
CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with
Chain-of-Editions

Anonymous ACL submission

Abstract

Recently, Large Language Models (LLMs)001
have been demonstrated to possess impressive002
capabilities in a variety of domains and tasks.003
We investigate the issue of prompt design in004
the multi-turn text-to-SQL task and attempt to005
enhance the LLMs’ reasoning capacity when006
generating SQL queries. In the conversational007
context, the current SQL query can be modified008
from the preceding SQL query with only a few009
operations due to the context dependency. We010
introduce our method called CoE-SQL which011
can prompt LLMs to generate the SQL query012
based on the previously generated SQL query013
with an edition chain. We also conduct exten-014
sive ablation studies to determine the optimal015
configuration of our approach. Our approach016
outperforms different in-context learning base-017
lines stably and achieves state-of-the-art perfor-018
mances on two benchmarks SParC and CoSQL019
using LLMs, which is also competitive to the020
SOTA fine-tuned models.021

1 Introduction022

Text-to-SQL (Zhong et al., 2017; Xu et al., 2017)023

is a semantic parsing task that translates the nat-024

ural language question into the appropriate SQL025

query according to the given database schema. This026

technique is critical in building a natural language027

interface to relational databases (Androutsopoulos028

et al., 1995), which alleviates the burden on pro-029

grammers to curate valid and correct annotations.030

In this work, we focus on the contextual set-031

tings (Yu et al., 2019b,a) where users interact with032

the system in multi-turn scenarios. In each turn,033

the text-to-SQL parser understands and interprets034

the current user question into a SQL query based035

on the entire dialogue history. Considering the re-036

quirement of context modeling, EditSQL (Zhang037

et al., 2019a) introduces copy mechanism during038

the generation of SQL queries to re-use the SQL039

spans in history. DELTA (Chen et al., 2021b)040

firstly paraphrases the long context into a single 041

question and transforms the original problem into 042

single-turn parsing. IGSQL (Cai and Wan, 2020a) 043

and HIESQL (Zheng et al., 2022a) both utilize the 044

concept of cross-turn schema interaction into the 045

specialized design of graph encoders. STAR (Cai 046

et al., 2022) and CQR-SQL (Xiao et al., 2022) 047

inject the capability of context modeling through 048

self-supervised pre-training tasks. Though remark- 049

able progress has been achieved, these task-specific 050

methods rely on complicated model design which 051

is labor-intensive and training-inefficient. 052

The advent of LLMs (Ouyang et al., 2022) pro- 053

vides a promising solution in the text-to-SQL field, 054

that is in-context learning with few-shot exem- 055

plars (Brown et al., 2020). In this branch, DIN- 056

SQL (Pourreza and Rafiei, 2023) adopts the con- 057

cept of Chain-of-Thought (CoE, Wei et al., 2023) 058

and establishes a new milestone in single-turn set- 059

tings. ACT-SQL (Zhang et al., 2023) further elimi- 060

nates the necessity of mannually crafting CoT ex- 061

emplars and automatically constructs useful demon- 062

straions. However, adapting the ICL method into 063

contextual settings is less investigated. ACT-SQL 064

attempts to reduce the original problem into single- 065

turn problems via sentence rewriting. But poor per- 066

formances are reported on multi-turn benchmarks 067

due to severe error propagation. 068

In this work, we propose Chain-of-Edition 069

framework to tackle the multi-turn text-to-SQL 070

task (CoE-SQL). Inspired by recent progress in 071

code edition (Chen et al., 2023), we attempt 072

to model the changes in the output SQL pro- 073

gram across different interaction turns explicitly. 074

These changes can be serialized into the reasoning 075

thought, as a specific implementation of CoT, to 076

track the shift in the user focus and intention. The 077

underlying mechanism is that, in a coherent and 078

consistent dialogue, the user’s questions often de- 079

pend on the previous focus, and the latest request 080

or intent can be obtained by modifying the already 081

1

Turn 1
Q: What are the phone names available in Alberta?
SQL: SELECT T1.Name FROM phone AS T1 JOIN

phone_market AS T2 JOIN market AS T3 ON T1.Phone_ID =

T2.Phone_ID AND T2.Market_ID = T3.Market_ID WHERE

T3.District = "Alberta"

Edit: no edition
Turn 2
Q: Show the district as well.
SQL: SELECT T1.Name, T3.District FROM phone AS

T1 JOIN phone_market AS T2 JOIN market AS T3

ON T1.Phone_ID = T2.Phone_ID AND T2.Market_ID =

T3.Market_ID WHERE T3.District = "Alberta"

Edit: add select column T3.District
Turn 3
Q: Remove the restriction of those in Alberta only,
show all instead.
SQL: SELECT T1.Name, T3.District FROM phone AS

T1 JOIN phone_market AS T2 JOIN market AS T3

ON T1.Phone_ID = T2.Phone_ID AND T2.Market_ID =

T3.Market_ID WHERE T3.District = "Alberta"

Edit: delete where clause T3.District = "Alberta"

Table 1: A multi-turn example from SParC (Yu et al.,
2019b). Each edition is based on the previous turn.

