
RLJ | RLC 2024

Fast TRAC: A Parameter-Free Optimizer for Life-
long Reinforcement Learning

Aneesh Muppidi
Harvard College
aneeshmuppidi@college.harvard.edu

Zhiyu Zhang
Harvard University
zhiyuz@seas.harvard.edu

Heng Yang
Harvard University
hankyang@seas.harvard.edu

Abstract

A key challenge in lifelong reinforcement learning (RL) is the loss of plasticity,
where previous learning progress hinders an agent’s adaptation to new tasks. While
regularization and resetting can help, they require precise hyperparameter selection
at the outset and environment-dependent adjustments. Building on the principled
theory of online convex optimization, we present a parameter-free optimizer for
lifelong RL, called Trac, which requires no tuning or prior knowledge about the
distribution shifts. Experiments on Procgen and Gym Control environments show
that Trac works surprisingly well—mitigating loss of plasticity and rapidly adapting
to challenging distribution shifts—despite the underlying optimization problem being
nonconvex and nonstationary. The code to install Trac and run experiments can
be found here.

1 Introduction

Spot, the agile robot dog, has been learning to walk confidently across soft, lush grass. But when
Spot moves to a rocky gravel surface, she stumbles. When Spot tries to walk across a sandy beach or
on ice, the challenges multiply. Spot wants to adapt quickly to these new terrains, but she never
knows when the terrain will change and how different it will be.

Spot’s struggle exemplifies a real-world decision making challenge, known as lifelong reinforcement
learning (lifelong RL), where an agent must continually learn to handle the nonstationarity of the
environment. At first glance, there appears to be an obvious solution: given a policy gradient oracle,
the agent could just keep running gradient descent nonstop. However, recent experiments have
demonstrated an intriguing behavior called loss of plasticity (Dohare et al., 2021; Lyle et al., 2022;
Abbas et al., 2023; Sokar et al., 2023; Nikishin et al., 2022; Ahn et al., 2024): despite persistent
gradient steps, an agent can gradually lose its responsiveness to incoming observations.

From the optimization perspective, loss of plasticity might be attributed to the lack of stability
under gradient descent. That is, the weights of the agent’s parameterized policy can drift far away
from the origin (or a good initialization), leading to a variety of undesirable behaviors.1 Adding
an L2 regularizer to the optimization objective (Kumar et al., 2023) or periodically resetting the
weights (Dohare et al., 2021; Asadi et al., 2023; Sokar et al., 2023; Ahn et al., 2024) can mitigate the
problem. However, these methods rely on hyperparameters like regularizer magnitude and resetting
frequency, which must be tuned for each environment—a challenging task incompatible with lifelong
RL’s one-shot nature. This challenge motivates our contributions.

1Such as the inactivation of many neurons, due to dead ReLU activations (Abbas et al., 2023; Sokar et al., 2023).

https://computationalrobotics.seas.harvard.edu/TRAC/


RLJ | RLC 2024

Contribution

• Algorithm: Building on a series of results in OCO (Cutkosky & Orabona, 2018; Cutkosky,
2019; Cutkosky et al., 2023; Zhang et al., 2024), we propose a (hyper)-parameter-free optimizer for
lifelong RL, called TRAC (AdapTive RegularizAtion in Continual environments). Intuitively, the
idea is a refinement of regularization: instead of manually selecting the magnitude of regularization
beforehand, Trac chooses that in an online manner without any hyperparameter tuning.

• Experiment Using an instantiation of Trac with Proximal Policy Optimization (PPO) called
Trac PPO, we evaluate on lifelong settings of Procgen and Gym Control. In settings where
existing approaches (Abbas et al., 2023; Kumar et al., 2023) struggle, we find that Trac PPO
mitigates loss of plasticity and rapidly adapts when new distribution shifts are introduced. Such
findings might be surprising: the theoretical advantage of Trac is motivated by the convexity in
OCO, but lifelong RL is both nonconvex and nonstationary in terms of optimization.

2 Lifelong RL

As a sequential decision making framework, reinforcement learning is commonly framed as a Markov
Decision Process (MDP) defined by the state space S, the action space A, the transition dynamics
P (st+1|st, at), and the reward function R(st, at, st+1). In the t-th round, starting from a state st ∈ S,
the learning agent needs to choose an action at ∈ A without knowing P and R. Then, the environment
samples a new state st+1 ∼ P (·|st, at), and the agent receives a reward rt = R(st, at, st+1). From a
practical perspective, we measure the agent’s performance by its cumulative reward

∑T
t=1 rt. This

standard setting concerns a stationary MDP. The present work studies a nonstationary variant called
lifelong RL, where the transition dynamics Pt and the reward function Rt can vary over time. We
implicitly assume Pt and Rt to be piecewise constant over time, and each piece is called a task.

