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Abstract—EEG signal analysis and audio processing, though
distinct in application, share inherent structural similarities in
their data patterns. Recognizing this parallel, our study pioneers
the application of two renowned audio processing models, PaSST
and LEAF, to the realm of EEG signal classification.

In our experiments, the adapted PaSST and LEAF models
delivered exceptional performance on the Temple University
Hospital Abnormal EEG Corpus (TUAB). Specifically, PaSST
achieved an impressive accuracy of 95.7%, while LEAF registered
94.0%, both substantially outstripping previously established
benchmarks. Such achievements underscore the potential of
tapping into cross-domain models, particularly from the audio
sector, for advancing EEG research.

Notably, while these larger audio models brought about unpar-
alleled results, maximizing their capabilities required addressing
the limitations of available EEG data volume. Thus, we intro-
duced innovative pre-training strategies derived from diverse
datasets, further enhancing the performance efficacy. With these
refinements, PaSST reached a landmark accuracy of 96.1% on
the TUAB dataset, marking a significant stride forward in EEG
signal processing.

By leveraging the intrinsic resemblances between EEG and
audio signals, we have successfully repurposed these audio
models. We recommend further work devoted to the exploration
of the transferability of machine learning audio techniques to
healthcare time series tasks.

Index Terms—Machine Learning for Healthcare, EEG Classi-
fication, Deep Learning, Audio Models

I. INTRODUCTION

Historically, models designed for EEG analysis have pre-
dominantly been lightweight, a reflection of both computa-
tional considerations and the prevailing notion that EEG data,
being seemingly less intricate than images or audio, can be
decoded effectively with simpler architectures. However, this
perspective might be inherently limiting. In reality, EEG sig-
nals, though different in nature from images or audio, possess
rich information content. Hence, compact models may struggle
to learn intricate and global mappings crucial for deciphering
EEG patterns, especially when considered in relation to the
evolving nature of neural network architectures. Over the
years, models like transformers have showcased the prowess
of larger and more computationally intensive architectures in
learning global mappings and relationships within the data.
These architectures, originally tailored for domains like natural

language processing (NLP), have found their relevance in
diverse applications, including audio processing.

The advancements in audio classification have led to intrigu-
ing possibilities in EEG analysis. By integrating robust and
comprehensive modeling techniques from audio classification,
we can address some limitations of existing lightweight EEG-
specific models. This integration may lead to meaningful
improvements in EEG analysis. To this end, we explored two
pioneering audio classification models: PaSST [11] and LEAF
[26]. Notably, while LEAF is conventionally a front-end, it is
conventionally integrated with EfficientNet to achieve the ver-
satility of a holistic model. After essential modifications and
fine-tuning, these models exhibit state-of-the-art performance
on the TUAB dataset, solidifying our hypothesis.

Although the availability of clinical EEG data is relatively
limited, compared with audio data, we addressed this challenge
through two pretraining strategies. First, we enhanced our
dataset by using label extraction from EEG reports through
NLP techniques, as detailed in previous work on auto-labelling
[24]. This approach provided us with an additional labelled
dataset, leveraging our established methodologies. Second,
we applied cross-domain pretraining on speech datasets. The
rationale behind this was that the models might learn relevant
temporal characteristics of one-dimensional time series from
the speech data. These approaches were beneficial for our
models due to their higher capacity, enabling them to better
learn and adapt to EEG tasks. The combination of these strate-
gies not only supplemented our training data but also ensured
that our models fully utilized their advanced capabilities in
EEG analysis.

In summary, this research signifies a notable advancement
in the field of EEG data processing. It highlights the potential
for improved diagnostic accuracy for neurological disorders
through the use of advanced, and often more computationally
demanding, architectures.

Generalizable Insights about Machine Learning in the Context
of Healthcare

This study confirms that large models from domains such
as audio processing, which are relatively well-resourced in
terms of data and development effort, can be effectively ap-
plied to relatively data-scarce time series fields like abnormal



EEG classification, leveraging the extensive development work
and advanced architectural designs from the better resourced
domains. We also explore the use of pre-training with both
same-domain and cross-domain (audio pre-training for EEG)
datasets, demonstrating benefit in the same-domain case only.
Our results are particularly relevant to other healthcare time
series fields, such as ECG or ECoG, which face similar
challenges of data scarcity and low signal-to-noise ratios.

