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Abstract

Sparse-view scene reconstruction often faces significant challenges due to the constraints
imposed by limited observational data. These limitations result in incomplete information,
leading to suboptimal reconstructions using existing methodologies. To address this, we
present Intern-GS, a novel approach that effectively leverages rich prior knowledge from
vision foundation models to enhance the process of sparse-view Gaussian Splatting, thereby
enabling high-quality scene reconstruction. Specifically, Intern-GS utilizes vision foundation
models to guide both the initialization and the optimization process of 3D Gaussian splat-
ting, effectively addressing the limitations of sparse inputs. In the initialization process,
our method employs DUSt3R to generate a dense and non-redundant gaussian point cloud.
This approach significantly alleviates the limitations encountered by traditional structure-
from-motion (SfM) methods, which often struggle under sparse-view constraints. During
the optimization process, vision foundation models predict depth and appearance for unob-
served views, refining the 3D Gaussians to compensate for missing information in unseen
regions. Extensive experiments demonstrate that Intern-GS achieves state-of-the-art ren-
dering quality across diverse datasets, including both forward-facing and large-scale scenes,
such as LLFF, DTU, and Tanks and Temples.

1 Introduction

Novel View Synthesis (NVS) Zhou et al. (2016); Avidan & Shashua (1997) focuses on generating images from
unseen perspectives using a series of images captured from specific seen viewpoints. This technology has
significant potential in applications such as virtual reality (VR), film production, urban planning, autonomous
driving, and game design, establishing it as a major research area in computer vision. Recent advances in
NVS, particularly those which use Neural Radiance Fields (NeRF) Mildenhall et al. (2021) and 3D Gaussian
splatting (3DGS) Kerbl et al. (2023), have significantly improved NVS performance Gao et al. (2022); Ma
& Liu (2018); Zhu et al. (2023). However, these methods heavily rely on dense input views Chibane et al.
(2021) and accurate camera poses Jain et al. (2021); Yu et al. (2021b) and typically initialize from sparse
point clouds derived from Structure from Motion (SfM) Ullman (1979); Schönberger et al. (2016).

In many real-world applications, obtaining dense views is not feasible, and the available views are usually
sparse, covering only a limited number of perspectives Jain et al. (2021); Barron et al. (2021); Yan et al.
(2023); Chibane et al. (2021). This sparse-view scenario poses substantial challenges as the large number
of unobserved viewpoints results in significant information gaps, which critically impact the completeness
and quality of reconstructions. For example, sparse inputs often lack sufficient overlap, which hampers the
ability of SfM to estimate camera parameters accurately, causing it to struggle under sparse-view conditions.
Particularly in areas of poor texture and smooth surfaces, SfM frequently fails to accurately match features
across multiple images. This often results in rendered scenes that are plagued by artifacts and inconsistencies
Niemeyer et al. (2022); Chen et al. (2021); Yu et al. (2021b). The fundamental issue here stems from a lack
of sufficient prior information. A straightforward approach to address this is to provide the model with more
accurate and robust prior information. In this context, vision foundation models Riquelme et al. (2021);
Radford et al. (2021); Liu et al. (2021), which are pre-trained on extensive and diverse datasets, present a
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Figure 1: Comparison of the SOTA SparseNeRF Wang et al. (2023a), SparseGS Fu et al. (2024b) in 3
training views. Our work leverage multi-view stereo prior to densely initial 3D Gaussian, supervised using
a combination of various forms of regularization. From the reconstruction results in the figure, it is evident
that our method significantly enhances rendering quality, yielding more refined and detailed results.

promising avenue by providing comprehensive visual priors that significantly help bridge information gaps
in sparse-view NVS.

To effectively address the challenges of sparse-view conditions, we propose Intern-GS, a novel approach
that leverages priors from vision foundation models to guide the initialization and optimization process of
3D Gaussian Splatting in sparse-view settings. Our key idea is to mitigate information gaps from unob-
served views by extracting and integrating priors from vision foundation models, allowing our method to
generate dense and redundancy-free Gaussian initializations and refine depth and appearance across unob-
served perspectives. Specifically, our method starts with DUSt3R Wang et al. (2023b), a state-of-the-art
multi-view stereo model, to create a dense point cloud initialization, overcoming the limitations of traditional
SfM-based sparse initializations. Unlike conventional SfM techniques relying on feature matching between
images, DUSt3R leverages robust multi-view stereo priors to directly learn the mapping between 2D images
and 3D point maps. This initial dense point cloud lays a solid foundation for further optimization, which is
crucial in scenes with limited geometric or photometric data. During the optimization process, Intern-GS
employs advanced visual models to improve the appearance and depth of unobserved viewpoints. We lever-
age a pre-trained diffusion model Wang et al. (2024) to enhance appearance by generating realistic textures
for areas without direct observation. Concurrently, we use a deep depth estimation model to predict depth
values for unobserved viewpoints, providing key geometric constraints that guide the Gaussian optimization
toward more accurate 3D geometry across perspectives.

