is also as scalable and effective as DART-Math for the large-scale synthetic
data.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

15k 30k 60k 120k 200k 300k 390k
Data Size

56

62

68

74

80

86

GS
M

8K
(%

)

13

21

28

36

44

51

M
AT

H(
%

)

GSM8K(Ours)
GSM8K(MetaMath)
GSM8K(DART-Math)
MATH(Ours)
MATH(MetaMath)
MATH(DART-Math)

Figure 5: The performance of WizardMath Evol-instruct in comparison with DART-Math and
MetaMath across different training data scales on the GSM8k and MATH benchmarks in the SFT
stage. We use the Mistral-7B as base model

We have added the discussions about the Weaknesses-1.2 in Appendix C.1.3 of our latest upload
of revised paper (pages 40-41, lines 2139–2189)

C.1.4 WEAKNESSES-1.3

It appears that SFT with Math Evol-Instruct yields inferior results compared to other SFT
methods. From Table 4, the LLaMA2-7B: WizardMath-SFT scores 35.6 on MATH, which lags
behind models like XwinMath and Skywork. Likely, it would also lag behind LLaMA2-7B
fine-tuned on the DartMath training data. This suggests that the main contribution of the paper
is in the RL component. Therefore, the primary focus should be on the results obtained with
different reward models, as presented in Table 4, utilizing various SFT backbones.

Thank you for your valuable questions and insightful suggestions. Below are detailed responses to
each question.

Q1: It appears that SFT with Math Evol-Instruct yields inferior results compared to other SFT
methods. From Table 4, the LLaMA2-7B: WizardMath-SFT scores 35.6 on MATH, which lags
behind models like XwinMath and Skywork. Likely, it would also lag behind LLaMA2-7B
fine-tuned on the DartMath training data.

In Table 24 below, we show the performance comparison of WizardMath-SFT with DART-Math,
Xwin-Math and Skywork-Math on the Llama2-7B base model on the MATH benchmark.

• WizardMath-SFT vs. DART-Math:
WizardMath-SFT, based on the Llama2-7B model, outperforms DART-Math-Uniform by
6.1% and DART-Math-Prop2Diff by 4.9% on the MATH. Notably, the amount of data used
by WizardMath-SFT is only 70%–71% of DART-Math (418k vs. 591k; 418k vs. 585k).

• WizardMath vs. Xwin-Math:
Although WizardMath-SFT is 5% lower than Xwin-Math on the MATH, the amount of data
used is only 29.0% of Xwin-Math (418k vs. 1440k), which is much less than Xwin-Math.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Moreover, Xwin-Math leverages GPT-4-turbo for data synthesis. However, WizardMath-SFT
outperforms Xwin-Math on the MATH when using different backbones such as Mistral-7B-
v0.1, Llama2-13B, and Llama2-70B as shown in Table 22 of our latest upload of revised
paper (pages 39, lines 2052–2105). For instance, in Table 22, WizardMath-SFT exceeds
Xwin-Math by 4.4% (48.1% vs. 43.7%) when using the Mistral-7B-v0.1 as the base model.

• WizardMath vs. Skywork-Math:
WizardMath-SFT underperforms Skywork-Math-2500k on the MATH benchmark by 12.1%,
but it uses only 16.7% of the amount of data used by Skywork-Math-2500k (418k vs.
2500k), which is much less than Skywork-Math. Furthermore, according to Figure 5 About
Synthetic Data Size in the Skywork-Math paper[1], Skywork-Math-720k scores 34.54%
on MATH, and Skywork-Math-360k scores 29.36%. Therefore, WizardMath-SFT-418k
performs comparably to Skywork-Math-720k on MATH, and with the same amount of data,
WizardMath-SFT outperforms Skywork-Math.

In summary, the Math Evol Instruct data synthesis method proposed in our study is as effective and
practical as the current state-of-the-art data synthesis methods, such as DART-Math, Skywork-Math
and Xwin-Math in the SFT stage. It significantly enhances the mathematical reasoning capabilities of
the model, marking a key contribution of our work. Additionally, we acknowledge the contributions
of methods such as DART-Math, Skywork-Math and Xwin-Math, which are excellent data synthesis
approaches excelling in generating high-quality datasets for mathematical tasks and significantly
enhancing models’ mathematical reasoning capabilities.

[1] Zeng L, Zhong L, Zhao L, et al. Skywork-Math: Data Scaling Laws for Mathematical Reasoning
in Large Language Models–The Story Goes On[J]. arXiv preprint arXiv:2407.08348, 2024.

Q2: This suggests that the main contribution of the paper is in the RL component. Therefore,
the primary focus should be on the results obtained with different reward models, as presented
in Table 4, utilizing various SFT backbones.

Thank you for your deep insights. The following table 25 shows the impact of applying the proposed
Instruction Quality Scoring Reward Model (IRM) and Process Supervised Reward Model (PRM) to
PPO training across various SFT backbones (i.e., DART-Math, MetaMath, and Xwin-Math). The
results demonstrate that incorporating our IRM and PRM during PPO training led to a performance
improvement of 5% to 8% on both GSM8k and MATH for most SFT models. For instance:

• When using DART-Math as the SFT backbone based on Llama2-7B:
On GSM8k, after reinforcement learning training with IRM and PRM, Prop2Diff-RL
improved by 6.9% (69.9% vs. 76.8%), and Uniform-RL improved by 5.3% (73.8% vs.
79.1%).
On MATH, Prop2Diff-RL achieved a 6.4% gain (30.7% vs. 37.1%), and Uniform-RL
improved by 5.7% (29.5% vs. 35.2%).

• When using DART-Math as the SFT backbone based on Mistral-7B-v0.1:
On GSM8k, Prop2Diff-RL improved by 6.4% (81.1% vs. 87.5%), and Uniform-RL in-
creased by 5.5% (82.6% vs. 88.1%).
On MATH, Prop2Diff-RL rose by 5.9% (45.5% vs. 51.4%), and Uniform-RL saw a 5.2%
enhancement (43.5% vs. 48.9%).

• For the MetaMath models based on Llama2-7B and Mistral-7B-v0.1:
Training with PPO using IRM and PRM led to performance improvements of 8% to 9% on
GSM8k and 5% to 8% on MATH.

• Similarly, for the Xwin-Math-Llama2-7B model, performance on both GSM8k and
MATH improved by 6% to 8%.

These findings highlight the significant contributions of our IRM and PRM during reinforcement
learning, consistently enhancing mathematical reasoning abilities of our SFT models while achieving
robust generalization on different SFT backbones. This represents a key contribution of our study.

Thus, our study primarily makes two core contributions:

1. The proposed Math Evol Instruct data synthesis method is also as effective and practical as the
current state-of-the-art data synthesis methods, such as DART-Math, Skywork-Math and Xwin-Math
in the SFT stage. It also significantly enhances the mathematical reasoning capabilities of our models.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

2. The proposed IRM and PRM models substantially improve performance during the reinforcement
learning phase. They not only continuously enhance the mathematical reasoning abilities of our
SFT models but also achieve strong generalization across various SFT backbones (i.e., DART-Math).
Outstanding performance is demonstrated on the GSM8k and MATH.

We have added the discussions about the Weaknesses-1.3 in Appendix C.1.4 of our latest upload
of revised paper (pages 41–43, lines 2187–2309)

Table 24: The performance comparison of WizardMath-SFT with DART-Math, Xwin-Math, and
Skywork-Math on the Llama2-7B base model on the MATH benchmark.

