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ABSTRACT

Large language models (LLMs), such as GPT-4, have shown remarkable perfor-
mance in natural language processing (NLP) tasks, including challenging mathe-
matical reasoning. However, most existing open-source models are only pre-trained
on large-scale internet data and without math-related optimization. In this paper,
we present WizardMath, which enhances the mathematical CoT reasoning abilities
of LLMs without using external python tools, by applying our proposed Reinforce-
ment Learning from Evol-Instruct Feedback (RLEIF) method to the domain of
math. Through extensive experiments on two mathematical reasoning benchmarks,
namely GSM8k and MATH, we reveal the extraordinary capabilities of our model.
Remarkably, WizardMath-Mistral 7B surpasses top-tier open-source LLMs by a
substantial margin with higher data efficiency. Furthermore, WizardMath 70B
even outperforms GPT-3.5-Turbo, Claude 2, Gemini Pro and GPT-4-early-version.
Additionally, our preliminary exploration highlights the pivotal role of instruction
evolution and process supervision in achieving exceptional math performance.

1 INTRODUCTION

Recently, Large-scale language models (LLMs) have garnered significant attention and become
the go-to approach for numerous natural language processing (NLP) tasks, including open domain
conversation (Ouyang et al., 2022; OpenAI, 2023; Touvron et al., 2023a), coding (Chen et al., 2021;
Wang et al., 2021; Li et al., 2023b) and math (Taylor et al., 2022; Lewkowycz et al., 2022; Shao
et al., 2024; Yang et al., 2024). A conspicuous example is ChatGPT1 , developed by OpenAI. This
model uses extensive pre-training on large-scale internet data and further fine-tuning with specific
instruction data and methods. As a result, it achieves state-of-the-art zero-shot performance on
various benchmarks. Subsequently, Anthropic, Google, and Meta also launched their competitive
products one after another. Notably, Meta’s series of Llama (Touvron et al., 2023a;b; Dubey et al.,
2024) have sparked an open-source revolution and quickly narrowed the gap with those closed-source
LLMs. This trend also gradually stimulates the releases of Mistral (Jiang et al., 2023), Alpaca (Taori
et al., 2023), Vicuna (Chiang et al., 2023), and WizardLM (Xu et al., 2023), etc. However, these open
models still struggle with the scenarios which require complex multi-step quantitative reasoning,
such as solving mathematical and science challenges (Ahn et al., 2024; Long et al., 2024).

Chain-of-thought (CoT) (Wei et al., 2022) proposes to design better prompts to generate step-by-
step solutions, which can lead to improved performance. Self-Consistency (Wang et al., 2022)
also achieves remarkable performance on many reasoning benchmarks, which generates several
possible answers from the model and selects the correct one based on majority vote (Fu et al., 2022).
Llemma (Azerbayev et al., 2023) and MathPile (Wang et al., 2023f) continue pretraining LLMs with
math corpus to improve domain capacity. MetaMath (Yu et al., 2023b) and Xwin-Math (Li et al.,
2024a) bootstraps mathematical questions by augmenting the question from multiple perspectives.
MAmmoTH (Yue et al., 2023) and TORA (Gou et al., 2023) presents a unique hybrid of CoT and
program-of-thought (PoT) to ensure extensive coverage of diverse fields in math. Recently, Evol-
Instruct is an effective method for large-scale data synthesis using LLMs. It has been widely verified
and proven to be effective in enhancing the model’s instruction following capability. It employs

1 https://openai.com/
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Figure 1: A diagram illustrating the three steps of our Reinforcement Learning from Evol-Instruct
Feedback (RLEIF)

In-depth Evolving and In-breadth Evolving to automate the generation of diverse and complex
open-domain instructions using LLMs, instead of relying on human-crafted instruction datasets. In-
depth Evolving incrementally enhances instruction complexity by introducing additional constraints,
deepening, concretizing, increasing reasoning steps, and complicating input. In-breadth Evolving
focuses on improving topic diversity and dataset richness by creating entirely new instructions. To
enhance the correctness of each step in the model’s generation process, (Wang et al., 2024a; Chen
et al., 2024a; Lightman et al., 2023) finds that process supervision with reinforcement learning
significantly outperforms outcome supervision for solving challenging MATH problems.

Inspired by Evol-Instruct and Process-supervised Reinforcement Learning, this work aims to enhance
the mathematical reasoning abilities of the LLMs. As shown in the Figure 1, we propose a new method
named Reinforcement Learning from Evol-Instruct Feedback (RLEIF), which could firstly generate
diverse math instructions data by brand-new Math Evol-Instruct, which includes two downward
evolution and upward evolution progress to produce the grade school math and challenging high
school math respectively. However different from WizardLM (Xu et al., 2023) and WizardCoder (Luo
et al., 2023), which mainly focus on the SFT stage and are susceptible to learning hallucinated
information from the teacher model, we innovatively introduce PRM to address the False-Positive
issue in the problem-solving process. Moreover, to prevent instruction evolution from spiraling out
of control, we incorporate an instruction reward model (IRM) as a mitigating strategy. Thus, we
train an instruction reward model (IRM) and a process-supervised reward model (PRM) (Lightman
et al., 2023; Uesato et al., 2022; Wang et al., 2024a; Chen et al., 2024a), the former indicates the
quality of the evolved instruction and the latter offers feedback for each reasoning step in the solution.
Initially, we finetune LLMs with the evolved math data. Immediately, we leverage GPT-4 to produce
the ranking order of instructions, and the correctness of each reasoning step, then optimize the LLMs
to obtain the reward models. Finally, we implement the step-by-step PPO to train our WizardMath.

We perform experiments on two widely used mathematical reasoning benchmarks, namely
GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) covering math problems from grade
to high school levels, the results show that our WizardMath outperforms all other open-source LLMs
at the same model size, achieving state-of-the-art performance. For instance, WizardMath-70B signif-
icantly outperforms MetaMath-70B by a significant margin on GSM8k (92.8 vs. 82.3) and on MATH
(58.6 vs. 26.6). Specifically, WizardMath-Mistral-7B observed a substantial improvement in pass@1
with an increase of +12.8 (90.7. vs. 77.9) on GSM8k, and +26.8 (55.4 vs. 28.6) on MATH compared
to MetaMath-Mistral-7B. Notably, our 70B model even also significantly surpasses those powerful
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proprietary LLMs, such as GPT-3.5-Turbo, Claude 2 (Bai et al., 2022), Mistral Medium (Jiang et al.,
2024a), Gemini-Pro (Team, 2023), PaLM-2 (Anil et al., 2023) and GPT-4-early-version.

The main contributions of this work are as follows:

• We introduce WizardMath model, which enhances the LLMs’ mathematical reasoning
abilities across a range of problem difficulties, from grade to high school levels.

• We propose a new fully AI-powered automatic reinforcement learning method, Reinforce-
ment Learning from Evol-Instruct Feedback (RLEIF), alongside Math Evol-Instruct and
Process Supervision, for improving reasoning performance.

• WizardMath surpasses top-tier open-source LLMs by a substantial margin with higher data
efficiency and also significantly outperforms various proprietary LLMs on both GSM8k and
MATH, demonstrate the effectiveness of our RLEIF.

2 RELATED WORK

Large Language Models. LLMs have significantly advanced Natural Language Processing, with
models like OpenAI’s GPT Series (Brown et al., 2020a; OpenAI, 2023), Anthropic’s Claude (Bai
et al., 2022), Google’s PaLM (Chowdhery et al., 2022; Anil et al., 2023), Gemini (Team, 2023),
and Gemma (Team et al., 2024) featuring billions of parameters and trained on massive textual
datasets. The AI field has also seen a rise in open-source LLMs such as Mistral (Jiang et al., 2023),
Llama Series (Touvron et al., 2023a;b; Dubey et al., 2024; Taylor et al., 2022), DeepSeek (Bi et al.,
2024; Shao et al., 2024), Qwen (Bai et al., 2023; Yang et al., 2024) etc. Notably, Llama serves as a
foundational model for supervised fine-tuning, leading to the development of models like Alpaca,
Vicuna (Taori et al., 2023; Chiang et al., 2023).

Large Language Models For Mathematical reasoning. NLP models face challenges with complex
reasoning, including mathematical (Long et al., 2024; Zhang et al., 2024c; Xia et al., 2024), common-
sense (Talmor et al., 2019). Significant research focuses on Mathematical Word Problems (MWP),
which demand understanding of mathematical concepts and multi-step reasoning (Zheng et al., 2023;
Zhao et al., 2023; Yuan et al., 2023a). Models are tested on various MWP benchmarks (Roy &
Roth, 2015; Hendrycks et al., 2021). Techniques like Chain-of-Thought Prompting (Wei et al., 2022),
Least-to-Most prompting (Zhou et al., 2022), and Complex CoT (Fu et al., 2022) enhance reasoning
by introducing multiple steps and breaking problems into sub-problems. There are some models
aimed at improving math CoT reasoning skills such as MetaMath (Yu et al., 2023b), MathScale (Tang
et al., 2024), Xwin-Math (Li et al., 2024a), DART-Math (Tong et al., 2024) etc. Some models
enhance mathematical reasoning by integrating python tools, such as TORA (Gou et al., 2023),
MAmmoTH (Yue et al., 2023), Openmathinstruct (Toshniwal et al., 2024), NuminaMath (Li et al.,
2024c) etc. In our work, we mainly improve the CoT reasoning ability of mathematics without using
external Python tools.

Reinforcement Learning for Large Language Models. State-of-the-art models often display logical
errors and illusions, particularly in domains requiring complex, multi-step reasoning, leading to
significant challenges (Bubeck et al., 2023; Maynez et al., 2020). Strategies such as training reward
models help discriminate between desirable and undesirable outputs (Lightman et al., 2023; Wu
et al., 2023b; Chen et al., 2024b). Historically, outcome-based approaches focused on algorithmic
tasks (Li et al., 2016; Cai et al., 2017; Yu et al., 2023a), while recent research demonstrates the
efficacy of reward models or validators in enhancing model performance (Cobbe et al., 2021; Wang
et al., 2023c;d; Li et al., 2022a). Reward models have also been incorporated into reinforcement
learning pipelines and employed in rejection sampling to align Large Language Models (LLMs)
with human preferences (Shen et al., 2021; Bai et al., 2022; Yuan et al., 2023c; Dong et al., 2023;
Song et al., 2023; Touvron et al., 2023b; Rafailov et al., 2024; Meng et al., 2024). A contrast is
drawn between outcome-supervised and process-supervised reward models, with the latter being
more effective at addressing discrepancies arising from incorrect reasoning paths leading to correct
outcomes (Uesato et al., 2022; Zelikman et al., 2022; Creswell et al., 2022). Recent advances have
promoted process-based supervision through manual annotation, significantly benefiting LLMs over
outcome-based approaches (Lightman et al., 2023; Wang et al., 2024a; Sun et al., 2024; Chen et al.,
2024a; Wang et al., 2024b; Zhang et al., 2024a). In this paper, we leverage AI models like ChatGPT
to automatically offer process annotation to improve the efficiency of this research line.
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3 METHOD

In this section, we elaborate on the details of our WizardMath. Following WizardLM and PRMs (Light-
man et al., 2023), we propose Reinforcement Learning from Evol-Instruct Feedback (RLEIF) method,
which integrates the math Evol-Instruct and reinforced instruction and process supervision to evolve
GSM8k and MATH, and fine-tune the pre-trained language models with the evolved data and reward
models.

3.1 MATH EVOL-INSTRUCT

Motivated by the Evol-Instruct (Xu et al., 2023) method proposed by WiazrdLM and its effective
application on WizardCoder (Luo et al., 2023), this work attempts to make math instructions with
various complexities and diversity to enhance the pre-trained LLMs. Specifically, we adapt Evol-
Instruct to a new paradigm including two evolution lines:

1) Downward evolution: It enhances instructions by making the questions easier. For example i):
revising high difficulty questions to lower difficulty, or ii) producing a new and easier question with
another different topic.

2) Upward evolution: Derived from original Evol-Instruct method, it deepens and generates new and
harder questions by i) adding more constraints, ii) concretizing, iii) increasing reasoning.

The complete prompts of above evolution are shown in Appendix A.1. For each instruction, we use
GPT-4 to evolve 5 rounds (2 downward and 3 upward) of new instructions progressively, each new
one is generated by the previous round of evolution.

3.2 REWARD MODELS

Considering the necessity of quality control for evolved instructions and inspired by PRMs (Lightman
et al., 2023), we train two reward models to predict the quality of the instructions and the correctness
of each step in the answer respectively:

Instruction Reward Model (IRM) This model aims to judge the quality of the evolved instructions
on two aspects: i) Difficulty, and ii) Definition. To produce the ranking list training data of IRM, we
leverage GPT-4 to rank the quality between those evolved instructions and original instruction. The
one with high difficulty and clear definition will deserve a higher ranking. The detailed prompt of
above ranking process is shown in the Appendix A.2.

Specifically, given an math instructions q, IRM (Q → R) assigns a score to q to indicate its quality.
We optimize ORM via the following pairwise ranking loss:

LIRM = − log σ(rqj − rqk −m) (1)

where rqj is the reward of chosen instruction and rqk is the reward of rejected instruction, m is the
margin.

Process-supervised Reward Model (PRM) As there is no simple way to support highly precise
process supervision without professional and expensive human-labelers, we depend on GPT-4 to
provide process supervision, and ask it to assess the correctness of each step in the solutions generated
by our model to produce PRM training data. The detailed prompt of above step level labeling process
is shown in the Appendix A.3.

For exactly, given an math instructions q and its answer a, PRM (Q×A → R+) assigns a score to
each step of a, we train PRM with the following cross-entropy loss:

LPRM =

L∑
i=1

yi log r
a
i + (1− yi) log(1− rai ) (2)

where L is the reasoning steps of answer a. yi is the ground-truth label of the i-th step of answer a,
yi = 1 if ai is correct, otherwise yi = 0. rai is the reward score (assigned by PRM) of the i-th step of
answer a.
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3.3 REINFORCEMENT LEARNING WITH IRM AND PRM

Immediately, we exploit reinforcement learning to optimize LLMs. Following (Lightman et al.,
2023), we employ step by step Proximal Policy Optimization (PPO) to reward both instruction and
each reasoning step.

For each math instruction q and generated answer a, we use IRM to assign instruction reward rq , and
use the minimum score across all reasoning steps to represent the final reward score ra of the answer
a assigned by PRM. Then we apply a product as the final reward of this instruction-answer pair:

r = rq · ra (3)

3.4 PRM FOR VERIFICATION

Following (Lightman et al., 2023) and (Li et al., 2023c), we leverage both majority voting and PRM
verifier to aggregate the predictions of different reasoning paths.

â = argmax
a

N∑
i=1

Iai=a · PRM(q, ai) (4)

where PRM(q, ai) is the score of the i-th reasoning path assigned by PRM for instruction q. Iai=a

is an indicator function that returns 1(or 0) if ai = a.

4 EXPERIMENT

This section provides a comprehensive overview of the baseline models. Subsequently, we mainly
elucidate the performance metrics of our models on two prevalent mathematical benchmarks from
grade to high school problems: GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021).

4.1 BASELINES

Our proposed method undergoes comparison with: (i) proprietary models, including GPT-4, GPT-3.5-
Turbo, PaLM 2, Gemini, Claude, Mistral Medium and Minerva; (ii) publicly available models such
as MPT, GAL, Llama-2, Mistral, and Qwen; (iii) Rejection Sampling Fine-Tuning models, which
generates and aggregates accurate reasoning paths as augmented data for fine-tuning, as seen in RFT
and MuggleMATH; (iv) MAmmoTH which combines CoT and PoT; (v) MetaMath, employing a
bootstrapping approach to rewrite mathematical questions from multiple perspectives.

4.2 EXPERIMENTAL SETUP

SFT Training Data. Firstly, use the GSM8k and MATH training sets as the initial seed collection,
then employ both upward and downward math Evol-Instruct approach for five rounds. Each round
need to evolve the initial instructions 6 times, and the temperature parameter is set to 0.7. Next,
we remove duplicate instructions 17k. Hence, a total of 448k unique instructions were obtained.
Subsequently, 30k data were excluded by the data filtering method to avoid contamination, ultimately
leaving 418k data. Finally, we use GPT-4-0613 to generate the answer with a step-by-step format,
and leverage them for supervised fine-tuning.

Reward Models Training Data. To train the reward models, We conducted additional 5 rounds
of evolution on the initial instruction set and obtain 90k instructions. we use GPT-4-0613 to rank
each instruction list with the quality from 1 to 6 as the training data of IRM. To obtain the training
data of PRM, We use our Llama-2 70B SFT model to generate 5 answers for each instruction, and
GPT-4-0613 is employed to assign correctness judgement for each reasoning step.

Implementation Details. We employ our method on two open-source foundational models Llama
2 (Touvron et al., 2023b) and Mistral-7B (Jiang et al., 2023). Llama 2 encompasses three distinct
parameter sizes: 7B, 13B, and 70B. We utilize GPT-4-0613 for instruction evolution and the training
data construction of reward models. For SFT, we train 3 epochs, and the learning rate is 2e-5, 1e-5
and 5e-6 for Llama 2 7B/13B, 70B and Mistral-7B. The batch size is 512, and the sequence length is
2048. For the reward model, we train Llama 2 and Mistral-7B with learning rate 4e-6 and 1e-6 for
one epoch. For RL, the lr is 4e-7 and 1e-7 for Llama 2 and Mistral-7B and train one epoch.
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4.3 MAIN RESULTS
Table 1: The models’ CoT pass@1 results on GSM8k
and MATH without using any external python tool.

