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ABSTRACT

The increasing integration of AI models in critical areas, such as healthcare, fi-
nance, and security has raised concerns about their “black-box” nature, limiting
trust and accountability. To ensure robust and trustworthy AI, interpretability is
essential. In this paper, we propose CAuSE (Causal Abstraction under Simu-
lated Explanation), a novel framework for post-hoc explanation of multimodal
classifiers. Unlike existing interpretability methods, such as Amnesic Probing and
Integrated Gradients, CAuSE generates causally faithful natural language expla-
nations of fine-tuned multimodal classifiers’ decisions. CAuSE integrates Inter-
change Intervention Training (IIT) within a Language Model (LM) based module
to simulate the causal reasoning behind a classifier’s outputs. We introduce a
novel metric Counterfactual F1 score to measure causal faithfulness and demon-
strate that CAuSE achieves state-of-the-art performance on this metric. We also
provide a rigorous theoretical underpinning for causal abstraction between two
neural networks and implement this within our CAuSE framework. This ensures
that CAuSE’s natural language explanations are not only simulations of the clas-
sifier’s behavior but also reflect its underlying causal processes. Our method is
task-agnostic and achieves state-of-the-art results on benchmark multimodal clas-
sification datasets, such as e-SNLI-VE and Facebook Hateful Memes, offering a
scalable, faithful solution for interpretability in multimodal classifiers.

1 INTRODUCTION

With the rise of Visual Language Models (VLMs), AI systems have evolved to handle multiple data
types like images, text, and audio. Multimodal classifiers, central to this advancement, are crucial
in applications such as healthcare, where they combine medical images and patient data to improve
diagnostic accuracy for diseases like COVID-19 and Alzheimer’s (Baltrušaitis et al., 2017). Simi-
larly, in autonomous driving, they enhance decision-making by integrating visual, LiDAR, and radar
inputs (Xiao et al., 2022). These classifiers boost performance by leveraging diverse modalities,
making them vital in real-world scenarios.

However, as multimodal classifiers grow in complexity, the need for interpretability becomes
paramount. Current interpretability methods, such as Integrated Gradients(Sundararajan et al.,
2017a), are designed to highlight explicit input features but fall short of capturing the implicit
causal relationships that often drive the decisions of these models. While some techniques, like
CausaLM(Feder et al., 2022) and Amnesic Probing(Elazar et al., 2021), aim to incorporate causal
mechanisms for interpretability, they struggle with scalability. Other methods, such as Seman-
tify(Bandyopadhyay et al., 2024), manage implicit concepts efficiently but are restricted to specific
use cases and fail to generate comprehensive natural language explanations.

To address these limitations, large Visual Language Models (VLMs) have been utilized to generate
natural language explanations for decisions made by visual-text multimodal classifiers. However,
these models often inject their own biases and opinions, leading to explanations that are inconsistent
or detached from the actual workings of the classifier(Agarwal et al., 2024). Recent studies(Madsen
et al., 2024) have highlighted these faithfulness issues, revealing inconsistencies when models are
further probed.
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In this paper, we introduce CAuSE (Causal Abstraction under Simulated Explanation), a novel
framework designed to generate faithful natural language explanations for the decisions of a pre-
trained classifier, offering post-hoc interpretability. CAuSE combines Interchange Intervention
Training(Geiger et al., 2021a) with Language Model (LM)-based modules, ensuring that the gener-
ated explanations are both causally accurate and reflective of the classifier’s internal decision-making
process. We introduce a new metric, the Counterfactual F1 score, to assess the causal faithfulness of
explanations. CAuSE sets a new benchmark on this metric, achieving state-of-the-art performance.
Through case studies, we showcase successful generations from our framework and conduct error
analysis to identify common mistakes and their underlying causes.

Our framework is task-agnostic and demonstrates state-of-the-art performance on benchmark
datasets, such as e-SNLI-VE(Do et al., 2021) and Facebook Hateful Memes(Kiela et al., 2021),
providing robust, faithful explanations across diverse multimodal tasks. The codes are available at
https://anonymous.4open.science/r/CAuSE-5BD0.