Lifelong RL as online optimization Modern RL methods, like PPO (Schulman et al., 2017),
utilize policy parameterization with a weight vector θt ∈ Rd. After sampling at and receiving new
observations, the agent defines a loss function Jt(θ) to evaluate each weight θ. The policy gradient
gt = ∇Jt(θt) is then computed, and a first order optimization algorithm OPT updates the weight:
θt+1 = OPT(θt, gt). We treat the environment’s feedback as a policy gradient oracle G, mapping
time t and weight θt to a policy gradient gt = G(t, θt). Our goal is to design an optimizer OPT
suited for lifelong RL.

3 Method

Inspired by (Cutkosky et al., 2023), we study lifelong RL by exploiting its connection to Online
Convex Optimization (OCO; Zinkevich, 2003). OCO is a key problem in online learning, with
significant efforts to design parameter-free algorithms requiring minimal tuning (Orabona & Pál,
2016; Foster et al., 2017; Cutkosky & Orabona, 2018; Jacobsen & Cutkosky, 2022). The surprising
observation of Cutkosky et al. (2023) is that several algorithmic ideas closely tied to the convexity of
OCO can actually improve nonconvex deep learning training, suggesting certain notions of “near
convexity” on its loss landscape. We find that lifelong RL (which is both nonconvex and nonstationary
in terms of optimization) exhibits a similar behavior.

Basics of (parameter-free) OCO OCO concerns a sequential optimization problem where
the convex loss function lt can vary arbitrarily over time. In the t-th iteration, the optimization
algorithm picks an iterate xt and then observes a gradient gt = ∇lt(xt). Motivated by the pursuit of
“convergence” in optimization, the standard objective is to guarantee low (i.e., sublinear in T ) static
regret, defined as

RegretT (l1:T , u) :=
T∑

t=1
lt(xt) −

T∑
t=1

lt(u),



RLJ | RLC 2024

where T is the total number of rounds, and u is a comparator that the algorithm does not know
beforehand. In other words, the goal is to make RegretT (l1:T , u) small for all possible loss sequence
l1:T and comparator u.

Parameter-free algorithms bound RegretT (l1:T , u) directly (without taking the maximum) by a
function of both l1:T and u. With this refined bound, there is no need to pick an uncertainty set U ,
and much less hyperparameter tuning is needed (Orabona, 2023, Chapter 9).

TRAC for lifelong RL Now back to lifelong RL. As we discussed, a fundamental challenge here
is the excessive drifting of the weights θt, and this can be fixed by enforcing the proximity to a good
reference point θref . Different from existing approaches like L2 regularization and resetting, parameter-
free OCO provides a principled solution to this problem without hyperparameter-tuning. Naming
this algorithm as Trac, we present its generic template as Algorithm 1, which calls Algorithm 2 (a
one-dimensional scale tuner) as the key subroutine.

From the technical perspective, Trac assembles three techniques in parameter-free OCO: the
direction-magnitude decomposition from (Cutkosky & Orabona, 2018), the additive aggregation from
(Cutkosky, 2019), and the erfi potential function from (Zhang et al., 2024).

Algorithm 1 Trac: Parameter-free Adaption for Continual Environments.
1: Input: A policy gradient oracle G; a first order optimization algorithm Base; a reference point

θref ∈ Rd; n discount factors β1, . . . , βn ∈ (0, 1] (default: 0.9, 0.99, . . . , 0.999999).
2: Initialize: Create n copies of Algorithm 2, denoted as A1, . . . , An. For each j ∈ [1 : n], Aj uses

the discount factor βj . Initialize the algorithm Base at θref . Let θ1 = θref .
3: for t = 1, 2, . . . do
4: Obtain the t-th policy gradient gt = G(t, θt) ∈ Rd.
5: Send gt to Base as its t-th input, and get its output θBase

t+1 ∈ Rd.
6: For all j ∈ [1 : n], send ⟨gt, θt − θref⟩ to Aj as its t-th input, and get its output st+1,j ∈ R.
7: Define the scaling parameter St+1 =

∑n
j=1 st+1,j .

8: Update the weight of the policy,

θt+1 = θref +
(
θBase

t+1 − θref
)

St+1.

9: end for

Algorithm 2 1D Discounted Tuner of Trac.
1: Input: Discount factor β ∈ (0, 1]; small value ε > 0 (default: 10−8).
2: Initialize: The running variance v0 = 0; the running (negative) sum σ0 = 0.
3: for t = 1, 2, . . . do
4: Obtain the t-th input ht.
5: Let vt = β2vt−1 + h2

t , and σt = βσt−1 − ht.
6: Select the t-th output

st+1 = ε

erfi(1/
√

2)
erfi

(
σt√

2vt + ε

)
,

where erfi is the imaginary error function queried from standard software packages.
7: end for

Without going deep into the theory, here is an overview of the important ideas.