generated semantic representations (SQL program)082

through a few simple rules. For example, in Ta-083

ble 1, after attaining the raw SQL query in turn one,084

the user is too “lazy” to declare the full intention085

and only convey the difference. This can be easily086

captured by a simple column insertion on the tar-087

get SQL query. Similarly, in turn 3, the complete088

SQL can be obtained via a simple deletion of the089

WHERE clause based on turn 2, instead of gener-090

ating the tedious long output. To achieve this, we091

thoroughly analyze the entire training set and sum-092

marize 14 unit edit rules (3.2). Next, we propose an093

abstract syntax tree (AST) comparison algorithm to094

automatically extract the chain of edition rules with095

the minimum length (3.3). After that, we serialize096

and prepend those editions in the prompt before the097

output of each turn. Different serialization styles098

are analyzed (3.4), including self-defined edit rules,099

python code and natural language description. And100

we find that the NL description performs the best101

on two benchmarks, SParc (Yu et al., 2019b) and102

CoSQL (Yu et al., 2019a).103

Our contributions can be summarized:104

1. We propose CoE-SQL to tackle the complex105

multi-turn text-to-SQL, which formalizes the106

SQL editions as a specific reasoning process.107

This method is more interpretable towards 108

how LLM deals with context modeling to sim- 109

ulate human thinking. 110

2. We provide the checklist of unit edit rules, and 111

the corresponding tree comparison algorithm 112

to automatically extract the edition chain by 113

comparing two abstract syntax trees (ASTs). 114

3. We conduct comprehensive ablation study 115

to analyze different CoE configurations and 116

achieve state-of-the-art results with LLMs on 117

the validation sets of two benchmarks SParC 118

and CoSQL. It is also competitive to SOTA 119

fine-tuned models. 120

2 Related Work 121

Multi-turn text-to-SQL models Before LLMs 122

are applied in the multi-turn text-to-SQL task, re- 123

searches mainly focus on building and fine-tuning 124

specialized deep neural networks. (Zhang et al., 125

2019b) and (Wang et al., 2020) use the previously 126

generated SQL queries to improve the parsing ac- 127

curacy. IGSQL (Cai and Wan, 2020b) utilizes the 128

graph neural network to model database schema 129

items in the conversational scenario. R2SQL (Hui 130

et al., 2021) and HIE-SQL (Zheng et al., 2022b) 131

present a dynamic schema-linking graph which 132

incorporates the current utterance, the previous pre- 133

ceding utterances, the database schema, and the last 134

most recent SQL query. RASAT (Qi et al., 2022) 135

is a Transformer (Vaswani et al., 2023) architec- 136

ture augmented with relation-aware self-attention 137

that could leverage a variety of relational struc- 138

tures while effectively inheriting the pre-trained 139

parameters from the T5 model (Raffel et al., 2023). 140

RASAT employs the PICARD method (Scholak 141

et al., 2021) which constrains the auto-regressive 142

decoder by rejecting invalid tokens. 143

Despite the impressive results of specialized 144

models, there are some unavoidable drawbacks. 145

Creating and labeling a comprehensive text-to-SQL 146

dataset requires a significant amount of resources 147

and time. Additionally, training and refining the 148

model is a laborious process that requires a lot of 149

computing power. 150

In-context learning for text-to-SQL Recent 151

studies have explored the potential of LLMs for 152

the text-to-SQL task, with Rajkumar et al. (2022) 153

using the zero-shot and few-shot learning setting to 154

empirically evaluate the capabilities of LLMs such 155

as GPT-3 (Brown et al., 2020) and Codex (Chen 156

2

et al., 2021a). Nan et al. (2023) focused on the157

strategy of exemplar selection, requiring an addi-158

tional predictor to assess the difficulty of the SQL.159

DIN-SQL (Pourreza and Rafiei, 2023) provides a160

more complex approach, decomposing the problem161

into several simpler sub-problems.162

The above works merely employ LLMs on the163

single-turn text-to-SQL task. ACT-SQL (Zhang164

et al., 2023) generates the chain-of-thoughts auto-165

matically and extends its approach onto the multi-166

turn text-to-SQL task. ACT-SQL converts the167

multi-turn dataset into the single-turn one by rewrit-168

ing and completing questions with context depen-169

dencies. However, ACT-SQL performs poorly un-170

der the multi-turn setup due to the error propagation171

occurring in the process of question rewriting. In172

contrast, our proposed CoE-SQL is an edit-based173

method which can directly utilize the context de-174

pendency instead of rewriting the question.175

3 Methodology176

In the few-shot in-context learning setting, the
multi-turn text-to-SQL task can be formulated as

Rn = LLM(I,D,Q≤n,R<n, E).

Rn represents the response to the current ques-177

tion created by LLMs. I represents the instruc-178

tion. D represents the database schema. Q =179

[Q1, Q2, · · · , Qn] represents the entire context con-180

sisting of n questions. R = [R1, R2, · · · , Rn−1]181

represents LLMs’ responses to the previous ques-182

tions. E = [E1, E2, · · · , E|E|] is the list of |E|183

exemplars used in few-shot learning.184

3.1 Overview of CoE185

In the real-world scenario, users are more likely186

to start the conversation with a relatively simple187

question because they are unfamiliar with the de-188

tailed structure of the system. With the increasing189

the number of conversation turns, the user ques-190

tion and the corresponding SQL query will become191

more complex. It is more difficult and redundant192

for LLMs to generate a complex SQL query from193

scratch, since the entire thinking and logical reason-194

ing process is generally intricate. On the contrary,195

generating the current SQL query by updating the196

previous one through a few editions is a better op-197

tion.198

In Section 3.2, we provide our definition of unit199

edit rules that can help edit the SQL query. In200

Section 3.3, we explain how to extract the edition201

chain by comparing the two ASTs of two SQL 202

queries. In Section 3.4, we introduce the different 203

styles of edition chains used in our work. And 204

finally in Section 3.5, we provide a simple method 205

to help LLMs better analyze the edition process. 206

3.2 Definition of Unit Edit Rules 207

In order to edit a SQL query into another SQL 208

query, we first define the set of unit edit rules. 209

According to the different SQL components, we 210

totally define 14 unit edit rules shown in Table 211

11. Taking the conversation instance in Table 1 212

as an example, we can apply the unit edit rule 213

EditSelectItem(-, market.District) to edit SQL 1 214

into SQL 2. We can also apply the EditWhereCon- 215

dition(market.District = “Alberta”, -) unit edit rule 216

to edit SQL 2 into SQL 3. 217

3.3 Extraction of Edition Chains 218

We use the few-shot learning method to activate 219

LLMs’ ability of utilizing our pre-defined unit edit 220

rules. Therefore, we need to select exemplars from 221

the training dataset and then extract the edition 222

chains in each conversation. Since this work does 223

not focus on selecting better exemplars, we use 224

a simple exemplars selection strategy. We first 225

randomly choose kd database schemas and then 226

randomly choose ke dataset examples for each 227

database schema. Thus, total kd×ke exemplars are 228

put in the prompting text for the few-shot learning. 229

In the following process, we need to extract the 230

edition chains from these exemplars. 231

Assume that the dataset example consists of n 232

questions [Q1, Q2, · · · , Qn] and n corresponding 233

SQL queries [S1, S2, · · · , Sn]. Consider the i-th 234

one as the current turn. Notably, the edition chain 235

is determined by the difference between the current 236

SQL query Si and the previous SQL query Sj(j < 237

i). A reasonable approach to extracting the edition 238

chain is to compare the two ASTs. 239

Figure 1 shows an example of a comparison be- 240

tween two ASTs. Notice that the FROM clause 241

component is omitted in this figure. We compare 242

each node pair in the two ASTs. Two nodes are 243

considered equal iff they represent the same gram- 244

mar rule and all of their child nodes are equal. The 245

edition chain can be constructed according to the 246

unequal part. By recognizing the grammar rules 247

of the nodes in the unequal part, we can determine 248

that the edition chain contains exactly one unit edit 249

rule, i.e. EditWhereCondition(-, Stu.GPA > 3). 250

The detailed procedure is outlined in Algorithm 1. 251

3

Algorithm 1: Extraction of Edition Chains
Input :Previous tree node told, current

tree node tnew
Output :Edition chain C
C ← {};
for f in get_fields(told) do

sold ← told.get_son(f);
snew ← tnew.get_son(f);
if sold is tree and snew is tree then

Csub ← ExtractCoE(sold, snew);
// recursively call the

function
C.update(Csub);

end
else if sold is None and snew is tree
then
e← get_add_edition(snew, f);
C.add(e);

end
else if sold is tree and snew is None
then
e← get_delete_edition(sold, f);
C.add(e);

end
else if sold ̸= snew then

e←
get_change_edition(sold, snew, f);

C.add(e);
end

end
return C

Figure 1: Comparison between two ASTs.

With the method of comparing two ASTs, we can 252

construct the edition chains for every exemplar au- 253

tomatically. LLMs can learn the chain-of-editions 254

method during the few-shot learning process. 255

In quite a few conversations, the current question 256

Qi may not inherit from the exactly previous ques- 257

tion Qi−1 but the more previous one Qj(j < i−1). 258

Also, the current question may start a new topic ir- 259

relevant to the original one. To tackle the above two 260

problems, we enumerate all the previous i− 1 SQL 261

queries and construct an edition chain CoEi,j for 262

each SQL pair (Si, Sj) where j = 1, 2, · · · , i− 1. 263

We eliminate those edition chains with lengths 264

greater than lc (edition chains consisting of more 265

than lc unit edit rules) where lc is a threshold. If 266

the edition chain contains too many unit edit rules, 267

we believe that the corresponding two questions 268

are irrelevant. In that case, writing the current SQL 269

query directly is more efficient than editing from 270

the previous one. As for the left edition chains, we 271

select the edition chain with the least number of 272

tokens as the final edition chain. 273

3.4 Style of Edition Chains 274

We attempt to use three different styles to put 275

the edition chain in the prompting text. Ta- 276

ble 2 shows the detailed formats where the ex- 277

ample chain-of-edition consists of two unit edit 278

rules, namely EditSelectItem(*, COUNT(*)) and 279

EditWhereCondition(-, Stu.GPA > 3). 280

With the edit rule style, we directly write our unit 281

edit rules into the prompting text. With the Python 282

code style, we regard the SQL query as a Python 283

dict and convert unit edit rules into corresponding 284

Python codes to update the Python dict. With the 285

natural language style, unit edit rules are converted 286

into plain texts which are closer to the corpus used 287

in the LLMs’ pretraining step. 288

3.5 Analysis of Differences Between Pre- and 289

Post-Questions 290

When preprocessing the exemplar, the edition chain 291

can be extracted by comparing the different ASTs. 292

However, when handling the test case, LLMs have 293

to predict the edition chain by comparing the cur- 294

rent question and the previous question. Thus we 295

complete the question analysis for the exemplars. 296

Given the current question and the previous ques- 297

tion, we instruct LLMs to generate the difference 298

between them. The analysis texts of each exem- 299

plar are also added into the prompting text, which 300

can motivate LLMs to analyze the difference be- 301

4

Style Prompting Text

Edit Rule

FROM clause:
- no change is needed
SELECT clause:
- EditSelectItem(*, COUNT(*))
WHERE clause:
- EditWhereCondition(-, Stu.GPA > 3)
GROUP BY clause:
- no change is needed
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed

Python Code
sql[’select’].remove(’*’)
sql[’select’].append(’COUNT(*)’)
sql[’where’][’conditions’].append(’Stu.GPA > 3’)

Natural Language

FROM clause:
- no change is needed
SELECT clause:
- change * to COUNT(*)
WHERE clause:
- add WHERE condition Stu.GPA > 3
GROUP BY clause:
- no change is needed
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed

Table 2: Three styles of serialization for CoE.

tween pre- and post-questions. Notice that, this302

thought-before-edition trick is an adaptation of the303

thought-before-action idea in ReAct (Yao et al.,304

2022) framework.305

4 Experiments306

4.1 Experiment Setup307

Models We use the GPT-3.5-turbo-16k model to308

evaluate our proposed CoE-SQL. The CoE-SQL309

approach is based on self-defined edit operations,310

indicating that this method would not perform well311

if insufficient exemplars are provided. Only suf-312

ficient exemplars can cover most unit edit rules.313

Therefore, we expect LLMs to have a long context314

window. That’s the reason we choose GPT-3.5-315

turbo-16k with a 16,385 tokens context window316

instead of GPT-3.5-turbo with a 4,096 tokens con-317

text window.318

Hyperparameters The temperature in the API of319

LLMs is set to 0, meaning that the greedy decoding320

strategy is being used. Text-to-SQL tasks require321

the model to produce SQL queries that adhere to322

strict grammar regulations. If the temperature is323

too high, the LLMs are likely to generate SQL324

queries that are invalid or not pertinent to the posed325

questions. Regarding the exemplars used for the326

few-shot learning, we set the number of database 327

schemas kd to 4 and set the number of examples 328

from each database schema ke to 4. 329

Datasets We assess our proposed approach on 330

SParC (Yu et al., 2019b) and CoSQL (Yu et al., 331

2019a). SParC is composed of 4,298 coherent ques- 332

tion sequences, including more than 12k individual 333

questions and the related SQL queries. CoSQL 334

has 10k+ annotated SQL queries. Each dialogue 335

in CoSQL is designed to mimic a real-world situa- 336

tion, where a regular user is exploring the database 337

and an expert is retrieving answers with SQL. They 338

also provide an evaluation script that divides SQL 339

queries into four difficulty levels (easy, medium, 340

hard, and extra). 341

Evaluation metrics We assess the performance 342

of our approach using three commonly used evalu- 343

ation metrics for the text-to-SQL task: exact match 344

accuracy (EM), execution accuracy (EX), and test- 345

suite accuracy (TS). EM requires that each com- 346

ponent of the predicted SQL is the same as the 347

corresponding component of the gold SQL, disre- 348

garding the values in the query. EX evaluates the 349

correctness of the execution result of the predicted 350

SQL, which is usually more precise than EM. TS 351

also evaluates the execution result, but requires 352

the result to be correct across multiple database 353

instances per database schema1. 354

Since we are evaluating LLMs’ performances in 355

the multi-turn text-to-SQL task, question match ac- 356

curacy (QM) and interaction match accuracy (IM) 357

need to be considered respectively. QM is 1 if the 358

predicted SQL query for the single question is cor- 359

rect, and IM is 1 if all the predicted SQL queries in 360

the context are correct. 361

4.2 Main Results 362

In our main experiments, we choose the natural 363

language style for the edition chain. We set the 364

maximum length of the edition chain lc to 4 when 365

testing on SParC and 3 when testing on CoSQL. 366

Table 3 and Table 4 show the performance of our 367

proposed CoE-SQL and other previous works on 368

the dev sets of SParC and CoSQL respectively. 369

Notably, when comparing in-context learning 370

approaches with fine-tuned models, the EM evalua- 371

tion metric is not that worthy to be paid attention 372

to. Fine-tuned models can learn the dataset feature 373

1https://github.com/taoyds/
test-suite-sql-eval

5

https://github.com/taoyds/test-suite-sql-eval
https://github.com/taoyds/test-suite-sql-eval

Fine-tuned Model QM IM
EM ↑ EX ↑ TS ↑ EM ↑ EX ↑ TS ↑

GAZP+BERT (Zhong et al., 2020) 48.9 47.8 - - - -
HIE-SQL+GraPPa (Zheng et al., 2022a) 64.7 - - 45.0 - -

RASAT+PICARD (Qi et al., 2022) 67.7 73.3 - 49.1 54.0 -
In-Context Learning Approach

ACT-SQL (Zhang et al., 2023) 51.0 63.8 56.9 24.4 38.9 29.6
Baseline (Ours) 50.0 67.0 59.5 30.8 46.7 37.9

CoE-SQL (Ours) 56.0 70.3 63.3 36.5 50.5 41.9

Table 3: Performances of CoE-SQL and other previous works on SParC dev set.

Fine-tuned Model QM IM
EM ↑ EX ↑ TS ↑ EM ↑ EX ↑ TS ↑

GAZP+BERT (Zhong et al., 2020) 42.0 38.8 - - - -
HIE-SQL+GraPPa (Zheng et al., 2022a) 56.4 - - 28.7 - -

RASAT+PICARD (Qi et al., 2022) 58.8 67.0 - 27.0 39.6 -
In-Context Learning Approach

ACT-SQL (Zhang et al., 2023) 46.0 63.7 55.2 13.3 30.7 21.5
Baseline (Ours) 47.8 69.4 58.5 20.1 38.9 27.6

CoE-SQL (Ours) 52.4 69.6 60.6 23.9 39.6 30.4

Table 4: Performances of CoE-SQL and other previous works on CoSQL dev set.