Intern-GS undergoes rigorous evaluation across diverse sparse-view datasets, demonstrating state-of-the-art
performance on both forward-facing and large-scale scenes. It surpasses existing methods on challeng-
ing benchmarks such as LLFF Mildenhall et al. (2019), DTU Aanæs et al. (2016), and Tanks and Tem-
plesKnapitsch et al. (2017), setting new standards for sparse-view NVS by delivering highly accurate and
consistent reconstructions.

Our main contributions are summarized as follows:
• We propose Intern-GS, a novel approach for dense Gaussian initialization that leverages multi-view stereo

priors from vision foundation models, achieving geometrically consistent initialization that outperforms
traditional sparse initialization methods, particularly in low-texture areas.

• We have developed a hybrid regularization mechanism that leverages a pre-trained Diffusion model for
appearance refinement and a deep depth estimation model for depth constraints, optimizing the 3D
Gaussian representations to produce consistent color and depth across unobserved viewpoints.

• Extensive experiments validate Intern-GS as a state-of-the-art approach for sparse-view NVS, excelling
on challenging datasets such as LLFF, DTU, and Tanks and Temples and setting a new standard for
sparse-view novel view synthesis.
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Figure 2: Comparison of point cloud initialization of original 3D Gaussian Kerbl et al. (2023) and our method
in 4 scenes under 3 training views. The first row’s results are derived from SfM Ullman (1979) used by the
original 3D Gaussian and most NeRF-based methods. In contrast, the second row shows the results of our
initialization method. Obviously, our method outperforms the SfM method in texture-poor areas.

2 Related Work

2.1 Novel View Synthsis

The goal of novel view synthesis Zhou et al. (2016); Avidan & Shashua (1997) is to create images of a
scene or object from unseen viewpoints based on images from specific seen viewpoints. Recent technological
advancements have shown exciting progress, one of which is Neural Radiance Fields (NeRF) Mildenhall
et al. (2021). It employs a multilayer perceptron (MLP) Rumelhart et al. (1986) to map spatial locations and
viewing angles to colors and densities, rendering images through volume rendering. Subsequent improvements
have primarily focused on enhancing its quality Mildenhall et al. (2021); Barron et al. (2021); Zhang et al.
(2020); Deng et al. (2022)and efficiency Yu et al. (2021a); Garbin et al. (2021); Reiser et al. (2021); Chen
et al. (2022); Liu et al. (2020) of the renderings, as well as improving 3D generation capabilitiesTang et al.
(2023); Chan et al. (2022); Niemeyer & Geiger (2021); Meng et al. (2021); Schwarz et al. (2020) and refining
pose estimation techniques Sucar et al. (2021); Rosinol et al. (2023); Zhu et al. (2022).

However, achieving real-time rendering performance remains a significant challenge, as NeRF requires ex-
tensive computational resources and processing time. The introduction of 3D Gaussian Splatting Kerbl
et al. (2023) addresses this issue, shifting more attention towards this explicit representation. This approach
involves initializing a series of anisotropic 3D Gaussian ellipsoids to model the entire radiance field com-
prehensively, followed by rendering the scene using differentiable splatting methods. This technique has
proven highly effective in rapidly and accurately reconstructing complex real-world scenes, delivering robust
performance for scenes under multi-view input Tang et al. (2023). Despite these advancements, numerous
challenges remain, particularly when dealing with sparse view inputs.

2.2 Novel View Synthsis in Sparse-View

Both of these popular methods exhibit significant flaws: they rely on dense input and accurate estimation
of camera parameters. To address the issue of reduced accuracy that arises from the diminished matches
in corresponding points in Structure from Motion (SfM) as the number of input views decreases, numer-
ous studies have employed strategies that incorporate additional prior information or have designed specific
regularization terms to enhance the performance of NeRFJain et al. (2021); Deng et al. (2022); Niemeyer
et al. (2022); Wang et al. (2023a); Truong et al. (2023); Wu et al. (2024) and 3DGS Zhu et al. (2024); Fu
et al. (2024a); Zhang et al. (2024); Fu et al. (2024b); Fan et al. (2024). For instance, DietNeRF Jain et al.
(2021) leverages semantic priors obtained from the large semantic model CLIP to introduce extra semantic
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constraints in high dimensions, ensuring multi-view consistency of the rendered unseen views. RegNeRF
Niemeyer et al. (2022) regularizes the geometry and appearance of patches rendered from unobserved view-
points and anneals the ray sampling space during training. SparseNeRF Wang et al. (2023a) utilize a local
depth ranking method to make sure the expected depth ranking of the NeRF is consistent with that of the
coarse depth maps in local patches. Sparf Truong et al. (2023) optimizes NeRF’s parameters and noisy poses
simultaneously, designing consistency constraints across different viewpoints to address the adverse effects of
inaccurate poses on model optimization. Reconfusion Wu et al. (2024) first uses a diffusion prior to impose
color regularization constraints on NeRF at unseen viewpoints.