Additionally, our work disproves a widely held assumption
that the performance ceiling for our dataset (Temple Univer-
sity Hospital Abnormal EEG Corpus) would match typical
clinical inter-rater agreement levels. We provide evidence that
this performance ceiling does not apply when labelling is
conducted by consensus among a panel. The same point will
likely be important in assessing the performance ceiling of
other clinical datasets, where the labelling practice applied to
the research dataset does not completely mimic conventional
clinical practice.

Although our attempt to enhance EEG data learning with
cross-domain audio pre-training did not succeed as anticipated,
this does not entirely discount the effectiveness of the principle
that concepts embedded in one time series domain may be
transferrable to another. This negative result may be due to
too many training epochs, which could have overshadowed
the benefits of pre-training on audio data. This lesson reminds
us to adjust our training strategies and number of epochs
more carefully when using cross-domain pre-training methods.
Furthermore, it may be that, for cross-domain time series pre-
training to work effectively, the pre-training dataset must cross
multiple domains in order to achieve good generalization. As
the importance of large foundational models grows in many
machine learning applications, we consider the possibility

TABLE I: Summary of state-of-the-art performance metrics
for different models applied to abnormal EEG classification on
the TUAB dataset. All results are compared at the recording
level using the official test set provided by TUAB. The newly
proposed models and the highest score in each column are
listed in bold. Among these models, ’Scope and Arbitration’
(*) comprises multiple machine learning stages, whereas the
others are single-stage models. This comprehensive compar-
ison ensures that the evaluation is consistent and adheres
strictly to the dataset’s intended use for benchmarking.

Model Accuracy Sensitivity Specificity
1D-CNN (T5-O1 channel) [25] 79.3 % 71.4 % 86.0 %
1D-CNN (F4-C4 channel) [25] 74.4 % 55.6 % 90.7 %

Deep4 [17] 85.4 % 75.1 % 94.1 %
TCN [7] 86.2 %

ChronoNet [16] 86.6 %
Alexnet [3] 87.3 % 78.6 % 94.7 %
VGG-16 [3] 86.6 % 77.8 % 94.0 %

Fusion Alexnet [1] 89.1 % 80.2 % 96.7 %
Fusion CNN [15] 89.8 % 81.3 % 96.9 %

Scope and Arbitration* [27] 93.3 % 92.0 % 92.9 %
LEAF-EEG 94.0 % 92.4 % 97.2 %
PaSST-EEG 95.7 % 94.8 % 97.6 %

PaSST-EEG-Pretrained 96.1 % 95.5 % 97.5 %

of developing foundational models for time-series analysis,
trained on a very large range of time series data and fine-
tunable to domain-specific tasks (just as many foundational
language models are now being fine-tuned for more specific
language tasks). We plan to continue exploring this area in
future research to fully utilize the potential advantages of pre-
training.

II. RELATED WORK

A. Previous Models for EEG Data

While EEG analysis approaches, predominantly based on
CNNs [3,7,15,17,22], have shown some success, they often
do not fully capitalize on the advanced techniques widely
used in other time-series domains. These domains have seen
the adoption of various innovative models [11,21,26], going
beyond traditional CNN frameworks, which have yet to be
extensively applied to EEG data, especially within the TUAB
dataset. The TUAB dataset, with its extensive and diverse EEG
recordings, presents an ideal opportunity for the integration of
such cutting-edge methodologies. However, the application of
these advanced techniques in the context of TUAB has been
notably limited, indicating a significant gap in leveraging state-
of-the-art time-series analysis methods in EEG research.

Some recent studies have explored how to improve tradi-
tional EEG models. Among these studies, the work of [10]
is particularly noteworthy. They demonstrated that merely
increasing the depth (adding additional convolutional layers)
or width (increasing the number of filters) of the models does
not significantly enhance the performance of EEG models.
This finding suggests the limitations of traditional methods
in improving EEG analysis. Although there are examples
of transformer applications in the field of EEG analysis
[20,19,12], their use is not yet mainstream. Moreover, their
potential for detecting abnormal EEG patterns has not been
fully explored or applied.