from the training set. These models are more likely374

to generate the SQL query with the same structure375

as the gold SQL query and thus can achieve higher376

EM scores. On the contrary, LLMs tend to write the377

SQL query based on their original knowledge learn-378

ing in the pretraining phase. Only a few exemplars379

from the training dataset cannot provide sufficient380

information about the dataset feature. Therefore,381

LLMs are more likely to generate the SQL query382

with the accurate semantic and logic and the cor-383

rect execution result. In general, we would like to384

mainly focus on the EX and TS evaluation metrics385

in the following discussion. Most fine-tuned mod-386

els only provide their EM scores. We compare our387

method with the GAZP and the RASAT methods388

because these two models provide their EX scores,389

where RASAT is the SOTA one.390

Compared with fine-tuned models, our proposed391

CoE-SQL approach achieves a 70.3% EX(QM)392

score and a 50.5% EX(IM) score on SParC dev393

set, which has surpassed the GAZP + BERT394

model (Zhong et al., 2020) a lot and has been395

comparable to the RASAT + PICARD model (Qi396

et al., 2022). CoE-SQL even achieves the highest397

EX(QM) score on CoSQL dev set. The experiment398

result proves that LLMs have possessed the strong399

ability for handling the complex multi-turn text-to-400

SQL task. Using the GPT-3.5-turbo-16k LLM, the 401

CoE-SQL approach can perform almost as well as 402

the previous best fine-tuned model (with EX score). 403

We believe that our CoE-SQL can achieve a bet- 404

ter performance if larger LLMs (e.g. GPT-4) are 405

applied. 406

Furthermore, the CoE-SQL approach achieves 407

the highest EM, EX, and TS scores among the 408

existing in-context learning methods. The ACT- 409

SQL method converts the multi-turn dataset into 410

the single-turn one by rewriting and completing 411

the questions with context dependencies. Compar- 412

ing our simple baseline method and the ACT-SQL 413

method, we can conclude that paraphrasing the 414

multi-turn dataset with LLMs is not a good choice. 415

It performs even worse than the baseline method. 416

Based on the edit operations, CoE-SQL performs 417

much better than the baseline method which merely 418

takes the original database schema and questions as 419

the LLMs’ input. This indicates that editing SQL 420

queries is an effective method in the multi-turn 421

text-to-SQL task. 422

Case study Table 5 shows an instance from the 423

SParC dev set. The condition “employees under 424

age 30” is mentioned in the first question. The 425

baseline method successfully keeps this condition 426

in the second query but forgets it in the final query. 427

6

However, due to the chain-of-edition mechanism,428

the CoE-SQL method retains this condition from429

the beginning to the end. More detailed case studies430

can be found in Appendix B.431

Turn 1
Question: Find all employees who are under age
30.
Baseline: SELECT * FROM employee WHERE
age < 30 ✓
CoE-SQL: SELECT * FROM employee WHERE
age < 30 ✓
Turn 2
Question: Which cities did they come from?
Baseline: SELECT DISTINCT city FROM em-
ployee WHERE age < 30 ✓
CoE-SQL: SELECT City FROM employee
WHERE age < 30 ✓
Turn 3
Question: Show the cities from which more than
one employee originated.
Baseline: SELECT city FROM employee GROUP
BY city HAVING count(*) > 1 $
CoE-SQL: SELECT City FROM employee
WHERE age < 30 GROUP BY City HAVING
COUNT(*) > 1 ✓

Table 5: Case study from the SParC dev set.

4.3 Ablation Study432

In this section, we show the experiment results of433

the ablation study to find out the best setting of434

CoE-SQL. We only report the TS score since it is435

most suitable for the in-context learning method.436

Style of edition chains Table 6 shows the perfor-437

mance of CoE-SQL on SParC dev set influenced by438

three styles of prompting text for chain-of-editions439

mentioned in Section 3.4. The experiment result440

proves that the natural language style is the most441

suitable one. This is because LLMs like GPT mod-442

els are mostly trained with natural language cor-443

puses. The chain-of-editions style with the edit444

rule performs relatively poor, since our unit edit445

rules are self-designed and very unlikely to appear446

in the pretraining corpus. Although LLMs must447

have seen many Python codes during pretraining,448

the Python-code style still receives bad scores. We449

believe that this is because the Python codes gener-450

ated by LLMs are used to update the Python dict451

that represents the SQL query. The structure of this452

Python dict is complex and unfamiliar for LLMs,453

though we have provided the structure in the in- 454

struction and exemplars. 455

Style TS(QM) ↑ TS(IM) ↑
Edit Rule 61.2 40.5

Python Code 58.6 37.9
Natural Language 63.3 41.9

Table 6: CoE-SQL performance on SParC dev set in-
fluenced by three styles of prompting text for chain-of-
editions.

When using the Python-code style, the prompt- 456

ing text mainly consists of three parts, i.e. the 457

Python code that represents the edit rule, the 458

Python dict that represents the SQL components, 459

and the current SQL query. Thus we complete more 460

ablation studies about these LLMs-generated parts. 461

Table 7 shows the result. First, we change the order 462

of the Python dict and the SQL query in the ex- 463

emplar. Second, we complete the post-processing 464

according to different parts which are marked with 465

“*” symbols in the table. When post-processing 466

with the code, we run the LLM-generated code to 467

update the dict and get the SQL by parsing the up- 468

dated dict. When post-processing with the dict, we 469

directly get the SQL by parsing the dict generated 470

by LLMs. The experiment shows that appending 471

the dict after the SQL is generally a better choice. 472

The Python codes generated by LLMs are not that 473

reliable. It is better to directly use the Python dict 474

or the SQL itself. 475

Python-Code Style TS(QM) ↑ TS(IM) ↑
code*+dict+SQL 51.8 28.7
code+dict*+SQL 57.2 34.8
code+dict+SQL* 58.3 36.3
code*+SQL+dict 52.5 29.1
code+SQL+dict* 58.6 37.9
code+SQL*+dict 56.9 36.0

Table 7: CoE-SQL performance on SParC dev set in-
fluenced by different Python-code styles of prompting
text for chain-of-editions. Different python-code styles
indicate that the three components code, dict, and SQL
are put in the prompting text in different orders. The
“*” mark means that we use this specific component to
complete the post-processing procedure.

When using the natural language style, we add 476

“no change is needed” in the prompt if the clause 477

is not edited as shown in Table 2. The experiment 478

result in Table 8 proves that this prompting text is 479

necessary. Through adding this special sentence, 480

7

the CoE prompting text in the exemplars can be reg-481

ular and normalized, since all the components and482

clauses can be mentioned in the context. LLMs are483

generally better at receiving and handling regular484

and normalized contexts.485

Natural Language Style TS(QM) ↑ TS(IM) ↑
Natural Language 63.3 41.9

w/o “no change is needed” 62.8 41.0

Table 8: CoE-SQL performance on SParC dev set influ-
enced by the “no change is needed” prompting text.

Analysis of differences between pre- and post-486

Questions Table 9 proves that the question anal-487

ysis mentioned in Section 3.5 is effective in our488

approach. The analysis of differences between the489

current question and the previous one is beneficial490

for LLMs to think more about the possible edit491

rules. Without the analysis, the TS(QM) score and492

the TS(IM) score both drop about 2%.493

Method TS(QM) ↑ TS(IM) ↑
CoE-SQL 63.3 41.9

w/o analysis 61.3 39.8

Table 9: CoE-SQL performance on SParC dev set influ-
enced by the question analysis.

Coverage of edition chain As mentioned in Sec-494

tion 3.3, if a edition chain is too long, LLMs would495

generate the SQL query directly instead of using496

the edit-based method. We can control the cover-497

age of the edition chain on the training dataset by498

changing the maximum length of the edition chain499

lc. Figure 2 shows the performances on SParC dev500

set influenced by lc. According to the experiment501

result, we set lc to 4 in our main experiment. If502

lc is too small, LLMs would be more likely to di-503

rectly generate the SQL query without using the504

edit-based method. If lc is too large, LLMs would505

always edit the SQL query although the CoE-SQL506

approach may not be suitable for the current testing507

case.508

We also try another way to control the chain-509

of-edition coverage in the training dataset. We510

remove the relatively complex unit edit rules and511

only retain the commonly used ones. Therefore,512

LLMs would not be forced to edit the SQL query513

if the SQL query contains complex clauses. Table514

10 shows the experiment results with the different515

definitions of unit edit rules. In the first row, we516

Figure 2: CoE-SQL performance on SParC dev set in-
fluenced by the maximum length of the edition chain.

only keep the unit edit rules involving the SELECT 517

clause and the WHERE clause. In the second row, 518

we add the unit edit rules that are relative to the 519

FROM clause. In the third row, we do not set any 520

limitations. The experiment result indicates that 521

this method is not that effective. With the change 522

of the unit edit rules, the LLMs’ performance does 523

not change a lot. This explains why we use the 524

maximum length of the edition chain to limit the 525

edit-based approach. 526

Unit Edit Rules (Coverage) TS(QM) ↑ TS(IM) ↑
S + W (48.1%) 60.0 38.9

F + S + W (65.9%) 60.3 38.2
- (100.0%) 59.9 38.4

Table 10: CoE-SQL performance on SParC dev set in-
fluenced by the definition of unit edit rules. F represents
the unit edit rules about the FROM clause. S represents
the unit edit rules about the SELECT clause. W repre-
sents the unit edit rules about the WHERE clause.