First, Trac is a meta-algorithm that operates on top of a “default” optimizer Base. It can simply be
gradient descent with a constant learning rate, or Adam (Kingma & Ba, 2014) as in our experiments.
Applying Base alone would be equivalent to enforcing the scaling parameter St+1 ≡ 1 in Trac, but
this would suffer from the drifting of θBase

t+1 (and thus, the weight θt+1). To fix this issue, Trac uses
the tuner (Algorithm 2) to select the scaling parameter St+1, making it data-dependent. Typically
St+1 is within [0, 1] (see Figure 10 to 12), therefore essentially, we define the updated weight θt+1 as



RLJ | RLC 2024

a convex combination of the Base’s weight θBase
t and the reference point θref ,

θt+1 = St+1 · θBase
t+1 + (1 − St+1)θref .

This brings the weight closer to θref , which is known to be “safe” (i.e., not overfitting any particular
lifelong RL task), although possibly conservative. To inject appropriate conservatism without
hyperparameter tuning, the tuner (Algorithm 2) uses the erfi function decision rule (theoretically
optimal in an idealized variant of OCO (Zhang et al., 2022; 2024)).

Finally, the tuner requires a discount factor β. This crucially controls the strength of regularization,
but also introduces a hyperparameter tuning problem. Following (Cutkosky, 2019), we aggregate
tuners with different β (on a log-scaled grid) by simply summing up their outputs. This is justified
by the adaptivity of the tuner itself: in OCO, if we add a parameter-free algorithm A1 to any other
algorithm A2 that already works well, then A1 can automatically identify this and “tune down” its
aggressiveness, such that A1 + A2 still performs as well as A2.

4 Experiment

We instantiate Trac PPO with two different optimizers: Adam with constant learning rate for
baseline comparison, and Trac for our proposed method (with exactly the same Adam as the input
Base). We also test Adam PPO with concatenated ReLU activations (CReLU; Shang et al., 2016),
previously shown to mitigate loss of plasticity in deep RL (Abbas et al., 2023). More details and
experiments can be found in Appendix A, H (including numerical results in Table 1).

OpenAI Procgen We evaluated Trac on OpenAI Procgen, a suite of 16 procedurally generated
games (Cobbe et al., 2019). Distribution shifts were introduced by sampling a new level every 2
million steps, treating each level as a distinct task. In StarPilot and Dodgeball, Adam PPO and
CReLU showed degrading performance with each new level (Figure 1). In contrast, Trac PPO
avoided this loss, achieving rapid reward increases. Overall, Trac PPO demonstrated average
improvements of 3,212.42% over Adam PPO and 120.88% over CReLU (Table 1).

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0

10

20

30

40

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Starpilot

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0

10

20

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Dodgeball

0 500 1000 1500
Timesteps

0

100

200

300

400

500

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds CartPole-v1

0 500 1000 1500
Timesteps

500

400

300

200

100

0

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Acrobot-v1

Adam PPO TRAC PPO CReLU

Figure 1: Adam PPO and CReLU show a steady loss of plasticity in Procgen environments and fail
to recover after the initial distribution shift in control environments. Conversely, Trac PPO rapidly
adapts to each shift.

Gym Control We use the CartPole-v1 and Acrobot-v1 environments from the Gym Classic Control
suite. To introduce distribution shifts, every 200 steps we perturb each observation dimension with
random noise within a range of ±2, treating each perturbation phase as a distinct task. Here (Figure
1), we notice a peculiar behavior after introducing the first distribution shift in both Adam PPO and
CReLU: policy collapse. We describe this as an extreme form of loss of plasticity. Surprisingly, Trac
PPO remains resistant to these extreme distribution shifts. Across the three control environments,
Trac PPO shows an average normalized improvement of 204.18% over Adam PPO and 1044.24%
over CReLU (Table 1).



RLJ | RLC 2024

5 Conclusion

We introduced Trac, a parameter-free optimizer for lifelong RL using OCO principles. Trac
dynamically refines regularization in a data-dependent manner, eliminating hyperparameter tuning.
Trac’s results lead to a compelling takeaway: empirical lifelong RL may exhibit more convex
properties than previously appreciated, and might inherently benefit from parameter-free OCO
approaches.

References
Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity in

continual deep reinforcement learning. arXiv preprint arXiv:2303.07507, 2023.

David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for lifelong reinforce-
ment learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 10–19. PMLR, 10–15
Jul 2018a. URL https://proceedings.mlr.press/v80/abel18a.html.

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value transfer
in lifelong reinforcement learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 20–29. PMLR, 10–15 Jul 2018b. URL https://proceedings.mlr.press/v80/abel18b.html.

Hongjoon Ahn, Jinu Hyeon, Youngmin Oh, Bosun Hwang, and Taesup Moon. Catastrophic negative transfer:
An overlooked problem in continual reinforcement learning, 2024. URL https://openreview.net/forum?
id=o7BwUyXz1f.

Kavosh Asadi, Rasool Fakoor, and Shoham Sabach. Resetting the optimizer in deep rl: An empirical study,
2023.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
evaluation platform for general agents. CoRR, abs/1207.4708, 2012. URL http://arxiv.org/abs/1207.
4708.