Model Base Params GSM8k MATH
Proprietary models

GPT-o1 (OpenAI, 2023) - - - 94.8
GPT-o1-mini - - - 90.0
Gemini-1.5 002 - - - 86.5
Claude 3.5 Sonnet (Bai et al., 2022) - - 96.4 71.1
GPT-4o-2024-0513 - - 96.1 76.6
GPT-4-turbo-0125 (OpenAI, 2023) - - 94.2 64.5
GPT-4-0314 - - 94.7 52.6
GPT-4 (original version) - - 92.0 42.5
Baichuan-3 (Yang et al., 2023) - - 88.2 49.2
GLM-4 (GLM et al., 2024) - - 87.6 47.9
Gemini Pro (Team, 2023) - - 86.5 32.6
Claude2 - - 85.2 32.5
GPT-3.5-Turbo - - 81.6 43.1
PaLM2 (Anil et al., 2023) - - 80.7 34.3
Minerva (Lewkowycz et al., 2022) - 540B 58.8 33.6
GPT3.5 (Brown et al., 2020a) - - 57.1 -

Open-Source Models (0.1B-3B)

GPT-2-Small (Brown et al., 2020b) - 0.1B 6.9 5.4
GPT-2-Medium (Brown et al., 2020b) - 0.3B 11.2 6.2
GPT-2-Large (Brown et al., 2020b) - 0.7B 13.6 6.4
GPT-2-XL (Brown et al., 2020b) - 1.5B 15.4 6.9
WizardMath-GPT GPT-2-Small 0.1B 26.4 12.3
WizardMath-GPT GPT-2-Medium 0.3B 38.7 15.6
WizardMath-GPT GPT-2-Large 0.7B 50.1 21.2
WizardMath-GPT GPT-2-XL 1.5B 58.9 25.4

WizardMath-Qwen Qwen-Math-2.5 1.5B 86.7 68.6

Llama-3.2-Instruct (Dubey et al., 2024) Llama 3.2 1B 44.4 30.6
WizardMath-Llama Llama 3.2 1B 63.3 33.5
Llama-3.2-Instruct Llama 3.2 3B 77.7 48.0
WizardMath-Llama Llama 3.2 3B 85.5 49.9

Open-Source Models (7B-8B)

Llama-2 (Touvron et al., 2023b) - 7B 14.6 2.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 7B 50.5 10.4
MathScale (Tang et al., 2024) Llama-2 7B 66.3 31.1
MetaMath (Yu et al., 2023b) Llama-2 7B 66.5 19.8
MuggleMath (Li et al., 2023a) Llama-2 7B 68.4 -
Skywork-Math (Zeng et al., 2024) Llama-2 7B 72.9 47.7
Math-Shepherd (Wang et al., 2024a) Llama-2 7B 73.2 21.6
Xwin-Math (Li et al., 2024a) Llama-2 7B 82.6 40.6
WizardMath-Llama Llama-2 7B 84.1 43.5

Mistral-v0.1 (Jiang et al., 2023) - 7B 42.9 12.9
MathScale (Tang et al., 2024) Mistral-v0.1 7B 74.8 35.2
MMIQC (Liu & Yao, 2024) Mistral-v0.1 7B 74.8 36.0
MetaMath (Yu et al., 2023b) Mistral-v0.1 7B 77.9 28.6
KPMath-Plus (Huang et al., 2024b) Mistral-v0.1 7B 82.1 46.8
DART-Math (Tong et al., 2024) Mistral-v0.1 7B 82.6 43.5
Skywork-Math (Zeng et al., 2024) Mistral-v0.1 7B 83.9 51.2
Math-Shepherd (Wang et al., 2024a) Mistral-v0.1 7B 84.1 33.0
MAmmoTH2-Plus (Yue et al., 2024) Mistral-v0.1 7B 84.7 45.0
JiuZhang3.0 (Zhou et al., 2024) Mistral-v0.1 7B 88.6 52.8
Xwin-Math (Li et al., 2024a) Mistral-v0.1 7B 89.2 43.7
WizardMath-Mistral Mistral-v0.1 7B 90.7 55.4
WizardMath-Mistral Mistral-v0.3 7B 90.4 55.6
WizardMath-Mathstral Mathstral-v0.1 7B 93.8 70.9

WizardMath-Qwen Qwen2.5-Math 7B 93.9 77.8
WizardMath-Qwen Qwen2.5 7B 94.0 74.5

DeepSeekMath-Base (Shao et al., 2024) - 7B 64.2 36.2
NuminaMath-CoT (Li et al., 2024c) DeepseekMath 7B 75.4 55.2
MMIQC (Liu & Yao, 2024) DeepSeekMath 7B 79.0 45.3
KPMath-Plus (Huang et al., 2024b) DeepSeekMath 7B 83.9 48.8
DeepSeekMath-RL (Shao et al., 2024) DeepSeekMath 7B 88.2 51.7
DART-Math (Tong et al., 2024) DeepSeekMath 7B 88.2 52.9
WizardMath-DeepSeek DeepSeekMath 7B 91.0 64.6

MetaMath (Yu et al., 2023b) Llama 3 8B 77.3 20.6
MMIQC (Liu & Yao, 2024) Llama 3 8B 77.6 29.5
DART-Math (Tong et al., 2024) Llama 3 8B 82.5 45.3
MAmmoTH2-Plus (Yue et al., 2024) Llama 3 8B 84.1 42.8
Llama 3.1-Instruct (Dubey et al., 2024) Llama 3 8B 84.5 51.9
JiuZhang3.0 (Zhou et al., 2024) Llama 3 8B 88.6 51.0
WizardMath-Llama Llama 3 8B 90.3 58.8

Open-Source Models (13B)

Llama-2 (Touvron et al., 2023b) - 13B 28.7 3.9
MAmmoTH-CoT (Yue et al., 2023) Llama 2 13B 56.3 12.9
MathScale (Tang et al., 2024) Llama 2 13B 71.3 33.8
MetaMath (Yu et al., 2023b) Llama 2 13B 72.3 22.4
MuggleMath (Li et al., 2023a) Llama 2 13B 74.0 -
KPMath-Plus (Huang et al., 2024b) Llama 2 13B 81.6 41.0
Xwin-Math (Li et al., 2024a) Llama 2 13B 88.1 44.9
WizardMath-Llama Llama 2 13B 89.7 50.6

Open-Source Models (70B)

Llama-2 (Touvron et al., 2023b) - 70B 56.8 13.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 70B 72.4 21.1
MetaMath (Yu et al., 2023b) Llama-2 70B 82.3 26.6
KPMath-Plus (Huang et al., 2024b) Llama-2 70B 87.4 48.6
Xwin-Math (Li et al., 2024a) Llama-2 70B 90.6 52.8
WizardMath-Llama Llama-2 70B 92.8 58.6

Table 1 shows the CoT (Wei et al., 2022)
pass@1 results of the current state-of-the-art
models on GSM8k and MATH. In this study,
to ensure equitable and cohesive evaluations,
we report the socres of all models within the
settings of greedy decoding and CoT with-
out using any external python tool.

Comparing with the proprietary Models.
As shown in the Table 1, our WizardMath
demonstrates notable superiority over various
proprietary LLMs on the GSM8k and MATH
benchmarks in terms of pass@1:

1) WizardMath-Llama 70B, the largest
model, demonstrated exceptional perfor-
mance on the GSM8k and MATH , surpass-
ing earlier versions of GPT-4, Claude-2, and
Gemini Pro, and performing on par with GPT-
4-0314. It significantly outperformed GPT-
3.5-Turbo by 11.2% on GSM8k and by 15.5%
on MATH.

2) WizardMath-Mistral 7B, the smaller-
sized model, outperformed Baichuan 3
on GSM8k (90.7 vs. 87.6) and sur-
passed GPT-4-0314 on MATH (55.4 vs.
52.6), significantly exceeding the perfor-
mance of GPT-3.5-Turbo and Gemini Pro.
Meanwhile, WizardMath-Mathstral, trained
on Mathstral-7B-v0.1, demonstrated perfor-
mance comparable to GPT-4-turbo-0125. Ad-
ditionally, WizardMath-Qwen, trained on
Qwen2.5-Math, surpassed GPT-4-2024-0513
on MATH (77.8 vs. 76.6).

Comparing with the Open-Source Models.
The results presented in Table 1 unequivo-
cally indicate that our WizardMath-Llama
70B exhibits a significant performance supe-
riority over strong models in both the GSM8k
and MATH benchmarks with higher data ef-
ficiency across the range from 0.1B to 70B
parameters. The detailed results are as fol-
lows:

1) With the same model parameter size, our
model surpasses the previous best model such
as MetaMath, MAmmoTH2-Plus, Xwin-
Math. Particularly, WizardMath-Llama 70B
achieves a substantial improvement of 10.5%
on GSM8K and 32.0% on MATH compared
to MetaMath-Llama 70B in testing accuracy.
In the Table 2, we show the detailed results of
MATH subtopics with our WizardMath 70B
model. Specifically, WizardMath-Mistral 7B
also surpasses top-tier open source models, outperforming MetaMath-Mistral 7B with a notable
margin (90.7 vs 77.9 on GSM8k) and (55.4 vs 28.6 on MATH). It demonstrats the effectiveness
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Table 2: Results of pass@1 (%) on MATH
subtopics (i.e., Intermediate Algebra, Geome-
try) with WizardMath 70B model.

MATH subtopics WizardMath 70B
Intermediate Algebra 36.3
Precalculus 38.9
Geometry 48.3
Number Theory 58.5
Counting & Probability 54.8
Prealgebra 74.6
Algebra 78.5

Overall 58.6

Table 3: Explore the effects of PRM and IRM during
PPO training.

Models GSM8K MATH

GPT-2-XL-1.5B: WizardMath-SFT 51.9 18.3

+ PRM 55.8 22.1
+ PRM + IRM 58.9 25.4

Llama2-7B: WizardMath-SFT 77.4 35.6

+ PRM 81.7 39.9
+ PRM + IRM 84.1 43.5

Mistral-7B: WizardMath-SFT 82.8 48.1

+ PRM 87.2 52.7
+ PRM + IRM 90.7 55.4

of our RLEIF method in enhancing mathematical reasoning capabilities across a range of problem
difficulties, from grade to high school levels.

2) By employing diverse pre-trained models (i.e., GPT-2, Llama 2, Mistral, Qwen, DeepSeek) as base
models, WizardMath demonstrated notable advancements on the GSM8k and MATH benchmarks.
Specifically, WizardMath-Llama2-7B, based on Llama2-7B, improved performance by 69.5% on
GSM8k and 41.0% on MATH. Similarly, WizardMath-GPT2-XL, built on GPT2-XL, achieved a
43.5% improvement on GSM8k and 18.5% on MATH, performing on par with Llama2-70B and
outperforming GPT-3.5 on GSM8k. This demonstrates that our RLEIF method is equally effective
for smaller models in enhancing mathematical reasoning capabilities, proving its scalability and
robustness across various model backbones.

4.4 ANALYSIS

15k 30k 60k 120k 200k 300k 390k
Data Size

56

62

68

74

80

86

GS
M

8K
(%

)

13

21

28

36

44

51

M
AT

H(
%

)

GSM8K(Ours)
GSM8K(MetaMath)
MATH(Ours)
MATH(MetaMath)

Figure 2: Accuracy of Mistral-7B fine-tuned in different
sizes of augmentation data on GSM8K and MATH

The impact of training data size

We are curious about to how the training
data size of different dataset construction
methods impact the reasoning capacity of
LLMs. Thus we conduct different num-
ber of training instances from ours evolved
data and MetaMathQA to fine tune Mistral
7B. As shown in the Figure 2, Math Evol-
Instruct achieves superior data efficiency.
Specifically, our model constantly outper-
forms MataMath by more than 3% ∼ 6%
on GSM8k and 15% ∼ 20% on MATH un-
der the same number of conditions. Our
findings indicate that Math Evol-Instruct
exhibits a higher potential upper bound
compared to MetaMath, thus demonstrat-
ing the effectiveness of Evol-Instruct for
math reasoning senario.

The impact of PRM and IRM during PPO training

To verify the contributions of the instruction reward model and process-supervised reward model, we
consider the following variants: (1) SFT + PRM: only use PRM in the PPO training. (2) SFT + PRM
+ IRM: use both IRM and PRM in the PPO training. As shown in Table 3, applying PRM alone for
PPO training on GSM8k and MATH yields a 3%-4% improvement. When combined with IRM, an
additional 2.5%-4% gain is observed. Thus, the integration of PRM and IRM results in a substantial
overall improvement of 6%-8%. So, we can conclude that (1) PRM is crucial to WizardMath, since
the variant with PRM significantly outperforms the SFT one without any PPO training (2) IRM also
plays a key role in the success of reinforcement learning, as there is a remarkable improvement when
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we combine PRM with IRM, further demonstrating the necessity of taking instruction’s quality into
account and correcting false positives in the problem-solving process when we optimize the LLMs.

Table 4: The effect of different reward models
during PPO training

Models GSM8K MATH

Llama2-7B: WizardMath-SFT 77.4 35.6

+ ORM (ours) 79.1 36.8
+ PRM800k 79.7 38.7
+ Math-Shepherd 80.3 38.2
+ PRM (ours) 81.7 39.9

Mistral-7B: WizardMath-SFT 82.8 48.1

+ ORM (ours) 84.6 49.6
+ PRM800k 85.4 50.8
+ Math-Shepherd 86.1 50.3
+ PRM (ours) 87.2 52.7

Table 5: Results of reinforcement learning com-
bined with validation. The SFT and Reward
models are trained based on Mistral-7B. The ver-
ifier is based on 256 sample outputs.

Generators Verifiers GSM8K MATH

SFT
Self-Consistency 90.7 57.5
ORM 93.0 58.3
PRM 93.9 61.7

SFT + ORM
Self-Consistency 91.2 57.7
ORM 93.4 59.4
PRM 94.1 63.3

SFT + PRM
Self-Consistency 92.3 59.3
ORM 94.1 60.8
PRM 95.2 64.7

Table 6: Impact of different Downward and Upward Evol-
Instruct turns on Mistral-7B SFT. D-i refers to the i round of
downward evolution, whereas U-i denotes the i round of upward
evolution. Ori is the original manually annotated 7.5k data of
GSM8k and MATH.

Data
GSM8K MATH

Ori D-1 D-2 U-1 U-2 U-3 pass@1 Ori D-1 D-2 U-1 U-2 U-3 pass@1
Ori ✓ ✗ ✗ ✗ ✗ ✗ 59.7 ✓ ✗ ✗ ✗ ✗ ✗ 15.1

Math
Evol

✓ ✓ ✗ ✗ ✗ ✗ 71.9 ✓ ✓ ✗ ✗ ✗ ✗ 30.3
✓ ✗ ✓ ✗ ✗ ✗ 70.5 ✓ ✗ ✓ ✗ ✗ ✗ 28.7
✓ ✗ ✗ ✓ ✗ ✗ 73.7 ✓ ✗ ✗ ✓ ✗ ✗ 33.4
✓ ✗ ✗ ✗ ✓ ✗ 71.6 ✓ ✗ ✗ ✗ ✓ ✗ 32.6
✓ ✗ ✗ ✗ ✗ ✓ 70.2 ✓ ✗ ✗ ✗ ✗ ✓ 30.9
✓ ✓ ✓ ✗ ✗ ✗ 74.5 ✓ ✓ ✓ ✗ ✗ ✗ 34.7
✓ x x ✓ ✓ x 77.1 ✓ x x ✓ ✓ x 38.6
✓ x x ✓ ✓ ✓ 78.6 ✓ x x ✓ ✓ ✓ 42.5
✓ ✓ ✓ ✓ ✗ ✗ 76.6 ✓ ✓ ✓ ✓ ✗ ✗ 40.3
✓ ✓ ✓ ✓ ✓ ✗ 79.8 ✓ ✓ ✓ ✓ ✓ ✗ 44.6
✓ ✓ ✓ ✓ ✓ ✓ 81.2 ✓ ✓ ✓ ✓ ✓ ✓ 46.2

The impact of Evol-Instruct turns. Ta-
ble 6 illustrates the impact of combining
downward and upward evolution in SFT
training. Two rounds of downward evo-
lution improved GSM8k by 14.8% (74.5
vs. 59.7) and MATH by 19.6% (34.7 vs.
15.1) over the original. Three rounds of
upward evolution yielded a 18.9% im-
provement on GSM8k (78.6 vs. 59.7)
and a 27.4% improvement on MATH
(42.5 vs. 15.1). Furthermore, combining
downward evolution based on upward
evolution resulted in an additional 2.6%
improvement on GSM8k (81.2 vs. 78.6),
a total improvement of 21.5% over the
original. Similarly, a 1.9% improvement
on MATH (46.5 vs. 42.5), a 31.4% total
improvement. These results underscore
the complementary and significant effectiveness of upward and downward evolution.

ORM v.s. PRM; Human v.s. AI. The Table 4 presents the performance of different answer
reward methods for LLMs in terms of pass@1. As is shown: 1) Our step-by-step PRM significantly
enhances the performance of both Llama and Mistral based SFT models. Specifically, the Mistral-7B
powered by our PRM achieves 87.2% and 52.7% on GSM8k and MATH respectively. 2) PRM
models consistently outperforms ORM on both GSM8k and MATH, indicating the effectiveness of
step-by-step supervision. 3) The PRM trained on our fully AI-labeled data outperforms both the
manually annotated PRM800k and Math-Shepherd, which utilizes MCTS tree search for annotation.
When training WizardMath-Mistral-SFT with PPO, our PRM improves upon PRM800k by 1.8% and
Math-Shepherd by 1.1% on GSM8k, while surpassing PRM800k by 1.9% and Math-Shepherd by
2.4% on MATH. This demonstrates powerful AI can also provide good process supervision quality,
highlighting the effectiveness of utilizing AI to construct PRM training data.

PRM as Verifier. Table 5 presents the performance comparison of various generators with different
verifiers on GSM8K and MATH in terms of pass@256. We find that: 1) PRM verifier consistently
demonstrates superior performance compared to Self-Consistency and ORM. Specifically, our SFT
+ PRM generator, enhanced by the PRM verifier, achieves 95.2% and 64.7% accuracy on GSM8K
and MATH respectively. 2) When compared to ORM, PRM exhibits a more significant advantage
on the more challenging MATH dataset which aligns with the findings in (Uesato et al., 2022) and
(Lightman et al., 2023). This can be attributed to the fact that GSM8K involves fewer and less
complex steps in problem-solving than MATH. 3) Particularly, the generator with PRM PPO training
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Figure 3: Performance of Mistral-7B SFT with different verification strategies.

surpasses those SFT and ORM PPO trained generators regardless of employing Self-Consistency,
ORM, and the PRM verifiers. This further demonstrates the effectiveness of our PRM.

Figure 3 also shows the performance of different Verification strategies across a range of candidate
numbers from 1 to 256 on two benchmarks. The main observations are as follows: 1) PRM verifiers
consistently achieves superior performance compared to both ORM and majority voting, and this
superiority becomes more evident as N increases. 2) For MATH benchmark, our PRM trained on the
AI-annotated datasets slightly surpassed the human-annotated PRM800K.

Table 7: Performance of WizardMath on the 7 out-of-
domain evaluation results covering K-12, college, and
competition level math problems. The results of models
in the table refer to MWPBENCH (Tang et al., 2024).
“AGIE” stands for AGIEval. We report the models’ CoT
pass@1 results on MwpBench without using any external
python tool

Models College
Math TAL Math23k Ape210k

Gaokao
Bench
Math

AGIE
Gaokao
Math

AGIE
SAT
Math

AVG

Proprietary models
GPT-4 24.4 51.8 76.5 61.5 35.4 28.2 68.6 49.5
GPT-3.5-Turbo 21.6 42.9 62.5 44.0 23.2 15.3 55.8 37.9

Models based on LLaMA-2 13B
LLaMA-2 13B 1.2 6.3 9.5 7.9 0.7 0.4 6.8 4.7
MAmmoTH-CoT 6.5 17.3 39.5 28.1 5.9 4.9 20.5 17.5
GAIR-Abel 7.9 21.1 42.2 27.8 7.0 4.9 30.3 20.2
MetaMath 10.1 25.4 48.6 31.6 9.6 5.6 38.2 24.2
MathScale 13B 20.4 38.1 61.1 43.7 20.0 12.3 55.8 35.9
WizardMath 22.9 43.3 70.3 50.8 33.1 25.7 64.7 44.4

Models based on LLaMA-2 7B
LLaMA-2 7B 2.3 7.6 6.8 7.3 2.1 2.9 2.9 4.6
MAmmoTH-CoT 6.2 13.3 34.6 21.4 3.9 2.7 19.6 14.5
GAIR-Abel 6.6 18.3 35.4 24.5 4.3 4.4 23.5 16.7
MetaMath 9.4 22.5 44.0 29.9 5.9 5.1 36.2 21.9
MathScale 7B 20.9 35.2 59.0 41.8 19.6 12.6 57.8 35.3
WizardMath 21.2 40.2 67.3 46.1 28.9 18.7 62.7 40.7

Models based on Mistral 7B
Mistral 7B 7.5 17.9 18.5 15.5 6.2 5.9 22.5 13.4
MetaMath Mistral 15.7 31.4 55.1 38.1 15.3 10.1 50.9 30.9
MathScale Mistral 21.8 39.9 64.4 46.0 21.4 14.3 57.8 37.9
WizardMath Mistral 24.8 44.8 71.2 52.6 37.2 24.5 64.7 45.7

Performance of Out-of-Domain. Ta-
ble 7 presents the results of Wizard-
Math on the 7 out-of-domain evalu-
ation results covering K-12, college,
and competition level math problems,
highlighting the following salient obser-
vations: (1) With math Evol-Instruct
and reinforcement learning, WizardMath
consistently surpasses prior state-of-the-
art open-source models (e.g. Meta-
Math, MathScale) across all scales, and
achieves improvement of 5%-10% across
7 tasks on average. (2) The accuracy
of WizardMath-Mistral is about 5.0%
higher than WizardMath-Llama on the
same size. Especially it exceeds GPT-3.5-
Turbo (45.7 vs. 37.9) while being compa-
rable to GPT-4. This also indicates that
Mistral-7B has more potential in math-
ematical reasoning. (3) Especially on
difficult benchmarks (i.e., College Math,
AGIE Gaokao Math), WizardMath out-
performs MetaMath by a significant mar-
gin . This demonstrates our model and
RLEIF method has stronger robustness
and better significant generalization abil-
ity for invisible mathematical problems.

Employ Open-source Model to Math Evol-Instruct. In Table 33, we investigate the use of
open-source models (i.e., Llama-3-70B-Instruct) as a substitute for GPT-4 during the SFT stage for
Evol Instruct, employing the same evolution strategy. The results demonstrate that WizardMath-
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Table 9: A case study from GSM8k test set. We rate the response using PRM and ORM. Red text
denotes the wrong reasoning steps which PRM successfully detected, but ORM failed.