5 Conclusion 527

We propose our CoE-SQL approach for the multi- 528

turn text-to-SQL task based on editing the previous 529

SQL query to the current SQL query. We explore 530

the definition and the style of our unit edit rules. 531

We also provide the method to extract the edition 532

chain by comparing two ASTs of two different SQL 533

queries. Furthermore, our proposed CoE frame- 534

work follows the human thinking process. The 535

experiment results demonstrate that our approach 536

achieves the best performances on the SParC and 537

CoSQL dev set among existing in-context learning 538

approaches and is also comparable to the SOTA 539

fine-tuned model. We complete some ablation stud- 540

ies and prove the effectiveness of various compo- 541

nents in CoE-SQL. 542

8

Limitations543

There are some limitations in our work. First, we544

mainly concentrate on investigating the effective-545

ness of the edition chain. We do not explore any-546

thing about the exemplar selection strategy which547

can influence LLMs’ performances a lot. Second,548

we cannot ensure that we have thoroughly opti-549

mized the CoE-SQL approach. There still may550

exist some methods for the optimization. Third,551

our approach does not surpass the previous SOTA552

fine-tuned model on the SParC and CoSQL dev sets553

under some evaluation metrics. These are all dif-554

ficult tasks that need to be addressed in the future555

work.556

References557

Ion Androutsopoulos, Graeme D Ritchie, and Pe-558
ter Thanisch. 1995. Natural language inter-559
faces to databases-an introduction. arXiv preprint560
cmp-lg/9503016.561

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie562
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind563
Neelakantan, Pranav Shyam, Girish Sastry, Amanda564
Askell, Sandhini Agarwal, Ariel Herbert-Voss,565
Gretchen Krueger, Tom Henighan, Rewon Child,566
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,567
Clemens Winter, Christopher Hesse, Mark Chen, Eric568
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,569
Jack Clark, Christopher Berner, Sam McCandlish,570
Alec Radford, Ilya Sutskever, and Dario Amodei.571
2020. Language models are few-shot learners.572

Yitao Cai and Xiaojun Wan. 2020a. IGSQL: Database573
schema interaction graph based neural model for574
context-dependent text-to-SQL generation. In575
Proceedings of the 2020 Conference on Empirical576
Methods in Natural Language Processing (EMNLP),577
pages 6903–6912, Online. Association for Computa-578
tional Linguistics.579

Yitao Cai and Xiaojun Wan. 2020b. IGSQL: Database580
schema interaction graph based neural model for581
context-dependent text-to-SQL generation. In582
Proceedings of the 2020 Conference on Empirical583
Methods in Natural Language Processing (EMNLP),584
pages 6903–6912, Online. Association for Computa-585
tional Linguistics.586

Zefeng Cai, Xiangyu Li, Binyuan Hui, Min Yang,587
Bowen Li, Binhua Li, Zheng Cao, Weijie Li, Fei588
Huang, Luo Si, et al. 2022. Star: Sql guided pre-589
training for context-dependent text-to-sql parsing.590
In Findings of the Association for Computational591
Linguistics: EMNLP 2022, pages 1235–1247.592

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming593
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-594
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,595

Greg Brockman, Alex Ray, Raul Puri, Gretchen 596
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 597
try, Pamela Mishkin, Brooke Chan, Scott Gray, 598
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 599
Kaiser, Mohammad Bavarian, Clemens Winter, 600
Philippe Tillet, Felipe Petroski Such, Dave Cum- 601
mings, Matthias Plappert, Fotios Chantzis, Eliza- 602
beth Barnes, Ariel Herbert-Voss, William Hebgen 603
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 604
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 605
William Saunders, Christopher Hesse, Andrew N. 606
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 607
Morikawa, Alec Radford, Matthew Knight, Miles 608
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 609
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 610
Sutskever, and Wojciech Zaremba. 2021a. Evaluat- 611
ing large language models trained on code. 612

Zhi Chen, Lu Chen, Hanqi Li, Ruisheng Cao, Da Ma, 613
Mengyue Wu, and Kai Yu. 2021b. Decoupled di- 614
alogue modeling and semantic parsing for multi- 615
turn text-to-sql. In Findings of the Association 616
for Computational Linguistics: ACL-IJCNLP 2021, 617
pages 3063–3074. 618

Ziru Chen, Shijie Chen, Michael White, Raymond 619
Mooney, Ali Payani, Jayanth Srinivasa, Yu Su, 620
and Huan Sun. 2023. Text-to-sql error correction 621
with language models of code. In Proceedings 622
of the 61th Annual Meeting of the Association 623
for Computational Linguistics (Volume 2: Short 624
Papers), Toronto, Canada. Association for Computa- 625
tional Linguistics. 626

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li, 627
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei 628
Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid re- 629
lation network for cross-domain context-dependent 630
semantic parsing. 631

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu 632
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and 633
Dragomir Radev. 2023. Enhancing few-shot text-to- 634
sql capabilities of large language models: A study on 635
prompt design strategies. 636

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car- 637
roll L. Wainwright, Pamela Mishkin, Chong Zhang, 638
Sandhini Agarwal, Katarina Slama, Alex Ray, John 639
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 640
Maddie Simens, Amanda Askell, Peter Welinder, 641
Paul Christiano, Jan Leike, and Ryan Lowe. 2022. 642
Training language models to follow instructions with 643
human feedback. 644

Mohammadreza Pourreza and Davood Rafiei. 2023. 645
Din-sql: Decomposed in-context learning of text- 646
to-sql with self-correction. 647

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, 648
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quan- 649
shi Zhang, and Zhouhan Lin. 2022. RASAT: Inte- 650
grating relational structures into pretrained Seq2Seq 651
model for text-to-SQL. In Proceedings of the 652
2022 Conference on Empirical Methods in Natural 653

9

http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2305.13073
https://arxiv.org/abs/2305.13073
https://arxiv.org/abs/2305.13073
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2101.01686
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211

Language Processing, pages 3215–3229, Abu Dhabi,654
United Arab Emirates. Association for Computa-655
tional Linguistics.656

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine657
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,658
Wei Li, and Peter J. Liu. 2023. Exploring the limits659
of transfer learning with a unified text-to-text trans-660
former.661

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-662
danau. 2022. Evaluating the text-to-sql capabilities663
of large language models.664

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-665
danau. 2021. PICARD: Parsing incrementally for666
constrained auto-regressive decoding from language667
models. In Proceedings of the 2021 Conference on668
Empirical Methods in Natural Language Processing,669
pages 9895–9901, Online and Punta Cana, Domini-670
can Republic. Association for Computational Lin-671
guistics.672

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob673
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz674
Kaiser, and Illia Polosukhin. 2023. Attention is all675
you need.676

Run-Ze Wang, Zhen-Hua Ling, Jing-Bo Zhou, and677
Yu Hu. 2020. Tracking interaction states for multi-678
turn text-to-sql semantic parsing.679

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten680
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and681
Denny Zhou. 2023. Chain-of-thought prompting elic-682
its reasoning in large language models.683

Dongling Xiao, LinZheng Chai, Qian-Wen Zhang, Zhao684
Yan, Zhoujun Li, and Yunbo Cao. 2022. Cqr-685
sql: Conversational question reformulation enhanced686
context-dependent text-to-sql parsers. In Findings687
of the Association for Computational Linguistics:688
EMNLP 2022, pages 2055–2068.689

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-690
net: Generating structured queries from natural691
language without reinforcement learning. arXiv692
preprint arXiv:1711.04436.693

Shunyu Yao, Jeffrey Zhao, Dian Yu, Izhak Shafran,694
Karthik R Narasimhan, and Yuan Cao. 2022. React:695
Synergizing reasoning and acting in language models.696
In NeurIPS 2022 Foundation Models for Decision697
Making Workshop.698

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric699
Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan,700
Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro701
Yasunaga, Sungrok Shim, Tao Chen, Alexander702
Fabbri, Zifan Li, Luyao Chen, Yuwen Zhang,703
Shreya Dixit, Vincent Zhang, Caiming Xiong,704
Richard Socher, Walter Lasecki, and Dragomir705
Radev. 2019a. CoSQL: A conversational text-to-706
SQL challenge towards cross-domain natural lan-707
guage interfaces to databases. In Proceedings of the708
2019 Conference on Empirical Methods in Natural709

Language Processing and the 9th International 710
Joint Conference on Natural Language Processing 711
(EMNLP-IJCNLP), pages 1962–1979, Hong Kong, 712
China. Association for Computational Linguistics. 713