Eseoghene Ben-Iwhiwhu, Saptarshi Nath, Praveen K. Pilly, Soheil Kolouri, and Andrea Soltoggio. Lifelong
reinforcement learning with modulating masks, 2023.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. CoRR, abs/1912.01588, 2019. URL http://arxiv.org/abs/1912.
01588.

Ashok Cutkosky. Combining online learning guarantees. In Conference on Learning Theory, pp. 895–913.
PMLR, 2019.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in banach
spaces. In Conference On Learning Theory, pp. 1493–1529. PMLR, 2018.

Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. Advances in Neural
Information Processing Systems, 36, 2023.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic gradient
descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Dylan J Foster, Satyen Kale, Mehryar Mohri, and Karthik Sridharan. Parameter-free online learning via
model selection. Advances in Neural Information Processing Systems, 30, 2017.

Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. In Conference on Learning Theory,
pp. 4160–4211. PMLR, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

https://proceedings.mlr.press/v80/abel18a.html
https://proceedings.mlr.press/v80/abel18b.html
https://openreview.net/forum?id=o7BwUyXz1f
https://openreview.net/forum?id=o7BwUyXz1f
http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1912.01588
http://arxiv.org/abs/1912.01588


RLJ | RLC 2024

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity via regenerative regular-
ization. arXiv preprint arXiv:2308.11958, 2023.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in reinforcement
learning. In International Conference on Learning Representations, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney. Under-
standing plasticity in neural networks, 2023.

Jorge A. Mendez, Boyu Wang, and Eric Eaton. Lifelong policy gradient learning of factored policies for faster
training without forgetting, 2020.

Golnaz Mesbahi, Olya Mastikhina, Parham Mohammad Panahi, Martha White, and Adam White. Tuning
for the unknown: Revisiting evaluation strategies for lifelong rl, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The primacy
bias in deep reinforcement learning. In International Conference on Machine Learning, pp. 16828–16847.
PMLR, 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and André
Barreto. Deep reinforcement learning with plasticity injection, 2023.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213, 2023.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in Neural
Information Processing Systems, 29, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and improving convolutional
neural networks via concatenated rectified linear units. In international conference on machine learning,
pp. 2217–2225. PMLR, 2016.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phenomenon in
deep reinforcement learning. arXiv preprint arXiv:2302.12902, 2023.

Zhiyu Zhang, Ashok Cutkosky, and Ioannis Paschalidis. Pde-based optimal strategy for unconstrained online
learning. In International Conference on Machine Learning, pp. 26085–26115. PMLR, 2022.

Zhiyu Zhang, Heng Yang, Ashok Cutkosky, and Ioannis C Paschalidis. Improving adaptive online learning
using refined discretization. In International Conference on Algorithmic Learning Theory, pp. 1208–1233.
PMLR, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In International
Conference on Machine Learning, pp. 928–936, 2003.



RLJ | RLC 2024

Appendix

A Further Experiments and Numerical Results

Arcade Learning Environment (ALE) Atari The ALE Atari 2600 benchmark tests RL agents
across diverse arcade games (Bellemare et al., 2012). We introduce distribution shifts by switching to
a new game every 4 million timesteps, posing a greater challenge than OpenAI Procgen by requiring
adaptation to changes in both state and reward.

We evaluated two settings with action spaces of 6 and 9. As shown in Figure 2, both Adam PPO
and CReLU often failed in some games, while Trac PPO consistently increased rewards across
different games. During the first 12 million steps (3 games) in Atari 6, Trac PPO achieved higher
mean rewards and rapid increases. Overall, Trac PPO showed an average improvement of 329.73%
over Adam PPO and 68.71% over CReLU (Table 1). In some instances, like the last 2 million steps
of Atari 6, CReLU performed comparably to Trac PPO, aligning with findings that CReLU can
prevent plasticity loss in continual Atari setups (Abbas et al., 2023).

LunarLander LunarLander-v2 is a physics-based control task from the Box2d gym control envi-
ronment. As with the Acrobot and CartPole experiments (refer to Figure 1), we observe in Figure 3
that after the first distribution shift, both Adam PPO and CReLU fail to learn a stable policy. In
contrast, Trac adapts rapidly even in these extreme distribution shifts, maintaining high performance
throughout the task.

Chaser Chaser is another game from the Procgen suite. Similar to results in Dodgeball and
StarPilot (refer to Figure 1), we observe in Figure 3 both Adam PPO and CReLU show degrading
rewards due to loss of plasticity. However, Trac avoids this issue, demonstrating rapid reward
increases and sustained performance across different levels.

Numerical results Our numerical results for the main experiments (Procgen, Atari, Gym Control)
are summarized below in Table 1.

Table 1: Cumulative sum of mean episode reward for Trac PPO, Adam PPO, and CReLU on
Procgen, Atari, and Gym Control environments. Rewards are scaled by 105; higher is better.