Simultaneously, there have been some improvements based on 3DGS. For instance, FSGS Zhu et al. (2024)
was the first to introduce geometric constraints on training viewpoints, utilizing depth information to ensure
the newly generated 3DGS is positioned correctly. CF-3DGS Fu et al. (2024a) utilizes the continuity of the
input video stream to add 3DGS frame by frame, thereby eliminating the need for SfM. CoR-GS Zhang
et al. (2024) employs an unsupervised approach to simultaneously train two 3DGS representations, evaluate
their inconsistencies, and collaboratively prune Gaussians that exhibit high point disagreement at inaccurate
positions. SparseGS Fu et al. (2024b) combines depth priors, novel depth rendering techniques, and pruning
heuristic algorithms to mitigate floating artifacts. However, these methods overlook a critical point: as an
explicit representation, 3DGS heavily relies on an accurate, non-redundant initialization. How to construct
a dense and precise initialization needs further research.

3 Method

In this section, we first introduce the preliminaries of 3D Gaussians 3.1. Then, we introduce our dense and
non-redundant Gaussian initialization method 3.2. Finally, We present our proposed hybrid regularization
strategy 3.3 and 3.4.

3.1 Preliminary of 3D Gaussian Splatting

Representation. The process of 3D scene representation typically begins with the extraction of a 3D
point cloud from a set of input images, which is commonly achieved through SfM techniques Schonberger &
Frahm (2016). 3D Gaussian Splatting initializes each point cloud into a corresponding 3D Gaussian G(x).
Each Gaussian Gi(x) includes the following attributes: opacity αi and color ci, where the color is defined by
a l dimensional spherical harmonic function

{
ci ∈ R3 | i = 1, 2, . . . , l2}

. In 3D space, the position and shape
of each Gaussian distribution are defined by its mean (parameters describing its center position) µi and
covariance matrix Σi (parameters describing its spread and shape). The representation of the i-th Gaussian
Gi(x) is given by:

Gi(x) = e− 1
2 (x−µi)T Σ−1

i
(x−µi), (1)

where the covariance matrix Σi is calculated from the scale si and rotation ri, as Σ = RSST RT , where R is a
matrix of quaternions representing rotation, and S is a matrix representing scaling. Overall, the optimizable
parameters of the i-th Gaussian Gi(x) are {αi, ci, µi, ri, si} .

Rendering and Optimization Process. To calculate the color of each pixel in the rendered 2D image,
3D Gaussian Splatting employs a rasterization process, combining contributions from N Gaussians impacting
that pixel to synthesize the color Cp of pixel p:

Cp =
∑
i∈N

ciα
′
i

i−1∏
j=1

(1 − α′
j), (2)

where ci represents the color contribution of the i-th Gaussian, computed from its spherical harmonics (SH)
coefficients, and α′

i denotes the effective opacity of the i-th Gaussian in the 2D-pixel coordinate system.
The effective opacity α′ is derived from the projected covariance matrix Σ′ in the 2D plane and the original
opacity α of the 3D Gaussian. The projection of the 3D Gaussian into the 2D pixel coordinate system is
achieved through a transformation:

Σ′ = JWΣW T JT , (3)
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Figure 3: In our framework, we first utilize a multi-view stereo to predict point maps. This technique
recovers point maps at a consistent scale, but failed to represent scene because of redundancy in points. To
handle overlapping regions in the point maps, we designed a Redundancy-Free (RF) algorithm that only
initializes areas which have not been well defined for all views. For the optimization progress, we design a
novel regularization method that jointly constrains the depth and color information of training and pseudo
views. The color supervision is derived from the diffusion refine model we employ, while the depth supervision
comes from multi-view stereo model and monocular depth prediction model.

where J is the approximate Jacobian matrix of the projection transformation, and W represents the rotational
component of the camera pose. We use a similar method to render depth, as described in the following
formula:

Dp =
∑
i∈N

diα
′
i

i−1∏
j=1

(1 − α′
j), (4)

where di represents the depth at each pixels, which is calculate by the distance to the camera center o, the
formula is

di = ∥µi − o∥2. (5)

3D Gaussian Splatting optimizes its model parameters through color constraints. During the optimization
process, the algorithm dynamically adapts the Gaussian distributions by cloning or splitting them based on
their gradient magnitudes and scales. Specifically, it clones Gaussians whose gradients exceed a predefined
threshold but whose scales remain below a certain limit. At the same time, it splits Gaussians with gradients
and scales, both exceeding their respective thresholds. This adaptive optimization strategy ensures a balance
between detail preservation and computational efficiency. In our work, we retain the original optimization
methodology and color constraints.

3.2 Multi-View Stereo Guided Dense Initialization

Existing initialization techniques, such as Structure from Motion usually generate sparse correspondences
that lack sufficient geometric details and make it difficult to fully exploit color priors. In addition, SfM-based
methods are computationally intensive, limiting their feasibility in real-time applications. This phenomenon
highlights the urgent need to design more efficient and robust initialization strategies for 3D Gaussian
Splatting, especially for applications in real-time high-fidelity scene reconstruction.