B. Cross-Domain Applications of Audio Techniques in EEG
Research

In prior research, techniques initially designed for audio
processing have been effectively repurposed to facilitate EEG
analysis, primarily due to the shared temporal characteristics of
the data types in both domains. For the same reasons, machine
learning architectures that have proven to be successful in
audio applications have also been successful in EEG, although
we are not aware of any previous EEG studies translating
machine learning models designed specifically for audio.

From a preprocessing perspective, given EEG data’s tem-
poral signal properties, several audio processing techniques
have been adopted. These techniques range from window-
ing procedures to spectral decompositions, such as Fast
Fourier Transform (FFT)[4] and Mel-frequency cepstral coeffi-
cients (MFCC)[5]. Furthermore, techniques for time-frequency
image extraction, such as Short-Time Fourier Transform
(STFT)[18] and Wavelet Transforms [2], have been adopted.



There are also methods specifically designed for feature ex-
traction in the audio domain, like Linear Frequency Cepstral
Coefficients (LFCC) [9], that have found use in EEG analysis.

On the model front, both EEG and audio research
share an affinity for convolutional neural networks
(CNNs)[3,7,15,17,22] and Transformer-based models
[11,26], predominantly due to the temporal nature of the data
involved. However, a specific model architecture used in the
audio domain cannot ordinarily be translated to the EEG
domain without any modifications. This could be attributed
to the additional channel dimension present in EEG data,
compared with ‘mono’ audio. Moreover, EEG data often
pose interpretability challenges and arguably exhibit lower
information density than their audio counterparts [14], which
often necessitates the use of larger window sizes in EEG
analysis. Coupled with the typically smaller data volumes in
EEG research, these factors contribute to increased difficulty
in training models within this domain.

C. Original Models of PaSST and LEAF

In the audio domain, including tasks such as speech recogni-
tion and audio classification, high-performing model structures
are largely based on EfficientNet and Transformers. Consid-
ering the model size and computational complexity, we chose
two models that perform close to the state-of-the-art in the
audio domain, PaSST and LEAF, as our base models.

As can be seen in Table II, the selected models represent
a significant step up in complexity from traditional EEG
models such as Deep4. These choices allow us to explore
the potential of these more complex architectures in EEG
signal classification tasks without overly taxing computational
resources and data availability, and the work of Kiessner et al.
demonstrates that a larger model does not necessarily mean
better performance [10].

The PaSST (Parallel Attention Scoring and Selective Trans-
formation) model takes time-frequency images as inputs [11].
It first applies the STFT (Short-Time Fourier Transform) to the
one-dimensional time series, then processes it through a Mel
filter, simulating human sensitivity to different audio frequency
bands to form a more representative spectrogram. This method
helps to highlight important features in speech signals. The
main body structure of PaSST is based on Transformer. It uses
a parallel attention mechanism to perform feature selection
and transformation on the spectrogram, effectively extracts key
information, and classifies it through a deep network.

On the other hand, the LEAF (A Learnable Frontend for
Audio Classification) [26] frontend also takes time-frequency
images as inputs. Before applying Gabor filters for spectrum
processing, the audio signals undergo a Gaussian low-pass
filtering followed by sPCEN (short-time Per-channel Energy
Normalization), a technique commonly employed for dynamic
range compression and background noise suppression, enhanc-
ing the salient features of audio signals while mitigating the
effects of non-essential components [23]. Gabor filters, in-
spired by the cochlear model in natural signal processing, can
simulate the perception and processing of audio signals by the

human ear to obtain high-quality audio feature representations
[6]. The main body structure in the original implementation of
LEAF is based on EfficientNet, using depthwise separable con-
volution, bounded ReLU activation functions, and Squeeze-
and-Excitation modules to achieve efficient feature extraction
and classification.

The design principles and efficient performance of these
two models make them good candidates for our experiments
on EEG data. In the following sections, we will detail how we
modified these two models to adapt to the characteristics of
EEG signals and achieved significant performance improve-
ments on the TUAB dataset.

III. METHODS

A. Data

1) TUAB: The experiment design and evaluation methods
of this article are predicated on the TUAB dataset [13], which
contains 2,993 EEG recordings labelled as normal/abnormal.
These recordings are sourced from over 30,000 clinical EEG
recordings collected by the Temple University Hospital from
2002 to the present, and all recordings use the standard 10-20
electrode placement system.