Environment Adam PPO CReLU Trac PPO (Ours)
Starpilot 3.4 3.6 12.5
Dodgeball 1.9 2.3 5.2
Chaser 1.4 1.7 2.2
Fruitbot 0.1 1.0 1.8
CartPole 5.1 1.2 39.6
Acrobot −14.3 −13.9 −12.9
LunarLander −21.7 −19.4 −8.6
Atari 6 3.1 4.8 10.5
Atari 9 3.9 17.0 20.2

B Discussion

Related work Combating loss of plasticity has been studied extensively in lifelong RL. A typical
challenge for existing solutions is the tuning of their hyperparameters, which requires prior knowledge
on the nature of the distribution shift, e.g., (Asadi et al., 2023; Ben-Iwhiwhu et al., 2023; Nikishin
et al., 2023; Sokar et al., 2023; Mesbahi et al., 2024). An architectural modification called CReLU is
studied in (Abbas et al., 2023), but our experiments suggest that its benefit might be specific to the
Atari setup. Besides, Abel et al. (2018a;b) presented a theoretical analysis of skill transfer in lifelong
RL, based on value iteration.



RLJ | RLC 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e7

0

500

1000

1500

2000

2500
M

ea
n 

Ep
is

od
e 

Re
w

ar
ds

Atari (6)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e7

0

5000

10000

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds

Atari (9)

Adam PPO TRAC PPO CReLU

Figure 2: Reward in the lifelong Atari environments, across games with action spaces of 6 and 9.
These plots demonstrate that Trac PPO rapidly adapts to new tasks, in contrast to the Adam PPO
and CReLU which struggle to achieve high reward, indicating mild loss of plasticity.

Tuning L2 regularization The success of Trac suggests that adaptive regularization, anchored
to θref , effectively counters both mild and extreme loss of plasticity. This highlights the limitation
of the L2 regularization approach from (Kumar et al., 2023). It requires selecting a regularization
strength parameter λ through cross-validation, which is incompatible with the one-shot nature of
lifelong learning settings. However, even when we try the λ-grid suggested by (Kumar et al., 2023),
there is no effective λ value within the grid for the lifelong RL environments we consider. All
the values are too small. We conduct a hyperparameter search for λ, over various larger values
[0.2, 0.8, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]. We discover that each environment and task responds
uniquely to these regularization strengths (Figure 4). This highlights the challenges of tuning λ
in a lifelong learning context. In contrast, Trac dynamically adapts to data online, consistently
competing with well-tuned λ values in CartPole, Acrobot, and LunarLander (Figure 4).

On the choice of θref In general, the reference point θref should be good or “safe” for Trac to
perform effectively. One might presume that achieving this requires “warmstarting”, or pre-training
using the underlying Base optimizer. While our experiments validate that such warmstarting is
indeed beneficial (Appendix D), our main experiments show that even a random initialization of the
policy’s weight serves as a good enough θref, even when tasks are similar (Figure 1).

This observation aligns with discussions by Lyle et al. (2023), Sokar et al. (2023), and Abbas et al.
(2023), who suggested that persistent gradient steps away from a random initialization can deactivate
ReLU activations, leading to activation collapse and loss of plasticity in neural networks. Our results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e7

0.0

2.5

5.0

7.5

10.0

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Chaser

0 200 400 600 800 1000 1200 1400
Timesteps

1000

500

0

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds LunarLander-v2

Adam PPO TRAC PPO CReLU

Figure 3: Reward plots for LunarLander-v2 and Chaser. In the Chaser environment, both Adam PPO
and CReLU show degrading rewards and fail to recover. In LunarLander, after the first distribution
shift, Adam PPO and CReLU are unable to learn a stable policy, while Trac adapts rapidly and
maintains high performance across tasks.



RLJ | RLC 2024

1 2 3 4 5 6 7 8 9 10
Distribution Shift

0

20

40

Be
st

 
 Sensitivity

0 500 1000 1500
Timesteps

0

200

400

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds CartPole-v1
=25

0 500 1000 1500
Timesteps

400

200

0

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Acrobot-v1
=15

0 500 1000 1500
Timesteps

500

0

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds LunarLander-v2
=45

Acrobot CartPole LunarLander Well-tuned TRAC PPO

Figure 4: For each control environment and the initial ten tasks, we identified the optimal λ that
maximizes reward for each task’s specific distribution shift. We also determined the best overall λ
for each environment: CartPole λ = 25, Acrobot λ = 15, and LunarLander λ = 45. The results show
that different tasks and distribution shifts within each environment are sensitive to different λ values.

also support Kumar et al. (2023)’s argument that maintaining some weights close to their initial
values not only prevents dead ReLU units but also allows quick adaptation to new distribution shifts.