Llama2 7B as the base model Data size MATH
DART-Math-Uniform 591k 29.5
DART-Math-Prop2Diff 585k 30.7
Xwin-Math 1440k 40.6
Skywork-Math 360k 29.36
Skywork-Math 720k 34.54
Skywork-Math 2500k 47.7

WizardMath-SFT 418k 35.6

Table 25: The impact of applying the proposed Instruction Quality Scoring Reward Model (IRM)
and Process Supervised Reward Model (PRM) to PPO training across various SFT backbones (i.e.,
DART-Math, MetaMath, and Xwin-Math)

Model Base Params GSM8k MATH
MetaMath-SFT Llama-2 7B 66.5 19.8
MetaMath-RL Llama-2 7B 75.6 25.1

DART-Math-Prop2Diff-SFT Llama-2 7B 69.9 30.7
DART-Math-Prop2Diff-RL Llama-2 7B 76.8 37.1
DART-Math-Uniform-SFT Llama-2 7B 73.8 29.5
DART-Math-Uniform-RL Llama-2 7B 79.1 35.2

Xwin-Math-SFT Llama-2 7B 82.6 40.6
Xwin-Math-RL Llama-2 7B 88.2 48.5

WizardMath-Llama-SFT Llama-2 7B 77.4 35.6
WizardMath-Llama-RL Llama-2 7B 84.1 43.5

MetaMath-SFT Mistral-v0.1 7B 77.9 28.6
MetaMath-RL Mistral-v0.1 7B 86.4 35.2

DART-Math-Prop2Diff-SFT Mistral-v0.1 7B 81.1 45.5
DART-Math-Prop2Diff-RL Mistral-v0.1 7B 87.5 51.4
DART-Math-Uniform-SFT Mistral-v0.1 7B 82.6 43.5
DART-Math-Uniform-RL Mistral-v0.1 7B 88.1 48.7

WizardMath-Mistral-SFT Mistral-v0.1 7B 82.8 48.1
WizardMath-Mistral-RL Mistral-v0.1 7B 90.7 55.4

C.1.5 WEAKNESSES-1.4

Table 7 lacks adequate baselines; at least, the authors should include LLaMA-2-7B trained on
the DartMath training set. This table also suffers from the same fairness issues as Table 1.

Thank you for your constructive feedback. The table 26 below presents the performance
of WizardMath-SFT on 7 out-of-domain (OOD) evaluation tasks covering K-12, college, and
competition-level math problems in the SFT stage. The results indicate that WizardMath-SFT consis-
tently surpasses state-of-the-art open-source models (i.e., DART-Math, Xwin-Math, and MathScale)
across various scales and tasks, achieving an average improvement of 3%-6%. For instance:

• With the Llama2-7B base model, WizardMath-SFT outperformed DART-Math-Uniform by
11.0% (38.3% vs. 27.3%) and DART-Math-Prop2Diff by 10.5% (38.3% vs. 27.8%) on
average.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 26: The performance of WizardMath-SFT on the 7 out-of-domain evaluation results covering
K-12, college, and competition level math problems compared with some SOTA models (i.e., DART-
Math) in the SFT stage. The results of models in the table refer to MWPBENCH (Tang et al., 2024).
“AGIE” stands for AGIEval. We report the models’ CoT pass@1 results on MwpBench without using
any external python tool

Models College
Math TAL Math23k Ape210k

Gaokao
Bench
Math

AGIE
Gaokao
Math

AGIE
SAT
Math

AVG

Proprietary models
GPT-4 24.4 51.8 76.5 61.5 35.4 28.2 68.6 49.5
GPT-3.5-Turbo 21.6 42.9 62.5 44.0 23.2 15.3 55.8 37.9

Models based on LLaMA-2 13B
LLaMA-2 13B 1.2 6.3 9.5 7.9 0.7 0.4 6.8 4.7
MAmmoTH-CoT 6.5 17.3 39.5 28.1 5.9 4.9 20.5 17.5
GAIR-Abel 7.9 21.1 42.2 27.8 7.0 4.9 30.3 20.2
MetaMath 10.1 25.4 48.6 31.6 9.6 5.6 38.2 24.2
MathScale 13B 20.4 38.1 61.1 43.7 20.0 12.3 55.8 35.9
WizardMath-SFT 22.2 42.5 65.9 47.6 31.6 23.5 59.7 41.9
WizardMath-RL 22.9 43.3 70.3 50.8 33.1 25.7 64.7 44.4

Models based on LLaMA-2 7B
LLaMA-2 7B 2.3 7.6 6.8 7.3 2.1 2.9 2.9 4.6
MAmmoTH-CoT 6.2 13.3 34.6 21.4 3.9 2.7 19.6 14.5
GAIR-Abel 6.6 18.3 35.4 24.5 4.3 4.4 23.5 16.7
MetaMath 9.4 22.5 44.0 29.9 5.9 5.1 36.2 21.9
DART-Math-Uniform 12 27.3 47.9 32.9 14.8 11.1 45.1 27.3
DART-Math-Prop2Diff 11.9 27.7 49.9 34.3 12.8 10.6 47.1 27.8
Xwin-Math-V1.1 14.9 29.7 59.6 40.8 15.9 8.4 51.0 31.5
MathScale 7B 20.9 35.2 59.0 41.8 19.6 12.6 57.8 35.3
WizardMath-SFT 21.1 38.5 62.4 43.8 26.3 17.7 58.3 38.3
WizardMath-RL 21.2 40.2 67.3 46.1 28.9 18.7 62.7 40.7

Models based on Mistral 7B
Mistral 7B 7.5 17.9 18.5 15.5 6.2 5.9 22.5 13.4
MetaMath Mistral 15.7 31.4 55.1 38.1 15.3 10.1 50.9 30.9
DART-Math-Uniform 19.4 34.8 61.6 44.8 27.0 16.1 59.8 37.6
MathScale Mistral 21.8 39.9 64.4 46.0 21.4 14.3 57.8 37.9
DART-Math-Prop2Diff 19.9 37.4 62.2 44.9 27.2 18.1 62.7 38.9
WizardMath-Mistral-SFT 24.3 42.7 66.6 49.7 35.2 22.7 63.1 43.5
WizardMath-Mistral-RL 24.8 44.8 71.2 52.6 37.2 24.5 64.7 45.7

• With the Mistral-7B base model, WizardMath-SFT achieved an average improvement of
5.9% over DART-Math-Uniform (43.5% vs. 37.6%) and 4.6% over DART-Math-Prop2Diff
(43.5% vs. 38.9%).

These findings highlight the effectiveness of our Math Evol-Instruct method, demonstrating its
robustness and superior generalization capabilities on out-of-domain tasks.

We have added the discussions about the Weaknesses-1.4 in Appendix C.1.5 of our latest upload
of revised paper (pages 43–44, lines 2310–2363)

C.2 RECOMMEND

I recommend that the authors reorganize the paper better to emphasize their contributions to
the "RL part."

Thank you for your deep insights and constructive suggestions. Due to time and space constraints,
we promise to further emphasize our contributions to the "RL part" in future revisions of our paper.
Specifically, we will provide more detailed descriptions of the contributions of our proposed RLEIF
approach to the RL part in some sections (i.e., the Abstract, Introduction, and Experiment Sections).
For instance, we will highlight that in RL training, we firstly propose the instruction quality scoring
reward model combined with the process supervision reward model not only continuously enhancing
the mathematical reasoning abilities of the SFT model but also achieve strong generalization across
various SFT backbones. Additionally, we will supplement the discussion on the application and

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

impact of IRM and PRM on different advanced SFT backbones, as highlighted in the Weaknesses-1.3,
to further strengthen the theoretical framework and experimental analysis.