The TUAB dataset has been divided into training and
evaluation sets, following an officially provided split. The
training set contains 1,371 recordings labelled as normal’
and 1,346 recordings labelled as abnormal’. The test set
contains 150 normal recordings and 126 abnormal recordings.
This structured division ensures a consistent framework for
assessing and comparing model performances across studies.

In our experiments, we adopted a data preprocessing strat-
egy similar to that of Deep4 [17]. Specifically, we used a 20-
minute segment from the second minute to the 21st minute of
each recording. When the length of a recording is less than
21 minutes, we extract from the second minute to the end of
that recording. Then, we resampled the signals at 100 Hz and
divided the recording into non-overlapping windows of one-
minute duration. Therefore, after the windowing process, each
recording generated 15-20 windows. As shown in Figure 2,
the dimensions of each window are 21x6000.

Additionally, we selected 21 standard 10-20 channels for
data collection and restricted the data range to be between
-800 and 800 to remove obvious artefacts. This limitation
was implemented using a clipping method, consistent with
the approaches described in [17,7]. We did not use any
other preprocessing methods, such as bandpass filters or data
normalization. All of these ensure the originality of the data,

TABLE II: Comparison of Model Complexity and Com-
putational Requirements. Total size = Input size + For-
ward/backward pass size + Params size

Trainable params Total size (MB)
Deep4 [17] 303,452 32.86
LEAF-EEG 4,015,294 230.36
PaSST-EEG 89,188,610 1074.51



which is beneficial for us to evaluate the performance of the
model on original EEG signals.

2) AutoTUAB: AutoTUAB, derived from the parent dataset
TUEG, serves as an expanded dataset compared to TUAB.
This was achieved using automatic labelling based on natural
language processing of text reports, as described by [24]. We
refer to this automatically labelled alternative to TUAB as
‘AutoTUAB’. We selected only data with label confidence
exceeding 99%, length greater than 6 minutes, and all the 21
desired channels. Following the screening process, AutoTUAB
contained 26,504 recordings - 19,109 abnormal recordings and
7,395 normal recordings, across 18,747 sessions. Like in [27],
to accommodate the unbalanced nature of the data we adopted
a weighted loss function in the training of machine learning
models. Cross-entropy was used as the loss function, and the
contribution of each sample was given a weighting that was
inversely proportional to the number of samples in its class.
Compared to TUAB, the AutoTUAB dataset is larger and more
diverse. It is arguably more representative of clinical data since
it is not manually selected, whereas the examples in TUAB
were selected to form a dataset conducive to machine learning
[13].

In our research, we employ the AutoTUAB dataset for the
pre-training of our model, ensuring that all samples overlap-
ping with the TUAB dataset have been removed to prevent
data leakage. Given that both AutoTUAB and TUAB are
EEG datasets and the fact that we have designed identical
training tasks, we postulate that AutoTUAB can assist the
model in learning the essence of EEG signals. Further, it
may even enable the model to discern between normal and
abnormal EEG signals. This pre-training step with AutoTUAB,
having excluded any duplicative samples, we believe, can
help initialize the model in a more advantageous region, thus
facilitating more effective subsequent supervised learning.

3) AudioSet: AudioSet [8], developed by Google’s Sound
Understanding group, is an extensive, publicly available
dataset of over 2 million manually annotated 10-second audio
clips drawn from YouTube videos. These clips span 632
unique audio event classes, including human and animal
sounds, music, noise, and environmental sounds, making it
a rich and diverse resource for audio-related machine learning
tasks. The annotations are created through a rigorous manual
process, ensuring their reliability. In our research, we employ
AudioSet during the pre-training phase to help our model
learn diverse audio features, thereby enhancing its ability to
understand the specific characteristics inherent in EEG data. It
should be noted that the use of AudioSet should comply with
YouTube’s Terms of Service.

B. Modifying the PaSST Model

For the Transformer-based PaSST model (Figure 1a), we
implemented several modifications to better align with the
characteristics of EEG signals. First, we adjusted the param-
eters of the Short-Time Fourier Transform (STFT), including
the sampling rate, window size, and window stride, ensuring

that its output dimensions meet the input requirements of sub-
sequent modules. These adjustments allow the model to more
effectively process EEG input. As illustrated in Figure 2, the
input is initially split along the channel dimension, with STFT
applied to each channel individually. The resulting data is
then concatenated along the channel dimension. After applying
STFT, the data dimensions are 513x286x2. By squaring and
summing, the dimensions of the real and imaginary parts are
reduced, resulting in final data dimensions of 513x286.