Question The farm has 30 cows and the zoo has 20 sheep. The zoo has twice as many cows as the farm
does. The farm has half as many sheep as the zoo does. How many animals do the farm and zoo
have combined? Ground truth answer: 120

Steps

Step 1: we know that the farm has 30 cows. PRM Score: 0.95.
Step 2: we are told that the zoo has twice as many cows as the farm does. PRM Score: 0.97.
Step 3: So, we can calculate the number of cows in the zoo by multiplying the number of cows
in the farm by 2. So, 2 * 30 = 60, So, the zoo has 60 cows. PRM Score: 0.97.
Step 4: we know that the farm has half as many sheep as the zoo does. PRM Score: 0.96.
Step 5: So, we can calculate the number of sheep in the farm by dividing the number of sheep in
the zoo by 2. So, 20 / 2 = 10. So, the farm has 10 sheep. PRM Score: 0.93.
Step 6: Now, we can calculate the total number of animals in the farm and the zoo by adding the
number of cows and the number of sheep in both places. PRM Score: 0.92.
Step 7: So, 30 (farm’s cows) + 60 (zoo’s cows) + 10 (farm’s sheep) = 100. PRM Score: 0.11.
Step 8: So, the farm and the zoo have a total of 100 animals combined. PRM Score: 0.10.
Step 9: Therefore, the final answer is 100 . The answer is: 100. PRM Score: 0.06. ORM Score:
0.89.

Table 8: The impact of using open source models
for Math-Evol and use Mistral-7B-v0.1 for SFT .

Models GSM8k MATH

Mistral-7B-v0.1 42.9 12.9

WizardMath-SFT-GPT-4-Evol 82.8 48.1
WizardMath-SFT-Llama3-Evol 76.7 43.5

Llama3-Evol achieved a 33.8% improvement on
GSM8k and a 30.6% improvement on MATH,
indicating that the math evol instruct strategy
remains effective on open-source models. How-
ever, compared to GPT-4 evolution, there is still
a 5%-6% performance gap. Despite this, the
strategy shows significant potential in balancing
computational cost and accuracy.

4.5 MORE DISCUSSION.

Due to limited space, we place more discussion in the appendix. (1.) Appendix A.4 explores the
effect of math evol-instruct during the SFT and RL stages, showing that math evol-instruct is highly
efficient in SFT and RL stages. (2.) Appendix A.5 explores the difference between Math Evol-
Instruct and WizardLM Evol-Instruct, showing math evol-instruct is more efficient than WizardLM.
(3.) Appendix A.8 explores the impact of the different round for upward and downward evol-instruct.
(4.) Appendix A.9 explores the impact of the scoring aggregation strategy at each step of the PRM
for RL training. (5.) Appendix A.11 explores the data contamination check to prevente data leakage.

4.6 CASE STUDY

Evol-Instruct. The Examples 3 and 4 in the Appendix A.1 shows the prompt and corresponding
cases of GSM8k and MATH instruction evolution, demonstrating that the evolved instructions exhibit
more complexity and diversity than the original training set.

PRM v.s. ORM. We present a comprehensive case study to illustrate the effectiveness of our PRM.
As delineated in Table 9, PRM demonstrates precise performance on a challenge math problem from
the GSM8k test set. Remarkably, our PRM effectively distinguished the incorrect solution, in the
meanwhile the ORM struggled in this task. Furthermore, PRM demonstrated exceptional insight by
accurately detecting the incorrect steps of the solution chosen by ORM, specifically the steps 7, 8,
and 9. Subsequently, PRM also assigned lower score logits to these erroneous steps.

5 CONCLUSION

This paper introduces WizardMath, a mathematics model fine-tuned with RLEIF. The experimental
results demonstrate that WizardMath achieves SOTA performance surpassing existing open-source
LLMs on GSM8k and MATH from grade to high school problems. Notably, WizardMath 70B exhibits
superior performance compared to some of the well-known proprietary LLMs, including ChatGPT-
3.5, Claude Instant, PaLM-2, Gemini Pro. Furthermore, our preliminary exploration highlights the
pivotal role of instruction evolution and process supervision in achieving exceptional performance.
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A APPENDIX

A.1 MATH EVOLUTION PROMPTS

Example 1: Upward Evolution Prompt

Step 1: Understand the core concept and structure of the "#Instruction#". Identify the key elements
such as variables, conditions, participants, actions, or processes that can be manipulated to increase com-
plexity. Also, recognize the theme of the instruction and ensure it remains consistent throughout the evolution.

Step 2: Formulate a comprehensive plan to increment the complexity of the "#Instruction#" based on the
identified elements in Step 1. The plan should involve modifying or expanding at least three components
from the list. It is crucial to ensure that all components in the instruction are logically interconnected and that
the complexity increase is coherent and justified. The plan should avoid introducing variables or conditions
without clear criteria for determining their values or without contributing to the overall complexity. In this
step, consider adding more real-world constraints and dependencies between variables to make the problem
more challenging. And you can also add more constraints, concretizing, increasing reasoning.

Step 3: Implement the plan step by step to create the "#Rewritten Instruction#". Ensure the rewritten
instruction maintains a logical sequence and avoids ambiguity or confusion. If additional variables or
conditions are introduced, provide clear and unambiguous methods or criteria for determining their values.
The "#Rewritten Instruction#" should not exceed the original "#Instruction#" by more than 30 words to
ensure readability and comprehension.

Step 4: Review the "#Rewritten Instruction#" thoroughly to identify any unreasonable elements or
inconsistencies. Make sure the "#Rewritten Instruction#" is a more complex version of the "#Instruction#",
and that it accurately reflects the intended increase in complexity. Adjust any part of the instruction that
may lead to misunderstanding or ambiguity, and provide the "#Finally Rewritten Instruction#" without any
supplementary explanation.

Please reply strictly in the following format:
Step 1
#Elements Identified#:
Step 2
#Plan#:
Step 3
#Rewritten Instruction#:
Step 4
#Finally Rewritten Instruction#:

#Instruction#:
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Example 2: Downward Evolution Prompt

Step 1: Understand the "#Instruction#" and identify all the components that can be modified to decrease
complexity, so that it makes the instruction easier. These components can be variables, conditions,
participants, actions, etc. The key is to keep the core scenario unchanged while ensuring that any new
elements introduced do not cause ambiguity or confusion.

Step 2: Develop a comprehensive plan to decrease the complexity of the "#Instruction#" based on the
components identified in Step 1. The plan should involve modifying at least three components from the
list. It is important to ensure that all components in the instruction are logically interconnected and that the
complexity decrease is justifiable. The plan should avoid introducing variables or conditions without clear
criteria for determining their values. Our goal is revising high difficulty questions to lower difficulty, or
producing a new and easier question with another different topic.

Step 3: Implement the plan step by step to create the "#Rewritten Instruction#". Make sure the rewritten
instruction maintains a logical sequence and avoids ambiguity or confusion. If additional variables or
conditions are introduced, provide clear and unambiguous methods or criteria for determining their values.
The "#Rewritten Instruction#" should not exceed the original "#Instruction#" by more than 20 words.

Step 4: Review the "#Rewritten Instruction#" thoroughly to identify any unreasonable elements. Make sure
the "#Rewritten Instruction#" is a easier version of the "#Instruction#". Adjust any part of the instruction that
may lead to misunderstanding or ambiguity, and provide the "#Finally Rewritten Instruction#" without any
explanation.

Please reply strictly in the following format:
Step 1
#Elements Identified#:
Step 2
#Plan#:
Step 3
#Rewritten Instruction#:
Step 4
#Finally Rewritten Instruction#:

#Instruction#:
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Example 3: GSM8k Evol Instruction Case

Original Instruction 1: Bill is trying to decide whether to make blueberry muffins or raspberry muffins.
Blueberries cost $5.00 per 6 ounce carton and raspberries cost $3.00 per 8 ounce carton. If Bill is going to
make 4 batches of muffins, and each batch takes 12 ounces of fruit, how much money would he save by using
raspberries instead of blueberries?
Evol Instruction 1: Bill and Jane are contemplating between blueberry and raspberry muffins. Blueberries
are $5.00 for a 6 ounce carton, with a 20% bulk discount. Raspberries are $3.00 for an 8 ounce carton. If
they each make 6 batches of muffins, with each batch requiring 12 ounces of fruit, calculate the total money
they would save by choosing raspberries over the discounted blueberries, given Jane’s inclination towards
raspberries.

Original Instruction 2: A snake’s head is one-tenth its length. If a snake is 10 feet long, calculate the length
of the rest of its body minus the head.
Evol Instruction 2: Given a snake’s head is a certain fraction of its total length, and the snake’s total length
is a positive integer, determine the length of the snake’s head by multiplying the total length by the fraction.
Subtract this value from the total length to calculate the length of the rest of the snake’s body.

Original Instruction 3: Thomas is training at the gym to prepare for a competition. He trained for 5 hours
every day for a month (30 days). If he continues to train for the next 12 days, how many hours will he spend
on training in total?
Evol Instruction 3: Thomas and James are preparing for a competition by training at the gym. They trained
for 5 hours daily for a month (30 days), excluding a rest day each week. If they persist in training for the
subsequent 12 days, adding an extra hour of training each week, what will be the total hours they have spent
training?

Original Instruction 4: Travis is hired to take 638 bowls from the factory to the home goods store. The
home goods store will pay the moving company a $100 fee, plus $3 for every bowl that is delivered safely.
Travis must pay the home goods store $4 each for any bowls that are lost or broken. If 12 bowls are lost, 15
bowls are broken, and the rest are delivered safely, how much should Travis be paid?
Evol Instruction 4: Travis and his team are tasked with moving 1000 bowls and 500 plates from the factory
to a home goods store. The store agrees to pay a $200 fee, plus $4 for each safely delivered bowl and $2 for
each plate. However, Travis must compensate the store $5 for each lost or broken bowl and $3 for each plate.
If they lose 20 bowls and 10 plates, and break 25 bowls and 15 plates, how much should the store pay Travis
and his team?

Original Instruction 5: Gary is buying chlorine for his rectangular pool, which is 10 feet long, 8 feet wide,
and 6 feet deep. Gary needs to buy one quart of chlorine for every 120 cubic feet of water in his pool. If
chlorine costs $3 a quart, how much does Gary spend on chlorine?
Evol Instruction 5: Gary and John are purchasing chlorine for their cylindrical pools, with diameters of 12
feet and 10 feet, and depths of 8 feet and 6 feet respectively. They require one quart of chlorine per 100 cubic
feet of pool water. Given that chlorine is priced at $4 per quart, calculate the total expenditure on chlorine for
both Gary and John.

Original Instruction 6: Ken likes to bike when it’s raining and can cycle 30 miles in 20 minutes during this
time. However, when it’s snowing Ken can’t stand the cold and can only cycle 10 miles in 20 minutes. If it
rains 3 times and snows 4 times in one week, how many miles did Ken reach if he cycles 1 hour a day?
Evol Instruction 6: In varying weather conditions, Ken’s biking speed differs. He can cycle 30 miles in 20
minutes when it’s raining, 10 miles in 20 minutes when it’s snowing, and 20 miles in 20 minutes on sunny
days. In a week, if it rains 4 times, snows 3 times, and is sunny 2 times, and Ken cycles for 1.5 hours each
day, how many miles did he cover? Remember, after cycling for an hour, his speed decreases by 10%.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Example 4: MATH Evol Instruction Case

Original Instruction 1: Find the smallest positive integer whose cube ends in 888.
Evol Instruction 1: Determine the least positive whole number, denoted by ’x’, whose cube terminates in
888 and is divisible by 3. Verify the result by checking the divisibility of the cube by 9.

Original Instruction 2: The sum of all the positive factors of integer x is 24. If one of the factors is 3, what
is the value of x?
Evol Instruction 2: Given that the summation of all positive factors of an integer x is 24, and considering x
is a positive integer divisible by 3 with one of its factors being 3, determine the value of x by first calculating
the variable S representing the sum of factors, and then solving for x.

Original Instruction 3: What is 2−1 + 2−2 + 2−3 + 2−4 + 2−5 + 2−6 (mod 13)? Express your answer
as an integer from 0 to 12, inclusive.
Evol Instruction 3: Let S be the sum of the series 2−1 + 2−2 + 2−3 + 2−4 + 2−5 + 2−6. Calculate S by
finding the sum of each term, then determine the value of S (mod 13). Utilize the properties of modular
arithmetic and provide a step-by-step solution. Express the final answer as an integer from 0 to 12, inclusive.

Original Instruction 4: Find the greatest common divisor of 40304 and 30203.
Evol Instruction 4: Determine the greatest common divisor of the integers 40304 and 30203 by employing
the Euclidean algorithm. Utilize prime factorization, considering the Fundamental Theorem of Arithmetic,
and verify if both numbers are divisible by the same prime factors.

Original Instruction 5: Find the remainder when 2× 12× 22× 32× . . .× 72× 82× 92 is divided by 5.
Evol Instruction 5: First, let P represent the product of the series, which can be expressed as
P =

∏9
n=1(2 + 10n). Next, calculate the value of P . Then, determine the remainder, denoted as R, when

P is divided by 5. Ensure that R is a positive integer.

Original Instruction 6: Is the function f(x) = ⌊x⌋+ 1
2

even, odd, or neither? Enter odd, even, or neither.
Evol Instruction 6: Determine if the function f(x) = ⌊x⌋ + 1

2
exhibits parity (evenness or oddness) or

neither, considering the mathematical definitions of even and odd functions. If x > 0, introduce a variable y
and compare f(x) with g(y) = y2. Provide a brief explanation for your answer.Enter f(x) is even, f(x) is
odd, or f(x) is neither even nor odd.
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A.2 IRM PROMPT

Example 5: Instruction Quality Ranking Prompt

You are a senior mathematics grading teacher in university, very skilled in high difficulty fields such as
Intermediate Algebra, Precalculus, Prealgebra, Number Theory, Geometry, Counting & Probability, Algebra
and so on.
Your task is to act as an impartial judge to evaluate the quality of math problems based on their definition
completeness and difficulty and rank a set of maths problems according to these criteria. Make sure that your
assessment takes into account the following rules:

1.** Problem statement completeness and correctness:**
• Assess the clarity and accuracy of the definition of each math problem. Ensure that the problem

statement provides sufficient information, conditions, and constraints.

• Consider whether the problem allows for multiple interpretations or if further clarification is needed.

• Evaluate the clarity of mathematical notation and terminology used in the problem.

2.**Conceptual difficulty:**
• Evaluates the complexity of each mathematical problem in terms of the underlying concepts

involved. Ensure a solid and sound understanding of the underlying principles, or advanced
mathematical concepts.

• Consider the depth of mathematical knowledge required to address and solve each problem.

• Assess whether the problem encourages critical thinking and the application of mathematical
principles.

3.**Computational complexity:**
• Examine the computational complexity of each problem. Judge whether it involves complex

calculations, algebraic operations, or non-trivial numerical operations.

• Consider whether the problem requires sophisticated computational techniques or algorithms or
whether it can be answered with existing mathematical knowledge.

4.** Problem contextualisation:**
• Consider the relevance of each mathematical problem in the given context or practical application.

as well as being relevant or having a meaningful meaning in the practical context.

• Evaluate whether the theory of the mathematical problem is detached from the facts, spurious, and
non-existent.

Avoid any position biases and ensure that the order in which the math problems were presented does not
influence your decision.
Do not allow the length of the problems to influence your evaluation.
Do not favor certain mathematical theory of the problems. Be as objective as possible.

Below is a list of a set of math problems that you need to rank according to the rules above from
most complete and clear (1) to least complete and clear (N) based on the comprehensiveness and difficulty
level of the maths problem. Also, consider the difficulty level from most challenging (1) to easiest (N). Your
output needs to be placed in the <Rank> </Rank>section.
And Your output is in JSON list format, where each element is a dictionary with three keys:

• instruction: represents the math problem.

• score: represents the result of your ranking for the problem.

• reason: provide your explanation in detail for your ranking result.

[### Math Problems List ###]: <PROBLEMS_HERE >
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Math instructions

GPT-4 Ranking

Instruction 1. Write x10 + x5 + 1 as the product of two polynomials with integer coefficients. Rank: 2. Reason: The
problem is well-defined and clear. It requires a deep understanding of polynomial factorization, making it conceptually
difficult. The computational complexity is high as it involves the factorization of a high-degree polynomial.

Instruction 2. Express the following sum as a common fraction:

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · · +

1

9 · 10
.

Rank: 1. Reason: This problem is clear and complete, with a well-defined mathematical notation. It requires a good
understanding of series and fractions, making it conceptually challenging. The computational complexity is moderate as
it involves the summation of fractions.

Instruction 3. Given that I read 6 to 8 novels monthly, each novel having 200 to 350 pages, and considering a year may
have 12 or 13 months due to a leap year or a year when I choose to read more, also taking into account that my reading
speed can fluctuate between 1 to 2 novels per day, and the number of days in a month can be 28, 30, or 31, and the genre
of the novel can influence the number of pages (for instance, a thriller may contain 300 to 350 pages, while a romance
novel may contain 200 to 250 pages), calculate the total pages of novels I will read in a year. Rank: 3. Reason: This
problem is complex and requires multiple steps to solve, making it conceptually and computationally challenging. It is
well-contextualized and relevant, but the problem statement could be clearer and more concise.

Instruction 4. James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does
he run a week? Rank: 4. Reason: This problem is clear, com plete, and well-contextualized. However, it is conceptually
and computationally less challenging than the others, as it only requires basic multiplication.

Instruction 5. What is
√
2 times

√
3? Rank: 5. Reason: This problem is clear and complete, but it lacks a practical

context. It is conceptually and computationa lly less challenging than the others, as it only requires knowledge of the
multiplication of square roots.

Instruction 6. What is
√
−2 times

√
3? Rank: 6. Reason: This problem is clear and complete, but it lacks a practical

context. It is conceptually challenging as it involves the multiplication of a real number and an imaginary number.
However, the computational complexity is low.

Table 10: A case study GPT-4 scoring the evolved instructions from two aspects:i) Difficulty, and ii)
Definition.
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A.3 PRM PROMPT

Example 6: PRM Step Level Labeling Prompt

You are a senior mathematics grading teacher in university, very skilled in high difficulty fields such as
Intermediate Algebra, Precalculus, Prealgebra, Number Theory, Geometry, Counting & Probability, Algebra
and so on. Below is a mathematical problem and its corresponding solution, as well as a JSON list format for
the solution, where each element is a dictionary with two keys:

• idx: represents the number of each step.

• value: represents each step in the problem-solving process.

Firstly please provide your judgement whether the solution is correct. Your judgment (which must be only
True or False) needs to be placed in the <Judge> </Judge>section.
And then you need to judge whether each step is correct and give a score for each solving step in the JSON
list which needs to be placed in the <Scores> </Scores>section.
There are three kinds of scores below:

• 1: indicates that the step is correct.

• 0: indicates that the step is ambiguity, meaningless, or subtly misleading, or not helpful to the
entire problem-solving process.

• -1: indicates that the step is incorrect.

If this step leads to a final wrong answer, then rate -1. If not, rate 1 or 0.
Here are some rules about whether the solution’s each step is correct:

• ## Problem-Solving Thoughts ##: You should first think about how to solve this problem, and then
judge whether this step is correct.

• ## Calculation Accuracy ##: You should carefully check and verify whether each step is calculated
correctly, including various mathematical numerical calculations. Notablely you don’t need to
consider simplification.

• ## Logical Coherence ##: You should judge whether each step is logically coherent and reasonable.

• ## Basic Theories and Principles ##: You should judge whether each step correctly is using basic
mathematical theories, principles, or formulas.

You need to constantly verify and check repeatedly whether each step is correct. And rate each step carefully,
honestly, and without bias, order, or discrimination.
Your output is a JSON list format, where each element is a dictionary with three keys:

• idx: represents the number of each step.

• score: represents your rating for this step, which can only be -1, 0 and 1.

• reason: provide your explanation in detail for your rating whether each step of the problem-solving
process is correct.

[### Problem ###]: <INSTRUCTION_HERE >

[### Solution JSON List ###]: <Solution JSON List >
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Question John and his two brothers decide to split the cost of an apartment. It is 40% more expensive than John’s old apartment
which costs $1200 per month. How much does John save per year by splitting the apartment compared to living alone?

GPT-4 Labeling

Step 1: Calculate the cost of John’s old apartment. John’s old apartment costs $1200 per month. Score: 1.

Step 2: Calculate the cost of the new apartment. Score: 1.

Step 3: The new apartment costs 40% more than John’s old apartment, so we need to find 40% of $1200 and add that to
the cost of the old apartment. Score: 1.