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern 714
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene 715
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, 716
David Proctor, Sungrok Shim, Jonathan Kraft, Vin- 717
cent Zhang, Caiming Xiong, Richard Socher, and 718
Dragomir Radev. 2019b. SParC: Cross-domain 719
semantic parsing in context. In Proceedings of 720
the 57th Annual Meeting of the Association for 721
Computational Linguistics, pages 4511–4523, Flo- 722
rence, Italy. Association for Computational Linguis- 723
tics. 724

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen 725
Xu, and Kai Yu. 2023. Act-sql: In-context learning 726
for text-to-sql with automatically-generated chain-of- 727
thought. 728

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, 729
Xi Victoria Lin, Tianze Shi, Caiming Xiong, Richard 730
Socher, and Dragomir Radev. 2019a. Editing- 731
based SQL query generation for cross-domain 732
context-dependent questions. In Proceedings of the 733
2019 Conference on Empirical Methods in Natural 734
Language Processing and the 9th International 735
Joint Conference on Natural Language Processing 736
(EMNLP-IJCNLP), pages 5338–5349, Hong Kong, 737
China. Association for Computational Linguistics. 738

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim, Eric Xue, 739
Xi Victoria Lin, Tianze Shi, Caiming Xiong, Richard 740
Socher, and Dragomir Radev. 2019b. Editing- 741
based SQL query generation for cross-domain 742
context-dependent questions. In Proceedings of the 743
2019 Conference on Empirical Methods in Natural 744
Language Processing and the 9th International 745
Joint Conference on Natural Language Processing 746
(EMNLP-IJCNLP), pages 5338–5349, Hong Kong, 747
China. Association for Computational Linguistics. 748

Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun 749
Wang, and Changshan Li. 2022a. Hie-sql: History 750
information enhanced network for context-dependent 751
text-to-sql semantic parsing. In Findings of the 752
Association for Computational Linguistics: ACL 753
2022, pages 2997–3007. 754

Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun 755
Wang, and Changshan Li. 2022b. HIE-SQL: History 756
information enhanced network for context-dependent 757
text-to-SQL semantic parsing. In Findings of the 758
Association for Computational Linguistics: ACL 759
2022, pages 2997–3007, Dublin, Ireland. Associa- 760
tion for Computational Linguistics. 761

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke 762
Zettlemoyer. 2020. Grounded adaptation for zero- 763
shot executable semantic parsing. In Proceedings 764
of the 2020 Conference on Empirical Methods 765
in Natural Language Processing (EMNLP), pages 766
6869–6882, Online. Association for Computational 767
Linguistics. 768

10

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
http://arxiv.org/abs/2204.00498
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2012.04995
http://arxiv.org/abs/2012.04995
http://arxiv.org/abs/2012.04995
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
http://arxiv.org/abs/2310.17342
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2022.findings-acl.236
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

Victor Zhong, Caiming Xiong, and Richard Socher.769
2017. Seq2sql: Generating structured queries770
from natural language using reinforcement learning.771
CoRR, abs/1709.00103.772

11

A Unit Edit Rules773

Unit Edit Rule Explanation

EditSelectItem(oldItem, newItem)
Replace oldItem with newItem in the SELECT clause.
Add newItem into the SELECT clause if oldItem is “-”.

Delete oldItem from the SELECT clause if newItem is “-”.

EditFromTable(oldTable, newTable)
Replace oldTable with newTable in the FROM clause.

Add newTable into the FROM clause if oldTable is “-”.
Delete oldTable from the FROM clause if newTable is “-”.

EditNestedFromClause(SQL)
Edit the nested FROM clause with SQL.

Delete the nested FROM clause if SQL is “-”.

EditJoinCondition(oldCondition, newCondition)
Replace oldCondition with newCondition in the ON clause.
Add newCondition into the ON clause if oldCondition is “-”.

Delete oldCondition from the ON clause if newCondition is “-”.
EditJoinLogicalOperator(and/or) Edit the logical operator in the ON clause.

EditWhereCondition(oldCondition, newCondition)
Replace oldCondition with newCondition in the WHERE clause.
Add newCondition into the WHERE clause if oldCondition is “-”.

Delete oldCondition from the WHERE clause if newCondition is “-”.
EditWhereLogicalOperator(and/or) Edit the logical operator in the WHERE clause.

EditGroupByColumn(oldColumn, newColumn)
Replace oldColumn with newColumn in the GROUP BY clause.
Add newColumn into the GROUP BY clause if oldColumn is “-”.

Delete oldColumn from the GROUP BY clause if newColumn is “-”.

EditHavingCondition(oldCondition, newCondition)
Replace oldCondition with newCondition in the HAVING clause.
Add newCondition into the HAVING clause if oldCondition is “-”.

Delete oldCondition from the HAVING clause if newCondition is “-”.
EditHavingLogicalOperator(and/or) Edit the logical operator in the HAVING clause.

EditOrderByItem(oldItem, newItem)
Replace oldItem with newItem in the ORDER BY clause.
Add newItem into the ORDER BY clause if oldItem is “-”.

Delete oldItem from the ORDER BY clause if newItem is “-”.
EditOrder(asc/desc) Edit the order in the ORDER BY clause.

EditLimit(oldLimit, newLimit)
Replace oldLimit with newLimit in the LIMIT clause.
Add newLimit into the LIMIT clause if oldLimit is “-”.

Delete oldLimit from the LIMIT clause if newLimit is “-”.

EditIUE(intersect/union/except, left/right, SQL)
Append SQL to the left/right side of the previous SQL with intersect/union/except keyword.

Delete the left/right side of the previous SQL with intersect/union/except keyword if SQL is “-”.

Table 11: All 14 defined unit edit rules.

B Detailed Experiment Results774

Table 12 and Table 13 show the detailed performances of ACT-SQL (Zhang et al., 2023), our baseline,775

and our CoE-SQL on the SParC and CoSQL dev sets respectively. All the results in these two tables are776

TS scores. The results prove that the CoE-SQL approach performs better than the previous methods with777

different difficulty levels and numbers of conversational turns.778

Approach TS(QM) TS(IM) Easy Medium Hard Extra Turn 1 Turn 2 Turn 3 Turn 4 Turn > 4
ACT-SQL (Zhang et al., 2023) 56.9 29.6 77.2 51.9 40.0 17.9 72.5 55.7 41.5 34.1 100.0

Baseline (Ours) 59.5 37.9 77.6 58.5 42.8 15.7 69.2 59.5 49.6 43.2 100.0
CoE-SQL (Ours) 63.3 41.9 81.8 59.9 46.2 26.9 76.1 60.0 53.3 48.9 100.0

Table 12: Detailed performances on the SParC dev set.

Approach TS(QM) TS(IM) Easy Medium Hard Extra Turn 1 Turn 2 Turn 3 Turn 4 Turn > 4
ACT-SQL (Zhang et al., 2023) 55.2 21.5 76.5 46.6 42.3 17.8 65.2 54.7 50.8 48.2 42.3

Baseline (Ours) 58.5 27.6 79.9 48.7 46.6 22.4 66.6 58.2 55.3 56.1 40.8
CoE-SQL (Ours) 60.6 30.4 79.1 54.7 50.3 21.5 67.2 61.8 57.0 56.1 47.9

Table 13: Detailed performances on the CoSQL dev set.