Second, we removed the Mel filter from the original PaSST
model. While the Mel filter is commonly used in audio
processing to simulate human auditory sensitivity to different
frequencies, there is no evidence to suggest that the frequency
distribution in EEG signals follows a similar pattern [9].
Therefore, we opted to exclude this component.

In place of the Mel filter, we added a two-dimensional adap-
tive pooling layer to the model to interface with subsequent
classification modules. This adaptive pooling compresses the
last two dimensions of the data to 128x282. There are two
primary reasons for this modification. First, without the Mel
layer, the frequency dimension of the STFT output does not
align with the requirements of subsequent modules. Second,
in the original PaSST, the time dimension was represented by
16,000 x 0.025 = 400 data points, whereas our current setup,
without additional windowing, results in 60 x 100 = 6,000 data
points. This substantial difference in the time dimension makes
it challenging to integrate the modules seamlessly, even with
changes to the STFT’s stride and window size. Consequently,
this pooling layer is necessary to compress and adjust the time
dimension. Additionally, the pooling layer helps to transform
high-dimensional feature maps into low-dimensional feature
vectors, which aids in reducing overfitting.

Finally, we modified the first convolutional layer of the
PatchEmbedding module to expand its input channels to
21. Patch embedding in Transformers involves splitting an
image into fixed-size patches and converting each patch into a
high-dimensional vector for sequential processing. With this
adjustment, the convolutional layer is not only capable of
extracting features from the time dimension but also fuses data
across the 21 EEG channels. This design enables the model
to capture intricate patterns across the EEG channels more
effectively.

C. Modifying the LEAF Model

For the EfficientNet-based LEAF model (Figure 1b), we
similarly made some adjustments to make it better adapted to
EEG signals.

First, we modified the parameters of the Gabor filter and
Gaussian low-pass filter in the LEAF model, including window
size and window stride. As shown in Figure 2, similar to
STFT, the Gabor filter expands the time dimension of the
EEG signal from one dimension to two dimensions, but
it doesn’t compress the time dimension (The stride is 1).
After undergoing STFT, the input dimensions changed from
21x6000 to 21x80x6000. This modification allows the model
to retain more information while meeting the input dimension



(a) Modified PaSST model. (b) Modified LEAF model.

Fig. 1: Modified (a) PaSST model and (b) LEAF model. The
blue and purple blocks represent the original components of
the model, with blue indicating the preprocessing stage and
purple indicating the feature extraction and classification stage.
Crossed-out blocks signify components that were removed
during the model’s adaptation process. Newly introduced or
modified components are represented by red blocks..

requirements of subsequent modules. This change is based
on the characteristics of EEG signals, that is, the information
distribution in EEG signals may differ from the audio signals
in the original LEAF model. Then, as with PaSST, we modified
the one-dimensional convolutional layer at the beginning of the
classification module, expanding its input channels to 21.

Through the above adjustments, we successfully migrated
the PaSST and LEAF models from the audio processing field
to the EEG signal classification task. The next section will
detail our experimental results on the TUAB dataset.

D. Pre-training on the unlabelled dataset with NLP generated
labels and cross-domain datasets

Our study is motivated by the challenges inherent in ap-
plying advanced machine learning models to EEG signal
classification, especially when faced with limited datasets. As
shown in II, both PaSST-EEG and LEAF-EEG have parameter
sizes that, while modest in comparison to many models in
the Computer Vision (CV) or Speech domains, are still quite
sizable for the TUAB dataset, which contains fewer than 3,000
recordings. We surmise that granting these models access to
more data or providing them with a better initialization could
enhance their training outcomes. This insight led us to propose
two pre-training strategies: one on the larger and diverse
AudioSet and the other on the AutoTUAB dataset. With these
considerations in mind, we crafted a three-part experiment to
gauge the merits of various training methodologies for EEG
signal classification.