Step 4: 40% of $1200 is (40/100) * $1200 = $480. So the new apartment costs $1200 + $480 = $1680 per month. Score:
1.

Step 5: Calculate the savings for John by splitting the apartment. Score: 1.

Step 6: If John lived alone, he would pay $1680 per month for the new apartment. Score: 1.

Step 7: However, since he splits the cost with his two brothers, he only needs to pay 1/3 of the total cost. Score: 1.

Step 8: So, John’s share of the cost is $1680 / 3 = $560 per month. Score: 1.

Step 9: Calculate the savings per year for John. Score: 1.

Step 10: There are 12 months in a year, so the total savings for John in a year would be 12 * $560 = $6720. Score: -1.
Reason: The step is incorrect. The calculation is wrong. The total savings for John in a year should be calculated as
the difference between what he would pay living alone and what he pays when splitting the cost, multiplied by 12. The
correct calculation should be (1200 - 560) * 12 = $7680.

Step 11: So, John saves $6720 per year by splitting the apartment compared to living alone. Score: -1. Reason: The step
is incorrect. The final answer is wrong. The correct answer should be $7680.

Step 12: The answer is: 6720. Score: -1. Reason: The step is incorrect. The final answer is wrong. The correct answer
should be $7680.

Table 11: A case study from Mistral-7B model on GSM8k training set. Red text denotes the incorrect
steps that GPT-4 to successfully label errors.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Question Compute cos 120◦.

GPT-4 Labeling

Step 1: First, we need to find a right triangle with an angle of 120◦ and then use the Pythagorean theorem to find the
length of the hypotenuse. Score: 0.

Step 2: The first step is to visualize a rig ht triangle that has an angle of 120◦. Score: -1. Reason: This step is incorrect.
A right triangle cannot have an angle of 120 degrees.

Step 3: We can do this by drawing a line and then rotating it 120◦ around the midpoint of the line. Score: -1. Reason:
This step is incorrect. Rotating a line around its midpoint does not create a right triangle with an angle of 120 degrees.

Step 4: This will give us a triangle with two 60◦ angles and one 120◦ angle. Score: -1. Reason: This step is incorrect.
A triangle with two angles of 60 degrees and one angle of 120 degrees is not a right triangle.

Step 5: Next, we need to find the length of the hypotenuse of this triangle. Score: 0.

Step 6: We can do this by using the Pythagorean theorem, which stat es that in a right triangle, the square of the length of
the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. Score: 0.

Step 7: In this case, the other two sides of the triangle are the two legs of the 60◦ angles, which are each 1 unit long.
Score: -1. Reason: This step is incorrect. The sides of a right triangle do not correspond to the legs of the 60 degree
angles in this context.

Step 8: So, we have h2 = 1 + 1 = 2. This means that the length of the hypotenuse h is
√
2.’, ’Now, we need to find

the cosine of 120◦. Score: -1. Reason: This step is incorrect. The calculation is based on incorrect assumptions from
previous steps.

Step 9: The cosine of an angle is defined as the ratio of the length of the side opposite the angle to the length of the
hypotenuse. Now, we need to find the cosine of 120◦. Score: -1. Reason: This step is incorrect. The cosine of 120
degrees is not 1/sqrt(2).

Step 10: The cosine of an angle is defined as the ratio of the length of the side opposite the angle to the length of the
hypotenuse. Score: 1.

Step 11: In this case, the opposite side is the leg of the 60◦ angle, which is 1 unit long. So, we have cos 120◦ = 1√
2

.
Score: -1. Reason: This step is n ot entirely correct. The cosine of an angle is defined as the ratio of the adjacent side to
the hypotenuse, not the opposite side to the hypotenuse.

Step 12: Finally, we need to simplify thi s expression. The square root of 2 is usually written as
√
2, so we can rewrite

cos 120◦ as 1√
2

. Score: -1. Reason: This step is incorrect. The cosine of 120 degrees is not 1/sqrt(2).

Step 13: So, the final answer is
1
√
2

. The answer is: 1√
2
. Score: -1. Reason: This step is incorrect. The final answer

is not 1/sqrt(2). The correct answer is -1/2.

Table 12: A case study from Mistral-7B model on MATH training set. Red text denotes the incorrect
steps that GPT-4 to successfully label errors.
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A.4 THE EFFECTS OF MATH EVOL-INSTRUCT IN THE SFT AND RL STAGES.

1. Math Evol-based Instruction works efficiently in the SFT stage.

We innovatively propose two evol instruct strategies for mathematical tasks: upward evolution and
downward evolution. Through five rounds of iterative evolution, we successfully constructed a 210k
dataset. In the supervised fine-tuning (SFT) phase, we conducted a comparative analysis between our
dataset and manually annotated mathematical datasets, including GSM8k and MATH. In Table 13
results reveal that, with an equivalent dataset size of 15k, our evolved instructions yield improvements
of 4.9% on GSM8k and 1.6% on MATH over human instructions. Furthermore, employing our total
210k evolved dataset leads to a 21.1% performance boost on GSM8k and a 15.2% enhancement
on MATH. This substantiates the effectiveness of our mathematical instruction evolution strategies,
significantly diminishing the dependence on laborious manual annotation efforts.

Table 13: Performance comparison on GSM8k and MATH using manually annotated GSM8k and
MATH data and our math evol-instruct dataset. We employ the Mistral 7b model for training in the
SFT stage.

Dataset GSM8k MATH

GSM8k and MATH, Human 15k 59.3 14.5
GSM8k and MATH, Human 7.5k + Evol 7.5k 62.9 15.2
GSM8k and MATH, Evol 15k 64.2 16.1
GSM8k and MATH, Human 15k + Evol 195k 80.4 29.7

2. Math Evol-based Instruction works efficiently in the RL stage.

We propose the innovative use of math evoled instruction data in the reinforcement learning (RL)
stage. In Table 14 we combine manually annotated mathematical data (i.e., GSM8k and MATH) with
our evolved instructions data, utilizing IRM and PRM as reward models. The findings indicate that
with a dataset size of 15k, our evolved instructions achieve a performance improvement of 0.5% on
GSM8k and 0.6% on MATH in RL scenarios. Moreover, utilizing our comprehensive 210k evolved
dataset results in performance gains of 3.3% on GSM8k and 3.9% on MATH during the RL stage.
These outcomes significantly enhance RL model performance, indicating the effectiveness of our
math-evolved instruction data in RL stage and addressing the scarcity of manually curated datasets.

Table 14: Performance comparison on GSM8k and MATH using manually annotated GSM8k
and MATH data and our math evol-instruct dataset for training in the RL stage . We employ the
WizardMath-Mistral 7b as our policy model.

Mistral-7B: WizardMath-SFT GSM8k MATH

GSM8k and MATH, Human 15k for RL 80.9 30.1
GSM8k and MATH, Human 7.5k + Evol 7.5k for RL 81.1 30.5
GSM8k and MATH, Evol 15k for RL 81.4 30.7
GSM8k and MATH, Human 15k + Evol 195k for RL 84.2 34.0

A.5 THE DIFFERENCE BETWEEN MATH EVOL-INSTRUCT AND WIZARDLM EVOL-INSTRUCT.

Inspired by prior studies, our math evol instruct method diverges from Wizardlm’s depth and breadth
evolution strategies used for general tasks and WizardCoder for code task. We focus on both upward
and downward evolution techniques for mathematical tasks, aiming to create a more complex and
diverse math dataset. The Table 15 compares the performance between WizardLM’s original
evol-instruct and our math-evol-instruct, the latter improves 7.8% on the GSM8k and 6.6% on the
MATH. Therefore, it is imperative to utilize the math evol-instruct method specifically designed
for mathematical applications rather than just leverage original evol-instruct. General evol-instruct
strategies in WizardLM do not meet the requirements for the math scenario.

Although WizardLM and WizardCoder have also shown the effectiveness of evol-instruct in enhancing
LLM’s instruction following ability, they just focus on the SFT stage. We not only verified and
improved the effectiveness of math evol-instruct in SFT, but also firstly leveraged the evol-instruct in
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reinforcement learning : the experimental results demonstrate the evolved data can further improve the
performance of model in RL stage, thus we unlock the data limitations of reinforced math research.

Table 15: Performance comparison of WizardLM evol instruct and our WizardMath evol instruct on
the GSM8k and MATH in SFT stage. The base model is Mistral 7b.

Dataset GSM8k MATH

WizardLM evol instruct, 210k 72.6 23.1
WizardMath evol instruct, 210k 80.4 29.7

A.6 DIFFERENCE BETWEEN CURRENT VERSION AND PREVIOUS VERSIONS.

The current version of WizardMath greatly improves mathematical reasoning skills. The enhancement
in performance can be attributed to three main factors:

• Firstly, the data size was expanded from 96k to 210k entries.
• Secondly, the instruction evolution prompts were refined to be more precise and detailed,

requiring GPT-4 to use a first plan then generate step-by-step approach for instruction
evolution.

• Lastly, the hyper-parameters for RL training were further optimized, including adjustments
to the learning rate, KL coefficients, and training steps.

The Table 16 below presents the performance improvements of the new model over the original
one, utilizing 96k training data (a mix of evolved GSM8k and MATH data) on Llama2-7B: a 5.9%
increase on GSM8k and a 5.7% on MATH during SFT. When including the RL, the overall gains rise
to 6.8% on GSM8k and 6.1% on MATH.

Table 16: Explore the performance improvements of the new model over the original one in the SFT
and RL.

Dataset SFT RL
GSM8k MATH GSM8k MATH

WizardMath-original 96k 52.6 8.6 54.9 10.7
WizardMath-new 96k 58.5 14.3 61.7 16.8

A.7 EXPLORE GPT-4 PER STEP ACCURACY

We use GPT-4 to label randomly selected 200 samples from the PRM800k dataset and compared
the results with Human-labeler, we employ F1 score as the metric to measure GPT-4 and manual
annotations, we observed that GPT-4 exhibits 86% on the GSM8k and 72% consistency on the MATH
with manual annotations, which indicates the effectiveness of our GPT-4 label method.

A.8 THE IMPACT OF THE DIFFERENT ROUND FOR UPWARD AND DOWNWARD EVOL-INSTRUCT

Table 18, Table 17 explore the impact of different rounds of upward and downward instruction
evolution on GSM8k and MATH. By conducting 5 rounds of upward and downward evolution on
GSM8k and MATH, and using the Mistral-7B base model for fine-tuning, we found that: Each round
of upward evolution yielded a 7.5%-11.0% improvement on GSM8k and a 3.1%-7.2% increase on
MATH over the baseline manual data. Similarly, each round of downward evolution demonstrated a
5.7%-10.3% improvement on GSM8k and a 2.1%-5.3% increase on MATH compared to the original
manual data.

When merging the data from 3 rounds of upward evolution, we note peak performance for both
GSM8k and MATH, with subsequent rounds leading to a gradual decline or plateau in performance.
This phenomenon may be attributed to the instructions becoming more complex and abstract, which
increases the rate of invalid instructions beyond GPT-4’s capacity for accurate responses. Similarly,
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when merging the data from 2 rounds of downward evolution, the performance also reaches the
optimal level, but the performance slowly decreases after more than two rounds. This may be due to
excessive evolution leading to instructions becoming too simple, lacking diversity, redundant, which
increases the proportion of invalid data. Consequently, our study chosen three rounds of upward
evolution and two rounds of downward evolution to balance diversity, complexity, and accuracy
effectively.

Table 17: Impact of different Upward Evol-Instruct turns on Mistral-7B SFT.

Data
GSM8K MATH

Original 1st 2nd 3rd 4th 5th pass@1 Original 1st 2nd 3rd 4th 5th pass@1

Original ✓ ✗ ✗ ✗ ✗ ✗ 59.7 ✓ ✗ ✗ ✗ ✗ ✗ 15.1

Upward Evol

✓ ✓ ✗ ✗ ✗ ✗ 70.7 ✓ ✓ ✗ ✗ ✗ ✗ 22.3
✓ ✗ ✓ ✗ ✗ ✗ 70.6 ✓ ✗ ✓ ✗ ✗ ✗ 21.8
✓ ✗ ✗ ✓ ✗ ✗ 69.9 ✓ ✗ ✗ ✓ ✗ ✗ 21.1
✓ ✗ ✗ ✗ ✓ ✗ 68.1 ✓ ✗ ✗ ✗ ✓ ✗ 19.7
✓ ✗ ✗ ✗ ✗ ✓ 67.2 ✓ ✗ ✗ ✗ ✗ ✓ 18.2
✓ ✓ ✓ ✗ ✗ ✗ 73.4 ✓ ✓ ✓ ✗ ✗ ✗ 24.1
✓ ✓ ✓ ✓ ✗ ✗ 75.9 ✓ ✓ ✓ ✓ ✗ ✗ 25.6
✓ ✓ ✓ ✓ ✓ ✗ 75.5 ✓ ✓ ✓ ✓ ✓ ✗ 25.3
✓ ✓ ✓ ✓ ✓ ✓ 75.8 ✓ ✓ ✓ ✓ ✓ ✓ 25.6

Table 18: Impact of different Downward Evol-Instruct turns on Mistral-7B SFT.

Data
GSM8K MATH

Original 1st 2nd 3rd 4th 5th pass@1 Original 1st 2nd 3rd 4th 5th pass@1
Original ✓ ✗ ✗ ✗ ✗ ✗ 59.7 ✓ ✗ ✗ ✗ ✗ ✗ 15.1

Downward Evol

✓ ✓ ✗ ✗ ✗ ✗ 70.0 ✓ ✓ ✗ ✗ ✗ ✗ 20.4
✓ ✗ ✓ ✗ ✗ ✗ 69.8 ✓ ✗ ✓ ✗ ✗ ✗ 19.8
✓ ✗ ✗ ✓ ✗ ✗ 68.5 ✓ ✗ ✗ ✓ ✗ ✗ 19.1
✓ ✗ ✗ ✗ ✓ ✗ 66.9 ✓ ✗ ✗ ✗ ✓ ✗ 18.3
✓ ✗ ✗ ✗ ✗ ✓ 65.4 ✓ ✗ ✗ ✗ ✗ ✓ 17.2
✓ ✓ ✓ ✗ ✗ ✗ 72.1 ✓ ✓ ✓ ✗ ✗ ✗ 23.1
✓ ✓ ✓ ✓ ✗ ✗ 72.1 ✓ ✓ ✓ ✓ ✗ ✗ 22.8
✓ ✓ ✓ ✓ ✓ ✗ 71.9 ✓ ✓ ✓ ✓ ✓ ✗ 22.5
✓ ✓ ✓ ✓ ✓ ✓ 71.8 ✓ ✓ ✓ ✓ ✓ ✓ 23.0

A.9 EXPLORE THE IMPACT OF THE SCORING AGGREGATION STRATEGY AT EACH STEP OF THE
PRM FOR THE RL POLICY TRAINING

Identifying incorrect steps is critical in the step-by-step math problem solving process. Even if the
solution process is mostly correct, a single incorrect step often leads to an incorrect final answer
and thus cannot be based on the number of correct steps. Our aim is to supervise the RL process by
identifying the most error-prone steps, specifically those with the minimum reward scores.

In Table 19, we explore the impact of five score aggregation strategies on RL training:

• Max: uses the maximum of all step scores.

• Mean: calculates the mean of all step scores.

• Product: calculates the product of each step score.

• Dense per-step: considers each step scores to supervise RL training.

• Min: picks the minimum of all step scores.

The experimental results on Mistral-7B show that the Min strategy is the most effective, outperforming
the Dense per-step strategy by 1.3% on GSM8k and 1.5% on MATH. The Max strategy is the worst,
it’s due to Max focus on the maximum reward scores for training, which leads to overlook incorrect
supervisory signals and only the correct steps are mainly reinforced. And Dense per-step reward
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strategy will diminish supervisory signals for erroneous steps, so we finally use the minimum reward
at the end of the sequence.

Table 19: Explore the impact of the scoring aggregation strategy at each step of the PRM for the RL
policy training. We use the WizardMath-Mistral-7B-SFT base policy model for the RL training.

Scoring Strategies Max Mean Product Dense per-step Min

GSM8k 78.3 82.1 83.6 82.9 84.2
MATH 27.6 32.4 33.7 32.5 34.0

A.10 EXPLORE THE PERFORMANCE ON OUT OF DOMAIN (I.E,MATH) WHEN TRAINING ONLY
GSM8K, AND VICE VERSA.

In Table 20 We only train SFT model on GSM8k data and evaluate out-of-domain performance (i.e.,
on MATH), and our WizardMath-GSM8k model attains a 8.1% accuracy, surpassing the manually
annotated Human-GSM8k by 5.1%, respectively. Conversely, only training on MATH data and
assessing out-of-domain performance (i.e., on GSM8k), WizardMath-MATH achieves a 39.4%
accuracy, outperforming Human-MATH (13.8%) by 25.6%. These findings emphasize that our
method significantly enhances performance on out-of-domain tasks.

Table 20: Explore the performance on out of domain (i.e,MATH) when training only GSM8k, and
vice versa. We use the llama2 7b model for the SFT training.

Dataset GSM8k MATH

Human-GSM8k 41.6 3.0
WizardMath-GSM8k 61.9 8.1

Human-MATH 13.8 4.7
WizardMath-MATH 39.4 20.6

WizardMath 64.2 22.1
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A.11 DATA CONTAMINATION CHECK

Apart from the performance analysis, we also investigate whether evolution leads to the data contami-
nation between training data and test set. To address this consideration, we employ instructions in the
GSM8k and MATH test set as queries to retrieve the top-5 samples from all evolved training data
with an embedding model, gte-large (Li et al., 2023d). Additionally, we employ GPT-4 to provide
similarity judgement between the test sets and the retrieved samples, and remove the top-2 similar in-
structions. The prompt and details are shown in Appendix A.12. Figure 4 in Appendix illustrates that
the evolution process does not yield higher similarity scores. Furthermore, similarity scores across all
rounds remain relatively low. These findings indicate that the primary source of performance gain
is the introduction of more complex and comprehensive data based on our downward and upward
instruction evolution.

A.12 SIMILARITY CHECKING AND DATA FILTERING

The prompt formats to compute the similarity score between two given math problem tasks are as
follow:

Example 7: System Prompt for Similarity Checking

Your task is to evaluate the similarity of the two given math problems. Please review the two math problem
tasks carefully, paying close attention to the overlap in variables, conditions, participants, actions, or processes,
topics, and contents and core concept and structure. Once you have carefully reviewed both math problem
tasks, provide a similarity score between these two math problem tasks. The score should range from 1 to 10
(1: completely different math problem tasks; 10: identical math problem tasks). You only need to provide
your score without any explanation.
# Problem-1
{task1}

# Problem-2
{task2}

Your judgement score:

To thoroughly prevent data leakage from the GSM8k and MATH test datasets to the training dataset,
we implemented an additional data filtering step. Utilizing the SOTA embeddings model, gte-large,
we treated all test samples as queries to extract the top 5 samples from the training data. Following
this, GPT-4 was employed to evaluate the similarity between the retrieved samples and the test set.

A.13 DETAIL WORKS

B RELATED WORK

Large Language Models. LLMs have significantly advanced Natural Language Processing, with
models like OpenAI’s GPT Series (Brown et al., 2020a; OpenAI, 2023), Anthropic’s Claude (Bai
et al., 2022), Google’s PaLM (Chowdhery et al., 2022; Anil et al., 2023), Gemini (Team, 2023), and
Gemma (Team et al., 2024) featuring billions of parameters and trained on massive textual datasets.
The AI field has also seen a rise in open-source LLMs such as Mistral (Jiang et al., 2023), Llama
Series (Touvron et al., 2023a;b; Dubey et al., 2024; Taylor et al., 2022), DeepSeek (Bi et al., 2024;
Shao et al., 2024), Qwen (Bai et al., 2023; Yang et al., 2024) etc. (Zeng et al., 2022; Penedo et al.,
2023; Scao et al., 2022). Notably, Llama serves as a foundational model for supervised fine-tuning,
leading to the development of models like Alpaca, Vicuna, Guanaco, and Orca (Taori et al., 2023;
Chiang et al., 2023; Dettmers et al., 2023; Mukherjee et al., 2023).