C.3 QUESTIONS

Thank you very much for your insightful questions and valuable suggestions. Below, we provide
responses to your Question-1 through Question-5 in sequence.

C.3.1 QUESTIONS-1

In Equation (1), how is the parameter (m) set? Additionally, how is the Instruction Reward
Model (IRM) trained?

Q1: In Equation (1), how is the parameter (m) set?

The parameter (m) denotes the margin in the Pairwise Ranking Loss, acting as a threshold to regulate
the score difference between <Choose, Reject> pairs. Specifically, it ensures that during IRM training,
the reward score for higher-quality instructions surpasses that of lower-quality instructions by at least
the margin value. This mechanism encourages the model to emphasize the quality score gap between
high-quality and low-quality instructions. In our experiments, the parameter (m) was set to a constant
1.

Q2: Additionally, how is the Instruction Reward Model (IRM) trained?

In our paper, Section 3.2 <REWARD MODELS>, lines 187-201, we conducted two rounds
of downward evolution and three rounds of upward evolution based on the original instructions,
generating a total of five evolved instructions. Subsequently, we leverage GPT-4 to rank the quality
between those evolved instructions and original instruction based on the difficulty and definition,
with higher ranks assigned to instructions demonstrating greater difficulty and clearer definitions.
The detailed ranking prompt template is provided in Appendix A.2.

From the ranking results of the 6 instructions, we created 15 positive-negative sample pairs by
combining C(6, 2). Applying this five-round evolution process to 15k original instructions, we
ultimately generated 15k × 15 = 225k positive-negative pairs for training IRM data.

During training, we employed the Pairwise Ranking Loss defined in Eq. 1. For a given mathematical
instruction q, the IRM quantifies its quality by assigning a score. The IRM was initialized with
the SFT model and augmented with a header layer that outputs a scalar score. The design of the
Pairwise Ranking Loss draws inspiration from the reward model training methods described in the
Instruct-GPT paper[1].

We have added the answers about the Questions-1 in Appendix C.3.1 of our latest upload of
revised paper (page 45, lines 2383–2415)

[1] Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions with human
feedback[J]. Advances in neural information processing systems, 2022, 35: 27730-27744.

C.3.2 QUESTIONS-2

Lines 256-258 suggest that you retain solutions with incorrect answers. How might this influence
the results? Have you considered using the IRM to filter out low-quality examples for supervised
fine-tuning (SFT)?

Q1: Lines 256-258 suggest that you retain solutions with incorrect answers. How might this
influence the results?

The Lines 256-258, Sections 4.2 for SFT Training Data in our paper In order to prevent data
leakage, we filter out the evolved data with high similarity to the GSM8k and MATH test sets,
so it does not refer to incorrect answers. The data leakage detection method refers to the paper
Appendix A.11 line 1782-1815. Specifically, we employ instructions in the GSM8k and MATH test
set as queries to retrieve the top-5 samples from all evolved training data with an embedding model,
gte-large. Additionally, we employ GPT-4 to provide similarity judgement between the test sets and
the retrieved samples, and remove the similar instructions. The prompt and additional details are
provided in Appendix A.12.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

The table 27 below demonstrates the impact of unfilter the potential data leaks on model performance.
WizardMath-SFT-No-filter-data-leakage outperforms WizardMath-SFT-Filter-data-leakage by 1.3%
on the GSM8k and by 1.7% on the MATH. we use Mistral-7B-v0.1 as the base model

Table 27: The impact of unfilter the potential data leaks on model performance. we use Mistral-7B-
v0.1 as the base model

Model GSM8k MATH

WizardMath-SFT-Filter-data-leakage 82.8 48.1
WizardMath-SFT-No-Filter-data-leakage 84.1 49.8

Q2: Have you considered using the IRM to filter out low-quality examples for supervised
fine-tuning (SFT)?

Thank you very much for your insightful question and constructive suggestions. The table 28 below
highlights the effects of using IRM to filter out low-quality instructions during the SFT stage.

• Filtering 15k low-quality instructions resulted in WizardMath-SFT-filter-15k outperform-
ing WizardMath-SFT-original, with a 1.8-point improvement on GSM8k and a 2.1-point
improvement on MATH.

• Filtering 30k low-quality instructions improved GSM8k by 0.9% and MATH by 0.6%.
• However, when the filtering reached 45k, WizardMath-SFT-filter-45k showed a performance

decrease of 0.8% on GSM8k and 1.1% on MATH.
• Filtering up to 60k resulted in a more pronounced decline, with WizardMath-SFT-filter-60k

dropping by 1.7% on GSM8k and 2.5% on MATH.

These results indicate that using IRM for moderate filtering of low-quality data (i.e., 15k or 30k)
is effective for enhancing model performance, while excessive filtering can lead to significant
performance degradation.

We have added the discussions about the Questions-2 in Appendix C.3.2 of our latest upload of
revised paper (pages 45-46, lines 2416–2470)

Table 28: The impact of employing IRM to filter low-quality data on model performance in the SFT
stage. we use Mistral-7B-v0.1 as the base model

Model IRM Filter Data Size GSM8k MATH

WizardMath-SFT-original - 82.8 48.1
WizardMath-SFT-filter-15k 15k 84.6 50.2
WizardMath-SFT-filter-30k 30k 83.7 48.7
WizardMath-SFT-filter-45k 45k 82.0 47.0
WizardMath-SFT-filter-60k 60k 81.1 45.6

C.3.3 QUESTIONS-3

During PPO, do you use two reward models? Using two reward models in PPO can be time-
consuming and computationally expensive. What are your strategies for addressing this?

Q1: During PPO, do you use two reward models?

Yes, we use two reward models during the PPO training stage.

Q2: Using two reward models in PPO can be time-consuming and computationally expensive.
What are your strategies for addressing this?

During the PPO training stage, we utilized the DeepSpeedChat[1] framework. To improve train-
ing efficiency and reduce memory consumption, we employed several optimization techniques,
including DeepSpeed ZeRO-3 with CPU Offload, the DeepSpeed-Hybrid Engine, MixZ++, Gradient
Checkpointing, Gradient Accumulation, and BFloat16 precision.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

In the future we try to implement GRPO by Deepseekmath[2] (a variant of PPO) for training and
incorporate the VLLM[3] used by the OpenRLHF[4] framework to accelerate the policy model
generation during PPO training, thus improving the training efficiency.

We have added the answer about the Questions-3 in Appendix C.3.3 of our latest upload of
revised paper (pages 46-47, lines 2472–2497)

[1] Yao Z, Aminabadi R Y, Ruwase O, et al. Deepspeed-chat: Easy, fast and affordable rlhf training
of chatgpt-like models at all scales[J]. arXiv preprint arXiv:2308.01320, 2023.

[2] Shao Z, Wang P, Zhu Q, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models[J]. arXiv preprint arXiv:2402.03300, 2024.

[3] Kwon W, Li Z, Zhuang S, et al. Efficient memory management for large language model serving
with pagedattention[C]//Proceedings of the 29th Symposium on Operating Systems Principles. 2023:
611-626.

[4] Hu J, Wu X, Wang W, et al. OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF
Framework[J]. arXiv preprint arXiv:2405.11143, 2024.

C.3.4 QUESTIONS-4

In Lines 89-90, you state that you "innovatively introduce PRM to address the False-Positive
issue in the problem-solving process." This claim should be validated by comparing the false-
positive rate on a test set both with and without your method.