No Pre-training Group: Directly train and test on the TUAB
dataset. This serves as our foundational comparison for assess-

Fig. 2: Data input methods for LEAF and PaSST models. For
the sake of clarity, the batch size dimension is not shown in
the figure.

ing the merits of enhanced training strategies.
AudioSet Pre-training Group: We conducted supervised

pretraining on the AudioSet dataset, which offers a vast collec-
tion of well-defined labels for audio events. This pretraining
provided our models with an initial understanding of temporal
features, which can be highly beneficial for EEG classification
when subsequently trained and tested on the TUAB dataset.

AutoTUAB Pre-training Group: Supervised pretraining was
also performed on the AutoTUAB dataset, which originates
from TUEG. Unlike TUAB, where labels are meticulously
crafted through the combined evaluations of multiple experts,
the labels in AutoTUAB were generated using an NLP model
from clinical EEG reports. These NLP-generated labels are
considered to be pseudo-labels, as they are not directly an-
notated by human experts but are inferred by the model.
These pseudo-labels can be speculative and potentially biased,
reflecting the inherent challenges in working with clinical data.
To mitigate these issues, we introduced a filtering mechanism,
retaining only those recordings where the probability of ab-
normality labels is either below 0.01 or above 0.99, thereby
increasing our confidence in the labels used. Despite their
limitations, we believe these pseudo-labels can still serve as
valuable proxies, helping the model familiarize itself with
the general characteristics of EEG signals and effectively
distinguish between abnormal and normal patterns.

In our research, we primarily utilized the PaSST model.
While both PaSST and LEAF represent the broad spectrum
of cutting-edge temporal signal processing methods, PaSST



was chosen due to its superior performance in the absence of
pretraining.

To thoroughly assess the impact of various pre-training
datasets, each model was tested under all three experimental
conditions, with each condition being reiterated five times
to neutralize any potential discrepancies from random vari-
ations. All pre-trained models were fine-tuned on the entire
network during the formal training phase, which consisted
of 30 epochs, but incorporated early stopping to ensure that
any benefits derived from pre-training were not negated by
overfitting to the TUAB training set. This stringent testing
procedure offers a comprehensive insight into the effects of
different pre-training strategies across a range of temporal
signal processing paradigms.

Furthermore, it’s essential to highlight that the benefits of
pre-training can occasionally be overshadowed when there’s
an abundance of primary training data. As such, we conducted
supplementary experiments to examine the potency of our two
pre-training methods when faced with limited training data
availability. To achieve this, we evaluated the performance
of PaSST models using scaled-down portions of the training
dataset, specifically at 1, 0.8, 0.6, 0.4, and 0.2 of its original
size. To minimize the impact of random fluctuations, each
of these configurations was replicated five times. Taking
into account the three pre-training strategies we deployed,
including the baseline method, we executed a grand total of 75
experimental trials. This rigorous approach further elucidates
the significance and potential advantages of our proposed pre-
training techniques, especially in scenarios where training data
might be scarce.

E. Experiments

For each model, we conducted five independent experiments
on the TUAB dataset’s training and test sets, with each exper-
iment using a different random seed to ensure the credibility
of the results. Ultimately, we took the average result from
these five experiments on the test set as the final performance
of each model. Furthermore, we conducted a hyperparameter
search for both models, testing three different learning rates
(LR): 0.001, 0.0001, and 0.00001. All evaluations on the test
set were performed at the recording level. We employed a
simple mean to aggregate the results from the window level
to the recording level.

IV. RESULTS

As shown in Table I and III, the adapted PaSST model
achieved an average accuracy rate of 95.7% (The standard
deviation is 0.0055) on the EEG signal classification task
when using an LR of 0.00001, while the adapted LEAF model
reached an average accuracy of 94.0% when using an LR of
0.0001. Compared to the best result of 89.8% achieved by
previous one-stage models on this task, our models showed
improvements of 5.9% and 4.2%, significantly surpassing
previous research.

These results demonstrate the effectiveness of the modified
PaSST and LEAF models in EEG signal classification. This

further validates our hypothesis: audio classification models,
with appropriate adjustments, can be effectively applied to
EEG signal classification tasks.

Moreover, as shown in Figure 3, the PaSST model under
three different pre-training conditions — ‘No pretraining’,
‘Pretraining on AudioSet’, and ‘Pretraining on AutoTUAB’
— achieved accuracies of 95.7%, 95.9%, and 96.1% (The
standard deviation is 0.0076) respectively on the TUAB test set
after formal training with the complete TUAB training dataset.
As the proportion of the TUAB training set used decreased,
the model’s accuracy for all three scenarios gradually declined.
However, the gap between Pretraining on AutoTUAB and
the other two methods progressively widened. Ultimately,
when utilizing only 0.2 times the TUAB training set, the
PaSST model’s final performances under the three pre-training
methods were 80.1%, 80.1%, and 82.3% respectively.