Near convexity of lifelong RL Our results demonstrate the rapid adaptation of Trac, in lifelong
RL problems with complicated function approximation. From the perspective of optimization, the
latter requires tackling both nonconvexity and nonstationarity, which is typically regarded intractable
in theory. Perhaps surprisingly, when approaching this complex problem using the theoretical insights
from OCO, we observe compelling results. This suggests a certain “hidden convexity” in this problem.

C Trac Encourages Positive Transfer

To explore whether Trac encourages positive transfer, we introduce a privileged weight-reset baseline.
This baseline is "privileged" in the sense that it knows when a distribution shift is introduced and
resets the parameters to a random initialization at the start of each new task. We applied this
baseline to three Gym control tasks: CartPole-v1, Acrobot-v1, and LunarLander-v2, and compared
it to Trac PPO and Adam PPO, as shown in Figure 5.

We observe that the privileged weight-reset baseline exhibits spikes in reward at the beginning of
each new task. Surprisingly, Trac maintains even higher rewards than the privileged weight-reset
baseline, even at its peak learning phases. Additionally, Trac’s reward does not decline to the
reward seen at the start of new tasks with privileged weight-resetting (Trac does not have to "start
over" with each task), suggesting that Trac successfully transfers skills positively between tasks.

0 500 1000 1500 2000 2500 3000
Timesteps

0

100

200

300

400

500

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds

CartPole-v1

0 500 1000 1500 2000 2500 3000
Timesteps

500

400

300

200

100

0

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds

Acrobot-v1

0 500 1000 1500 2000 2500 3000
Timesteps

1000

750

500

250

0

250

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds

LunarLander-v2

Adam PPO TRAC PPO Privileged Weight Reset

Figure 5: Reward comparison of Trac PPO, Adam PPO, and privileged weight-resetting on
Cartpole-v1, Acrobot-v1, and LunarLander-v2. Trac PPO encourages positive transfer between
tasks.



RLJ | RLC 2024

D Warmstarting

In our theoretical framework, we hypothesize that a robust parameter initialization, denoted as θref ,
could enhance the performance of our models, suggesting that empirical implementations might
benefit from initializing parameters using a base optimizer such as Adam prior to deploying Trac.
Contrary to this assumption, our experimental results detailed in Section 4 reveal that warmstarting
is not essential for Trac’s success. Below, we examine the performance of Adam PPO and Trac
PPO when warmstarted.

Both Trac PPO and Adam PPO were warmstarted using Adam for the initial 150,000 steps in all
games for the Atari and Procgen environments, and for the first 30 steps in the control experiments.
As seen in Figure 6, in games like Starpilot, Fruitbot, and Dodgeball, Trac PPO surpasses Adam
PPO in the first “level” of the online setup, with its performance closely matching that of Adam
PPO in Chaser. Importantly, Trac PPO continues to circumvent the loss of plasticity encountered
by Adam PPO, even when both are warmstarted. This makes sense since all of the distributions
share some foundational game dynamics; the initial learning phases likely explore these dynamics,
so leveraging a good parameter initialization to regularize in this early region can be beneficial for
Trac—we observe that forward transfer occurs somewhat in later level distribution shifts as the
reward does not drop back to zero where it initially started from.

Our findings indicate that warmstarting does not confer a significant advantage in the Atari games.
This makes sense because a parameter initialization that is good in one game setting is likely a
random parameterization for another setting, which is equivalent to the setup without warmstarting
where Trac regularizes towards a random parameter initialization. In the control experiments
although warmstarted Trac PPO manages to avoid the extreme plasticity loss and policy collapse
seen in warmstarted Adam PPO, it does not perform as well as non-warmstarted Trac PPO. This
variability underscores that the efficacy of warmstarting is environment-specific and highlights the
challenge in predicting when Adam PPO may achieve a parameter initialization that is advantageous
for Trac PPO to regularize towards.

From an overall perspective, warmstarting Trac PPO in every setting still shows substantial
improvement over Adam PPO (Table 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e7

0

10

20

30

40

50

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Starpilot

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e7

0

5

10

15

20

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Dodgeball

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e7

2

4

6

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Chaser
Adam PPO Warmstarted TRAC PPO Warmstarted

Figure 6: Comparison of reward in the lifelong Procgen environments for StarPilot, Dodgeball,
Fruitbot, and Chaser with warmstarted Trac PPO and warmstarted Adam PPO. Inital performance
of Trac PPO is improved with warmstarting and continues to avoid loss of plasticity.

E Gravity Based Distribution Shifts

One method to introduce distribution changes in reinforcement learning environments is by altering
the dynamics Mendez et al. (2020), such as adjusting the gravity in the CartPole environment. In
this set of experiments, we manipulate the gravity by a magnitude of ten, randomly adding noise for



RLJ | RLC 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e7

0

500

1000

1500

2000
M

ea
n 

Ep
is

od
e 

Re
w

ar
ds

Atari (6)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Timesteps 1e7

4000

2000

0

2000

4000

6000

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds

Atari (9)

Adam PPO Warmstarted TRAC PPO Warmstarted

Figure 7: Comparison of reward in the lifelong Atari environments with warmstarted Trac PPO
and warmstarted Adam PPO. No significant benefit is found by warmstarting Trac compared to
not warmstarting it.