Thank you for your insightful feedback. We utilized GPT-4o-2024-0513 (the accuracy is 96.1% On
GSM8k and 76.6% on MATH) to annotate the step-by-step correctness of responses generated by
WizardMath-SFT, WizardMath-RL-ORM, and WizardMath-RL-PRM on the GSM8k and MATH test
sets, and we calculated the model’s false-positive rates.

We define the false-positive rate as the proportion of responses in the test set where the final answer
is correct, but errors occur in intermediate steps (i.e., computational or logical mistakes). The formula
for calculating the False Positive Rate is as follows:

False Positive Rate =
Number of False Positives
Total Number of Test Sets

The table 29 below presents the statistical results:

• The false-positive rate of WizardMath-SFT is 2.58% on GSM8k and 2.36% on MATH.

• The false-positive rate of WizardMath-RL-ORM is 1.67% on GSM8k and 1.56% on MATH.

• The false-positive rate of WizardMath-RL-PRM is 0.68% on GSM8k and 0.90% on MATH.

Compared to WizardMath-SFT, WizardMath-RL-PRM reduced the false-positive rate by 1.90% on
GSM8k and 1.46% on MATH. Similarly, compared to WizardMath-RL-ORM, WizardMath-RL-PRM
achieved reductions of 0.99% on GSM8k and 0.66% on MATH.

These results demonstrate that the incorporation of PRM significantly reduces the model’s false-
positive rate, effectively alleviating the occurrence of intermediate step errors during the problem-
solving process.

We have added the discussions about the Questions-4 in Appendix C.3.4 of our latest upload of
revised paper (page 47, lines 2500–2528)

C.3.5 QUESTIONS-5

In Lines 88-89, you mention that existing methods "mainly focus on the SFT stage and are
susceptible to learning hallucinated information from the teacher model." However, in Line 95,
you still use GPT-4 to annotate step-level labels. Isn’t there a risk of obtaining incorrect step
labels from GPT-4 as well?

Yes, there is a potential risk of obtaining incorrect step labels from GPT-4 as well

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Table 29: The impact of PRM to alleviate the False-Positive issue in the RL training stage. we use
Mistral-7B-v0.1 as the base model

Metrics WizardMath-SFT WizardMath-RL-ORM WizardMath-RL-PRM

Reward Model for PPO - ORM PRM

Number of GSM8k test sets 1319 1319 1319
Number of False Positive On GSM8k 34 22 9

False Positive Rate On GSM8k 2.58% 1.67% 0.68%

Number of MATH test sets 5000 5000 5000
Number of False Positive On MATH 118 78 45

False Positive Rate On MATH 2.36% 1.56% 0.90%

The risk of the model learning hallucinatory information from the teacher model cannot be completely
eliminated. Therefore, in order to ensure the reliability and effectiveness of using GPT-4 to annotate
step-level labels during the problem-solving process in constructing PRM training data, we conducted
the following two analyses:

1. Reliability of GPT-4 Annotations

Manually annotating large-scale step-level PRM training data demands extensive mathematical
expertise, making it a challenging, time-intensive, and costly process. So, we employ a fully
AI-powered automatic annotation using GPT-4 in our paper. To assess the reliability of GPT-4-
generated annotations, in the early stages, we randomly selected 2k samples from the manually
labeled PRM800k step-level training dataset and annotated them using GPT-4. GPT-4 annotations
were evaluated against human annotations using the F1 score as a consistency metric. The results
showed an F1 consistency of 78.1% between GPT-4 and human annotations.

Additionally, for the GSM8k training set, which is relatively lower in difficulty, we randomly sampled
200 examples for step-level labeling using GPT-4 and manual annotations. The results show that the
F1 consistency between GPT-4 and manual labeling on GSM8k is 87.2%. These findings demonstrate
that the annotation using GPT-4 with manual evaluation exhibits high consistency on GSM8k and
MATH, thus ensuring the reliability of step-level annotation using GPT-4 for PRM training data.

2. Effectiveness of GPT-4 Annotations

The table 30 below and Table 4 in our paper (lines 382–395, 415–424) discussed the impact of
AI-labeled PRM data on model performance compared to manually labeled PRM800k and Math-
Shepherd data generated via MCTS Tree Search. The experimental results reveal that the PRM trained
on our fully AI-labeled data outperforms both the manually annotated PRM800k and Math-Shepherd.
For instance:

• When training WizardMath-Llama2-7B-SFT with PPO, GPT-4-labeled PRM data surpasses
PRM800k by 2.0% and Math-Shepherd by 1.4% on GSM8k, and by 1.2% and 1.7%,
respectively, on MATH.

• Similarly, with WizardMath-Mistral-7B-SFT trained using PPO, GPT-4-labeled PRM data
outperforms PRM800k by 1.8% and Math-Shepherd by 1.1% on GSM8k, and by 1.9% and
2.4%, respectively, on MATH.

Moreover, PRM outperforms ORM by 2%–3% on both GSM8k and MATH, achieving a notable
improvement of 4%–5% on WizardMath-SFT. These results highlight the effectiveness of GPT-
4-labeled data for PRM training. (It is worth noting that our evolved instructions lack correct
answers, limiting compatibility with the methods employed by Math-Shepherd which needs the
correct answers.)

The analysis above underscores both the reliability and effectiveness of using GPT-4 to annotate
step-level PRM training data. However, we acknowledge that GPT-4 annotations are not immune to
errors, and the possibility of incorrect step labels represents a limitation of this approach.

We have added the discussions about the Questions-5 in Appendix C.3.5 of our latest upload of
revised paper (pages 47-49, lines 2532–2590)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Table 30: The effect of using manually labeled and AI labeled PRM training data in PPO training
Models GSM8K MATH

Llama2-7B: WizardMath-SFT 77.4 35.6

+ ORM (ours) 79.1 36.8
+ PRM800k 79.7 38.7
+ Math-Shepherd 80.3 38.2
+ PRM (ours) 81.7 39.9

Mistral-7B: WizardMath-SFT 82.8 48.1

+ ORM (ours) 84.6 49.6
+ PRM800k 85.4 50.8
+ Math-Shepherd 86.1 50.3
+ PRM (ours) 87.2 52.7

C.4 REVIEWER-DHFE

Dear Reviewer dHFe,

We sincerely thank you for your insightful comments and the time you dedicated to reviewing
our work. Your expert feedback has been invaluable in guiding us towards refining our paper and
making it more comprehensive and competitive. We greatly appreciate your support and constructive
suggestions. In the following, we offer detailed responses to the Weaknesses and Questions raised
in your review, addressing each point in a systematic manner.

Furthermore, in Appendix C.4 of our latest upload of revised paper (pages 49–57, lines 2606–
3077), we also have added the discussions with the Reviewer-dHFe on the weaknesses and questions
of our paper to respond to the Reviewer-dHFe’s comments and to further improve the quality of our
research.

C.4.1 WEAKNESSES-1

PRM labels from GPT-4 – Not really sure what to think of this. On one hand, I feel such direct
distillation like this would limit the effectiveness of a method at larger data scales. On the other
hand, the results seem to be good (and also this is one key part that makes the process fully
AI-automated.)

Thank you very much for your constructive feedback and recognition of the effectiveness of our
approach. To explore the effectiveness and reliability of using GPT-4 to annotate PRM training
data at larger data scales, we conducted a Data Scaling law analysis of using GPT-4 to annotate
PRM training data. Additionally, we explore the feasibility of leveraging open-source models (i.e.,
Llama-3.1-405B-Instruct) as cost-effective alternatives to GPT-4 for annotation.