2 ARCHITECTURE

Our framework, CAuSE, generates faithful natural language explanations for decisions made by a
pre-trained multimodal classifier (called the post-hoc classifier). As detailed in Section 3.2, CAuSE
acts as a causal abstraction of the post-hoc classifier, ensuring its explanations are rooted in the
actual decision-making process. This is supported by the high Counterfactual F1 scores CAuSE
achieves compared to the other ablated components, as shown in Table 2. This section introduces
the post-hoc classifier and provides a detailed description of the CAuSE framework, with a working
diagram of both presented in Figure 1.

2.1 POST-HOC CLASSIFIER

The post-hoc classifier is assumed to be composed of a multimodal encoder E and a feed-forward
neural network (FFN) C1.

Multimodal Encoder. The multimodal encoder E accepts as inputs the text (t ∈ Rm×1) and image
representation (v ∈ Rm×1). The image and text representation are fused via either i) early-fusion
or ii) late-fusion modules. The final multimodal representation is denoted as c ∈ Rm×1, where
c = E(t, v).

This module serves as a plug-and-play replacement for any multimodal encoder, whether based on
early-fusion or late-fusion. In our implementation for this paper, we use a late-fusion-based module,
which consists of CLIP(Radford et al., 2021) and MFB(Yu et al., 2017), as commonly adopted in
the literature(Bandyopadhyay et al., 2024).

Classifier C1. The classifier gets the multimodal representation c and via a chain of feed-forward
neural nets, it gets transformed into a vector z ∈ RL×1, where L is the number of classes in the
output label. A softmax function is used which converts logit z into a probability distribution y1 =
softmax(z). Supposing the one-hot ground truth probability distribution is ŷ1, the cross-entropy
loss which is used to optimize the post-hoc classifier is

LPH = −[ŷ1log(y1)] (1)

2.2 CAUSE

The CAuSE is composed of i) A language model (LM) called ϕ1 which reconstructs the input text.
ii) Another LM ϕ2 which generates the explanation. ϕ2 is coupled with another classifier (C2) which
is trained to predict the outputs of the original classifier C1. It is important to note that ϕ1 and
ϕ2 share the same weights and are both implemented using a single GPT-2 small model with 350
million parameters, reducing memory consumption.

Training the LMs. The LMs are trained using vanilla causal language modelling (CLM) loss.
Specifically, the multimodal representation c is broken into two components c0 and c1 by passing
them through two separate FFNs (F0 and F1) which bring their dimension to match with LM em-
bedding dimension R768×1, such that c0 = F0(c), and c1 = F1(c).

2
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Figure 1: Diagram of our proposed framework CAuSE and the post-hoc classifier.

Given c0, ϕ1 reconstructs next word (xi) for the i-th step via the following loss over a total of T ′

time-steps:

Lϕ1 = −
T ′∑
i=1

logPϕ1(xi|xi−1) where x0 = c0 (2)

Similar equation is used to train ϕ2

Lϕ2
= −

T∑
i=1

logPϕ2
(xi|xi−1) where x0 = c1 (3)

Aggregator A. The logits xi retrieved from ϕ2 has the dimension R1×T×V , where V is the vo-
cabulary size. These logits are first summed up along the time axis, which yields an intermediate
vector x having dimension of R1×V . This is then passed through another FFN which converts into
a dimension same as c, which is Rm×1.

Classifier C2. The aggregated output having the same dimension as c is passed through a classifier
C2 architecturally identical to C1. C2 is then trained to predict labels from C11. y1 is the output
distribution from C1. Similarly, the probability distribution of C2 is y2 = softmax(C2(x)), where
x = (A ◦ ϕ2 ◦ F1)(c). We minimize the Cross-Entropy loss between outputs of C2 and C1 as:

LC = −[y1log(y2)] (4)

3 TRAINING METHODOLOGY

Training CAuSE involves two steps other than using LC to align C2 to C1. They are i) Linguistic
Infusion, ii) Causal Intervention.

1because we want to mimic C2 using C1 output.

3
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3.1 LINGUISTIC INFUSION (LI)

We denote the input to the classifier C1 as c, which is a multimodal encoding from the encoder. This
captures the overall encoded representation of the multimodal source input. Through LI, we want to
enrich c with input source (t, v) such that the latter could possess enough source information. LI is
performed because: We only use a projected version of c as the input token representation c2 to ϕ2.
This essentially serves as a bottleneck and most of the source information is lost when input is given
to the LLM.