Dense Stereo Point Cloud. To address the limitations of sparse point cloud initialization under sparse-
view input in SfM, a direct solution is to generate a dense point cloud. Advances in deep learning technology
have accelerated the development of Multi-View Stereo (MVS) frameworks, enabling them to integrate these
innovative methods. Among them, DUSt3R Wang et al. (2023b) can instantly generate 3D point cloud
maps and confidence maps corresponding to 2D images using just an image pair, establishing a one-to-one
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correspondence between pixels and 3D scene points. The formula is as follows:

Ip ↔ Xp, (6)

where I represents a pixel in the pixel coordinate system, X represents a 3D point in the camera coordinate
system and p represents views. The training goal for DUSt3R specifically focuses on regressing original pixel
maps and predicted point maps derived from the input image pair. The regression loss in view p ∈ {1, 2} is
defined as the Euclidean distance as below:

ℓregr(p) =
∥∥∥∥1

z
Xp,1 − 1

ẑ
X̂p,1

∥∥∥∥ , (7)

where X̂ represents the ground-truth points and X represents the prediction. To address the scale am-
biguity between prediction and ground-truth, DUSt3R leverage scaling factors z = norm(X1,1, X2,1) and
ẑ = norm(X̂1,1, X̂2,1) to normalize the predicted and ground-truth point maps. Simultaneously, DUSt3R
also learns to predict the confidence map, where the score represents the network’s confidence in that specific
pixel, to address the issue of blurry 3D points in the sky or on translucent objects. The training objective
for the confidence is achieved by calculating a weighted confidence regression loss across all pixels.

Lconf =
∑

p∈{1,2}

∑
i

Cp,1
i ℓregr(p, i) − α log Cp,1

i , (8)

where Cp,1
i represents the confidence score of pixel i, and α is a regularization hyper-parameter defined in

DUSt3R.

Redundancy-Free Initialization. With globally aligned points, poses, and pixel-level confidence maps,
we initially generate a dense point cloud. However, this introduces significant redundancy, where multiple
points occupy the same spatial location, leading to inefficiencies in storage and computation. To address
this, we propose a Redundancy-Free (RF) Strategy to downsample the point cloud, reducing redundancy
while preserving essential scene details and improving representation efficiency. Inspired by Matsuki et al.
(2023); Keetha et al. (2023), we randomly select a primary viewpoint and initialize new Gaussians using all
its pixels. Since some regions are already well-represented, indiscriminately adding Gaussians would cause
unnecessary duplication. To prevent this, we introduce a masking mechanism to selectively determine where
new Gaussians should be introduced. The mask formulation is as follows:

Mp = (Sp < 0.5) +
(
DGT

p < Dp

)
(L1(Dp) > 50MDE) , (9)

where p represents each pixel, Sp represents the track, indicating the density of the Gaussian at that point,
which is calculated similar to color and depth as:

Sp =
∑
i∈N

siα
′
i

i−1∏
j=1

(1 − α′
j), (10)

where si represents the Gaussian weight, and α′
i is the opacity of the i-th Gaussian in the accumulation

process. The mask Mp ensures that new Gaussians are only added in regions where the density is insufficient
or where the estimated depth Dp is positioned in front of the ground truth depth DGT

p , and the depth
error exceeds 50 times the median depth error (MDE). The addition of new Gaussians follows the same
initialization procedure as that used for the primary viewpoint.

3.3 Depth Regularization

In sparse-view settings, optimizing Gaussians solely with multi-view photometric loss is not that adequate,
as it constrains appearance without fostering a coherent geometric structure. To address this issue, we
introduce additional priors and regularization terms. Depth priors derived from pre-trained multi-view
stereo will intuitively guide the model toward the correct geometric structure.
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Figure 4: Results on LLFF dataset Mildenhall et al. (2019) and DTU dataset Aanæs et al. (2016) in 3 training
views. Our method captures more scene details, particularly in areas with sparse texture information.
The SparseNeRF Wang et al. (2023a) approach struggles to synthesize accurate new views under sparse
viewpoints, while SparseGS Fu et al. (2024b) produces overly smooth views, losing many details.

Training Depth Regularization. Our multi-view stereo depth prior originates from the pre-trained
model DUSt3R Wang et al. (2023b), which provides relative depth. To address the scale ambiguity between
real-world scenes and estimated depths, we employ a relaxed relative loss method, Pearson correlation
coefficient, formulated as follows:

Corr(Dras, Dest) = Cov(Dras, Dest)√
Var(Dras)Var(Dest)

. (11)

Here, Dest is the depth estimated by the multi-view stereo model, and Dras is the depth rendered by our
system. This constraint benefits from being unaffected by scale inconsistencies, optimizing the correlation
between the two depths.

Pseudo Depth Regularization. To improve the generalization of 3D Gaussian across unseen views and
reduce overfitting, we first set up pseudo views with a 5-degree deviation on the rotation matrix according to
the training viewpoints, and then similarly establish depth constraints for these pseudo views. The equation
is as follows:

Corr(Dpse
ras , Dpse

est ) = Cov(Dpse
ras , Dpse

est )√
Var(Dpse

ras )Var(Dpse
est )

. (12)

Here, Dpse
ras represents the depth rendered from the pseudo viewpoint, while Dpse

est is the depth predicted by
the monocular depth pre-trained model based on the RGB image rendered and then refined by Multi-view
Appearance Refinement model from the same viewpoint.