1. Effectiveness Analysis of the Scaling Law in GPT-4 Annotated PRM Training Data.

1.1 Impact of PRM Data Scaling when PRM as the Verifier for the Best of N Metric.

To assess the influence of data scale when PRM acts as the verifier, we randomly sampled subsets
of 50k, 150k, and 300k data from our total 450k PRM training dataset as shown in the following
table 31. Models were trained on these subsets, and we evaluated the Best of N metric on GSM8k
and MATH. Following the same settings as Table 5 in our paper, we sampled 256 answers for each
problem, scored them with the PRM Verifier, and selected the highest-scoring answer. Key results are
summarized as follows:

• On GSM8k, the Best of N performance of PRM significantly improved as the training data
size increased. For instance, PRM-450k achieved 95.2%, outperforming PRM-300k by 1.6%
and PRM-150k by 2.9%.

• On MATH, PRM-450k reached 64.7%, marking a 1.4% improvement over PRM-300k and a
3.2% improvement over PRM-150k.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Table 31: Impact of PRM Data Scaling when PRM as the Verifier for the Best of N Metric. The SFT
and Reward models are trained based on Mistral-7B. The verifier is based on 256 sample outputs.

Generators Verifiers PRM Data Size GSM8K MATH

WizardMath-SFT

PRM-50k 50k 89.6 58.9
PRM-150k 150k 92.3 61.5
PRM-300k 300k 93.6 63.3
PRM-450k 450k 95.2 64.7

1.2 Impact of PRM Data Scaling on PPO Training Performance.

In the following table 32, we further investigated the effect of PRM training data scaling during
the PPO training stage. Increasing the PRM data size yielded substantial performance gains for
WizardMath-RL on GSM8k and MATH:

• On GSM8k, PPO training with PRM-450k achieved 87.2%, surpassing PRM-300k by 1.4%
and PRM-50k by 3.7%.

• On MATH, PPO training with PRM-450k reached 52.7%, exceeding PRM-300k by 1.5%
and PRM-50k by 4.0%.

These findings confirm that scaling PRM training data consistently enhances PRM performance
as a Verifier on the Best of N metric and significantly improves PPO training outcomes. This
validates the effectiveness of GPT-4 annotated PRM training data in adhering to the Data Scaling
Law, demonstrating their robustness and utility even at larger data scales.

Table 32: The effect of PRM training data scaling during the PPO training stage. We use Mistral-7B-
v0.1 as the base model

Models GSM8K MATH

Mistral-7B: WizardMath-SFT 82.8 48.1

+ PRM-50k 83.5 48.7
+ PRM-150k 84.9 49.8
+ PRM-300k 85.8 51.2
+ PRM-450k 87.2 52.7

2. Reliability analysis of GPT-4 labeled PRM training data compared to manual labeling

To assess the reliability of GPT-4-generated annotations, in the early stages, we randomly selected
2k samples from the manually labeled PRM800k step-level training dataset and annotated them
using GPT-4. GPT-4 annotations were evaluated against human annotations using the F1 score as
a consistency metric. The results showed an F1 consistency of 78.1% between GPT-4 and human
annotations.

Additionally, for the GSM8k training set, which is relatively lower in difficulty, we randomly sampled
200 examples for step-level labeling using GPT-4 and manual annotations. The results show that the
F1 consistency between GPT-4 and manual labeling on GSM8k is 87.2%. These findings demonstrate
that the annotation using GPT-4 with manual evaluation exhibits high consistency on GSM8k and
MATH, thus ensuring the reliability of step-level annotation using GPT-4 for PRM training data.

3. Feasibility of using advanced open-source models instead of GPT-4 to label PRM training
data

We realize that there is a high cost of directly distilling GPT-4 in large-scale data scenarios, which is a
limitation of this study. Additionally, manual annotation demands mathematical expertise and entails
a challenging, time-intensive, and costly process. Moreover, our evolved instructions lack correct
answers, limiting compatibility with the methods employed by Math-Shepherd[1] which needs the
correct answers.

To mitigate these challenges, we also explore the feasibility of leveraging advanced open-source
models, such as Llama-3.1-405B-Instruct, instead of GPT-4 for PRM training data labeling, using the

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Table 33: The impact of using advanced open-source models(i.e., Llama-3.1-405B-Instruct) for PRM
training data labeling and we use Mistral-7B-v0.1 as the base model.

Models AI-Label GSM8k MATH

WizardMath-SFT - 82.8 48.1

+ PRM-Llama-3.1-405B-Instruct Llama-3.1-405B-Instruct 85.8 51.5
+ PRM-GPT-4 GPT-4 87.2 52.7

same label prompts and training settings. As shown in the table 33, WizardMath-PRM-Llama-3.1-
405B achieves 85.8% on the GSM8k, outperforming WizardMath-SFT by 3.0% and lagging behind
WizardMath-PRM-GPT-4 by 1.4%. On the MATH, it scores 51.5%, exceeding WizardMath-SFT by
3.4% with a 1.2% gap compared to WizardMath-PRM-GPT-4.

Balancing cost and accuracy, Llama-3.1-405B-Instruct demonstrates considerable potential as a
substitute for GPT-4 in PRM training data labeling.

In conclusion, GPT-4-based labeled PRM data also follows the data scaling law and offers an effective
solution for larger data scales. For scenarios requiring a balance between cost and accuracy, advanced
open-source models like Llama-3.1-405B-Instruct provide a viable alternative. We hope these
analyses above can address your concerns.

[1]. Wang P, Li L, Shao Z, et al. Math-shepherd: Verify and reinforce llms step-by-step without
human annotations[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2024: 9426-9439.

C.4.2 WEAKNESSES-2

Unclear presentation – The paper assumes that readers are already previously familiar with
Evol-Instruct, as it devotes very little time to talking about it in the intro or related work.
The narrative is messy – there are certain concepts (e.g. "grade school" and "high school"
questions) that were introduced once out of nowhere then never mentioned again. There are a
number of rows on Table 1 that were never discussed in the main text. Figure 1 is difficult to
understand. There are also several typos and poorly-worded sentences.

Q1: Unclear presentation – The paper assumes that readers are already previously familiar
with Evol-Instruct, as it devotes very little time to talking about it in the intro or related work.

Thank you for highlighting the valuable questions and we sincerely apologize for any inconvenience
caused. We have added an introduction to Evol-Instruct in our latest upload of revised paper (Section1
<INTRODUCTION>, Lines 50–82). A more comprehensive description can be found in Appendix
C.4.2, with the relevant details outlined below. In future camera-ready version of our paper, we
promise to integrate this section in the "Introduction" or "Related Work" sections and provide a more
comprehensive explanation of Evol-Instruct. The relevant detailed descriptions as follows:

Evol-Instruct proposed by WizardLM[1] is an innovative framework designed to automate the
generation of diverse and complex open-domain instructions using large language models (LLMs).
Instead of relying on human-crafted instruction datasets, it leverages the generative capabilities of
LLMs to iteratively evolve an initial set of instructions through two complementary strategies: In-
depth Evolving and In-breadth Evolving. Starting from an initial dataset D(0) = {(I(0)k , R

(0)
k)}Nk=1,

it iteratively evolves instructions over M turns, producing datasets [D(1), . . . , D(M)].

Two evolution strategies are employed: In-depth Evolving incrementally enhances instruction com-
plexity by introducing additional constraints, deepening, concretizing, increasing reasoning steps, and
complicating input, while maintaining logical coherence and ensuring instructions remain solvable
by humans, I(t+1)

k = In-Depth Operation(I(t)k); In-breadth Evolving focuses on improving topic
diversity and dataset richness by creating entirely new instructions, expanding the coverage of skills
and scenarios, particularly in underrepresented areas, I(t+1)

k = In-Breadth Operation(I(t)k).