Assuming M = (t, v), in LI, the enrichment of c through source can be defined as the following
constrained maximization problem following Plug and Play Language Model (PPLM)(Dathathri
et al., 2020).

ĉ = argmax
c

P (c|M) such that C1(ĉ) = C1(c) (5)

Applying Bayes’ theorem, P (c|M) ∝ P (c)P (M |c). Subsequently, the optimization Equation 5 can
be written as: ĉ = argmaxc P (M |c).
To estimate P (M |c), we use an autoencoder which tries to predict M from c. Formally, we try to
estimate P (d|c) by training an autoencoder which is trained to minimize a loss denoted by LAE =
|d −M |. This ensures d becomes as close to M as possible. Specifically, to find ĉ, we train the
autoencoder first and then perform gradient descent of c along the loss. We use ĉ ← c − γ∇cLAE
as the iterative update formula to get ĉ from c.

3.2 CAUSAL INTERVENTION

Causal Abstraction. In Geiger et al. (2021c), the authors introduced the concept of causal abstrac-
tion for neural models. They define a neural network, N2, as a causal abstraction of a higher-level
causal model, N1, if the neural representations of N2 exhibit the same causal properties as the
corresponding high-level variables in N1. This alignment is achieved through the Interchange Inter-
vention Training (IIT) objective.

A natural extension of this idea is to consider N1 as a structurally identical neural network to N2

and apply IIT between them, keeping N1 frozen. This process ensures that N2 becomes a causal
abstraction of N1. In our framework, we replace N1 with C1 and N2 with C2. Through IIT, we aim
to ensure that the structurally identical classifier C2 becomes a causal abstraction of C1.

Benefits of Causal Abstraction. The type of causal abstraction learned through IIT is referred
to as constructive abstraction in the causality literature. This concept ensures a systematic cor-
respondence between interventions on the neurons in N1 and those in N2. Unlike a traditional
teacher-student loss, which merely teaches the student to mimic the teacher’s output, causal ab-
straction ensures that the student model internally mirrors the teacher’s decision-making process.
Through IIT, we guarantee that interventions on N1 have corresponding effects on N2, meaning that
N2 operates in the same causal manner as N1.

We theoretically demonstrate that applying IIT can have significant implications if specific condi-
tions are met. Notably, when the weights of C1 and C2 remain the same throughout the IIT process:

• The LLM machinery (i.e., A, ϕ2 along with F1, combined as F (z) = (A ◦ ϕ2 ◦ F1)(z))
perfectly simulates the encoder, such that for any input x, F (E(x)) = E(x). Hence, the
output from the LLM machinery matches that of the encoder [proven in Theorem 1].

• Building on this result, under a specific set of assumptions, we further show that the LLM
machinery, together with C2 (referred to as the “explanator”), forms a causal abstraction
of the encoder and C1 (the “post-hoc classifier”) [proven in Theorem 2].

Teacher-student objective. Figure 2 illustrates the training process for C2. A sample input, con-
sisting of both an image and a text from the dataset, is passed through the encoder. The encoder
produces an output c, represented as a 3-dimensional vector, which is then fed into C1. Assuming
the weights in the first layer are all set to one, the activation of the i1-th neuron (as shown in the
diagram) would be calculated as 1 × 0.1 + 1 × 0.2 + 1 × 0.3 = 0.6. The final activation is then
computed as y1 = 3× 0.6 + 2× 0.6 = 3.

4
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Figure 2: Causal Abstraction is enabled by IIT objective. Along with the teacher-student training
objective, IIT poses as indispensable for C2 to be a causal abstraction of C1.

Simultaneously, the output c is passed through the LLM machinery, which generates an activation
that is forwarded to C2, producing an activation denoted as y2. To ensure C2 mirrors the behavior of
C1, we calculate the final loss using the KL divergence between their outputs:

LTS = KL(Py1 |Py2) (6)

where Py1 = [σ(y1), 1− σ(y1)] and Py2 = [σ(y2), 1− σ(y2)]. This approach can be generalized to
handle multiple outputs by applying the softmax function.