0 500 1000 1500 2000 2500 3000
Timesteps

0

200

400

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds CartPole-v1

0 500 1000 1500 2000 2500 3000
Timesteps

400

300

200

100

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds Acrobot-v1

0 500 1000 1500 2000 2500 3000
Timesteps

750

500

250

0

M
ea

n 
Ep

is
od

e 
Re

w
ar

ds LunarLander-v2

Adam PPO Warmstarted TRAC PPO Warmstarted

Figure 8: Comparison of reward in the lifelong Gym control environments for CartPole-v1, Acrobot-v1,
and LunarLander-v2 with warmstarted Trac PPO and warmstarted Adam PPO.

Table 2: Cumulative sum of mean episode reward over all distributions for Adam PPO warmstarted
and Trac PPO warmstarted on Procgen, Atari, and Gym Control environments. Rewards are scaled
by 105; higher is better.

Environment Adam PPO Trac PPO (Ours)
Starpilot 3.0 10.2
Dodgeball 1.2 2.5
Chaser 1.3 1.6
Fruitbot −0.4 0.6
CartPole 4.6 22.8
Acrobot −142.9 −114.5
LunarLander −190.7 −97.3
Atari6 16.7 72.2
Atari9 34.6 80.6

one distribution shift, and then inversely, dividing by ten and adding random noise for the next shift.
This process continues throughout the experiment.

Our observations suggest that Adam PPO is robust to such dynamics-based distribution shifts, as
shown in Figure 9. This indicates that while Adam PPO implicitly models the dynamics of the
environment well—where changes in dynamics minimally impact performance—it struggles more
with adapting to out-of-distribution observations such as seen in the main experiments (Figure ??)
and in the warmstarting experiments (Figure 8).



RLJ | RLC 2024

0 500 1000 1500 2000 2500 3000
Timesteps

0

100

200

300

400

M
ea

n 
E

pi
so

de
 R

ew
ar

ds

CartPole-v1-Gravity

Figure 9: Mean Episode Reward for Adam PPO on CartPole-v1 with varying gravity. Adam PPO
demonstrates robust policy recovery across most gravity-based distribution shifts.

F Scaling-Value Convergence

As discussed in the algorithm section (see Section 3), Trac operates as a meta-algorithm on
top of a standard optimizer, denoted as Base. The crucial component of Trac involves the
dynamic adjustment of the scaling parameter St+1, managed by the tuner algorithm (Algorithm 2).
This parameter is data-dependent and typically ranges between [0, 1]. The weight update θt+1
is consequently defined as a convex combination of the current optimizer’s weight θBase

t and a
predetermined reference point θref.

This section presents the convergence behavior of the scaling parameter St+1 across different environ-
ments, analyzed through the mean values over multiple seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Update Step 1e6

0.000

0.025

0.050

0.075

0.100

s

Starpilot

0.0 0.2 0.4 0.6 0.8 1.0
Update Step 1e6

0.00

0.05

0.10

s

Dodgeball

0.0 0.2 0.4 0.6 0.8 1.0
Update Step 1e6

0.00

0.05

0.10

s
Chaser

Figure 10: Convergence of the scaling parameter St+1 in the Procgen environments.

0 50000 100000 150000 200000 250000 300000 350000 400000
Update Step

0.00

0.01

0.02

0.03

0.04

0.05

0.06

s

Atari (6)

0 50000 100000 150000 200000 250000 300000 350000 400000
Update Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

s

Atari (9)

Figure 11: Evolution of the scaling parameter St+1 in the Atari settings. Here we don’t see a
meaningful convergence ofSt+1.

The convergence of the scaling parameter St+1 observed across the ProcGen and Control environments,
as depicted in Figures 10 and 12, reflects a good scaling value that effectively determines the strength



RLJ | RLC 2024

0 25000 50000 75000 100000 125000
Update Step

0.00

0.01

0.02

0.03

0.04

s

CartPole-v1

0 25000 50000 75000 100000 125000
Update Step

0.00

0.02

0.04

s

Acrobot-v1

0 25000 50000 75000 100000 125000
Update Step

0.00

0.02

0.04

0.06

0.08

s

LunarLander-v2

Figure 12: Convergence of the scaling parameter St+1 in the Gym Control environments.

of regularization towards the initialization points, yielding robust empirical outcomes in lifelong RL
settings. Interestingly, in ProcGen environments, this converged scaling value exhibits consistency
across various games, typically hovering between 0.02 and 0.03, as shown in Figure 10. In contrast,
in Control environments, the scaling values are notably lower, ranging between 0.005 and 0.01, as
illustrated in Figure 12.