We conducted our experiments using an NVIDIA RTX
4090 GPU. The training and testing times for each model are
summarized in Table IV.

V. DISCUSSION AND FUTURE WORK

A. Adaptation of Time Series Models for EEG Analysis

Our research successfully demonstrates the potential of
applying and adapting audio processing models, specifically
PaSST and LEAF, for EEG signal classification tasks. This
achievement not only illustrates the flexibility and adaptabil-
ity of these audio models but also suggests the existence
of common characteristics shared between audio and EEG
signals. Going forward, we plan to experiment with more
models or modules from various time series domains for
application in the EEG field. Through this approach, we aim
to further investigate the interplay and shared features among
different types of time series data and EEG signals, ultimately

TABLE III: The effect of learning rate on the performance
(Accuracy) of PaSST and LEAF on TUAB, compared with
Deep4 as a baseline model. No pre-training is used in these
cases.

Model Learning Rate

0.001 0.0001 0.00001
Deep4 0.854 0.860 0.800

EEG-PaSST 0.837 0.949 0.957
EEG-LEAF 0.880 0.940 0.878

TABLE IV: The table below provides a comparison of the
training and testing times for our adapted models (PaSST and
LEAF) and a baseline lightweight model (Deep4). Training
Time: The average time taken to train each epoch on the
training set, which consists of 2717 samples. Each model
was trained for 30 epochs. Test Time: The time taken to run
inference once on the test set, which contains 276 samples.

Epoch Training Time (s) Test Time (s)
Deep4 942 4.3

EEG-PaSST 639.6 102.5
EEG-LEAF 2099.9 32



Fig. 3: We subjected PaSST to pre-training on both the Auto-
TUAB and AudioSet datasets. Subsequently, formal training
was executed on varying proportions of the TUAB training
set, and the final evaluation was performed on the TUAB test
set. The figure displays the variation in model performance
(Accuracy) as a function of the usage ratio of the TUAB
training dataset. Learning Rate = 0.00001.

enhancing the models’ understanding and interpretation of
EEG signals.

B. Assessing the Impact of Pretraining Sources on EEG
Classification

As shown in Figure 3, we explored whether pretraining
can enhance the performance of our adapted audio model for
EEG classification. It’s evident that pretraining on AudioSet
didn’t significantly benefit the model’s training for the EEG
classification task. On the other hand, pretraining on Auto-
TUAB consistently improved the model’s performance on the
TUAB test set, especially when the amount of training data
was limited. The efficacy of pretraining on AutoTUAB is
understandable given that AutoTUAB and TUAB are of the
same data type and tackle the same tasks, even though the
labels in AutoTUAB might be biased.

We believe that the lacklustre results from AudioSet stem
partly from the significant divergence in tasks – the frequency
band in which human speech operates is quite distinct from
the EEG data frequency band. Moreover, the classification of
human speech may not necessarily require the model to deeply
comprehend temporal concepts (which might explain why
studies based on AudioSet usually employ small windows).

However, the underwhelming performance of AudioSet-
based pretraining does not conclusively negate the potential of
audio data to assist EEG tasks in learning temporal features.
In future endeavours, we’re considering the design of self-
supervised tasks on AudioSet, thereby using it to initialize
models with less emphasis on discriminating task-specific
classes.

C. Revisiting the Use of Larger Models in EEG Analysis

Our work reveals the potential for larger models to be
employed effectively for EEG signal analysis tasks. Con-

ventional wisdom, influenced by the early success of Deep4
[17], has advocated for smaller models in the context of
EEG signal processing, citing the challenges posed by the
substantial input size and the limited availability of clinical
EEG data [1]. This limited architectural scope has led to
the perception of a performance ceiling [7,10] below 90%
accuracy in clinical EEG classification. Our study presents
evidence that with larger models, even without the benefit
of pre-training, previously perceived performance limits can
be exceeded. This significant advancement over the previous
state-of-the-art models underscores the promise and relevance
of our approach.