Large Language Models For Mathematical reasoning. NLP models face challenges with complex
reasoning, including mathematical (Lu et al., 2022; Frieder et al., 2023; Long et al., 2024; Zhang et al.,
2024c; Xia et al., 2024), common-sense (Talmor et al., 2019; Geva et al., 2021). Significant research
focuses on Mathematical Word Problems (MWP), which demand understanding of mathematical
concepts and multi-step reasoning (Koncel-Kedziorski et al., 2016; Patel et al., 2021; Lan et al.,
2022; Cobbe et al., 2021; Jie et al., 2022; Yuan et al., 2023b; Fu et al., 2023b; Zheng et al., 2023;
Zhao et al., 2023; Wang et al., 2023b; Imani et al., 2023; Yuan et al., 2023a; Wang et al., 2023e;
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Figure 4: Average similarity scores between GSM8k, MATH samples and the top-1 retrieved data for
each round.

Ahn et al., 2024). Models are tested on various MWP benchmarks (Hosseini et al., 2014; Roy &
Roth, 2015; Koncel-Kedziorski et al., 2015; Patel et al., 2021; Cobbe et al., 2021; Ling et al., 2017;
Hendrycks et al., 2021; Xia et al., 2024; Huang et al., 2024a; Zhang et al., 2024c; Li et al., 2024d;
Anand et al., 2024). Techniques like Chain-of-Thought Prompting (Wei et al., 2022), Least-to-Most
prompting (Zhou et al., 2022), and Complex CoT (Fu et al., 2022) enhance reasoning by introducing
multiple steps and breaking problems into sub-problems. There are some models aimed at improving
math CoT reasoning skills such as MetaMath (Yu et al., 2023b), MathScale (Tang et al., 2024),
Xwin-math (Li et al., 2024a) etc. (Liu et al., 2023; Liu & Yao, 2024; Jiang et al., 2024b; Xiong et al.,
2024; Chan et al., 2024; Lin et al., 2024; Huang et al., 2024b; Mitra et al., 2024b; Yuan et al., 2023a;
Wu et al., 2024; Mitra et al., 2024a; Zhang et al., 2024e; Fu et al., 2023a; Ni et al., 2024; Tian et al.,
2024; Zhang et al., 2024b; Zeng et al., 2024; Shao et al., 2024; Feng et al., 2023; Wu et al., 2023a;
Tong et al., 2024; Yang et al., 2024; Zhou et al., 2024; Chen et al., 2024c; Zhang et al., 2024d; Su
et al., 2024). Some models enhance mathematical reasoning by integrating python tools, such as
TORA (Gou et al., 2023), MAmmoTH (Yue et al., 2023), Openmathinstruct (Toshniwal et al., 2024),
etc. (Lu et al., 2024; Li et al., 2024c; Yu et al., 2024; Wang et al., 2023a; Li et al., 2024b)

Large Language Models For Reinforcement Learning. State-of-the-art models often display
logical errors and illusions, particularly in domains requiring complex, multi-step reasoning, leading
to significant challenges (Bubeck et al., 2023; Maynez et al., 2020). Strategies such as training reward
models help discriminate between desirable and undesirable outputs (Lightman et al., 2023; Wu
et al., 2023b; Chen et al., 2024b). Historically, outcome-based approaches focused on algorithmic
tasks (Graves et al., 2014; Reed & De Freitas, 2015; Li et al., 2016; Cai et al., 2017; Yu et al., 2023a),
while recent research demonstrates the efficacy of reward models or validators in enhancing model
performance (Cobbe et al., 2021; Wang et al., 2023c;d; Li et al., 2022a;b). Reward models have
also been incorporated into reinforcement learning pipelines and employed in rejection sampling to
align Large Language Models (LLMs) with human preferences (Ziegler et al., 2019; Stiennon et al.,
2020; Nakano et al., 2021; Ouyang et al., 2022; Nichols et al., 2020; Shen et al., 2021; Bai et al.,
2022; Yuan et al., 2023c; Dong et al., 2023; Song et al., 2023; Touvron et al., 2023b). A contrast
is drawn between outcome-supervised and process-supervised reward models, with the latter being
more effective at addressing discrepancies arising from incorrect reasoning paths leading to correct
outcomes (Uesato et al., 2022; Zelikman et al., 2022; Creswell et al., 2022). Recent advances have
promoted process-based supervision through manual annotation, significantly benefiting LLMs over
outcome-based approaches (Lightman et al., 2023; Zhu et al., 2023; Ni et al., 2022; Wang et al.,
2024a; Sun et al., 2024; Chen et al., 2024a; Wang et al., 2024b; Zhang et al., 2024a;b). In this paper,
we leverage AI models like ChatGPT to automatically offer annotation to improve the efficiency of
this research line.
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C WIZARDMATH REBUTTAL

C.1 REVIEWER-8CQG

Dear Reviewer 8CQg,

we thank you for your valuable comments and the time you spent reviewing our work! Your
professional feedback provides valuable guidance for writing a more comprehensive and competitive
paper. Below, we provide detailed responses to the Weaknesses and Questions raised in your review
of our paper, addressing each point systematically.

Meanwhile, in Appendix C.1 of our latest upload of revised paper (pages 36–49, lines 1892–
2589), we also have added the discussions with the Reviewer-8CQg on the weaknesses and questions
of our paper to respond to the Reviewer-8CQg’s comments and to further improve the research work.

C.1.1 WEAKNESSES-1

The primary concern with this paper is the unfair comparison of baseline models in the results.
While the authors claim that both supervised fine-tuning (SFT) with Math Evol-Instruct and
reinforcement learning (RL) with the Instruction Reward Model (IRM) and Process Reward
Model (PRM) are beneficial for enhancing mathematical reasoning, these approaches—SFT
with synthesized data and the use of various reward models for RL—represent parallel research
lines.

We sincerely appreciate your attention to our work and your careful and responsible review and
thank you for your valuable suggestions. To ensure a fair comparison, we conducted evaluations
using WizardMath-SFT against all current state-of-the-art (SOTA) models across different scales
of base models, as presented in Table 21 and Table 22, Appendix C.1.2 of our latest upload
of revised paper (pages 38–39, lines 2009–2105). The results confirm the effectiveness of our
proposed Math Evol-Instruct approach. Meanwhile, during the PPO training stage, we applied IRM
and PRM to different SFT backbones, significantly enhancing the mathematical reasoning ability of
these models. This demonstrates the effectiveness and generalizability of our IRM and PRM methods
refer to Weaknesses1.1-Weaknesses1.4 below for details.

Below, we provide detailed responses to Weaknesses 1.1- Weaknesses1.4 in the order you were
raised.

C.1.2 WEAKNESSES-1.1

In Table 1, the authors compare their model, which has undergone both SFT and RL, with
models that have only undergone SFT. This comparison is unfair because these SFT models
could also be further enhanced with RL techniques to improve mathematical reasoning (e.g.,
using ORM for RL on DartMath). It would be more appropriate to isolate the effects of SFT and
RL for a fair comparison. In Table 1, the authors should compare the performance of models
that have undergone SFT with Math Evol-Instruct against existing baselines such as MetaMath
and DartMath. Additionally, comparisons with baselines like MetaMath and DartMath on the
LLaMA-3.2 backbone would be valuable, as their training data is publicly available.

We sincerely appreciate your insightful questions and detailed observations. To provide a more
comprehensive and fair comparison, we have included the WizardMath-SFT results in Table 21 and
Table 22, Appendix C.1.2 of our latest upload of revised paper (pages 38–39, lines 2009–2105).
These results evaluate the performance of WizardMath-SFT, trained exclusively using SFT, against
current SOTA models across various base models. The key findings are summarized as follows:

1. Performance Comparison:

• On Llama-2-7B and Mistral-7B-v0.1, WizardMath-SFT performs marginally below
SOTA models (i.e.,Xwin-Math and Skywork-Math) and outperforms existing other
excellent models (i.e.,DART-Math).

• On Llama-2-13B and Llama-2-70B, WizardMath-SFT achieves comparable perfor-
mance to Xwin-Math.
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• On all various base models, WizardMath-SFT surpasses most existing SOTA models
trained solely with SFT(i.e.,DART-Math).

Notably, WizardMath-SFT achieves these results using only 418K synthetic data points, a
significantly smaller dataset compared to DART-Math (580k-590k), Xwin-Math (1440K)
and Skywork-Math (2500K).

2. Comparison with advanced data synthesis methods (i.e., DART-Math, MetaMath)
As shown in the following Table 23, DART-Math demonstrates strong performance across
various base models and the data synthesis method proposed by DART-Math shows the
effectiveness and outstanding performance. Meanwhile, WizardMath-SFT demonstrates
comparable or superior performance to advanced data synthesis methods, such as DART-
Math and MetaMath, across all base models. Key observations include:

• On Mistral-7B-v0.1 and DeepSeekMath, WizardMath-SFT performs on par with
DART-Math (Uniform & Prop2Diff) on GSM8k and surpasses DART-Math (Uniform
& Prop2Diff) on MATH;

• On Llama3.2 1B, Llama3.2 3B, Llama3-8B, and Llama3.1-8B, Llama2-7B,
WizardMath-SFT exhibits a 2%–7% improvement over DART-Math (Uniform &
Prop2Diff) on the GSM8k benchmark. On the MATH benchmark, WizardMath-SFT
outperforms DART-Math (Uniform & Prop2Diff) by approximately 5% – 10%.

These findings highlight the effectiveness of the proposed Math Evol-Instruct for enhancing
mathematical reasoning capabilities.

Notably, to ensure the same training settings as in our paper during the SFT stage, we employ a
learning rate of 2e-5 for the Llama series base models (i.e., Llama2 7B, Llama3.1 8B, Llama3.2 1B,
and Llama3.2 3B) and a learning rate of 5e-6 for Mistral-7B-v0.1. All models are trained for 3 epochs
with a batch size of 256, and 4 checkpoints are saved per epoch. Finally, we select the checkpoint
with the highest accuracy on the GSM8k and MATH benchmarks for reporting.

We have added the discussions about the Weaknesses-1.1 in Appendix C.1.2 of our latest upload
of revised paper (pages 36–40, lines 1921–2135)
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Table 21: In the study, we compare the WizardMath-SFT/RL model across various base models
(0.1B-3B) with the SOTA models on the GSM8k and Math benchmarks. We report the Chain of
Thought (CoT) pass@1 results without using any external Python tools. The results from 7B to 70B
are shown in Table 22.

Model Base Params GSM8k MATH
Proprietary models

GPT-o1 (OpenAI, 2023) - - - 94.8
GPT-o1-mini (OpenAI, 2023) - - - 90.0
Gemini-1.5 002 (Team et al., 2023) - - - 86.5
Claude 3.5 Sonnet (Bai et al., 2022) - - 96.4 71.1
GPT-4o-2024-0513 (OpenAI, 2023) - - 96.1 76.6
GPT-4-turbo-0125 (OpenAI, 2023) - - 94.2 64.5
GPT-4-0314 (OpenAI, 2023) - - 94.7 52.6
GPT-4 (original version) (OpenAI, 2023) - - 92.0 42.5
Baichuan-3 (Yang et al., 2023) - - 88.2 49.2
GLM-4 (GLM et al., 2024) - - 87.6 47.9
Gemini Pro (Team, 2023) - - 86.5 32.6
Claude2 (Bai et al., 2022) - - 85.2 32.5
GPT-3.5-Turbo (OpenAI, 2023) - - 81.6 43.1
PaLM2 (Anil et al., 2023) - - 80.7 34.3
Minerva (Lewkowycz et al., 2022) - 540B 58.8 33.6
GPT3.5 (Brown et al., 2020a) - - 57.1 -

Open-Source Models (0.1B-3B)

GPT-2-Small (Brown et al., 2020b) - 0.1B 6.9 5.4
GPT-2-Medium (Brown et al., 2020b) - 0.3B 11.2 6.2
GPT-2-Large (Brown et al., 2020b) - 0.7B 13.6 6.4
GPT-2-XL (Brown et al., 2020b) - 1.5B 15.4 6.9
WizardMath-GPT-SFT GPT-2-Small 0.1B 21.2 9.1
WizardMath-GPT-RL GPT-2-Small 0.1B 26.4 12.3
WizardMath-GPT-SFT GPT-2-Medium 0.3B 30.6 11.4
WizardMath-GPT-RL GPT-2-Medium 0.3B 38.7 15.6
WizardMath-GPT-SFT GPT-2-Large 0.7B 43.7 16.4
WizardMath-GPT-RL GPT-2-Large 0.7B 50.1 21.2
WizardMath-GPT-SFT GPT-2-XL 1.5B 51.9 18.3
WizardMath-GPT-RL GPT-2-XL 1.5B 58.9 25.4

WizardMath-Qwen-SFT Qwen-Math-2.5 1.5B 82.3 62.1
WizardMath-Qwen-RL Qwen-Math-2.5 1.5B 86.7 68.6

Llama-3.2-Instruct (Dubey et al., 2024) Llama 3.2 1B 44.4 30.6
MetaMath (Yu et al., 2023b) Llama 3.2 1B 51.9 15.5
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3.2 1B 49.2 23.4
DART-Math-Uniform (Tong et al., 2024) Llama 3.2 1B 55.8 22.0
WizardMath-Llama-SFT Llama 3.2 1B 57.1 29.7
WizardMath-Llama-RL Llama 3.2 1B 63.3 33.5
Llama-3.2-Instruct (Dubey et al., 2024) Llama 3.2 3B 77.7 48.0
MetaMath (Yu et al., 2023b) Llama 3.2 3B 72.6 25.9
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3.2 3B 74.0 37.8
DART-Math-Uniform (Tong et al., 2024) Llama 3.2 3B 77.8 36.4
WizardMath-Llama-SFT Llama 3.2 3B 80.3 45.2
WizardMath-Llama-RL Llama 3.2 3B 85.5 49.9
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Table 22: Continue Table 21, in this study, we compare the WizardMath-SFT/RL model across
various base models (7B-70B) with the SOTA models on the GSM8k and Math benchmarks. We
report the Chain of Thought (CoT) pass@1 results without using any external Python tools.

Model Base Params GSM8k MATH
Open-Source Models (7B-8B)

Llama-2 (Touvron et al., 2023b) - 7B 14.6 2.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 7B 50.5 10.4
MathScale (Tang et al., 2024) Llama-2 7B 66.3 31.1
MetaMath (Yu et al., 2023b) Llama-2 7B 66.5 19.8
MuggleMath (Li et al., 2023a) Llama-2 7B 68.4 -
Skywork-Math (Zeng et al., 2024) Llama-2 7B 72.9 47.7
Math-Shepherd (Wang et al., 2024a) Llama-2 7B 73.2 21.6
DART-Math-Prop2Diff (Tong et al., 2024) Llama-2 7B 69.9 30.7
DART-Math-Uniform (Tong et al., 2024) Llama-2 7B 73.8 29.5
Xwin-Math (Li et al., 2024a) Llama-2 7B 82.6 40.6
WizardMath-Llama-SFT Llama-2 7B 77.4 35.6
WizardMath-Llama-RL Llama-2 7B 84.1 43.5

Mistral-v0.1 (Jiang et al., 2023) - 7B 42.9 12.9
MathScale (Tang et al., 2024) Mistral-v0.1 7B 74.8 35.2
MMIQC (Liu & Yao, 2024) Mistral-v0.1 7B 74.8 36.0
MetaMath (Yu et al., 2023b) Mistral-v0.1 7B 77.9 28.6
DART-Math-Prop2Diff (Tong et al., 2024) Mistral-v0.1 7B 81.1 45.5
KPMath-Plus (Huang et al., 2024b) Mistral-v0.1 7B 82.1 46.8
DART-Math-Uniform (Tong et al., 2024) Mistral-v0.1 7B 82.6 43.5
Skywork-Math (Zeng et al., 2024) Mistral-v0.1 7B 83.9 51.2
Math-Shepherd (Wang et al., 2024a) Mistral-v0.1 7B 84.1 33.0
MAmmoTH2-Plus (Yue et al., 2024) Mistral-v0.1 7B 84.7 45.0
JiuZhang3.0 (Zhou et al., 2024) Mistral-v0.1 7B 88.6 52.8
Xwin-Math (Li et al., 2024a) Mistral-v0.1 7B 89.2 43.7
WizardMath-Mistral-SFT Mistral-v0.1 7B 82.8 48.1
WizardMath-Mistral-RL Mistral-v0.1 7B 90.7 55.4
WizardMath-Mistral-SFT Mistral-v0.3 7B 84.5 49.9
WizardMath-Mistral-RL Mistral-v0.3 7B 90.4 55.6
WizardMath-Mathstral-SFT Mathstral-v0.1 7B 88.3 64.2
WizardMath-Mathstral-RL Mathstral-v0.1 7B 93.8 70.9

Qwen2.5-Math-Base (Yang et al., 2024) Qwen2.5-Math 7B 91.6 55.4
WizardMath-Qwen-SFT Qwen2.5-Math 7B 92.3 72.3
WizardMath-Qwen-RL Qwen2.5-Math 7B 93.9 77.8
WizardMath-Qwen-SFT Qwen2.5 7B 89.8 68.1
WizardMath-Qwen-RL Qwen2.5 7B 94.0 74.5

DeepSeekMath-Base (Shao et al., 2024) - 7B 64.2 36.2
NuminaMath-CoT (Li et al., 2024c) DeepseekMath 7B 75.4 55.2
MMIQC (Liu & Yao, 2024) DeepSeekMath 7B 79.0 45.3
KPMath-Plus (Huang et al., 2024b) DeepSeekMath 7B 83.9 48.8
DART-Math-Prop2Diff (Tong et al., 2024) DeepSeekMath 7B 86.8 53.6
DeepSeekMath-RL (Shao et al., 2024) DeepSeekMath 7B 88.2 51.7
DART-Math-Uniform (Tong et al., 2024) DeepSeekMath 7B 88.2 52.9
WizardMath-DeepSeek-SFT DeepSeekMath 7B 88.9 58.2
WizardMath-DeepSeek-RL DeepSeekMath 7B 91.0 64.6

MetaMath (Yu et al., 2023b) Llama 3 8B 77.3 20.6
MMIQC (Liu & Yao, 2024) Llama 3 8B 77.6 29.5
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3 8B 81.1 46.6
DART-Math-Uniform (Tong et al., 2024) Llama 3 8B 82.5 45.3
MAmmoTH2-Plus (Yue et al., 2024) Llama 3 8B 84.1 42.8
Llama 3.1-Instruct (Dubey et al., 2024) Llama 3 8B 84.5 51.9
JiuZhang3.0 (Zhou et al., 2024) Llama 3 8B 88.6 51.0
WizardMath-Llama-SFT Llama 3 8B 88.9 53.3
WizardMath-Llama-RL Llama 3 8B 90.3 58.8

MetaMath (Yu et al., 2023b) Llama 3.1 8B 80.4 35.4
DART-Math-Prop2Diff (Tong et al., 2024) Llama 3.1 8B 84.3 46.5
DART-Math-Uniform (Tong et al., 2024) Llama 3.1 8B 86.7 45.1
WizardMath-Llama-SFT Llama 3.1 8B 89.2 55.8
WizardMath-Llama-RL Llama 3.1 8B 93.4 62.3

Open-Source Models (13B)

Llama-2 (Touvron et al., 2023b) - 13B 28.7 3.9
MAmmoTH-CoT (Yue et al., 2023) Llama 2 13B 56.3 12.9
MathScale (Tang et al., 2024) Llama 2 13B 71.3 33.8
MetaMath (Yu et al., 2023b) Llama 2 13B 72.3 22.4
MuggleMath (Li et al., 2023a) Llama 2 13B 74.0 -
KPMath-Plus (Huang et al., 2024b) Llama 2 13B 81.6 41.0
Xwin-Math (Li et al., 2024a) Llama 2 13B 88.1 44.9
WizardMath-Llama-SFT Llama 2 13B 86.8 46.5
WizardMath-Llama-RL Llama 2 13B 89.7 50.6

Open-Source Models (70B)

Llama-2 (Touvron et al., 2023b) - 70B 56.8 13.5
MAmmoTH-CoT (Yue et al., 2023) Llama-2 70B 72.4 21.1
MetaMath (Yu et al., 2023b) Llama-2 70B 82.3 26.6
KPMath-Plus (Huang et al., 2024b) Llama-2 70B 87.4 48.6
Xwin-Math (Li et al., 2024a) Llama-2 70B 90.6 52.8
WizardMath-Llama-SFT Llama-2 70B 89.5 54.4
WizardMath-Llama-RL Llama-2 70B 92.8 58.6
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Table 23: In this study, we mainly compare the performance of WizardMath-SFT with advanced data
synthesis methods such as DART-Math and MetaMath on different base models under the GSM8k
and MATH benchmarks in the SFT stage. We report the CoT pass@1 results of the model without
relying on any external Python tools.