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

To ensure dataset quality, failed evolutionary instructions are filtered. Evol-Instruct supports scalable,
high-quality dataset creation, significantly enhancing LLM performance in reasoning and open-
domain tasks. Notably, WizardCoder[2] incorporates instruction evolution specifically tailored to
coding tasks, leading to substantial improvements in code generation capabilities.

[1]. Xu C, Sun Q, Zheng K, et al. WizardLM: Empowering large pre-trained language models to
follow complex instructions[C]//The Twelfth International Conference on Learning Representations.
2024.

[2]. Luo Z, Xu C, Zhao P, et al. Wizardcoder: Empowering code large language models with
evol-instruct[J]. arXiv preprint arXiv:2306.08568, 2023.

Q2: The narrative is messy – there are certain concepts (e.g. "grade school" and "high school"
questions) that were introduced once out of nowhere then never mentioned again.

We greatly appreciate you highlighting this writing issue and sincerely apologize for any inconve-
nience it may have caused. In our paper, we primarily evaluate the model’s mathematical performance
on two popular benchmarks: GSM8k and MATH. GSM8k represents problems at the grade school
level, while MATH focuses on high school competition problems, such as AMC 10, AMC 12, and
AIME. In Appendix C.4.2, we have included a detailed introduction to the GSM8k and MATH
datasets. Additionally, in our latest upload of revised paper, we have incorporated descriptions of
"grade school" and "high school," as reflected in lines 90-91, 102-103, 114, 240, 340, and 537.

We also include a detailed description of the evaluation benchmark as follows:

We mainly evaluate WizardMath on two benchmarks (GSM8k and MATH). The GSM8k dataset
contains approximately 7500 training data and 1319 test data, mainly on grade school level math
problems, each of which consists of basic arithmetic operations (addition, subtraction, multiplication,
and division), and generally requires 2 to 8 steps to solve. The MATH dataset collects math problems
from prestigious math competitions such as AMC 10, AMC 12, and AIME. It contains 7500 training
data and 5,000 challenging test data in seven academic areas: Prealgebra, Algebra, Number Theory,
Counting and Probability, Geometry, Intermediate Algebra, and Precalculus. Furthermore, these
problems are divided into five levels of difficulty, with ‘1’ denoting the relatively lower difficulty
level and ‘5’ indicating the highest level.

Q3: There are a number of rows on Table 1 that were never discussed in the main text.

Thank you for pointing out this valuable questions. Below, we present a detailed analysis of the
performance improvements across various model scales (0.1B to 70B) with different base models on
GSM8k and MATH benchmarks:

(1.) Using GPT-2 Series Models as the Base Model:

• GPT-2-Small-0.1B: WizardMath-GPT-2-Small improves by 19.5% (26.4 vs. 6.9) on GSM8k
and 6.9% (12.3 vs. 5.4) on MATH.

• GPT-2-Medium-0.3B: WizardMath-GPT-2-Medium enhances by 27.5% (38.7 vs. 11.2) on
GSM8k and by 9.4% (15.6 vs. 6.2) on MATH, outperforming Llama2-13B.

• GPT-2-Large-0.7B: WizardMath-GPT-2-Large increases by 36.5% (50.1 vs. 13.6) on
GSM8k and by 14.8% (21.2 vs. 6.4) on MATH, surpassing Mistral-7B-v0.1.

• GPT-2-XL-1.5B: WizardMath-GPT-2-XL shows a 43.5% (58.9 vs. 15.4) gain on GSM8k
and 18.5% (25.4 vs. 6.9) on MATH, exceeding MAmmoTH-CoT-Llama2-13B.

These results demonstrate that the RLEIF method significantly enhances the mathematical reasoning
capabilities of GPT-2 series base models.

(2.) Using Llama Series Models as the Base Model:

• Llama-3.2-1B: WizardMath-Llama-3.2-1B improves by 18.9% (63.3 vs. 44.4) on GSM8k
and by 2.9% (33.5 vs. 30.6) on MATH compared to Llama-3.2-1B-Instruct.

• Llama-3.2-3B: WizardMath-Llama-3.2-3B enhances GSM8k by 7.8% (85.5 vs. 77.7) and
MATH by 1.9% (49.9 vs. 48.0).

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

• Llama-2-7B: WizardMath-Llama-2-7B achieves a 69.5% improvement on GSM8k (84.1 vs.
14.6) and 41.0% on MATH (43.5 vs. 2.5), surpassing Xwin-Math-Llama-2-7B, MathScale-
Llama-2-7B, and MetaMath-Llama-2-7B.

• Llama-3-8B: WizardMath-Llama-3-8B attains 90.3% on GSM8k (1.7% higher than Ji-
uzhang3.0) and 58.8% on MATH (7.8% higher than Jiuzhang3.0), also outperforming
Baichuan-3, GLM-4, Gemini-Pro, Claude2, and GPT-3.5-Turbo, and is comparable to
GPT-4-0314.

• Llama-2-13B: WizardMath-Llama-2-13B improves GSM8k by 61.0% (89.7 vs. 28.7) and
MATH by 46.7% (50.6 vs. 3.9), outperforming SOTA models such as Xwin-Math and
KPMath-Plus.

• Llama-2-70B: WizardMath-Llama-2-70B enhances GSM8k by 36.0% (92.8 vs. 56.8) and
MATH by 45.1% (58.6 vs. 13.5).

(3.) Using Mistral Series Models as the Base Model:

• Mistral-7B-v0.1: WizardMath-Mistral-7B-v0.1 improves GSM8k by 47.8% (90.7 vs. 42.9)
and MATH by 42.5% (55.4 vs. 12.9).

• Mistral-7B-v0.3: WizardMath-Mistral-7B-v0.3 achieves 90.4% on GSM8k and 55.6% on
MATH, comparable to WizardMath-Mistral-7B-v0.1.

• Mathstral-7B-v0.1: WizardMath-Mathstral-7B-v0.1 attains 93.8% on GSM8k and 70.9%
on MATH, comparable to GPT-4-Turbo-0125 and Claude 3.5 Sonnet, and superior to GPT-4
(original version).

(4.) Using DeepSeekMath as the Base Model: WizardMath-DeepSeek improves GSM8k by 26.8%
and MATH by 28.4%, outperforming DART-Math and DeepSeekMath-RL.

(5.) Using Qwen2.5 Series Models as the Base Model:

• Qwen2.5-Math-2.5B: WizardMath-Qwen2.5-Math-2.5B achieves 86.7% on GSM8k and
68.6% on MATH.

• Qwen2.5-Math-7B: WizardMath-Qwen2.5-Math-7B attains 93.9% on GSM8k and 77.8%
on MATH.

• Qwen2.5-7B: WizardMath-Qwen2.5-7B achieves 94.0% on GSM8k and 74.5% on MATH,
performing comparably to GPT-4o-2024-0516 and Claude 3.5 Sonnet.

The proposed RLEIF method significantly enhances the mathematical reasoning performance across
various scales ranging from 0.1B to 70B with different base models, consistently outperforming
all state-of-the-art open-source models. Notably, WizardMath-Mathstral-7B-v0.1 and WizardMath-
Qwen2.5-Math-7B surpass some proprietary models such as GPT-4 (original version), Gemini-Pro,
and GPT-3.5-Turbo, and perform comparably to GPT-4-Turbo-0125, GPT-4o-2024-0516, and Claude
3.5 Sonnet. These findings further underscore the effectiveness, robustness, and scalability of the
proposed RLEIF method in our study.