3.4 Multi-view Appearance Refinement

Above, we improve 3D Gaussian representation by ensuring geometry consistency with added depth regu-
larization. However, color inconsistencies persist in images generated from unseen views, leading to a noisy
representation. To address this, we’ve developed a Multi-view Appearance Refinement (MAR) algorithm. It
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Figure 5: Results on Tanks dataset Knapitsch et al. (2017) in 3 training views. In comparison, SparseNeRF
Wang et al. (2023a) struggles to accurately represent structures. While SparseGS Fu et al. (2024b) performs
well overall, it tends to lose some texture information in areas with flat depth. In contrast, Intern-GS
effectively captures these texture details.

begins by rendering N images from the Gaussian field at predefined viewpoints, denoted as In for n ∈ (1, N).
These rendered images are then refined using diffusion models to produce new images În, , which leverage
photometric priors to optimize for correct color consistency.

Diffusion Process. For training, starting with the images I0, we initially employ the forward process of
the diffusion model to introduce noise, resulting in a set of noisy images, It, where t represents a specific
time step. The equation is as follows:

It = I0 + σ2
t ϵ, ϵ ∼ N (0, I), (13)

where logσt ∼ N (Pmean, P 2
std) Karras et al. (2022) and Pmean was set to 1.5 Pstd was set to 2.0. In the

reverse process, diffusion model denoises It with a learnable UNet Uθ:

Î0 = Uθ(It; σt, y, Z), (14)

where y represents the semantic-level latent obtained from CLIP, and Z represents the pixel-level latent
obtained from DINO.

For the sampling progress, the images I0 is restored from a randomly-sampled Gaussian noise It conditioning
on image latent prompt Z and semantic latent prompt y by iteratively applying the denoising process with
trained UNet U . The equation is as follows:

IT ∼ N (0, σ2
T I), (15)

It−1 = It − Uθ(IT ; σt, y, Z)
σt

(σt−1 − σt) + It, 0 < t ≤ T (16)

where σ0, · · · , σT are sampled from a fixed variance schedule of a denoising process with T steps.

Photometric Consistently Regularization. After obtaining images from the pseudo viewpoints gener-
ated by the diffusion model, we use the loss of color the same as 3D Gaussian Splatting to calculate the loss
between the rendered images and the diffusion-generated images,

Lcp = L1

(
I0, I

′

0

)
+ λ

′
LD-SSIM

(
I0, I

′

0

)
, (17)

where I0 represents the rendered images, I
′

0 represents the diffusion-generated images.
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Table 1: Comparison of PSNR, LPIPS Wang et al. (2004), and SSIM Zhang et al. (2018) with current
baseline methods for the novel view synthesis task on the LLFF Mildenhall et al. (2019) and DTU Aanæs
et al. (2016) datasets. Some baseline results in the table are sourced from Wang et al. (2023a), and the
state-of-the-art results are highlighted in bold black.

Methods LLFF DTU
PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

PixelNeRF Yu et al. (2021b) 7.93 0.682 0.272 16.82 0.270 0.695
RegNeRF Niemeyer et al. (2022) 19.08 0.336 0.587 18.89 0.190 0.695

FreeNeRF Yang et al. (2023) 19.63 0.308 0.612 19.92 0.182 0.787
SparseNeRF Wang et al. (2023a) 19.86 0.328 0.624 19.55 0.201 0.769

3DGS Kerbl et al. (2023) 15.52 0.405 0.408 10.99 0.313 0.585
FSGS Zhu et al. (2024) 20.31 0.288 0.652 19.54 0.199 0.732

DNGaussian Li et al. (2024) 19.12 0.294 0.591 18.91 0.176 0.790
SparseGS Zhu et al. (2024) 19.86 0.322 0.668 18.89 0.178 0.834

InstantSplat Fan et al. (2024) 17.67 0.379 0.603 17.55 0.212 0.634
Intern − GS(Ours) 20.49 0.212 0.693 20.34 0.163 0.851

3.5 Training Details

Loss Function. As outlined above, the loss function is consists of four main components: color regular-
ization loss Lc, depth regularization loss for training views Ld, depth regularization loss for pseudo views
Ldp, and color regularization loss for pseudo views Lcp. The formula is as follows:

L = λ1Lc + λ2Ld + λ3Ldp + λ4Lcp. (18)

The calculation of Lc based on the original 3D Gaussian is as follows:

Lc = L1(Î , I) + λ′LD-SSIM(Î , I), (19)

where Î represents the rendered images, I represents the ground-truth images. We set λ1, λ2 as 0.5, 1 the
same as baseline Zhu et al. (2024) and λ3, λ4 as 0.05, 0.001 respectively due to grid search and λ′ as 0.2 due
to 3D Gaussian Splatting Kerbl et al. (2023).

4 Experiments

In this section, I will elaborate on the experimental setup, including the datasets used and the comparison
methods. Additionally, I will present the experimental evaluation results and conduct comprehensive ablation
studies to validate the effectiveness of each component.