Model Base Params GSM8k MATH
DART-Math-Prop2Diff Llama 3.2 1B 49.2 23.4
MetaMath Llama 3.2 1B 51.9 15.5
DART-Math-Uniform Llama 3.2 1B 55.8 22.0
WizardMath-Llama-SFT Llama 3.2 1B 57.1 29.7

MetaMath Llama 3.2 3B 72.6 25.9
DART-Math-Prop2Diff Llama 3.2 3B 74.0 37.8
DART-Math-Uniform Llama 3.2 3B 77.8 36.4
WizardMath-Llama-SFT Llama 3.2 3B 80.3 45.2

MetaMath Llama-2 7B 66.5 19.8
DART-Math-Prop2Diff Llama-2 7B 69.9 30.7
DART-Math-Uniform Llama-2 7B 73.8 29.5
WizardMath-Llama-SFT Llama-2 7B 77.4 35.6

MetaMath Mistral-v0.1 7B 77.9 28.6
DART-Math-Prop2Diff Mistral-v0.1 7B 81.1 45.5
DART-Math-Uniform Mistral-v0.1 7B 82.6 43.5
WizardMath-Mistral-SFT Mistral-v0.1 7B 82.8 48.1

DART-Math-Prop2Diff DeepSeekMath 7B 86.8 53.6
DART-Math-Uniform DeepSeekMath 7B 88.2 52.9
WizardMath-DeepSeek-SFT DeepSeekMath 7B 88.9 58.2

MetaMath Llama 3 8B 77.3 20.6
DART-Math-Prop2Diff Llama 3 8B 81.1 46.6
DART-Math-Uniform Llama 3 8B 82.5 45.3
WizardMath-Llama-SFT Llama 3 8B 88.9 53.3

MetaMath Llama 3.1 8B 80.4 35.4
DART-Math-Prop2Diff Llama 3.1 8B 84.3 46.5
DART-Math-Uniform Llama 3.1 8B 86.7 45.1
WizardMath-Llama-SFT Llama 3.1 8B 89.2 55.8

C.1.3 WEAKNESSES-1.2

In analyzing the impact of training data size, the authors should compare their approach with
the best method for SFT using synthesized data, specifically DartMath. MetaMath, which was
developed around a year ago, uses GPT-3.5-turbo for data augmentation, making it an outdated
and potentially unfair baseline.

Thank you for your insightful advice. In Appendix C.1.3 of our latest upload of revised paper
(pages 40–41, lines 2137–2154), Figure 5 , we explore the performance of WizardMath Evol-instruct
in comparison with DART-Math and MetaMath across different training data scales on the GSM8k
and MATH benchmarks in the SFT stage.

As the volume of training data increases, WizardMath-Evol-Instruct consistently improves its per-
formance on the GSM8k and MATH benchmarks, exhibiting a slightly higher growth rate than
DART-Math. In the initial stages, WizardMath slightly underperforms compared to DART-Math.
This advantage may stem from DART-Math being distilled from DeepSeekMath-RL, an advanced
mathematical reasoning model pre-trained on 120B high-quality mathematical tokens, showcasing
exceptional proficiency in mathematical reasoning. However, once the dataset exceeds 60k, its perfor-
mance begins to surpasse DART-Math. At a data scale of 390k, WizardMath slightly outperforms
DART-Math by 2%–3% on GSM8k and by 5%–6% on MATH. Additionally, WizardMath-Evol-
Instruct consistently exceeds MetaMath at the same data scales, achieving increases of 3%–6% on
GSM8k and 15%–20% on MATH. This performance gain is attributed to the efficiency of Math
Evol-Instruct’s upward and downward evolution processes. These findings demonstrate that our Math
Evol-Instruct method is also as scalable and effective as DART-Math for the large-scale synthetic
data.
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Figure 5: The performance of WizardMath Evol-instruct in comparison with DART-Math and
MetaMath across different training data scales on the GSM8k and MATH benchmarks in the SFT
stage. We use the Mistral-7B as base model

We have added the discussions about the Weaknesses-1.2 in Appendix C.1.3 of our latest upload
of revised paper (pages 40-41, lines 2139–2189)

C.1.4 WEAKNESSES-1.3

It appears that SFT with Math Evol-Instruct yields inferior results compared to other SFT
methods. From Table 4, the LLaMA2-7B: WizardMath-SFT scores 35.6 on MATH, which lags
behind models like XwinMath and Skywork. Likely, it would also lag behind LLaMA2-7B
fine-tuned on the DartMath training data. This suggests that the main contribution of the paper
is in the RL component. Therefore, the primary focus should be on the results obtained with
different reward models, as presented in Table 4, utilizing various SFT backbones.

Thank you for your valuable questions and insightful suggestions. Below are detailed responses to
each question.

Q1: It appears that SFT with Math Evol-Instruct yields inferior results compared to other SFT
methods. From Table 4, the LLaMA2-7B: WizardMath-SFT scores 35.6 on MATH, which lags
behind models like XwinMath and Skywork. Likely, it would also lag behind LLaMA2-7B
fine-tuned on the DartMath training data.

In Table 24 below, we show the performance comparison of WizardMath-SFT with DART-Math,
Xwin-Math and Skywork-Math on the Llama2-7B base model on the MATH benchmark.

• WizardMath-SFT vs. DART-Math:
WizardMath-SFT, based on the Llama2-7B model, outperforms DART-Math-Uniform by
6.1% and DART-Math-Prop2Diff by 4.9% on the MATH. Notably, the amount of data used
by WizardMath-SFT is only 70%–71% of DART-Math (418k vs. 591k; 418k vs. 585k).

• WizardMath vs. Xwin-Math:
Although WizardMath-SFT is 5% lower than Xwin-Math on the MATH, the amount of data
used is only 29.0% of Xwin-Math (418k vs. 1440k), which is much less than Xwin-Math.
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Moreover, Xwin-Math leverages GPT-4-turbo for data synthesis. However, WizardMath-SFT
outperforms Xwin-Math on the MATH when using different backbones such as Mistral-7B-
v0.1, Llama2-13B, and Llama2-70B as shown in Table 22 of our latest upload of revised
paper (pages 39, lines 2052–2105). For instance, in Table 22, WizardMath-SFT exceeds
Xwin-Math by 4.4% (48.1% vs. 43.7%) when using the Mistral-7B-v0.1 as the base model.

• WizardMath vs. Skywork-Math:
WizardMath-SFT underperforms Skywork-Math-2500k on the MATH benchmark by 12.1%,
but it uses only 16.7% of the amount of data used by Skywork-Math-2500k (418k vs.
2500k), which is much less than Skywork-Math. Furthermore, according to Figure 5 About
Synthetic Data Size in the Skywork-Math paper[1], Skywork-Math-720k scores 34.54%
on MATH, and Skywork-Math-360k scores 29.36%. Therefore, WizardMath-SFT-418k
performs comparably to Skywork-Math-720k on MATH, and with the same amount of data,
WizardMath-SFT outperforms Skywork-Math.

In summary, the Math Evol Instruct data synthesis method proposed in our study is as effective and
practical as the current state-of-the-art data synthesis methods, such as DART-Math, Skywork-Math
and Xwin-Math in the SFT stage. It significantly enhances the mathematical reasoning capabilities of
the model, marking a key contribution of our work. Additionally, we acknowledge the contributions
of methods such as DART-Math, Skywork-Math and Xwin-Math, which are excellent data synthesis
approaches excelling in generating high-quality datasets for mathematical tasks and significantly
enhancing models’ mathematical reasoning capabilities.

[1] Zeng L, Zhong L, Zhao L, et al. Skywork-Math: Data Scaling Laws for Mathematical Reasoning
in Large Language Models–The Story Goes On[J]. arXiv preprint arXiv:2407.08348, 2024.

Q2: This suggests that the main contribution of the paper is in the RL component. Therefore,
the primary focus should be on the results obtained with different reward models, as presented
in Table 4, utilizing various SFT backbones.

Thank you for your deep insights. The following table 25 shows the impact of applying the proposed
Instruction Quality Scoring Reward Model (IRM) and Process Supervised Reward Model (PRM) to
PPO training across various SFT backbones (i.e., DART-Math, MetaMath, and Xwin-Math). The
results demonstrate that incorporating our IRM and PRM during PPO training led to a performance
improvement of 5% to 8% on both GSM8k and MATH for most SFT models. For instance:

• When using DART-Math as the SFT backbone based on Llama2-7B:
On GSM8k, after reinforcement learning training with IRM and PRM, Prop2Diff-RL
improved by 6.9% (69.9% vs. 76.8%), and Uniform-RL improved by 5.3% (73.8% vs.
79.1%).
On MATH, Prop2Diff-RL achieved a 6.4% gain (30.7% vs. 37.1%), and Uniform-RL
improved by 5.7% (29.5% vs. 35.2%).

• When using DART-Math as the SFT backbone based on Mistral-7B-v0.1:
On GSM8k, Prop2Diff-RL improved by 6.4% (81.1% vs. 87.5%), and Uniform-RL in-
creased by 5.5% (82.6% vs. 88.1%).
On MATH, Prop2Diff-RL rose by 5.9% (45.5% vs. 51.4%), and Uniform-RL saw a 5.2%
enhancement (43.5% vs. 48.9%).

• For the MetaMath models based on Llama2-7B and Mistral-7B-v0.1:
Training with PPO using IRM and PRM led to performance improvements of 8% to 9% on
GSM8k and 5% to 8% on MATH.

• Similarly, for the Xwin-Math-Llama2-7B model, performance on both GSM8k and
MATH improved by 6% to 8%.

These findings highlight the significant contributions of our IRM and PRM during reinforcement
learning, consistently enhancing mathematical reasoning abilities of our SFT models while achieving
robust generalization on different SFT backbones. This represents a key contribution of our study.

Thus, our study primarily makes two core contributions:

1. The proposed Math Evol Instruct data synthesis method is also as effective and practical as the
current state-of-the-art data synthesis methods, such as DART-Math, Skywork-Math and Xwin-Math
in the SFT stage. It also significantly enhances the mathematical reasoning capabilities of our models.
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2. The proposed IRM and PRM models substantially improve performance during the reinforcement
learning phase. They not only continuously enhance the mathematical reasoning abilities of our
SFT models but also achieve strong generalization across various SFT backbones (i.e., DART-Math).
Outstanding performance is demonstrated on the GSM8k and MATH.

We have added the discussions about the Weaknesses-1.3 in Appendix C.1.4 of our latest upload
of revised paper (pages 41–43, lines 2187–2309)

Table 24: The performance comparison of WizardMath-SFT with DART-Math, Xwin-Math, and
Skywork-Math on the Llama2-7B base model on the MATH benchmark.

Llama2 7B as the base model Data size MATH
DART-Math-Uniform 591k 29.5
DART-Math-Prop2Diff 585k 30.7
Xwin-Math 1440k 40.6
Skywork-Math 360k 29.36
Skywork-Math 720k 34.54
Skywork-Math 2500k 47.7

WizardMath-SFT 418k 35.6

Table 25: The impact of applying the proposed Instruction Quality Scoring Reward Model (IRM)
and Process Supervised Reward Model (PRM) to PPO training across various SFT backbones (i.e.,
DART-Math, MetaMath, and Xwin-Math)

Model Base Params GSM8k MATH
MetaMath-SFT Llama-2 7B 66.5 19.8
MetaMath-RL Llama-2 7B 75.6 25.1

DART-Math-Prop2Diff-SFT Llama-2 7B 69.9 30.7
DART-Math-Prop2Diff-RL Llama-2 7B 76.8 37.1
DART-Math-Uniform-SFT Llama-2 7B 73.8 29.5
DART-Math-Uniform-RL Llama-2 7B 79.1 35.2

Xwin-Math-SFT Llama-2 7B 82.6 40.6
Xwin-Math-RL Llama-2 7B 88.2 48.5

WizardMath-Llama-SFT Llama-2 7B 77.4 35.6
WizardMath-Llama-RL Llama-2 7B 84.1 43.5

MetaMath-SFT Mistral-v0.1 7B 77.9 28.6
MetaMath-RL Mistral-v0.1 7B 86.4 35.2

DART-Math-Prop2Diff-SFT Mistral-v0.1 7B 81.1 45.5
DART-Math-Prop2Diff-RL Mistral-v0.1 7B 87.5 51.4
DART-Math-Uniform-SFT Mistral-v0.1 7B 82.6 43.5
DART-Math-Uniform-RL Mistral-v0.1 7B 88.1 48.7

WizardMath-Mistral-SFT Mistral-v0.1 7B 82.8 48.1
WizardMath-Mistral-RL Mistral-v0.1 7B 90.7 55.4

C.1.5 WEAKNESSES-1.4

Table 7 lacks adequate baselines; at least, the authors should include LLaMA-2-7B trained on
the DartMath training set. This table also suffers from the same fairness issues as Table 1.

Thank you for your constructive feedback. The table 26 below presents the performance
of WizardMath-SFT on 7 out-of-domain (OOD) evaluation tasks covering K-12, college, and
competition-level math problems in the SFT stage. The results indicate that WizardMath-SFT consis-
tently surpasses state-of-the-art open-source models (i.e., DART-Math, Xwin-Math, and MathScale)
across various scales and tasks, achieving an average improvement of 3%-6%. For instance:

• With the Llama2-7B base model, WizardMath-SFT outperformed DART-Math-Uniform by
11.0% (38.3% vs. 27.3%) and DART-Math-Prop2Diff by 10.5% (38.3% vs. 27.8%) on
average.
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Table 26: The performance of WizardMath-SFT on the 7 out-of-domain evaluation results covering
K-12, college, and competition level math problems compared with some SOTA models (i.e., DART-
Math) in the SFT stage. The results of models in the table refer to MWPBENCH (Tang et al., 2024).
“AGIE” stands for AGIEval. We report the models’ CoT pass@1 results on MwpBench without using
any external python tool

Models College
Math TAL Math23k Ape210k

Gaokao
Bench
Math

AGIE
Gaokao
Math

AGIE
SAT
Math

AVG

Proprietary models
GPT-4 24.4 51.8 76.5 61.5 35.4 28.2 68.6 49.5
GPT-3.5-Turbo 21.6 42.9 62.5 44.0 23.2 15.3 55.8 37.9

Models based on LLaMA-2 13B
LLaMA-2 13B 1.2 6.3 9.5 7.9 0.7 0.4 6.8 4.7
MAmmoTH-CoT 6.5 17.3 39.5 28.1 5.9 4.9 20.5 17.5
GAIR-Abel 7.9 21.1 42.2 27.8 7.0 4.9 30.3 20.2
MetaMath 10.1 25.4 48.6 31.6 9.6 5.6 38.2 24.2
MathScale 13B 20.4 38.1 61.1 43.7 20.0 12.3 55.8 35.9
WizardMath-SFT 22.2 42.5 65.9 47.6 31.6 23.5 59.7 41.9
WizardMath-RL 22.9 43.3 70.3 50.8 33.1 25.7 64.7 44.4

Models based on LLaMA-2 7B
LLaMA-2 7B 2.3 7.6 6.8 7.3 2.1 2.9 2.9 4.6
MAmmoTH-CoT 6.2 13.3 34.6 21.4 3.9 2.7 19.6 14.5
GAIR-Abel 6.6 18.3 35.4 24.5 4.3 4.4 23.5 16.7
MetaMath 9.4 22.5 44.0 29.9 5.9 5.1 36.2 21.9
DART-Math-Uniform 12 27.3 47.9 32.9 14.8 11.1 45.1 27.3
DART-Math-Prop2Diff 11.9 27.7 49.9 34.3 12.8 10.6 47.1 27.8
Xwin-Math-V1.1 14.9 29.7 59.6 40.8 15.9 8.4 51.0 31.5
MathScale 7B 20.9 35.2 59.0 41.8 19.6 12.6 57.8 35.3
WizardMath-SFT 21.1 38.5 62.4 43.8 26.3 17.7 58.3 38.3
WizardMath-RL 21.2 40.2 67.3 46.1 28.9 18.7 62.7 40.7

Models based on Mistral 7B
Mistral 7B 7.5 17.9 18.5 15.5 6.2 5.9 22.5 13.4
MetaMath Mistral 15.7 31.4 55.1 38.1 15.3 10.1 50.9 30.9
DART-Math-Uniform 19.4 34.8 61.6 44.8 27.0 16.1 59.8 37.6
MathScale Mistral 21.8 39.9 64.4 46.0 21.4 14.3 57.8 37.9
DART-Math-Prop2Diff 19.9 37.4 62.2 44.9 27.2 18.1 62.7 38.9
WizardMath-Mistral-SFT 24.3 42.7 66.6 49.7 35.2 22.7 63.1 43.5
WizardMath-Mistral-RL 24.8 44.8 71.2 52.6 37.2 24.5 64.7 45.7

• With the Mistral-7B base model, WizardMath-SFT achieved an average improvement of
5.9% over DART-Math-Uniform (43.5% vs. 37.6%) and 4.6% over DART-Math-Prop2Diff
(43.5% vs. 38.9%).

These findings highlight the effectiveness of our Math Evol-Instruct method, demonstrating its
robustness and superior generalization capabilities on out-of-domain tasks.

We have added the discussions about the Weaknesses-1.4 in Appendix C.1.5 of our latest upload
of revised paper (pages 43–44, lines 2310–2363)

C.2 RECOMMEND

I recommend that the authors reorganize the paper better to emphasize their contributions to
the "RL part."

Thank you for your deep insights and constructive suggestions. Due to time and space constraints,
we promise to further emphasize our contributions to the "RL part" in future revisions of our paper.
Specifically, we will provide more detailed descriptions of the contributions of our proposed RLEIF
approach to the RL part in some sections (i.e., the Abstract, Introduction, and Experiment Sections).
For instance, we will highlight that in RL training, we firstly propose the instruction quality scoring
reward model combined with the process supervision reward model not only continuously enhancing
the mathematical reasoning abilities of the SFT model but also achieve strong generalization across
various SFT backbones. Additionally, we will supplement the discussion on the application and
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impact of IRM and PRM on different advanced SFT backbones, as highlighted in the Weaknesses-1.3,
to further strengthen the theoretical framework and experimental analysis.

C.3 QUESTIONS

Thank you very much for your insightful questions and valuable suggestions. Below, we provide
responses to your Question-1 through Question-5 in sequence.

C.3.1 QUESTIONS-1

In Equation (1), how is the parameter ( m ) set? Additionally, how is the Instruction Reward
Model (IRM) trained?

Q1: In Equation (1), how is the parameter ( m ) set?

The parameter (m) denotes the margin in the Pairwise Ranking Loss, acting as a threshold to regulate
the score difference between <Choose, Reject> pairs. Specifically, it ensures that during IRM training,
the reward score for higher-quality instructions surpasses that of lower-quality instructions by at least
the margin value. This mechanism encourages the model to emphasize the quality score gap between
high-quality and low-quality instructions. In our experiments, the parameter (m) was set to a constant
1.

Q2: Additionally, how is the Instruction Reward Model (IRM) trained?

In our paper, Section 3.2 <REWARD MODELS>, lines 187-201, we conducted two rounds
of downward evolution and three rounds of upward evolution based on the original instructions,
generating a total of five evolved instructions. Subsequently, we leverage GPT-4 to rank the quality
between those evolved instructions and original instruction based on the difficulty and definition,
with higher ranks assigned to instructions demonstrating greater difficulty and clearer definitions.
The detailed ranking prompt template is provided in Appendix A.2.

From the ranking results of the 6 instructions, we created 15 positive-negative sample pairs by
combining C(6, 2). Applying this five-round evolution process to 15k original instructions, we
ultimately generated 15k × 15 = 225k positive-negative pairs for training IRM data.

During training, we employed the Pairwise Ranking Loss defined in Eq. 1. For a given mathematical
instruction q, the IRM quantifies its quality by assigning a score. The IRM was initialized with
the SFT model and augmented with a header layer that outputs a scalar score. The design of the
Pairwise Ranking Loss draws inspiration from the reward model training methods described in the
Instruct-GPT paper[1].

We have added the answers about the Questions-1 in Appendix C.3.1 of our latest upload of
revised paper (page 45, lines 2383–2415)

[1] Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions with human
feedback[J]. Advances in neural information processing systems, 2022, 35: 27730-27744.