In future camera-ready versions of our paper, we promise to incorporate the results presented above
into Section 4.3 <Main Results> and Appendix C.4.2, to provide a more comprehensive and in-depth
analysis of the effectiveness of the proposed RLEIF method in enhancing the model’s mathematical
reasoning capabilities across a range of model scales (0.1B to 70B) with various base models.

Q4: Figure 1 is difficult to understand.

Thank you for highlighting these important questions and for pointing out any confusion caused by
Figure 1. We sincerely apologize for any lack of clarity and greatly appreciate your valuable feedback.
In future camera-ready versions of our paper, we are committed to providing a more comprehensive
explanation of the diagram. Furthermore, we offer a detailed clarification of our method flow below,
including the significance of colors and shapes as well as the direction of the arrows in Figure 1, to
facilitate clearer understanding.

In Figure 1, the various colored squares represent specific elements: blue squares denote original
instructions, orange squares indicate evolved instructions, cyan squares signify model-generated

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

solution processes, and grey squares correspond to a series of training-related operations such as
supervised fine-tuning (SFT), reward modeling, and reinforcement learning (RL). To enhance the
mathematical reasoning capabilities of large language models, we propose the RLEIF method,
which integrates instruction evolution with reinforcement learning. This method consists of three
primary steps:

1. Instruction Evolution and SFT
In the first step, we apply upward and downward instruction evolution on the GSM8k and
MATH datasets, generating evolved instructions for the SFT. On the leftmost side of Figure
1, the three blue arrows, from top to bottom, represent:

(a) the adoption of the instruction evolution technique,
(b) the generation of evolved instruction data, and
(c) its application to SFT training.

2. Reward Model Training
The second step involves two reward models: the Instruction Quality Scoring Reward
Model (IRM) and the Process-Supervised Reward Model (PRM), depicted in the central
section of Figure 1.

• IRM: We employ upward and downward evolution on a seed instruction, yielding
five instructions (original + evolved). These instructions are ranked by quality (e.g.,
C > A = E > B > D) using GPT-4. Based on the rankings, we train the Instruction
Ranking Model (IRM) to assess instruction quality. In Figure 1, this process is shown
in the left-central segment: “A” represents the original instruction, while “B,” “C,” “D,”
and “E” denote the evolved instructions. The first blue arrow illustrates the ranking
process via GPT-4, the second arrow shows the ranking outcomes, and the third arrow
highlights the use of this ranked data to train the IRM.

• PRM: In the middle-right section of Figure 1, the process for training the PRM is
depicted. The SFT model generates step-by-step solutions from the given instructions,
which are then evaluated and labeled by GPT-4. This labeled data is subsequently used
to train the PRM.

3. Reinforcement Learning with PPO
In the final step, we integrate the IRM and PRM within a Proximal Policy Optimization
(PPO)-based reinforcement learning framework. As depicted in the far-right section of
Figure 1, the process is as follows:

(a) The first blue arrow represents instruction scoring by the IRM.
(b) The second blue arrow shows PPO initialization and the start of reinforcement.
(c) The third blue arrow illustrates the policy model generating responses based on instruc-

tions.
(d) The fourth blue arrow shows the scoring of each response step using the PRM.
(e) Arrows five through eight depict the combination of IRM and PRM scores to calculate

the final reward score.
(f) The ninth blue arrow highlights the use of the reward score for the PPO training.

By integrating instruction evolution and reward-based optimization, the RLEIF method significantly
enhances the reasoning capabilities of large language models. We hope this explanation resolves some
ambiguities and provides a clearer understanding of Figure 1. Thank you again for your valuable
suggestions, which will guide us in improving the presentation and clarity of our work.

Q5: There are also several typos and poorly-worded sentences.

We sincerely appreciate your thorough review and the time you dedicated to identifying these typos
and poorly-worded sentences in our paper. Your attention to detail has been very invaluable. We have
corrected all the issues you highlighted in our latest upload of revised paper.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

C.4.3 WEAKNESSES-3

Somewhat marginal contribution – Evol-Instruct previously existed. PRM previously existed.
This paper basically took Evol-Instruct and PRM and used them to train a model. To nitpick a
bit, I think a more comprehensive paper would cover more domains such as code.

Q1: Somewhat marginal contribution – Evol-Instruct previously existed. PRM previously
existed. This paper basically took Evol-Instruct and PRM and used them to train a model

We sincerely appreciate your valuable feedback. We highlight the key contributions of our paper as
follows:

1. Unlike WizardLM/WizardCoder, which primarily focus on increasing instruction difficulty,
we are the first to propose the novel concept of downward evolution, a major distinction in
instruction evolution.

In Table 6 (lines 397–413) of our paper, we provide a detailed analysis of the effects of downward
evolution. Specifically, two rounds of downward evolution led to a remarkable improvement in
GSM8k performance by 14.8% (74.5 vs. 59.7) and in MATH performance by 19.6% (34.7 vs. 15.1)
compared to the original, significantly enhancing the model’s mathematical reasoning capabilities.

Furthermore, our Math Evol-Instruct method outperforms the general evol-instruct approach em-
ployed by WizardLM, as elaborated in Appendix A.5 (lines 1608–1629).

This demonstrates that Math Evol-Instruct is instrumental in significantly boosting the model’s
mathematical reasoning ability, as you kindly acknowledged in Strength 1 above.

2. In reinforcement learning (RL) training, we firstly propose the instruction quality scoring
reward model (IRM) combined with the process supervision reward model (PRM) further
enhancing WizardMath mathematical reasoning ability. As demonstrated in Table 3 (lines
325–336, lines 370-380) of our paper, this approach achieves a remarkable 5%–8% improvement in
GSM8k and MATH performance over the SFT backbone across models of various sizes, leveraging
PRM and IRM for the PPO training.

3. We first propose to use AI to annotate the step-level PRM training data. Additionally,
the training datasets for SFT, PRM, and IRM are fully synthesized using AI systems. This fully
AI-automated data generation pipeline ensures scalability, as highlighted in Strength 3 of your
feedback.

4. WizardMath demonstrates outstanding performance across a wide range of model scales,
from 100M to 1B and 70B parameters, on benchmarks such as GSM8k, MATH, and out-of-
distribution (OOD) tasks like MWPBench. It surpasses all existing open-source state-of-the-art
models, showcasing the effectiveness and robustness of the RLEIF approach proposed in our study,
as you recognized in Strength 1 above.

Q2: I think a more comprehensive paper would cover more domains such as code.

We sincerely appreciate your insightful suggestions. To explore the effectiveness of our proposed
RLEIF method in more other domains such as Code, we replicated the code evol-instruct specifically
proposed by WizardCoder for code-related tasks during the SFT stage, and further optimized the
PRM step-level label prompts to enhance its compatibility with GPT-4 for annotating PRM training
data. Additionally, we compared the performance of ORM and PRM during PPO training. We
utilized CodeLlama-Python 7B and 34B as the base models

As shown in the table 34 below, the results demonstrate that for both the CodeLlama-Python 7B and
34B models, Our-Coder-SFT achieved comparable performance to WizardCoder on the HumanEval
and MBPP benchmarks. During the PPO training phase, when using CodeLlama-Python 7B as the
base model, Our-Coder-RL-PRM showed a 4%-5% improvement on HumanEval and MBPP over
Our-Coder-SFT, and significantly outperformed the 2%-3% improvement achieved by Our-Coder-
RL-ORM. Similarly, with CodeLlama-Python 34B as the base model, Our-Coder-RL-PRM shows
approximately a 4% improvement over Our-Coder-SFT on HumanEval and MBPP, outperforming
the 2%-3% improvement of Our-Coder-RL-ORM. These findings underscore the effectiveness of
PRM in PPO training for code-related tasks.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

In future camera-ready version of our paper, we commit to conducting comprehensive compar-
isons across more code benchmarks and a broader range of baseline models to further validate the
effectiveness of the proposed RLEIF approach.