G Comparison to Mechanic

Our algorithm Trac builds on a long line of works on parameter-free OCO (see Section 3). In
particular, we are inspired by the Mechanic algorithm. Compared to Mechanic, Trac improves
the scale tuner there (which is based on the coin-betting framework; Orabona & Pál, 2016) by the
erfi algorithm that enjoys a better OCO performance guarantee. We empirically compare Trac
and Mechanic in the Starpilot game from the Procgen suite (Figure 13). The results indicate that
while Mechanic effectively mitigates plasticity loss and adapts quickly to new distribution shifts, it
slightly underperforms in comparison to Trac. This suggests potential for the effectiveness of the
general “parameter-free” principle in lifelong RL.

H Experimental Setup

Procgen and Atari Vision backbone For both the Atari and Procgen experiments, the Impala
architecture was used as the vision backbone. The Impala model had 3 Impala blocks, each containing
a convolutional layer followed by 2 residual blocks. The output of this is flattened and connected to a
fully connected layer. The impala model parameters are initialized using Xavier uniform initialization.

Policy and Value Networks Across all experiments—including Control, Atari, and Procgen—the
policy and value functions are implemented using a multi-layer perceptron (MLP) architecture. This
architecture processes the input features into action probabilities and state value estimates. The
MLP comprises several fully connected layers activated by ReLU. The output from the final layer
uses a softmax activation.

Trac Trac, for all experiments, was implemented using the same experiment-specific baseline
architectures and baseline optimizer. For the Procgen and Atari experiments, the base Adam
optimizer was configured as the same as baseline, with a learning rate of 0.001, and for Control
experiments, a learning rate of 0.01 was used. Both learning rates were tested for all experiments
and found to have negligible differences in performance outcomes. Other than the learning rate, we
use the default Adam parameters, including weight decay and betas, followed by the specifications
outlined in the PyTorch Documentation.2

The setup for Trac included β values for adaptive gradient adjustments: 0.9, 0.99, 0.999, 0.9999,
0.99999, and 0.999999. Both St and ε were initially set to (1 × 10−8). Modifications were made

2https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html


RLJ | RLC 2024

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e7

0

10

20

30

40

50
M

ea
n 

E
pi

so
de

 R
ew

ar
ds

Starpilot
Mechanic PPO
TRAC PPO

Figure 13: Comparison of reward in the lifelong StarPilot environment with both Trac PPO and
Mechanic PPO. Mechanic PPO performs similarly to Trac PPO, although slightly underper-
forming Trac PPO.

Table 3: PPO Parameters for Atari, Procgen, and Control Experiments
Parameter Atari Procgen Control
Steps per update 2,000 1,000 800 (2 episodes with 400 steps)
Batch size 250 125 32
Epochs per update 3 3 5
Epsilon clip for PPO 0.2 0.2 0.2
Value coefficient 0.5 0.5 0.5
Entropy coefficient 0.01 0.01 0.01
Base Optimizer Adam (LR: 0.001) Adam (LR: 0.001) Adam (LR: 0.01)
Architecture Impala + MLP Impala + MLP MLP

to a PyTorch error function library, which accepts complex inputs to accommodate the necessary
computations for the imaginary error function. This library can be found at Torch Erf GitHub.3

Distribution Shifts In the Atari experiments, game environments were switched every 4 million
steps. The sequence for games with an action space of 6 included “BasicMath”, “Qbert”, “SpaceIn-
vaders”, “UpNDown”, “Galaxian”, “Bowling”, “Demonattack”, “NameThisGame”, while games with
an action space of 9 included “LostLuggage”, “VideoPinball”, “BeamRider”, “Asterix”, “Enduro”,
“CrazyClimber”, “MsPacman”, “Koolaid”.

For Procgen experiments, individual game levels were sampled using a seed value as the start_level
parameter, which was incremented sequentially to generate new levels. Each new environment was
introduced every 2 million steps.

3https://github.com/redsnic/torch_erf

https://github.com/redsnic/torch_erf


RLJ | RLC 2024

In the Control experiments, each observation dimension was randomly perturbed by a value ranging
from 0 to 2. This perturbation was constant for 200 timesteps, after which a new perturbation was
applied, effectively switching the environmental conditions every 200 steps.

Statistical Significance Each game in the Procgen and Atari experiments was conducted with
8 seeds/runs, while the Control experiments utilized 25 seeds/runs. The exception was in the L2
initialization experiments, which used 15 seeds/runs per regularization strength. In Figures 1, 2, 3, 4,
6, 7, 8, 9, the plotted lines represent the mean of all of the Mean Episode Rewards from the different
seeds/runs, and the shaded error bands indicate the standard deviation of all of the Mean Episode
Rewards from the different seeds/runs.

Compute Resources For the Procgen and Atari experiments, each was allocated a single A100
GPU, typically running for 3-4 days to complete. Control experiments were conducted using dual-core
CPUs, generally concluding within a few hours. In both scenarios, an allocation of 8GB of RAM was
sufficient to meet the computational demands.