D. Future Directions for Model Optimization

The improvements to the audio models in this study were
straightforward, leaving room for further optimization. Cur-
rently, only one convolution layer is used to process inter-
channel relationships, which may not fully capture complex
interactions. In future work, we will explore advanced meth-
ods, such as introducing a self-attention mechanism, to better
represent these relationships and enhance model performance.

While we adjusted parameters and removed modules in the
feature extraction stage, these changes may not fully address
the unique characteristics of EEG signals. We plan to introduce
more effective feature extraction modules tailored for EEG
processing to further improve model performance.

At the window level, we simply average the results across
windows to obtain recording-level predictions. Zhu et al. [27]
suggest using machine learning-based arbitration for combin-
ing results at the recording level, which we will explore in
future work.

We also aim to simplify the model and enhance computa-
tional efficiency by employing techniques like model pruning,
knowledge distillation, and optimized self-attention mecha-
nisms to reduce computational complexity without sacrificing
accuracy.

Lastly, testing on other datasets, such as the Harvard Elec-
troencephalography Database [28] and the South Asian NMT
dataset [29], will help evaluate the generalizability of our
models. Extending the evaluation to different EEG datasets
and other healthcare time-series data, like ECG and ECoG,
will further validate the model’s applicability across clinical
scenarios.

VI. CONCLUSION

In this study, we delved into the intricacies of adapting two
high-performing audio processing models, PaSST and LEAF,
for EEG signal classification tasks. The resulting performance
improvements were both encouraging and substantial. Specif-
ically, the PaSST model achieved an impressive accuracy of
95.7% on the TUAB dataset without any pretraining. However,
when we further pre-trained PaSST on AutoTUAB, its perfor-
mance was boosted to an even higher accuracy of 96.1%. In
contrast, the LEAF model exhibited an accuracy of 94.0%. To
put this in context, these results mark a notable progression



from previous benchmarks set by one-stage models, such as
the Fusion CNN, which had an accuracy of 89.8%.

Our experimentation with pretraining strategies offered
unique insights. While the use of AudioSet as a pretraining
medium didn’t yield a significant performance enhancement,
the AutoTUAB dataset emerged as a powerful enabler, espe-
cially when dealing with limited training data. This accentu-
ates the potential of domain-specific pretraining in delivering
enhanced results.

This research provides further evidence that machine learn-
ing accuracy can exceed inter-rater agreement levels between
human experts. Hence further effort should be devoted to the
translation of such techniques into clinical practice to optimise
the efficiency and quality of healthcare delivery.

DATA AND CODE AVAILABILITY STATEMENT

The code for the experiments is available at https://
github.com/zhuyixuan1997/Audio_model_for_EEG. The Tem-
ple University Hospital EEG Corpus (TUH EEG) dataset
used for model training and evaluation can be accessed at
https://isip.piconepress.com/projects/tuh_eeg/.

REFERENCES

[1] M. Alhussein, G. Muhammad, and M. S. Hossain, “EEG pathology
detection based on deep learning,” IEEE Access, vol. 7, pp. 27781–
27788, 2019.

[2] F. A. Alturki, K. AlSharabi, A. M. Abdurraqeeb, and M. Aljalal, “EEG
signal analysis for diagnosing neurological disorders using discrete
wavelet transform and intelligent techniques,” Sensors, vol. 20, no. 9, p.
2505, 2020.

[3] S. U. Amin, M. S. Hossain, G. Muhammad, M. Alhussein, and M.
A. Rahman, “Cognitive smart healthcare for pathology detection and
monitoring,” IEEE Access, vol. 7, pp. 10745–10753, 2019.

[4] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no.
90, pp. 297–301, 1965.

[5] C. Cooney, R. Folli, and D. Coyle, “Mel frequency cepstral coefficients
enhance imagined speech decoding accuracy from EEG,” in 2018 29th
Irish Signals and Systems Conference (ISSC), pp. 1–7, 2018.

[6] D. Gabor, “Theory of communication. part 1: The analysis of informa-
tion,” Journal of the Institution of Electrical Engineers-Part III: Radio
and Communication Engineering, vol. 93, no. 26, pp. 429–441, 1946.

[7] L. A. W. Gemein, R. T. Schirrmeister, P. Chrabąszcz, D. Wilson, J.
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