4.1 Experimental Settings

Datasets. We conduct our experiments on three widely used datasets, LLFF Mildenhall et al. (2019), DTU
Aanæs et al. (2016), and Tanks and Temples Knapitsch et al. (2017), to comprehensively evaluate our method
across diverse scene types. For the LLFF dataset, we follow previous works Wang et al. (2023a); Yang et al.
(2023) by splitting the images into three designated training views and multiple test views. For the DTU
dataset, we adopt the experimental protocol used in SPARF Truong et al. (2023) and RegNeRF Niemeyer
et al. (2022), training our model on the same three training views and evaluating it on the corresponding test
views. To eliminate background noise and focus on the target object, we use the same object masks during
evaluation. To further assess the model’s applicability to non-forward-facing scenes, we conduct additional
experiments on the Tanks and Temples dataset, following the approach outlined in InstantSplat Fan et al.
(2024). We apply downsampling rates of 8 and 4 for LLFF and DTU, and none downsampling for Tanks
and Temples dataset.
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Table 2: Comparison of PSNR, LPIPS Wang et al. (2004), and SSIM Zhang et al. (2018) with state-of-the-art
(SOTA) methods on the Tanks and Temples dataset Knapitsch et al. (2017). The state-of-the-art results are
highlighted in bold black.

Method PSNR↑ LPIPS↓ SSIM↑
PixelNeRF Yu et al. (2021b) 11.93 0.598 0.248

RegNeRF Niemeyer et al. (2022) 19.64 0.243 0.718
FreeNeRF Yang et al. (2023) 20.82 0.210 0.729

SparseNeRF Wang et al. (2023a) 21.98 0.219 0.730
3DGS Kerbl et al. (2023) 15.36 0.379 0.572
FSGS Zhu et al. (2024) 22.31 0.197 0.693

DNGaussian Li et al. (2024) 20.69 0.277 0.721
SparseGS Zhu et al. (2024) 21.20 0.231 0.717

InstantSplat Fan et al. (2024) 22.20 0.199 0.743
Intern-GS (Ours) 22.67 0.191 0.736

Comparison Methods. Following the previous neural radiance fields in few-shot setting, we compare
our Intern-GS with current high performing methods, including PixelNeRF Yu et al. (2021b), RegNeRF
Niemeyer et al. (2022), FreeNeRF Yang et al. (2023), and SparseNeRF Wang et al. (2023a). We also report
the results of raw 3D Gaussian Splatting Kerbl et al. (2023), FSGS Zhu et al. (2024), DNGaussian Li et al.
(2024), SparseGS Fu et al. (2024b) and the similarly pose-free InstantSplat Fan et al. (2024). The results of
some of previous works are reported directly from the respective published papers for comparisons and for
baselines that were not reported in previous work, we deployed and replicated the same fair experiments, and
presented the results. To quantitatively evaluate the reconstruction performance, we employ Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) Zhang et al. (2018), and Learned Perceptual
Image Patch Similarity (LPIPS) Wang et al. (2004) as evaluation metrics across all methods, providing a
comprehensive assessment of both accuracy and perceptual quality.

4.2 Comparison to Baseline

LLFF Datasets. Intern-GS has been comprehensively evaluated on the LLFF dataset, demonstrating
robust performance across both qualitative and quantitative assessments. As shown in Figure 4 and Table
1, our method consistently outperforms all baseline approaches across all evaluation metrics. Statistically,
Intern-GS achieves higher accuracy and fidelity, highlighting its effectiveness in reconstructing detailed and
structurally consistent 3D representations.

From a visual perspective, our model excels in capturing fine-grained geometric details, particularly in
challenging regions with sparse texture information. In contrast, SparseNeRF Wang et al. (2023a) encoun-
ters difficulties under sparse viewpoints, leading to incomplete or less reliable reconstructions. Although
SparseGS Fu et al. (2024b) incorporates monocular depth as an additional constraint, its reliance on sparse
point cloud initialization results in lower geometric completeness compared to our method, which benefits
from a dense initialization strategy. By leveraging a more robust depth-aware approach, Intern-GS effec-
tively reconstructs complex structures with higher precision, making it particularly well-suited for real-world
applications requiring high-quality 3D scene understanding.

DTU Datasets. We present the results of our method on the DTU dataset in Figure 4 and Table 1.
Unlike the LLFF dataset, the DTU dataset is characterized by a prominent central object against a black
background. This distinction necessitates a careful evaluation process when computing metrics for novel view
synthesis. Specifically, following the baseline approach, we apply a corresponding mask to each viewpoint and
calculate evaluation metrics only within the masked image regions. This ensures that the black background
does not interfere with the overall Gaussian optimization process, leading to a more accurate assessment of
reconstruction quality.
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Table 3: Ablation study on LLFF Mildenhall et al. (2019) with three training views, analyzing the indi-
vidual contributions of the proposed three modules: Multi-View Stereo Guided Dense Initialization, Depth
Regularization, and Multi-view Appearance Refinement. The results demonstrate that Multi-View Stereo
Guided Dense Initialization has the most significant impact on the experimental outcomes.

Dense Init. Depth Regu. MAR PSNR ↑ LPIPS ↓ SSIM ↑(3.2) (3.3) (3.4)
✗ ✗ ✗ 15.52 0.405 0.408
✓ ✗ ✗ 19.21 0.341 0.573
✓ ✓ ✗ 19.64 0.329 0.640
✓ ✓ ✓ 20.49 0.304 0.656

Table 4: Ablation study of Redundancy-Free Initialization on LLFF Mildenhall et al. (2019) with three
training views.