Table 14 shows two testing cases from the SParC dev set. The complete LLMs’ responses are shown in779

the table. In the first case, CoE-SQL successfully retains the WHERE condition while the trivial baseline780

method forgets this key information during the conversation. The second case demonstrates that the781

CoE-SQL approach can also assist LLMs to handle complex logical reasoning processes such as the JOIN782

operation for multi-tables and the GROUP BY operation in this case.783

12

Turn 1
Question: Find all employees who are under age 30.
Baseline: SELECT * FROM employee WHERE age < 30 ✓
CoE-SQL:
Let’s think step by step.
SQL 17-1 can be written directly instead of being edited from previous SQL.
So SQL 17-1 is:
SELECT * FROM employee WHERE age < 30 ✓
Turn 2
Question: Which cities did they come from?
Baseline: SELECT DISTINCT city FROM employee WHERE age < 30 ✓
CoE-SQL:
Let’s think step by step.
SQL 17-2 can be edited from SQL 17-1.
The previous question asked for all employees who are under the age of 30, while the current question
asks for the cities they come from.
Therefore, following edit operations are used:
FROM clause:
- no change is needed
SELECT clause:
- change * to employee.City
WHERE clause:
- no change is needed
GROUP BY clause:
- no change is needed
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 17-2 is:
SELECT City FROM employee WHERE age < 30 ✓
Turn 3
Question: Show the cities from which more than one employee originated.
Baseline: SELECT city FROM employee GROUP BY city HAVING count(*) > 1 $
CoE-SQL:
Let’s think step by step.
SQL 17-3 can be edited from SQL 17-2.
The previous question asked for the cities from which the employees originated, while the current question
asks for the cities from which more than one employee originated.
Therefore, following edit operations are used:
FROM clause:
- no change is needed
SELECT clause:
- no change is needed
WHERE clause:
- no change is needed
GROUP BY clause:
- add HAVING condition COUNT(*) > 1

13

ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 17-3 is:
SELECT City FROM employee WHERE age < 30 GROUP BY City HAVING COUNT(*) > 1 ✓
Turn 1
Question: What are all the airlines?
Baseline: SELECT Airline FROM airlines ✓
CoE-SQL:
Let’s think step by step.
SQL 17-1 can be written directly instead of being edited from previous SQL.
So SQL 17-1 is:
SELECT Airline FROM airlines ✓
Turn 2
Question: Which ones have more than 10 flights?
Baseline: SELECT Airline FROM flights GROUP BY Airline HAVING count(*) > 10 $
CoE-SQL:
Let’s think step by step.
SQL 17-2 can be edited from SQL 17-1.
The previous question asked for all the airlines, while the current question asks for the airlines that have
more than 10 flights.
Therefore, following edit operations are used:
FROM clause:
- add table flights
- add JOIN condition airlines.uid = flights.Airline
SELECT clause:
- no change is needed
WHERE clause:
- add WHERE condition COUNT(*) > 10
GROUP BY clause:
- add column airlines.Airline
ORDER BY clause:
- no change is needed
LIMIT clause:
- no change is needed
INTERSECT/UNION/EXCEPT:
- no change is needed
So SQL 17-2 is:
SELECT airlines.Airline FROM airlines JOIN flights ON airlines.uid = flights.Airline GROUP BY
airlines.Airline HAVING COUNT(*) > 10 ✓

Table 14: Detailed case studies from the SParC dev set.

C Prompts784

In this section, we show our prompt engineering with an example from the SParC train set.785

C.1 Baseline786

role: system787

content:788

14

Given the database schema, you need to translate the question into the SQL query. 789

790

role: user 791

content: 792

Database schema: 793

create table party (794

Party_ID number, 795

Party_Theme text, 796

Location text, 797

First_year text, 798

Last_year text, 799

Number_of_hosts number, 800

primary key (Party_ID) 801

) 802

/* 803

3 example rows from table party: 804

Party_ID Party_Theme Location First_year Last_year Number_of_hosts 805

1 Spring Hemkade 48 Zaandam 2000 2001 5 806

2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23 807

3 Hardcore Resurrection Various locations 2000 2003 4 808

*/ 809

create table host (810

Host_ID number, 811

Name text, 812

Nationality text, 813

Age text, 814

primary key (Host_ID) 815

) 816

/* 817

3 example rows from table host: 818

Host_ID Name Nationality Age 819

1 Austin Daye United States 43 820

2 Lloyd Daniels United States 37 821

3 Kornel David Hungary 31 822

*/ 823

create table party_host (824

Party_ID number, 825

Host_ID number, 826

Is_Main_in_Charge others, 827

primary key (Party_ID), 828

foreign key (Party_ID) references party(Party_ID), 829

foreign key (Host_ID) references host(Host_ID) 830

) 831

/* 832

3 example rows from table party_host: 833

Party_ID Host_ID Is_Main_in_Charge 834

1 1 T 835

8 7 T 836

6 10 F 837

*/ 838

Question: What are all the parties? 839

840

15

role: assistant841

content:842

SELECT * FROM party843

844

role: user845

content:846

Question: Order them by the number of hosts.847

848

role: assistant849

content:850

SELECT * FROM party ORDER BY Number_of_hosts ASC851

C.2 Self-Defined Edit Rule Style852

role: system853

content:854

Given the database schema, you need to translate the question into the SQL query.855

You can use following operations to edit SQL:856

1. EditIUE(intersect/union/except, left/right, SQL): Append SQL to the left/right side of the previous857

SQL with intersect/union/except keyword. Delete the left/right side of the previous SQL with858

intersect/union/except keyword if SQL is "-".859

2. EditFromTable(oldTable, newTable): Replace oldTable with newTable in the FROM clause. Add860

newTable into the FROM clause if oldTable is "-". Delete oldTable from the FROM clause if newTable is861

"-".862

3. EditJoinCondition(oldCondition, newCondition): Replace oldCondition with newCondition in the ON863

clause. Add newCondition into the ON clause if oldCondition is "-". Delete oldCondition from the ON864

clause if newCondition is "-".865

4. EditJoinLogicalOperator(and/or): Edit the logical operator in the ON clause.866

5. EditNestedFromClause(SQL): Edit the nested FROM clause with SQL. Delete the nested FROM867

clause if SQL is "-".868

6. EditSelectItem(oldItem, newItem): Replace oldItem with newItem in the SELECT clause. Add869

newItem into the SELECT clause if oldItem is "-". Delete oldItem from the SELECT clause if newItem is870

"-".871

7. EditWhereCondition(oldCondition, newCondition): Replace oldCondition with newCondition in the872

WHERE clause. Add newCondition into the WHERE clause if oldCondition is "-". Delete oldCondition873

from the WHERE clause if newCondition is "-".874

8. EditWhereLogicalOperator(and/or): Edit the logical operator in the WHERE clause.875

9. EditGroupByColumn(oldColumn, newColumn): Replace oldColumn with newColumn in the GROUP876

BY clause. Add newColumn into the GROUP BY clause if oldColumn is "-". Delete oldColumn from the877

GROUP BY clause if newColumn is "-".878

10. EditHavingCondition(oldCondition, newCondition): Replace oldCondition with newCondition in the879

HAVING clause. Add newCondition into the HAVING clause if oldCondition is "-". Delete oldCondition880

from the HAVING clause if newCondition is "-".881

11. EditHavingLogicalOperator(and/or): Edit the logical operator in the HAVING clause.882

12. EditOrderByItem(oldItem, newItem): Replace oldItem with newItem in the ORDER BY clause. Add883

newItem into the ORDER BY clause if oldItem is "-". Delete oldItem from the ORDER BY clause if884

newItem is "-".885

13. EditOrder(asc/desc): Edit the order in the ORDER BY clause.886

14. EditLimit(oldLimit, newLimit): Replace oldLimit with newLimit in the LIMIT clause. Add newLimit887

into the LIMIT clause if oldLimit is "-". Delete oldLimit from the LIMIT clause if newLimit is "-".888