C.3.2 QUESTIONS-2

Lines 256-258 suggest that you retain solutions with incorrect answers. How might this influence
the results? Have you considered using the IRM to filter out low-quality examples for supervised
fine-tuning (SFT)?

Q1: Lines 256-258 suggest that you retain solutions with incorrect answers. How might this
influence the results?

The Lines 256-258, Sections 4.2 for SFT Training Data in our paper In order to prevent data
leakage, we filter out the evolved data with high similarity to the GSM8k and MATH test sets,
so it does not refer to incorrect answers. The data leakage detection method refers to the paper
Appendix A.11 line 1782-1815. Specifically, we employ instructions in the GSM8k and MATH test
set as queries to retrieve the top-5 samples from all evolved training data with an embedding model,
gte-large. Additionally, we employ GPT-4 to provide similarity judgement between the test sets and
the retrieved samples, and remove the similar instructions. The prompt and additional details are
provided in Appendix A.12.
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The table 27 below demonstrates the impact of unfilter the potential data leaks on model performance.
WizardMath-SFT-No-filter-data-leakage outperforms WizardMath-SFT-Filter-data-leakage by 1.3%
on the GSM8k and by 1.7% on the MATH. we use Mistral-7B-v0.1 as the base model

Table 27: The impact of unfilter the potential data leaks on model performance. we use Mistral-7B-
v0.1 as the base model

Model GSM8k MATH

WizardMath-SFT-Filter-data-leakage 82.8 48.1
WizardMath-SFT-No-Filter-data-leakage 84.1 49.8

Q2: Have you considered using the IRM to filter out low-quality examples for supervised
fine-tuning (SFT)?

Thank you very much for your insightful question and constructive suggestions. The table 28 below
highlights the effects of using IRM to filter out low-quality instructions during the SFT stage.

• Filtering 15k low-quality instructions resulted in WizardMath-SFT-filter-15k outperform-
ing WizardMath-SFT-original, with a 1.8-point improvement on GSM8k and a 2.1-point
improvement on MATH.

• Filtering 30k low-quality instructions improved GSM8k by 0.9% and MATH by 0.6%.
• However, when the filtering reached 45k, WizardMath-SFT-filter-45k showed a performance

decrease of 0.8% on GSM8k and 1.1% on MATH.
• Filtering up to 60k resulted in a more pronounced decline, with WizardMath-SFT-filter-60k

dropping by 1.7% on GSM8k and 2.5% on MATH.

These results indicate that using IRM for moderate filtering of low-quality data (i.e., 15k or 30k)
is effective for enhancing model performance, while excessive filtering can lead to significant
performance degradation.

We have added the discussions about the Questions-2 in Appendix C.3.2 of our latest upload of
revised paper (pages 45-46, lines 2416–2470)

Table 28: The impact of employing IRM to filter low-quality data on model performance in the SFT
stage. we use Mistral-7B-v0.1 as the base model

Model IRM Filter Data Size GSM8k MATH

WizardMath-SFT-original - 82.8 48.1
WizardMath-SFT-filter-15k 15k 84.6 50.2
WizardMath-SFT-filter-30k 30k 83.7 48.7
WizardMath-SFT-filter-45k 45k 82.0 47.0
WizardMath-SFT-filter-60k 60k 81.1 45.6

C.3.3 QUESTIONS-3

During PPO, do you use two reward models? Using two reward models in PPO can be time-
consuming and computationally expensive. What are your strategies for addressing this?

Q1: During PPO, do you use two reward models?

Yes, we use two reward models during the PPO training stage.

Q2: Using two reward models in PPO can be time-consuming and computationally expensive.
What are your strategies for addressing this?

During the PPO training stage, we utilized the DeepSpeedChat[1] framework. To improve train-
ing efficiency and reduce memory consumption, we employed several optimization techniques,
including DeepSpeed ZeRO-3 with CPU Offload, the DeepSpeed-Hybrid Engine, MixZ++, Gradient
Checkpointing, Gradient Accumulation, and BFloat16 precision.
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In the future we try to implement GRPO by Deepseekmath[2] (a variant of PPO) for training and
incorporate the VLLM[3] used by the OpenRLHF[4] framework to accelerate the policy model
generation during PPO training, thus improving the training efficiency.

We have added the answer about the Questions-3 in Appendix C.3.3 of our latest upload of
revised paper (pages 46-47, lines 2472–2497)

[1] Yao Z, Aminabadi R Y, Ruwase O, et al. Deepspeed-chat: Easy, fast and affordable rlhf training
of chatgpt-like models at all scales[J]. arXiv preprint arXiv:2308.01320, 2023.

[2] Shao Z, Wang P, Zhu Q, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models[J]. arXiv preprint arXiv:2402.03300, 2024.

[3] Kwon W, Li Z, Zhuang S, et al. Efficient memory management for large language model serving
with pagedattention[C]//Proceedings of the 29th Symposium on Operating Systems Principles. 2023:
611-626.

[4] Hu J, Wu X, Wang W, et al. OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF
Framework[J]. arXiv preprint arXiv:2405.11143, 2024.

C.3.4 QUESTIONS-4

In Lines 89-90, you state that you "innovatively introduce PRM to address the False-Positive
issue in the problem-solving process." This claim should be validated by comparing the false-
positive rate on a test set both with and without your method.

Thank you for your insightful feedback. We utilized GPT-4o-2024-0513 (the accuracy is 96.1% On
GSM8k and 76.6% on MATH) to annotate the step-by-step correctness of responses generated by
WizardMath-SFT, WizardMath-RL-ORM, and WizardMath-RL-PRM on the GSM8k and MATH test
sets, and we calculated the model’s false-positive rates.

We define the false-positive rate as the proportion of responses in the test set where the final answer
is correct, but errors occur in intermediate steps (i.e., computational or logical mistakes). The formula
for calculating the False Positive Rate is as follows:

False Positive Rate =
Number of False Positives
Total Number of Test Sets

The table 29 below presents the statistical results:

• The false-positive rate of WizardMath-SFT is 2.58% on GSM8k and 2.36% on MATH.

• The false-positive rate of WizardMath-RL-ORM is 1.67% on GSM8k and 1.56% on MATH.

• The false-positive rate of WizardMath-RL-PRM is 0.68% on GSM8k and 0.90% on MATH.

Compared to WizardMath-SFT, WizardMath-RL-PRM reduced the false-positive rate by 1.90% on
GSM8k and 1.46% on MATH. Similarly, compared to WizardMath-RL-ORM, WizardMath-RL-PRM
achieved reductions of 0.99% on GSM8k and 0.66% on MATH.

These results demonstrate that the incorporation of PRM significantly reduces the model’s false-
positive rate, effectively alleviating the occurrence of intermediate step errors during the problem-
solving process.

We have added the discussions about the Questions-4 in Appendix C.3.4 of our latest upload of
revised paper (page 47, lines 2500–2528)

C.3.5 QUESTIONS-5

In Lines 88-89, you mention that existing methods "mainly focus on the SFT stage and are
susceptible to learning hallucinated information from the teacher model." However, in Line 95,
you still use GPT-4 to annotate step-level labels. Isn’t there a risk of obtaining incorrect step
labels from GPT-4 as well?

Yes, there is a potential risk of obtaining incorrect step labels from GPT-4 as well
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Table 29: The impact of PRM to alleviate the False-Positive issue in the RL training stage. we use
Mistral-7B-v0.1 as the base model

Metrics WizardMath-SFT WizardMath-RL-ORM WizardMath-RL-PRM

Reward Model for PPO - ORM PRM

Number of GSM8k test sets 1319 1319 1319
Number of False Positive On GSM8k 34 22 9

False Positive Rate On GSM8k 2.58% 1.67% 0.68%

Number of MATH test sets 5000 5000 5000
Number of False Positive On MATH 118 78 45

False Positive Rate On MATH 2.36% 1.56% 0.90%

The risk of the model learning hallucinatory information from the teacher model cannot be completely
eliminated. Therefore, in order to ensure the reliability and effectiveness of using GPT-4 to annotate
step-level labels during the problem-solving process in constructing PRM training data, we conducted
the following two analyses:

1. Reliability of GPT-4 Annotations

Manually annotating large-scale step-level PRM training data demands extensive mathematical
expertise, making it a challenging, time-intensive, and costly process. So, we employ a fully
AI-powered automatic annotation using GPT-4 in our paper. To assess the reliability of GPT-4-
generated annotations, in the early stages, we randomly selected 2k samples from the manually
labeled PRM800k step-level training dataset and annotated them using GPT-4. GPT-4 annotations
were evaluated against human annotations using the F1 score as a consistency metric. The results
showed an F1 consistency of 78.1% between GPT-4 and human annotations.

Additionally, for the GSM8k training set, which is relatively lower in difficulty, we randomly sampled
200 examples for step-level labeling using GPT-4 and manual annotations. The results show that the
F1 consistency between GPT-4 and manual labeling on GSM8k is 87.2%. These findings demonstrate
that the annotation using GPT-4 with manual evaluation exhibits high consistency on GSM8k and
MATH, thus ensuring the reliability of step-level annotation using GPT-4 for PRM training data.

2. Effectiveness of GPT-4 Annotations

The table 30 below and Table 4 in our paper (lines 382–395, 415–424) discussed the impact of
AI-labeled PRM data on model performance compared to manually labeled PRM800k and Math-
Shepherd data generated via MCTS Tree Search. The experimental results reveal that the PRM trained
on our fully AI-labeled data outperforms both the manually annotated PRM800k and Math-Shepherd.
For instance:

• When training WizardMath-Llama2-7B-SFT with PPO, GPT-4-labeled PRM data surpasses
PRM800k by 2.0% and Math-Shepherd by 1.4% on GSM8k, and by 1.2% and 1.7%,
respectively, on MATH.

• Similarly, with WizardMath-Mistral-7B-SFT trained using PPO, GPT-4-labeled PRM data
outperforms PRM800k by 1.8% and Math-Shepherd by 1.1% on GSM8k, and by 1.9% and
2.4%, respectively, on MATH.

Moreover, PRM outperforms ORM by 2%–3% on both GSM8k and MATH, achieving a notable
improvement of 4%–5% on WizardMath-SFT. These results highlight the effectiveness of GPT-
4-labeled data for PRM training. (It is worth noting that our evolved instructions lack correct
answers, limiting compatibility with the methods employed by Math-Shepherd which needs the
correct answers.)

The analysis above underscores both the reliability and effectiveness of using GPT-4 to annotate
step-level PRM training data. However, we acknowledge that GPT-4 annotations are not immune to
errors, and the possibility of incorrect step labels represents a limitation of this approach.

We have added the discussions about the Questions-5 in Appendix C.3.5 of our latest upload of
revised paper (pages 47-49, lines 2532–2590)
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Table 30: The effect of using manually labeled and AI labeled PRM training data in PPO training
Models GSM8K MATH

Llama2-7B: WizardMath-SFT 77.4 35.6

+ ORM (ours) 79.1 36.8
+ PRM800k 79.7 38.7
+ Math-Shepherd 80.3 38.2
+ PRM (ours) 81.7 39.9

Mistral-7B: WizardMath-SFT 82.8 48.1

+ ORM (ours) 84.6 49.6
+ PRM800k 85.4 50.8
+ Math-Shepherd 86.1 50.3
+ PRM (ours) 87.2 52.7

C.4 REVIEWER-DHFE

Dear Reviewer dHFe,

We sincerely thank you for your insightful comments and the time you dedicated to reviewing
our work. Your expert feedback has been invaluable in guiding us towards refining our paper and
making it more comprehensive and competitive. We greatly appreciate your support and constructive
suggestions. In the following, we offer detailed responses to the Weaknesses and Questions raised
in your review, addressing each point in a systematic manner.

Furthermore, in Appendix C.4 of our latest upload of revised paper (pages 49–57, lines 2606–
3077), we also have added the discussions with the Reviewer-dHFe on the weaknesses and questions
of our paper to respond to the Reviewer-dHFe’s comments and to further improve the quality of our
research.

C.4.1 WEAKNESSES-1

PRM labels from GPT-4 – Not really sure what to think of this. On one hand, I feel such direct
distillation like this would limit the effectiveness of a method at larger data scales. On the other
hand, the results seem to be good (and also this is one key part that makes the process fully
AI-automated.)

Thank you very much for your constructive feedback and recognition of the effectiveness of our
approach. To explore the effectiveness and reliability of using GPT-4 to annotate PRM training
data at larger data scales, we conducted a Data Scaling law analysis of using GPT-4 to annotate
PRM training data. Additionally, we explore the feasibility of leveraging open-source models (i.e.,
Llama-3.1-405B-Instruct) as cost-effective alternatives to GPT-4 for annotation.

1. Effectiveness Analysis of the Scaling Law in GPT-4 Annotated PRM Training Data.

1.1 Impact of PRM Data Scaling when PRM as the Verifier for the Best of N Metric.

To assess the influence of data scale when PRM acts as the verifier, we randomly sampled subsets
of 50k, 150k, and 300k data from our total 450k PRM training dataset as shown in the following
table 31. Models were trained on these subsets, and we evaluated the Best of N metric on GSM8k
and MATH. Following the same settings as Table 5 in our paper, we sampled 256 answers for each
problem, scored them with the PRM Verifier, and selected the highest-scoring answer. Key results are
summarized as follows:

• On GSM8k, the Best of N performance of PRM significantly improved as the training data
size increased. For instance, PRM-450k achieved 95.2%, outperforming PRM-300k by 1.6%
and PRM-150k by 2.9%.

• On MATH, PRM-450k reached 64.7%, marking a 1.4% improvement over PRM-300k and a
3.2% improvement over PRM-150k.
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Table 31: Impact of PRM Data Scaling when PRM as the Verifier for the Best of N Metric. The SFT
and Reward models are trained based on Mistral-7B. The verifier is based on 256 sample outputs.

Generators Verifiers PRM Data Size GSM8K MATH

WizardMath-SFT

PRM-50k 50k 89.6 58.9
PRM-150k 150k 92.3 61.5
PRM-300k 300k 93.6 63.3
PRM-450k 450k 95.2 64.7

1.2 Impact of PRM Data Scaling on PPO Training Performance.

In the following table 32, we further investigated the effect of PRM training data scaling during
the PPO training stage. Increasing the PRM data size yielded substantial performance gains for
WizardMath-RL on GSM8k and MATH:

• On GSM8k, PPO training with PRM-450k achieved 87.2%, surpassing PRM-300k by 1.4%
and PRM-50k by 3.7%.

• On MATH, PPO training with PRM-450k reached 52.7%, exceeding PRM-300k by 1.5%
and PRM-50k by 4.0%.

These findings confirm that scaling PRM training data consistently enhances PRM performance
as a Verifier on the Best of N metric and significantly improves PPO training outcomes. This
validates the effectiveness of GPT-4 annotated PRM training data in adhering to the Data Scaling
Law, demonstrating their robustness and utility even at larger data scales.

Table 32: The effect of PRM training data scaling during the PPO training stage. We use Mistral-7B-
v0.1 as the base model

Models GSM8K MATH

Mistral-7B: WizardMath-SFT 82.8 48.1

+ PRM-50k 83.5 48.7
+ PRM-150k 84.9 49.8
+ PRM-300k 85.8 51.2
+ PRM-450k 87.2 52.7

2. Reliability analysis of GPT-4 labeled PRM training data compared to manual labeling

To assess the reliability of GPT-4-generated annotations, in the early stages, we randomly selected
2k samples from the manually labeled PRM800k step-level training dataset and annotated them
using GPT-4. GPT-4 annotations were evaluated against human annotations using the F1 score as
a consistency metric. The results showed an F1 consistency of 78.1% between GPT-4 and human
annotations.

Additionally, for the GSM8k training set, which is relatively lower in difficulty, we randomly sampled
200 examples for step-level labeling using GPT-4 and manual annotations. The results show that the
F1 consistency between GPT-4 and manual labeling on GSM8k is 87.2%. These findings demonstrate
that the annotation using GPT-4 with manual evaluation exhibits high consistency on GSM8k and
MATH, thus ensuring the reliability of step-level annotation using GPT-4 for PRM training data.

3. Feasibility of using advanced open-source models instead of GPT-4 to label PRM training
data

We realize that there is a high cost of directly distilling GPT-4 in large-scale data scenarios, which is a
limitation of this study. Additionally, manual annotation demands mathematical expertise and entails
a challenging, time-intensive, and costly process. Moreover, our evolved instructions lack correct
answers, limiting compatibility with the methods employed by Math-Shepherd[1] which needs the
correct answers.

To mitigate these challenges, we also explore the feasibility of leveraging advanced open-source
models, such as Llama-3.1-405B-Instruct, instead of GPT-4 for PRM training data labeling, using the

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Table 33: The impact of using advanced open-source models(i.e., Llama-3.1-405B-Instruct) for PRM
training data labeling and we use Mistral-7B-v0.1 as the base model.

Models AI-Label GSM8k MATH

WizardMath-SFT - 82.8 48.1

+ PRM-Llama-3.1-405B-Instruct Llama-3.1-405B-Instruct 85.8 51.5
+ PRM-GPT-4 GPT-4 87.2 52.7

same label prompts and training settings. As shown in the table 33, WizardMath-PRM-Llama-3.1-
405B achieves 85.8% on the GSM8k, outperforming WizardMath-SFT by 3.0% and lagging behind
WizardMath-PRM-GPT-4 by 1.4%. On the MATH, it scores 51.5%, exceeding WizardMath-SFT by
3.4% with a 1.2% gap compared to WizardMath-PRM-GPT-4.

Balancing cost and accuracy, Llama-3.1-405B-Instruct demonstrates considerable potential as a
substitute for GPT-4 in PRM training data labeling.

In conclusion, GPT-4-based labeled PRM data also follows the data scaling law and offers an effective
solution for larger data scales. For scenarios requiring a balance between cost and accuracy, advanced
open-source models like Llama-3.1-405B-Instruct provide a viable alternative. We hope these
analyses above can address your concerns.

[1]. Wang P, Li L, Shao Z, et al. Math-shepherd: Verify and reinforce llms step-by-step without
human annotations[C]//Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 2024: 9426-9439.

C.4.2 WEAKNESSES-2

Unclear presentation – The paper assumes that readers are already previously familiar with
Evol-Instruct, as it devotes very little time to talking about it in the intro or related work.
The narrative is messy – there are certain concepts (e.g. "grade school" and "high school"
questions) that were introduced once out of nowhere then never mentioned again. There are a
number of rows on Table 1 that were never discussed in the main text. Figure 1 is difficult to
understand. There are also several typos and poorly-worded sentences.

Q1: Unclear presentation – The paper assumes that readers are already previously familiar
with Evol-Instruct, as it devotes very little time to talking about it in the intro or related work.

Thank you for highlighting the valuable questions and we sincerely apologize for any inconvenience
caused. We have added an introduction to Evol-Instruct in our latest upload of revised paper (Section1
<INTRODUCTION>, Lines 50–82). A more comprehensive description can be found in Appendix
C.4.2, with the relevant details outlined below. In future camera-ready version of our paper, we
promise to integrate this section in the "Introduction" or "Related Work" sections and provide a more
comprehensive explanation of Evol-Instruct. The relevant detailed descriptions as follows:

Evol-Instruct proposed by WizardLM[1] is an innovative framework designed to automate the
generation of diverse and complex open-domain instructions using large language models (LLMs).
Instead of relying on human-crafted instruction datasets, it leverages the generative capabilities of
LLMs to iteratively evolve an initial set of instructions through two complementary strategies: In-
depth Evolving and In-breadth Evolving. Starting from an initial dataset D(0) = {(I(0)k , R

(0)
k )}Nk=1,

it iteratively evolves instructions over M turns, producing datasets [D(1), . . . , D(M)].

Two evolution strategies are employed: In-depth Evolving incrementally enhances instruction com-
plexity by introducing additional constraints, deepening, concretizing, increasing reasoning steps, and
complicating input, while maintaining logical coherence and ensuring instructions remain solvable
by humans, I(t+1)

k = In-Depth Operation(I(t)k ); In-breadth Evolving focuses on improving topic
diversity and dataset richness by creating entirely new instructions, expanding the coverage of skills
and scenarios, particularly in underrepresented areas, I(t+1)

k = In-Breadth Operation(I(t)k ).
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To ensure dataset quality, failed evolutionary instructions are filtered. Evol-Instruct supports scalable,
high-quality dataset creation, significantly enhancing LLM performance in reasoning and open-
domain tasks. Notably, WizardCoder[2] incorporates instruction evolution specifically tailored to
coding tasks, leading to substantial improvements in code generation capabilities.