DUSt3R (3.2) RF. (3.2) PSNR ↑ LPIPS ↓ SSIM ↑ GS Numbers
✗ ✗ 15.52 0.405 0.408 4622
✓ ✗ 18.48 0.348 0.521 571536
✓ ✓ 19.21 0.341 0.573 196165

Our results demonstrate that Intern-GS consistently achieves superior performance in terms of PSNR, LPIPS,
and SSIM compared to previous methods. SparseGS, in particular, struggles with the dataset’s noisy and
smooth backgrounds, which adversely affect monocular depth estimation and, consequently, the quality of
the reconstructed scene. Visually, our approach excels in handling low-texture and smooth regions, where it
provides richer depth and color information. This enables our model to capture more precise structural and
photometric details, significantly enhancing both the geometric fidelity and the overall visual realism of the
synthesized views.

Tanks and Temples Datasets. We conducted experiments on the Tanks and Temples dataset, which,
unlike the first two datasets, contains large-scale scenes covering a wide range of viewpoints. As shown
in Table 2 and Figure 5, our Intern-GS achieved the best LPIPS and PSNR scores and second best in
SSIM scores. This result showcases our model’s capability with large scenes from non-frontal perspectives.
We attribute this to the nature of our diffusion-based prior, which focuses on perceptual quality and color
consistency across wide viewpoints. While this benefits large-scale scenes, slight structural deviations in
high-frequency regions may lead to a slightly lower SSIM.

4.3 Ablation Studies

We conduct ablation studies on three key aspects of our method: 3.2 a comparison between dense initial-
ization and the conventional Structure-from-Motion-based initialization used in 3D Gaussian Splatting, 3.3
the impact of our proposed depth regularization on both training views and 3.4 novel synthesized views, and
the effect of diffusion-prior-based appearance refinement in novel synthesized views. Table 3 presents the
results of our ablation study on the LLFF dataset Mildenhall et al. (2019) using three training views as a
case study.

Dense Initialization. We conducted a comparative analysis between our model with Dense and Non-
redundancy Initialization and a baseline model without it. As shown in the first and second rows of Table 3,
our approach consistently outperforms the original 3D Gaussian Splatting (3DGS) across all three evaluation
metrics. This demonstrates that the Gaussian initialization generated via multi-view stereo provides a
more reliable geometric prior, particularly in regions with sparse texture information. Furthermore, our
redundancy reduction strategy effectively mitigates the influence of low-confidence areas, such as the sky,
thereby enhancing the robustness of the initialization process.
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Table 5: Ablation study of different depth regularization type on LLFF Mildenhall et al. (2019) with three
training views.

Train View (3.2) Pseudo View(3.2) PSNR ↑ LPIPS ↓ SSIM ↑
✗ ✗ 19.21 0.341 0.573
✓ ✗ 19.51 0.331 0.620
✗ ✓ 19.36 0.338 0.591
✓ ✓ 19.64 0.329 0.640

Depth Regularization. We conducted a comparative study to evaluate the impact of our Depth Regular-
ization by assessing models with and without it. As shown in the third row of Table 3, incorporating depth
priors as constraints effectively guides Gaussian optimization toward more accurate geometric representa-
tions, enabling the model to learn more coherent and structurally faithful surfaces. This enhancement leads
to a 0.43 increase in PSNR, a 0.002 reduction in LPIPS, and a 0.067 improvement in SSIM, demonstrating
the effectiveness of our depth-aware regularization in refining scene reconstruction quality.
Multi-view Appearance Refinement. We conducted a comparative analysis to assess the impact of our
Multi-view Appearance Refinement algorithm by evaluating models with and without it. In novel viewpoint
regions, the absence of sufficient initialization points makes it challenging for Gaussians to be effectively
optimized, leading to suboptimal representation of these areas. To address this, we introduce diffusion-based
refinement from pseudo-views, enabling the model to better optimize from previously unseen perspectives.
As shown in Table 3, the consistent improvement across all three evaluation metrics validates the effectiveness
of our approach in enhancing appearance fidelity and overall reconstruction quality.

4.4 More Ablation Studies

Redundancy-Free Initialization. We conducted an additional ablation study on the Redundancy-Free
Initialization proposed for the initialization stage. The first row in Table 4 shows the reconstruction results
using the original DUSt3R initialization, while the second row presents the results using the original DUSt3R
initialization combined with our Redundancy-Free method. In terms of quantitative metrics, our method
achieves improvements in PSNR, LPIPS, and SSIM. Furthermore, our initialization approach effectively
reduces the number of initial Gaussians, thereby decreasing the required optimization time and improving
efficiency.
Training and Pseudo Depth Regularization. To further ablate the effects of the depth regularization
constraints from the training views and the pseudo views, we conducted an ablation study on both. Our
experiments are based on the dense initialization setting. The first row shows the reconstruction results
without any depth regularization constraints. The second and third rows show the results when training
depth constraint and the pseudo depth constraint is applied, respectively. The fourth row presents the results
when both depth regularization constraints are used together. As shown in Table 5, the depth constraint
from the training views contributes more significantly to the overall reconstruction performance. However,
the depth constraint from the pseudo views also benefits the training process, and the two constraints are
compatible and can be effectively combined.