Table 34: Explore the effectiveness of the proposed RLEIF pipeline in more other domains such as
Code

Models Base Params HumanEval MBPP

CodeLlama-Python-7B

CodeLlama-Python - 7B 37.8 57.6
WizardCoder CodeLlama-Python 7B 48.2 56.6
Our-Coder-SFT CodeLlama-Python 7B 49.0 56.2
Our-Coder-RL-ORM CodeLlama-Python 7B 50.5 58.1
Our-Coder-RL-PRM CodeLlama-Python 7B 53.5 60.4

CodeLlama-Python-34B

CodeLlama-Python - 34B 51.8 67.2
WizardCoder CodeLlama-Python 34B 73.2 73.2
Our-Coder-SFT CodeLlama-Python 34B 72.7 72.3
Our-Coder-RL-ORM CodeLlama-Python 34B 74.5 73.7
Our-Coder-RL-PRM CodeLlama-Python 34B 76.8 76.2

C.4.4 QUESTIONS-1

I find Figure 1 confusing. Why is there a pyramid in the top left and why is it pointing to a pie
chart, cube, etc? What are these supposed to be showing? I feel like I am not understanding
much from this figure.

We sincerely apologize for any confusion or inconvenience caused by the current presentation of
Figure 1. The pyramid in the top-left corner represents the original seed instructions, while the
pie chart, cube, and other icons symbolize the evolved instructions generated through the Math
Evol-Instruct method, encompassing both upward and downward evolution. A detailed explanation
of the training process depicted in Figure 1 was provided in our response to Weaknesses-2-Q4 above,
which we hope will help clarify any uncertainties. In the future camera-ready version of our paper,
we will provide a more detailed explanation of Figure 1 to ensure its clarity and comprehensibility.
We greatly appreciate your understanding and patience.

C.4.5 QUESTIONS-2

I feel like there’s a few missing entries in Table 1. For example, Table 1 shows the results for
WizardMath-Mathstral and WizardMath-Qwen2.5, but the base scores of these base models are not
shown in the table, so the readers don’t really know how much improvement there is.

We sincerely appreciate your constructive feedback. The table below 35 supplements the performance
comparison of Mathstral-7B-v0.1-Base, Qwen2.5-7B-Base, Qwen2.5-Math-1.5B-Base, and Qwen2.5-
Math-7B-Base on the GSM8k and MATH datasets.

The results demonstrate that using Mathstral-7B-v0.1-Base as the base model, WizardMath-Mathstral
improves performance by 16.7% on GSM8k (93.8 vs. 77.1) and 14.5% on MATH (70.9 vs. 56.6).

When employing Qwen2.5-Math-1.5B-Base as the base model, WizardMath-Qwen2.5-Math-1.5B
achieves 9.9% improvement on GSM8k (86.7 vs. 76.8) and 18.8% on MATH (68.6 vs. 49.8).

Similarly, with Qwen2.5-Math-7B-Base, WizardMath-Qwen2.5-Math-7B shows a 2.3% increase on
GSM8k (93.9 vs. 91.6) and 22.4% on MATH (77.8 vs. 55.4).

Finally, using Qwen2.5-7B-Base as the base model, WizardMath-Qwen2.5-7B improves by 8.6% on
GSM8k (94.0 vs. 85.4) and 24.7% on MATH (74.5 vs. 49.8).

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Notably, both Mathstral-7B-v0.1-Base and Qwen2.5-Math-Base, pre-trained on extensive mathemati-
cal corpora, exhibit robust mathematical reasoning capabilities and deliver strong performance on
GSM8k and MATH datasets. However, our proposed RLEIF method achieves substantial perfor-
mance enhancements even with these highly math-optimized models. Specifically, on the MATH,
RLEIF delivers a performance boost of 15% 25%, while on GSM8k, the improvement ranges from
8% 16% (with the exception of Qwen2.5-Math-7B-Base, which achieves a high baseline of 91.6
on GSM8k but still benefits from a 2.3% enhancement). These results underscore the continuous
improvement enabled by our RLEIF method on models pre-trained with specialized mathematical
corpora, further validating its effectiveness and scalability.

Table 35: The performance of WizardMath on the GSM8k and MATH based on the Mathstral-7B-
v0.1-Base, Qwen2.5-7B-Base, Qwen2.5-Math-1.5B-Base, and Qwen2.5-Math-7B-Base

Models Base Params GSM8k MATH

Mathstral-v0.1-Base - 7B 77.1 56.6
WizardMath-Mathstral Mathstral-v0.1-Base 7B 93.8 70.9

Qwen2.5-Math-Base - 1.5B 76.8 49.8
WizardMath-Qwen2.5-Math Qwen2.5-Math-Base 1.5B 86.7 68.6

Qwen2.5-Math-Base - 7B 91.6 55.4
WizardMath-Qwen2.5-Math Qwen2.5-Math-Base 7B 93.9 77.8

Qwen2.5-Base - 7B 85.4 49.8
WizardMath-Qwen2.5 Qwen2.5-Base 7B 94.0 74.5

C.4.6 TYPOS:

• L45: struggles –> struggle
• L80: "in recent"
• L91: should say what is IRM first before using the acronym.
• L91: We –> capitalization
• L93: later –> latter
• L105: Jiang et al mentioned without a model (should be mistral?)
• L107: as following –> as follows
• L140,143: spacing
• L145: should be Reinforcement Learning for Large Language Models instead of the other

way around?
• L487: "reasoing"

We sincerely appreciate your effort in identifying these typos and poorly-worded sentences in our
paper, as well as your thorough and thoughtful review. All of these "Typos" have been carefully
addressed and corrected in our latest upload of revised paper.

57

	Introduction
	Related Work
	Method
	Math Evol-Instruct
	Reward Models
	Reinforcement Learning with IRM and PRM
	PRM for Verification

	Experiment
	Baselines
	Experimental Setup
	Main Results
	ANALYSIS
	More discussion.
	Case Study

	Conclusion
	Appendix
	Math Evolution Prompts
	IRM Prompt
	PRM Prompt
	The Effects of Math Evol-Instruct in the SFT and RL stages.
	The difference between Math Evol-Instruct and WizardLM Evol-Instruct.
	Difference between current version and previous versions.
	Explore GPT-4 per step Accuracy
	The impact of the different round for upward and downward evol-instruct
	Explore the impact of the scoring aggregation strategy at each step of the PRM for the RL policy training
	Explore the performance on out of domain (i.e,MATH) when training only GSM8k, and vice versa.
	Data Contamination Check
	Similarity Checking And Data Filtering
	Detail Works

	Related Work
	WizardMath Rebuttal
	Reviewer-8CQg
	Weaknesses-1
	Weaknesses-1.1
	Weaknesses-1.2
	Weaknesses-1.3
	Weaknesses-1.4

	Recommend
	Questions
	Questions-1
	Questions-2
	Questions-3
	Questions-4
	Questions-5

	Reviewer-dHFe
	Weaknesses-1
	Weaknesses-2
	Weaknesses-3
	Questions-1
	Questions-2
	Typos:

