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Abstract

In recent years, many benchmarks have been developed to evaluate Vision-
Language Models (VLMs) using visual question answering (VQA) pairs, with
models demonstrating significant accuracy improvements. However, these bench-
marks rarely test visual entailment (determining if an image entails its respective
text). Furthermore, existing visual entailment datasets use simple images, which
prevent a true evaluation of visual understanding. To address this, we propose
COREVQA (Crowd Observations and Reasoning Entailment), a benchmark of
5,608 image and synthetically generated true/false statement pairs. Using images
from the CrowdHuman dataset [22], COREVQA provokes visual entailment rea-
soning in challenging, crowded scenes. Our results show that even top-performing
VLMs achieve accuracy below 80%, with other models performing substantially
worse (39.98%-69.95%). This significant performance gap reveals key limitations
in the ability of VLMs to semantically understand crowd-based images and reason-
ing within each image-text pair. The benchmark’s emphasis on spatial relationships
and multi-step reasoning processes provides insights into challenges faced by
embodied AI systems navigating complex, crowded environments.
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1 Introduction

Vision-Language Models (VLMs), such as GPT-4.1 [1] and Gemini 2.5 Pro [7], have shown re-
markable capabilities in image understanding and multimodal task completion [13]. As VLMs grow
more sophisticated, the demand for rigorous evaluation methods that assess deep visual and textual
understanding becomes increasingly critical [2, 10].

However, existing VLM evaluation benchmarks often fall short in assessing nuanced comprehension
of natural situations, primarily due to their reliance on simple images or questions. These limitations
mean that models may succeed by exploiting superficial cues or relying on parametric knowledge
without robust visual processing. This scarcity of robust multimodal reasoning assessments impedes
VLM improvements [9, 13].

To fill this void in VLM assessment, we propose COREVQA (Crowd Observations and Reasoning
Entailment Visual Question Answering)—a challenging evaluation benchmark based on images
of dense human crowds in complex, natural settings. While existing crowd-based datasets focus
on recognition, detection, and counting [23, 26, 27, 34], COREVQA requires models to integrate
fine-grained visual analysis with textual logic in scenarios where visual ambiguity and easy-to-miss
details are key. The spatial complexity of crowded scenes requires models to parse overlapping
objects, understand depth relationships, and track spatial references across multiple entities—core
challenges in embodied AI systems that must navigate and reason about complex 3D environments.



Our main contributions are as follows: We propose a pipeline to synthetically generate difficult
questions for specific images based on typical VLM weaknesses. We created the first large-scale
benchmark with multi-person, crowd-based images for evaluating VLM capability in busy scenarios.
We evaluated several state-of-the-art VLMs on COREVQA, revealing a universal struggle with
nuances and fine details when dealing with images overflowing with diverse people, shapes, colors,
and sizes.

2 Related Work

2.1 Vision-Language Benchmarks

Several benchmarks have become standard for evaluating core Visual-Question Answering (VQA)
abilities. VQAv2 [8], successor to the original VQA dataset [3], aimed to assess general VQA
performance through a more balanced and challenging benchmark. Though still used for standardized
evaluation, typical VQA datasets (like OK-VQA [16] and TextVQA [24]) often lack sufficient
complexity [8].

Newer datasets analyze visual reasoning, understanding, recognition, and question answering, in-
cluding MMTBench [30], VCR [33], MM-Vet [31], SEEDBench [11], and NaturalBench [12]. Most
recent datasets, such as MMBench [15], MMMU [32], MMStar [4], and M3GIA [25], have fo-
cused on assessing a wider range of tasks for easier standardized comparison, rather than improving
evaluation quality [6].

Other targeted datasets like HallusionBench [9], NTSEBENCH [18], and VLDBENCH [21] have
been created to evaluate key VLM weaknesses.

2.2 Visual Entailment and Crowd-Based Datasets

Visual entailment benchmarks such as SNLI-VE [29], Defeasible Visual Entailment [35], and VALSE
[19] have all created questions that test a model’s ability to understand text in relation to an image.
However, these existing visual entailment benchmarks utilize easily understandable images in their
assessments, relying on text for entailment.

Primary crowd-based datasets include NWPU-Crowd [27], JHU-CROWD++ [23], PANDA [28], and
GCC [26].

The original visual entailment task (from SNLI-VE) [29] contains three labels: entailment (if the
image contains enough information to conclude the text is true), contradiction, and neutral (if there
isn’t enough information to conclude). We utilize a true (entailment) or false (contradiction) format,
removing the neutral metric from evaluation to provide a more decisive classification task.

Rather than evaluating diverse tasks or focusing exclusively on one performance aspect like text
recognition, COREVQA combines visual entailment and textual comprehension with heavy occlusion
from our crowd-based images [29]. This combination takes difficult aspects from existing benchmarks
and merges them with a focus on crowds to provide a quality, in-depth assessment that is generalizable
to real-world scenarios.

3 COREVQA

COREVQA is a novel VQA benchmark designed to evaluate the capabilities of VLMs in detailed
visual inspection and multi-step visual entailment. The benchmark features true/false statements
about images that sound plausible but require careful visual grounding to verify.

3.1 Benchmark Overview

COREVQA tests two core capabilities: depth of visual entailment and precision in analyzing
fine-grained visual details. The binary classification task assesses meticulous visual inspection,
which involves identifying subtle details in visual clutter or peripheral regions, and complex visual
entailment, which involves understanding spatial relationships, making contextual inferences, and
resisting plausible misdirection. Critically, many statements require multi-step spatial reasoning
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Table 1: Key Statistics of the COREVQA Dataset

Characteristic Value

Dataset size 5,608 image-statement pairs
True statements 1,566 (27.9%)
False statements 4,042 (72.1%)
Avg. statement length 30.20 words
Statements w/ commas 94.26%

where models must first locate relevant entities, establish their spatial relationships, and then verify
complex spatial predicates—mirroring the sequential planning processes required for embodied
agents navigating crowded environments.

The benchmark contains 5,608 unique image-statement pairs. Images come from the CrowdHuman
dataset [22], featuring diverse indoor and outdoor environments with groups of people. Each image
is paired with a unique true/false statement generated by prompting ChatGPT for true statements and
Claude 3 Opus for false statements. Ground truths were hand-labeled.

3.2 Data Collection

3.2.1 Image Sourcing

The images were sourced from the CrowdHuman dataset [22].

3.2.2 True/False Statement Generation

After testing several SOTA models, we found that true statements from GPT-4.1 and false statements
from Claude 3 Opus were most effective at creating difficult and high-quality questions.

Both models were guided by an iteratively refined prompt designed to create statements that sound
natural but require meticulous visual inspection. The prompts included directives for complexity,
grounding in visual evidence, and a built-in self-reflection step for the generator to analyze how its
statement might trick a model. The exact prompts used for generation are available in our public
GitHub repository.

For true statements, the prompt encouraged three main reasoning approaches: Spatial reasoning
describing precise relationships between multiple elements, including human-to-human interaction,
human-to-object interaction, and direction or orientation of moving or still humans and objects.
Temporal/causal inference identifying evidence of what just happened or is about to happen. Such
statements present reasonable inferences based on observations of the situation presented in the given
image. Background knowledge integration implementing extensive details about the background of a
scene in the statement challenges models to verify all parts of the image.

For false statements, the prompt employed a range of adversarial strategies designed to exploit
common VLM weaknesses. These included: Occlusion Trap implying something is fully visible
when it is actually partially or fully hidden. Causal Mislead suggesting a cause-and-effect relationship
not supported by the visual context. Schema Reversal flipping expected social roles. Quantifier Bait
using counts for simple object detection. Generally, these statements mention detailed attributes of
the objects to throw off VLMs and make them doubt their count. Hidden Contradictions embedding a
single, subtle error within an otherwise believable sentence.

This systematic approach ensures that the benchmark’s difficulty stems from intentional, grounded
complexity rather than random chance.

3.2.3 Quality Control and Ground Truths

All ground truths were manually labeled to ensure complete accuracy. While labeling, we also
reprocessed any ambiguous statements or made minor grammatical edits for clarity.
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Table 2: COREVQA compared to existing benchmarks

Dataset Size Crowd Focus Adversarial Fine-grained

COREVQA 5.6K Yes Yes Yes
VQAv2 1.1M No No No
SNLI-VE 565K No No Partial
NWPU-Crowd 5K Yes No No
HallusionBench 2K No Yes No
MMBench 2.9K No No Yes
SEEDBench 19K No No Yes

3.3 Data Analysis

3.3.1 Images

The dataset includes 4,927 images (87.9%) from the train01 split and 681 images (12.1%) from the
train02 split of the CrowdHuman dataset. These real-world photographs feature groups of people in
diverse settings, providing a rich visual foundation for challenging visual entailment statements.

3.3.2 Statements

The statements exhibit significant syntactic complexity, with frequent use of contrastive constructions
("while": 32.9%, "despite": 12.7%). The content is people-centric, reflecting the CrowdHuman
source, with common terms including "person" (47.3% of statements), "people" (35.4%), and actions
like "holding" (46.7%) and "standing" (19.5%).

More than half (57.7%) of the statements use spatial terms, 39.0% reference clothing, and 35.1%
mention color, highlighting the dataset’s focus on detailed visual attributes and spatial understanding.

3.4 Dataset Comparison

Table 2 compares COREVQA with other popular VLM benchmarks. Our dataset joins several
other datasets in focusing on challenging multi-person imagery. These include NWPU-Crowd,
which only evaluates counting and detection, HallusionBench [9], which only focuses on adversarial
examples, and SNLI-VE [29], which uses primarily simpler imagery. COREVQA goes beyond these
by providing a dataset with dense visual information and complex visual entailment that requires
models to perform multi-step verification.

By strategically combining these dimensions, COREVQA offers a unique diagnostic value in assess-
ing the ability of VLMs to perform the kind of careful visual verification and reasoning required in
real-world applications.

4 Results and Analysis

4.1 Experimental Setup

We evaluated GPT-4.1 [17], GPT-4o mini [1], Deepseek-Janus-Pro [5], LLaVa-NeXT [14], and
Qwen2.5 vl 72b [20] on all statements of COREVQA. All models were given the same prompt to
explicitly respond with "True" or "False". Our primary evaluation metrics are accuracy, precision,
recall, and F1. We also introduce failure patterns to assess areas of challenge within each statement.

4.2 Quantitative Results

GPT-4.1 achieves the highest overall accuracy (77.57%), with GPT-4o Mini closely following,
demonstrating a reasonable ability to verify both positive and negative claims. Janus Pro and
Qwen2.5 vl 72b also perform relatively well (72.31% and 69.95% respectively). However, Janus
Pro has significantly low recall and F1 scores, indicating a strong bias toward answering "False".
LLaVa-NeXT displays near-perfect recall (99.68%) but scores poorly on all other metrics (Table 3).
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Table 3: Model Performance on COREVQA

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

GPT-4.1 77.57 57.36 76.63 65.60
GPT-4o mini 76.60 56.72 68.45 62.04
Janus Pro 72.31 64.44 1.85 3.60
Qwen2.5 vl 72b 69.95 47.91 87.23 61.85
LLaVa-NeXT 39.98 31.71 99.68 48.12

4.3 Failure Patterns

21.5% of questions were particularly challenging, with at least two models providing incorrect
answers.

Categorization using VLM(s) as a judge: We used the same ChatGPT and Claude models used for
generation as judges to categorize these difficult questions into the five categories mentioned below.
If a statement was answered incorrectly, it is considered a failure of all respective categories attributed
to that statement (there can be multiple). Both models were given similar prompts as were used for
generation, and were given further instructions for categorization.

Anytime the models disagreed on a categorization, humans were used to select the best-fitting
categories. Among the 1208 questions, conflicts were present in only 48 (3.97% disagreement). This
includes cases where one of the models attributes more categories to the given statement than the
other.

To test the reliability of this VLM-as-a-judge approach, we selected a random sample of 50 statements
(127 VLM categorizations), and found an accuracy of 96.06% where human categorizations of those
same questions were ground truths (122/127).

Action Recognition Failures (81.3% of difficult cases) Models often failed to understand complex
human actions, or contextual behaviour (e.g., "a person is actively hailing a cab").

Detail Oversight (78.1%) This pattern highlights a core challenge in visual grounding. Models
struggled to verify multiple, disparate visual facts asserted in a single, long statement.

Counting Inaccuracies (60.8%) These are indicated by failures in quantification, especially in occluded
scenes. Model predictions below and above the ground truth were both prominent.

Spatial Reasoning Failures (41.7%) Models frequently misinterpreted complex spatial prepositions
like "between," "behind," or "to the left of," particularly when statements involved multiple subjects.
This reflects fundamental limitations in how current VLMs construct and maintain spatial representa-
tions of crowded scenes—a critical capability for embodied AI systems that must plan actions based
on spatial understanding of their environment.

Negation Handling (31.3%) By nature of the images and statements, it is often more demanding to
verify something’s presence than to confirm its absence. This includes statements such as "no one is
wearing a hat".

4.4 Case Studies and Examples

Figure 1 showcases an example where all tested models unanimously failed. The statement requires
careful application of several reasoning steps: counting ("only one"), action recognition ("holding a
phone to their ear"), and negation ("no one...is both carrying an umbrella and wearing a hat"). This
statement is a case of detail identification, negation handling, and action recognition.

5 Limitations and Future Work

5.1 Current Limitations

The requirement of human labeling prevents fast scaling. Furthermore, generating questions solely
with ChatGPT and Claude Opus has the potential to introduce linguistic biases or limit the stylistic
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Figure 1: Statement: Among all people crossing the street, only one is visibly holding a phone to
their ear while walking, while no one in the scene is both carrying an umbrella and wearing a hat.
Ground truth: FALSE. All models (GPT-4.1, GPT-4o mini, JanusPro, LLaVA-NeXT, and Qwen)
responded TRUE.

diversity of the statements. In a binary format, VLMs can attain non-trivial (50%) accuracy through
random guessing. Another limitation is that when a model responds falsely, we cannot confirm which
part of the statement the VLM believes is false. Finally, COREVQA contains an uneven split of true
and false statements.

5.2 Suggested Directions for Improvement

Future work should test more models, such as InternVL3-78b [36], which are high-performing and
open-source. Incorporating crowd data from various sources (like non-human images) would increase
the generalizability of COREVQA. Further analysis and confidence metrics could be conducted to
improve the reliability of model accuracy scores. Finally, COREVQA could be used for finetuning
VLMs, to evaluate potential performance improvements in general visual and textual tasks.

5.3 Implications for Embodied AI

COREVQA’s emphasis on spatial reasoning in crowded scenes directly relates to challenges faced by
embodied AI systems. The multi-step verification required for our statements parallels the planning
processes needed for navigation in dense environments. Our finding that spatial reasoning failures
occur in 41.7% of difficult cases suggests that current VLMs may struggle when deployed in embodied
systems requiring real-time spatial understanding. Future work should explore how these benchmark
insights can inform the development of more spatially-aware multimodal models for robotics and
autonomous navigation applications.

6 Conclusion

This paper introduces COREVQA (Crowd Observations and Reasoning Entailment), a novel Visual
Question Answering (VQA) benchmark designed to rigorously evaluate Vision-Language Models
(VLMs). Existing VLM benchmarks often rely on simple images or questions, while existing
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crowd-based datasets exclusively focus on detection, recognition, and counting. Recognizing this
gap, COREVQA was created with high-quality crowd-sourced images and synthetically generated
challenging statements, targeting visual entailment capabilities where models must accurately verify
or refute claims about image content. Our experiments identified under 80% accuracy from state-of-
the-art VLMs.
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