5 Conclusion

In this work, we introduce Intern-GS, a novel view synthesis method in sparse-view using dense point cloud
initialization. Utilizing multi-view stereo priors, we perform effective, non-redundant initialization in texture-
sparse regions. During Gaussian optimization, we use depth priors from multi-view stereo and monocular
depth models to guide the model towards the correct geometry. To capture richer color details, especially
in unseen areas, and avoids color misinterpolation caused by initialization gaps due to lack of perspective,
we leverage diffusion model to refine the pseudo view images. It provides the Gaussian with the missing
color guidance under pseudo-viewpoints, helping it to achieve color-consistent optimization in unseen areas.
Intern-GS offers a novel solution to the challenge of poor rendering in texture-sparse regions.
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A Appendix

We provide additional materials for our submission. The content is organized as follows:

• In appendix B, we present the additional Implementation Details details of Intern-GS;

• In appendix C, we show the Additional Qualitative Results of Intern-GS;

• In appendix D, we discuss the Limitations of our work and the potential Future Work.

B Implementation Details

B.1 Datasets Details

We use three datasets for the experiments, which are the LLFF dataset Mildenhall et al. (2019), the DTU
dataset Aanæs et al. (2016), Tanks and Temples Knapitsch et al. (2017). For the LLFF dataset, it includes
8 scenes and the original image size is 4032 * 3024. We use images that have been downsampled by a factor
of 8 to 504 * 378 as the input. Regarding the DTU dataset, it has 15 scenes and the original image size is
1600*1200. We resize the image to 400 * 300 as the input. We do not do any downsampling to Tanks and
Temples with size 960*540, which has 8 scenes in it.

B.2 Initialization Details

First, we obtain 3D point maps of the same size as the sparse input images by DUSt3R Wang et al. (2023b).
Next, we use global alignment method to align these point maps to the same coordinate system. From this,
we obtain point maps, depth information, camera poses and confidence maps consistent in scale. However,
to obtain non-redundant points for initialization and inspired by SLAM Keetha et al. (2023), we design a
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method to incrementally add initialization points on a per-image basis. Specifically, for the first image, we
initialize all pixel points. For subsequent images, we only initialize areas with an uncertainty less than 0.5.
Finally, we obtain scale-aligned and non-redundant initial point clouds for Gaussian initialization.

B.3 Training Details

During all the 10000 training epoch, the learning rates for position, Spherical Harmonics (SH) coefficients,
opacity, scaling, and rotation are set to 0.00016, 0.0025, 0.05, 0.005 and 0.001 respectively. We begin with
SH degree of 0 for basic color representation and increment it by 1 every 500 iterations until reaching a
max degree of 4, gradually increasing the complexity of representation and we reset the opacity for all
Gaussians to 0.05 at iterations 2000, 5000 and 7000 aligned with the original 3D Gaussian splatting. During
optimization, we densify every 100 iterations starting from the 500th iteration, continuing for 10000 steps
per dataset. We apply color L1 losses one from comparing the rgb images from original training views and
rendered training rgb images from the same views, another from comparing the rgb images rendered from
the predefined pseudo views and diffusion-refined color images by these images. We also apply Pearson
Correlation Coefficient losses for depth one from comparing the original depth images from training views
gained by DUSt3R and depth images rendered from the same training views, another from comparing depth
images from the same predefined pseudo views and depth images estimated by pre-trained monocular depth
estimation model, MiDaS Ranftl et al. (2020). We apply two color losses and train view depth loss from the
beginning till the end and pseudo-view depth loss from the 2000th iteration. Using an NVIDIA 4090 GPU
with 24GB of video memory, we train each scene of the LLFF and DTU datasets for 2-3 minutes, and each
scene of the Tanks and Temples dataset for 4-5 minutes.

C Additional Qualitative Results

We present additional qualitative results of Intern-GS on LLFF dataset, DTU dataset and Tanks and Temples
dataset. The experimental results are shown in Figure 6, Figure 7, Figure 8, Figure 9. Additionally, we
provide the video results of all the dataset in ’video results’ folder.

D Limitations and Future Work

Although our method has achieved impressive results in novel view synthesis setting under sparse views, it
still encounters limitations in certain scenarios. It is important not only to interpolate and generate new
views within the visual region but also to expand the scene outward. Generating regions outside the current
scope that are color and geometry consistent also significantly affects the rendering quality of the model.
Our model struggles to ensure color and geometric consistency in these outward-expanded scenes, which may
be due to the diffusion model’s limited refinement capability when dealing with severely missing new views.
Therefore, combining the ideas of scene reconstruction and scene generation is a future research direction for
us. How to use diffusion models to effectively complete internal gaps and expand scenes outward is a question
worth exploring. Our preliminary idea is to add extra geometric and color consistency constraints to the
diffusion model, enabling the model to have nearly identical geometry and color in outward extrapolation as
in inward interpolation.
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Figure 6: The qualitative results of Intern-GS on Tanks and Temples dataset under 3 training views.
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Figure 7: The qualitative results of Intern-GS on DTU dataset under 3 training views.
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Figure 8: The qualitative results of Intern-GS on DTU dataset under 3 training views.
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Figure 9: The qualitative results of Intern-GS on LLFF dataset under 3 training views.
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