[1]. Xu C, Sun Q, Zheng K, et al. WizardLM: Empowering large pre-trained language models to
follow complex instructions[C]//The Twelfth International Conference on Learning Representations.
2024.

[2]. Luo Z, Xu C, Zhao P, et al. Wizardcoder: Empowering code large language models with
evol-instruct[J]. arXiv preprint arXiv:2306.08568, 2023.

Q2: The narrative is messy – there are certain concepts (e.g. "grade school" and "high school"
questions) that were introduced once out of nowhere then never mentioned again.

We greatly appreciate you highlighting this writing issue and sincerely apologize for any inconve-
nience it may have caused. In our paper, we primarily evaluate the model’s mathematical performance
on two popular benchmarks: GSM8k and MATH. GSM8k represents problems at the grade school
level, while MATH focuses on high school competition problems, such as AMC 10, AMC 12, and
AIME. In Appendix C.4.2, we have included a detailed introduction to the GSM8k and MATH
datasets. Additionally, in our latest upload of revised paper, we have incorporated descriptions of
"grade school" and "high school," as reflected in lines 90-91, 102-103, 114, 240, 340, and 537.

We also include a detailed description of the evaluation benchmark as follows:

We mainly evaluate WizardMath on two benchmarks (GSM8k and MATH). The GSM8k dataset
contains approximately 7500 training data and 1319 test data, mainly on grade school level math
problems, each of which consists of basic arithmetic operations (addition, subtraction, multiplication,
and division), and generally requires 2 to 8 steps to solve. The MATH dataset collects math problems
from prestigious math competitions such as AMC 10, AMC 12, and AIME. It contains 7500 training
data and 5,000 challenging test data in seven academic areas: Prealgebra, Algebra, Number Theory,
Counting and Probability, Geometry, Intermediate Algebra, and Precalculus. Furthermore, these
problems are divided into five levels of difficulty, with ‘1’ denoting the relatively lower difficulty
level and ‘5’ indicating the highest level.

Q3: There are a number of rows on Table 1 that were never discussed in the main text.

Thank you for pointing out this valuable questions. Below, we present a detailed analysis of the
performance improvements across various model scales (0.1B to 70B) with different base models on
GSM8k and MATH benchmarks:

(1.) Using GPT-2 Series Models as the Base Model:

• GPT-2-Small-0.1B: WizardMath-GPT-2-Small improves by 19.5% (26.4 vs. 6.9) on GSM8k
and 6.9% (12.3 vs. 5.4) on MATH.

• GPT-2-Medium-0.3B: WizardMath-GPT-2-Medium enhances by 27.5% (38.7 vs. 11.2) on
GSM8k and by 9.4% (15.6 vs. 6.2) on MATH, outperforming Llama2-13B.

• GPT-2-Large-0.7B: WizardMath-GPT-2-Large increases by 36.5% (50.1 vs. 13.6) on
GSM8k and by 14.8% (21.2 vs. 6.4) on MATH, surpassing Mistral-7B-v0.1.

• GPT-2-XL-1.5B: WizardMath-GPT-2-XL shows a 43.5% (58.9 vs. 15.4) gain on GSM8k
and 18.5% (25.4 vs. 6.9) on MATH, exceeding MAmmoTH-CoT-Llama2-13B.

These results demonstrate that the RLEIF method significantly enhances the mathematical reasoning
capabilities of GPT-2 series base models.

(2.) Using Llama Series Models as the Base Model:

• Llama-3.2-1B: WizardMath-Llama-3.2-1B improves by 18.9% (63.3 vs. 44.4) on GSM8k
and by 2.9% (33.5 vs. 30.6) on MATH compared to Llama-3.2-1B-Instruct.

• Llama-3.2-3B: WizardMath-Llama-3.2-3B enhances GSM8k by 7.8% (85.5 vs. 77.7) and
MATH by 1.9% (49.9 vs. 48.0).
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• Llama-2-7B: WizardMath-Llama-2-7B achieves a 69.5% improvement on GSM8k (84.1 vs.
14.6) and 41.0% on MATH (43.5 vs. 2.5), surpassing Xwin-Math-Llama-2-7B, MathScale-
Llama-2-7B, and MetaMath-Llama-2-7B.

• Llama-3-8B: WizardMath-Llama-3-8B attains 90.3% on GSM8k (1.7% higher than Ji-
uzhang3.0) and 58.8% on MATH (7.8% higher than Jiuzhang3.0), also outperforming
Baichuan-3, GLM-4, Gemini-Pro, Claude2, and GPT-3.5-Turbo, and is comparable to
GPT-4-0314.

• Llama-2-13B: WizardMath-Llama-2-13B improves GSM8k by 61.0% (89.7 vs. 28.7) and
MATH by 46.7% (50.6 vs. 3.9), outperforming SOTA models such as Xwin-Math and
KPMath-Plus.

• Llama-2-70B: WizardMath-Llama-2-70B enhances GSM8k by 36.0% (92.8 vs. 56.8) and
MATH by 45.1% (58.6 vs. 13.5).

(3.) Using Mistral Series Models as the Base Model:

• Mistral-7B-v0.1: WizardMath-Mistral-7B-v0.1 improves GSM8k by 47.8% (90.7 vs. 42.9)
and MATH by 42.5% (55.4 vs. 12.9).

• Mistral-7B-v0.3: WizardMath-Mistral-7B-v0.3 achieves 90.4% on GSM8k and 55.6% on
MATH, comparable to WizardMath-Mistral-7B-v0.1.

• Mathstral-7B-v0.1: WizardMath-Mathstral-7B-v0.1 attains 93.8% on GSM8k and 70.9%
on MATH, comparable to GPT-4-Turbo-0125 and Claude 3.5 Sonnet, and superior to GPT-4
(original version).

(4.) Using DeepSeekMath as the Base Model: WizardMath-DeepSeek improves GSM8k by 26.8%
and MATH by 28.4%, outperforming DART-Math and DeepSeekMath-RL.

(5.) Using Qwen2.5 Series Models as the Base Model:

• Qwen2.5-Math-2.5B: WizardMath-Qwen2.5-Math-2.5B achieves 86.7% on GSM8k and
68.6% on MATH.

• Qwen2.5-Math-7B: WizardMath-Qwen2.5-Math-7B attains 93.9% on GSM8k and 77.8%
on MATH.

• Qwen2.5-7B: WizardMath-Qwen2.5-7B achieves 94.0% on GSM8k and 74.5% on MATH,
performing comparably to GPT-4o-2024-0516 and Claude 3.5 Sonnet.

The proposed RLEIF method significantly enhances the mathematical reasoning performance across
various scales ranging from 0.1B to 70B with different base models, consistently outperforming
all state-of-the-art open-source models. Notably, WizardMath-Mathstral-7B-v0.1 and WizardMath-
Qwen2.5-Math-7B surpass some proprietary models such as GPT-4 (original version), Gemini-Pro,
and GPT-3.5-Turbo, and perform comparably to GPT-4-Turbo-0125, GPT-4o-2024-0516, and Claude
3.5 Sonnet. These findings further underscore the effectiveness, robustness, and scalability of the
proposed RLEIF method in our study.

In future camera-ready versions of our paper, we promise to incorporate the results presented above
into Section 4.3 <Main Results> and Appendix C.4.2, to provide a more comprehensive and in-depth
analysis of the effectiveness of the proposed RLEIF method in enhancing the model’s mathematical
reasoning capabilities across a range of model scales (0.1B to 70B) with various base models.

Q4: Figure 1 is difficult to understand.

Thank you for highlighting these important questions and for pointing out any confusion caused by
Figure 1. We sincerely apologize for any lack of clarity and greatly appreciate your valuable feedback.
In future camera-ready versions of our paper, we are committed to providing a more comprehensive
explanation of the diagram. Furthermore, we offer a detailed clarification of our method flow below,
including the significance of colors and shapes as well as the direction of the arrows in Figure 1, to
facilitate clearer understanding.

In Figure 1, the various colored squares represent specific elements: blue squares denote original
instructions, orange squares indicate evolved instructions, cyan squares signify model-generated
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solution processes, and grey squares correspond to a series of training-related operations such as
supervised fine-tuning (SFT), reward modeling, and reinforcement learning (RL). To enhance the
mathematical reasoning capabilities of large language models, we propose the RLEIF method,
which integrates instruction evolution with reinforcement learning. This method consists of three
primary steps:

1. Instruction Evolution and SFT
In the first step, we apply upward and downward instruction evolution on the GSM8k and
MATH datasets, generating evolved instructions for the SFT. On the leftmost side of Figure
1, the three blue arrows, from top to bottom, represent:

(a) the adoption of the instruction evolution technique,
(b) the generation of evolved instruction data, and
(c) its application to SFT training.

2. Reward Model Training
The second step involves two reward models: the Instruction Quality Scoring Reward
Model (IRM) and the Process-Supervised Reward Model (PRM), depicted in the central
section of Figure 1.

• IRM: We employ upward and downward evolution on a seed instruction, yielding
five instructions (original + evolved). These instructions are ranked by quality (e.g.,
C > A = E > B > D) using GPT-4. Based on the rankings, we train the Instruction
Ranking Model (IRM) to assess instruction quality. In Figure 1, this process is shown
in the left-central segment: “A” represents the original instruction, while “B,” “C,” “D,”
and “E” denote the evolved instructions. The first blue arrow illustrates the ranking
process via GPT-4, the second arrow shows the ranking outcomes, and the third arrow
highlights the use of this ranked data to train the IRM.

• PRM: In the middle-right section of Figure 1, the process for training the PRM is
depicted. The SFT model generates step-by-step solutions from the given instructions,
which are then evaluated and labeled by GPT-4. This labeled data is subsequently used
to train the PRM.

3. Reinforcement Learning with PPO
In the final step, we integrate the IRM and PRM within a Proximal Policy Optimization
(PPO)-based reinforcement learning framework. As depicted in the far-right section of
Figure 1, the process is as follows:

(a) The first blue arrow represents instruction scoring by the IRM.
(b) The second blue arrow shows PPO initialization and the start of reinforcement.
(c) The third blue arrow illustrates the policy model generating responses based on instruc-

tions.
(d) The fourth blue arrow shows the scoring of each response step using the PRM.
(e) Arrows five through eight depict the combination of IRM and PRM scores to calculate

the final reward score.
(f) The ninth blue arrow highlights the use of the reward score for the PPO training.

By integrating instruction evolution and reward-based optimization, the RLEIF method significantly
enhances the reasoning capabilities of large language models. We hope this explanation resolves some
ambiguities and provides a clearer understanding of Figure 1. Thank you again for your valuable
suggestions, which will guide us in improving the presentation and clarity of our work.

Q5: There are also several typos and poorly-worded sentences.

We sincerely appreciate your thorough review and the time you dedicated to identifying these typos
and poorly-worded sentences in our paper. Your attention to detail has been very invaluable. We have
corrected all the issues you highlighted in our latest upload of revised paper.
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C.4.3 WEAKNESSES-3

Somewhat marginal contribution – Evol-Instruct previously existed. PRM previously existed.
This paper basically took Evol-Instruct and PRM and used them to train a model. To nitpick a
bit, I think a more comprehensive paper would cover more domains such as code.

Q1: Somewhat marginal contribution – Evol-Instruct previously existed. PRM previously
existed. This paper basically took Evol-Instruct and PRM and used them to train a model

We sincerely appreciate your valuable feedback. We highlight the key contributions of our paper as
follows:

1. Unlike WizardLM/WizardCoder, which primarily focus on increasing instruction difficulty,
we are the first to propose the novel concept of downward evolution, a major distinction in
instruction evolution.

In Table 6 (lines 397–413) of our paper, we provide a detailed analysis of the effects of downward
evolution. Specifically, two rounds of downward evolution led to a remarkable improvement in
GSM8k performance by 14.8% (74.5 vs. 59.7) and in MATH performance by 19.6% (34.7 vs. 15.1)
compared to the original, significantly enhancing the model’s mathematical reasoning capabilities.

Furthermore, our Math Evol-Instruct method outperforms the general evol-instruct approach em-
ployed by WizardLM, as elaborated in Appendix A.5 (lines 1608–1629).

This demonstrates that Math Evol-Instruct is instrumental in significantly boosting the model’s
mathematical reasoning ability, as you kindly acknowledged in Strength 1 above.

2. In reinforcement learning (RL) training, we firstly propose the instruction quality scoring
reward model (IRM) combined with the process supervision reward model (PRM) further
enhancing WizardMath mathematical reasoning ability. As demonstrated in Table 3 (lines
325–336, lines 370-380) of our paper, this approach achieves a remarkable 5%–8% improvement in
GSM8k and MATH performance over the SFT backbone across models of various sizes, leveraging
PRM and IRM for the PPO training.

3. We first propose to use AI to annotate the step-level PRM training data. Additionally,
the training datasets for SFT, PRM, and IRM are fully synthesized using AI systems. This fully
AI-automated data generation pipeline ensures scalability, as highlighted in Strength 3 of your
feedback.

4. WizardMath demonstrates outstanding performance across a wide range of model scales,
from 100M to 1B and 70B parameters, on benchmarks such as GSM8k, MATH, and out-of-
distribution (OOD) tasks like MWPBench. It surpasses all existing open-source state-of-the-art
models, showcasing the effectiveness and robustness of the RLEIF approach proposed in our study,
as you recognized in Strength 1 above.

Q2: I think a more comprehensive paper would cover more domains such as code.

We sincerely appreciate your insightful suggestions. To explore the effectiveness of our proposed
RLEIF method in more other domains such as Code, we replicated the code evol-instruct specifically
proposed by WizardCoder for code-related tasks during the SFT stage, and further optimized the
PRM step-level label prompts to enhance its compatibility with GPT-4 for annotating PRM training
data. Additionally, we compared the performance of ORM and PRM during PPO training. We
utilized CodeLlama-Python 7B and 34B as the base models

As shown in the table 34 below, the results demonstrate that for both the CodeLlama-Python 7B and
34B models, Our-Coder-SFT achieved comparable performance to WizardCoder on the HumanEval
and MBPP benchmarks. During the PPO training phase, when using CodeLlama-Python 7B as the
base model, Our-Coder-RL-PRM showed a 4%-5% improvement on HumanEval and MBPP over
Our-Coder-SFT, and significantly outperformed the 2%-3% improvement achieved by Our-Coder-
RL-ORM. Similarly, with CodeLlama-Python 34B as the base model, Our-Coder-RL-PRM shows
approximately a 4% improvement over Our-Coder-SFT on HumanEval and MBPP, outperforming
the 2%-3% improvement of Our-Coder-RL-ORM. These findings underscore the effectiveness of
PRM in PPO training for code-related tasks.
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In future camera-ready version of our paper, we commit to conducting comprehensive compar-
isons across more code benchmarks and a broader range of baseline models to further validate the
effectiveness of the proposed RLEIF approach.

Table 34: Explore the effectiveness of the proposed RLEIF pipeline in more other domains such as
Code

Models Base Params HumanEval MBPP

CodeLlama-Python-7B

CodeLlama-Python - 7B 37.8 57.6
WizardCoder CodeLlama-Python 7B 48.2 56.6
Our-Coder-SFT CodeLlama-Python 7B 49.0 56.2
Our-Coder-RL-ORM CodeLlama-Python 7B 50.5 58.1
Our-Coder-RL-PRM CodeLlama-Python 7B 53.5 60.4

CodeLlama-Python-34B

CodeLlama-Python - 34B 51.8 67.2
WizardCoder CodeLlama-Python 34B 73.2 73.2
Our-Coder-SFT CodeLlama-Python 34B 72.7 72.3
Our-Coder-RL-ORM CodeLlama-Python 34B 74.5 73.7
Our-Coder-RL-PRM CodeLlama-Python 34B 76.8 76.2

C.4.4 QUESTIONS-1

I find Figure 1 confusing. Why is there a pyramid in the top left and why is it pointing to a pie
chart, cube, etc? What are these supposed to be showing? I feel like I am not understanding
much from this figure.

We sincerely apologize for any confusion or inconvenience caused by the current presentation of
Figure 1. The pyramid in the top-left corner represents the original seed instructions, while the
pie chart, cube, and other icons symbolize the evolved instructions generated through the Math
Evol-Instruct method, encompassing both upward and downward evolution. A detailed explanation
of the training process depicted in Figure 1 was provided in our response to Weaknesses-2-Q4 above,
which we hope will help clarify any uncertainties. In the future camera-ready version of our paper,
we will provide a more detailed explanation of Figure 1 to ensure its clarity and comprehensibility.
We greatly appreciate your understanding and patience.

C.4.5 QUESTIONS-2

I feel like there’s a few missing entries in Table 1. For example, Table 1 shows the results for
WizardMath-Mathstral and WizardMath-Qwen2.5, but the base scores of these base models are not
shown in the table, so the readers don’t really know how much improvement there is.

We sincerely appreciate your constructive feedback. The table below 35 supplements the performance
comparison of Mathstral-7B-v0.1-Base, Qwen2.5-7B-Base, Qwen2.5-Math-1.5B-Base, and Qwen2.5-
Math-7B-Base on the GSM8k and MATH datasets.

The results demonstrate that using Mathstral-7B-v0.1-Base as the base model, WizardMath-Mathstral
improves performance by 16.7% on GSM8k (93.8 vs. 77.1) and 14.5% on MATH (70.9 vs. 56.6).

When employing Qwen2.5-Math-1.5B-Base as the base model, WizardMath-Qwen2.5-Math-1.5B
achieves 9.9% improvement on GSM8k (86.7 vs. 76.8) and 18.8% on MATH (68.6 vs. 49.8).

Similarly, with Qwen2.5-Math-7B-Base, WizardMath-Qwen2.5-Math-7B shows a 2.3% increase on
GSM8k (93.9 vs. 91.6) and 22.4% on MATH (77.8 vs. 55.4).

Finally, using Qwen2.5-7B-Base as the base model, WizardMath-Qwen2.5-7B improves by 8.6% on
GSM8k (94.0 vs. 85.4) and 24.7% on MATH (74.5 vs. 49.8).
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Notably, both Mathstral-7B-v0.1-Base and Qwen2.5-Math-Base, pre-trained on extensive mathemati-
cal corpora, exhibit robust mathematical reasoning capabilities and deliver strong performance on
GSM8k and MATH datasets. However, our proposed RLEIF method achieves substantial perfor-
mance enhancements even with these highly math-optimized models. Specifically, on the MATH,
RLEIF delivers a performance boost of 15% 25%, while on GSM8k, the improvement ranges from
8% 16% (with the exception of Qwen2.5-Math-7B-Base, which achieves a high baseline of 91.6
on GSM8k but still benefits from a 2.3% enhancement). These results underscore the continuous
improvement enabled by our RLEIF method on models pre-trained with specialized mathematical
corpora, further validating its effectiveness and scalability.

Table 35: The performance of WizardMath on the GSM8k and MATH based on the Mathstral-7B-
v0.1-Base, Qwen2.5-7B-Base, Qwen2.5-Math-1.5B-Base, and Qwen2.5-Math-7B-Base

Models Base Params GSM8k MATH

Mathstral-v0.1-Base - 7B 77.1 56.6
WizardMath-Mathstral Mathstral-v0.1-Base 7B 93.8 70.9

Qwen2.5-Math-Base - 1.5B 76.8 49.8
WizardMath-Qwen2.5-Math Qwen2.5-Math-Base 1.5B 86.7 68.6

Qwen2.5-Math-Base - 7B 91.6 55.4
WizardMath-Qwen2.5-Math Qwen2.5-Math-Base 7B 93.9 77.8

Qwen2.5-Base - 7B 85.4 49.8
WizardMath-Qwen2.5 Qwen2.5-Base 7B 94.0 74.5

C.4.6 TYPOS:

• L45: struggles –> struggle
• L80: "in recent"
• L91: should say what is IRM first before using the acronym.
• L91: We –> capitalization
• L93: later –> latter
• L105: Jiang et al mentioned without a model (should be mistral?)
• L107: as following –> as follows
• L140,143: spacing
• L145: should be Reinforcement Learning for Large Language Models instead of the other

way around?
• L487: "reasoing"

We sincerely appreciate your effort in identifying these typos and poorly-worded sentences in our
paper, as well as your thorough and thoughtful review. All of these "Typos" have been carefully
addressed and corrected in our latest upload of revised paper.
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