889

role: user890

content:891

16

Database schema: 892

create table party (893

Party_ID number, 894

Party_Theme text, 895

Location text, 896

First_year text, 897

Last_year text, 898

Number_of_hosts number, 899

primary key (Party_ID) 900

) 901

/* 902

3 example rows from table party: 903

Party_ID Party_Theme Location First_year Last_year Number_of_hosts 904

1 Spring Hemkade 48 Zaandam 2000 2001 5 905

2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23 906

3 Hardcore Resurrection Various locations 2000 2003 4 907

*/ 908

create table host (909

Host_ID number, 910

Name text, 911

Nationality text, 912

Age text, 913

primary key (Host_ID) 914

) 915

/* 916

3 example rows from table host: 917

Host_ID Name Nationality Age 918

1 Austin Daye United States 43 919

2 Lloyd Daniels United States 37 920

3 Kornel David Hungary 31 921

*/ 922

create table party_host (923

Party_ID number, 924

Host_ID number, 925

Is_Main_in_Charge others, 926

primary key (Party_ID), 927

foreign key (Party_ID) references party(Party_ID), 928

foreign key (Host_ID) references host(Host_ID) 929

) 930

/* 931

3 example rows from table party_host: 932

Party_ID Host_ID Is_Main_in_Charge 933

1 1 T 934

8 7 T 935

6 10 F 936

*/ 937

Question 1-1: What are all the parties? 938

939

role: assistant: 940

content: 941

Let’s think step by step. 942

SQL 1-1 can be written directly instead of being edited from previous SQL. 943

17

So SQL 1-1 is:944

SELECT * FROM party945

946

role: user:947

content:948

Question 1-2: Order them by the number of hosts.949

950

role: assistant951

content:952

Let’s think step by step.953

SQL 1-2 can be edited from SQL 1-1.954

The previous question asked for a list of all the parties, while the current question asks for the parties to955

be ordered by the number of hosts they have.956

Therefore, following edit operations are used:957

FROM clause:958

- no change is needed959

SELECT clause:960

- no change is needed961

WHERE clause:962

- no change is needed963

GROUP BY clause:964

- no change is needed965

ORDER BY clause:966

- EditOrderByItem(-, party.Number_of_hosts)967

- EditOrder(asc)968

LIMIT clause:969

- no change is needed970

INTERSECT/UNION/EXCEPT:971

- no change is needed972

So SQL 1-2 is:973

SELECT * FROM party ORDER BY Number_of_hosts ASC974

C.3 Python Code Style975

role: system976

content:977

Given the database schema, you need to translate the question into the SQL query.978

979

role: user980

content:981

Database schema:982

create table party (983

Party_ID number,984

Party_Theme text,985

Location text,986

First_year text,987

Last_year text,988

Number_of_hosts number,989

primary key (Party_ID)990

)991

/*992

3 example rows from table party:993

Party_ID Party_Theme Location First_year Last_year Number_of_hosts994

18

1 Spring Hemkade 48 Zaandam 2000 2001 5 995

2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23 996

3 Hardcore Resurrection Various locations 2000 2003 4 997

*/ 998

create table host (999

Host_ID number, 1000

Name text, 1001

Nationality text, 1002

Age text, 1003

primary key (Host_ID) 1004

) 1005

/* 1006

3 example rows from table host: 1007

Host_ID Name Nationality Age 1008

1 Austin Daye United States 43 1009

2 Lloyd Daniels United States 37 1010

3 Kornel David Hungary 31 1011

*/ 1012

create table party_host (1013

Party_ID number, 1014

Host_ID number, 1015

Is_Main_in_Charge others, 1016

primary key (Party_ID), 1017

foreign key (Party_ID) references party(Party_ID), 1018

foreign key (Host_ID) references host(Host_ID) 1019

) 1020

/* 1021

3 example rows from table party_host: 1022

Party_ID Host_ID Is_Main_in_Charge 1023

1 1 T 1024

8 7 T 1025

6 10 F 1026

*/ 1027

Question 1-1: What are all the parties? 1028

1029

role: assistant: 1030

content: 1031

Let’s think step by step. 1032

SQL 1-1 can be written directly instead of being edited from previous SQL. 1033

So SQL 1-1 is: 1034

SELECT * FROM party 1035

So SQL dict 1-1 is: 1036

{ 1037

"from": { 1038

"tables": [1039

"party" 1040

] 1041

}, 1042

"select": [1043

"*" 1044

] 1045

} 1046

19

1047

role: user:1048

content:1049

Question 1-2: Order them by the number of hosts.1050

1051

role: assistant1052

content:1053

Let’s think step by step.1054

SQL 1-2 can be edited from SQL 1-1.1055

The previous question asked for a list of all the parties, while the current question asks for the parties to1056

be ordered by the number of hosts they have.1057

Therefore, following edit operations are used:1058

sql[’order_by’][’columns’].append(’party.Number_of_hosts’)1059

sql[’order_by’][’order’] = ’ASC’1060

So SQL 1-2 is:1061

SELECT * FROM party ORDER BY Number_of_hosts ASC1062

So SQL dict 1-2 is:1063

{1064

"from": {1065

"tables": [1066

"party"1067

]1068

},1069

"select": [1070

"*"1071

],1072

"order_by": {1073

"columns": [1074

"party.Number_of_hosts"1075

],1076

"order": "ASC"1077

}1078

}1079

C.4 Natural Language Style1080

role: system1081

content:1082

Given the database schema, you need to translate the question into the SQL query.1083

1084

role: user1085

content:1086

Database schema:1087

create table party (1088

Party_ID number,1089

Party_Theme text,1090

Location text,1091

First_year text,1092

Last_year text,1093

Number_of_hosts number,1094

primary key (Party_ID)1095

)1096

/*1097

20

3 example rows from table party: 1098

Party_ID Party_Theme Location First_year Last_year Number_of_hosts 1099

1 Spring Hemkade 48 Zaandam 2000 2001 5 1100

2 Club Q-BASE Hemkade 48 Zaandam 2002 2002 23 1101

3 Hardcore Resurrection Various locations 2000 2003 4 1102

*/ 1103

create table host (1104

Host_ID number, 1105

Name text, 1106

Nationality text, 1107

Age text, 1108

primary key (Host_ID) 1109

) 1110

/* 1111

3 example rows from table host: 1112

Host_ID Name Nationality Age 1113

1 Austin Daye United States 43 1114

2 Lloyd Daniels United States 37 1115

3 Kornel David Hungary 31 1116

*/ 1117

create table party_host (1118

Party_ID number, 1119

Host_ID number, 1120

Is_Main_in_Charge others, 1121

primary key (Party_ID), 1122

foreign key (Party_ID) references party(Party_ID), 1123

foreign key (Host_ID) references host(Host_ID) 1124

) 1125

/* 1126

3 example rows from table party_host: 1127

Party_ID Host_ID Is_Main_in_Charge 1128

1 1 T 1129

8 7 T 1130

6 10 F 1131

*/ 1132

Question 1-1: What are all the parties? 1133

1134

role: assistant: 1135

content: 1136

Let’s think step by step. 1137

SQL 1-1 can be written directly instead of being edited from previous SQL. 1138

So SQL 1-1 is: 1139

SELECT * FROM party 1140

1141

role: user: 1142

content: 1143

Question 1-2: Order them by the number of hosts. 1144

1145

role: assistant 1146

content: 1147

Let’s think step by step. 1148

SQL 1-2 can be edited from SQL 1-1. 1149

21

The previous question asked for a list of all the parties, while the current question asks for the parties to1150

be ordered by the number of hosts they have.1151

Therefore, following edit operations are used:1152

FROM clause:1153

- no change is needed1154

SELECT clause:1155

- no change is needed1156

WHERE clause:1157

- no change is needed1158

GROUP BY clause:1159

- no change is needed1160

ORDER BY clause:1161

- add party.Number_of_hosts1162

- change order to ASC1163

LIMIT clause:1164

- no change is needed1165

INTERSECT/UNION/EXCEPT:1166

- no change is needed1167

So SQL 1-2 is:1168

SELECT * FROM party ORDER BY Number_of_hosts ASC1169

1170

22

	Introduction
	Related Work
	Methodology
	Overview of CoE
	Definition of Unit Edit Rules
	Extraction of Edition Chains
	Style of Edition Chains
	Analysis of Differences Between Pre- and Post-Questions

	Experiments
	Experiment Setup
	Main Results
	Ablation Study

	Conclusion
	Unit Edit Rules
	Detailed Experiment Results
	Prompts
	Baseline
	Self-Defined Edit Rule Style
	Python Code Style
	Natural Language Style