IIT objective. The Interchange Intervention (II) process is depicted in Figure 2. A neuron is
randomly selected from C1 (denoted as i1), and the II is applied. For a given source input, let
c = [0.5, 0.6, 0.7] (shown on the right-hand side). The II process ensures that the value of neuron i1
is replaced with its original value, 0.6, which was obtained when the base input was processed. The
final value after this intervention, referred to as the “intervened output,” is represented as yINT1 for
C1.

The same operation is carried out for C2, and the resulting “intervened output” is denoted as yINT2 .
Following the methodology of Geiger et al. (2021c), to ensure that C2 becomes a causal abstraction
of C1, we minimize the IIT loss between the two outputs:

LIIT = KL(PyINT
1
|PyINT

2
) (7)
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CAuSE Loss Function. The final loss used to train CAuSE (i.e. LCAuSE) is defined as a sum of
all individual loss terms.

LCAuSE = Lϕ1
+ Lϕ2

+ LIIT + LTS + LC + ∥WC1
−WC2

∥F (8)
where ∥WC1 −WC2∥F denotes the frobenius norm between the weights of C1 and C2 respectively.
This term ensures that weights of C1 and C2 remain the same during training.

Counterfactual F1 score. We hypothesize that if the explanator becomes a causal abstraction of
the post-hoc classifier, it should still mimic the classifier under counterfactual input. To evaluate
this, we introduce the counterfactual F1 (c-F1) score. Our empirical analysis shows that using only
teacher-student training results in poor performance on counterfactual input, as reflected by a low c-
F1 score. However, when combined with IIT, the explanator achieves a robust c-F1 score. Algorithm
1 details c-F1 calculation, and Table 2 compares methods based on their c-F1 scores.

3.2.1 CALCULATING COUNTERFACTUAL F1 SCORE

Suppose x ∈ T is a data-point from test set. As posed in Feder et al. (2022), the corresponding
counterfactual input x′ for the post-hoc classifier would satisfy the following:

x′ = argmin
x′∈T

d(x, x′) such that C1(x) ̸= C1(x′) (9)

d is any kind of distance metric (e.g. manhattan, euclidean etc) between these data points. C1(z)
denotes the output class from C1 for any input z.

Subsequently, any counterfactual for x can be expressed as: x′ = x + µ, where µ = x′ − x
is the perturbation between normal and counterfactual input. Note that E(x′) could not be a good
counterfactual input for the LLM machinery, as x′ ∈ T and high simulation performance between C2
and C1 means C2 could easily find label of x′. Therefore, we resort to the following three constraints
while designing a counterfactual input z′ for the LLM Machinery: i) z′ should be a counterfactual
for C1, as our task is to measure how many counterfactuals for C1 are also counterfactual for C2. ii)
z′ should not be representation of any data-point from T , iii) It should be a transformation of the
original data-point x and its perturbation µ.

We assume z′ has the following generic form (satisfying ii. and iii.), z′ = z+T (µ), where z = E(x)
is an input to the LLM machinery. So, z′ = E(x) + T (µ). Note that to ensure T (µ) is an invertible
function of µ (satisfying iii.), we use an autoencoder which maps µ to T (µ) and then back to µ
again. Finally, to satisfy the first constraint, we ensure the following holds true:

C1(E(x) + T (µ)) = C1(E(x+ µ)) (10)
Note that this can be enforced by standard KL divergence loss between C1 and C2.

Algorithm 1: Counterfactual F1 Score for C1 and C2
Input: Data-point x ∈ T
Function CounterFactual(x):

x′ ← argminx′∈T d(x,x
′) s.t. C1(x) ̸= C1(x′) ;

µ← x′ − x ; // Compute the perturbation
z ← E(x) ; // Encode the original input
T (µ)← f(µ) where g(f(µ)) = µ ; // Transform the perturbation
z′ ← z + T (µ) ;
return z′, x′

Procedure Calculate Counterfactual F1 score
ZList← [] ;
XList← [] ;
while T ̸= ϕ do

Sample x ∈ T ; // Draw a new data point
z′,x′ ← CounterFactual(x) ;
Ensure: C1(z′) = C1(E(x′)) ; // constraint i.
ZList← ZList ∪ {C2(z′)} ; // Append C2(z′) to the list
XList← XList ∪ {C1(x′)} ; // Append C1(x′) to the list
T ← T − {x} ;

return F1 − score(XList,ZList)

6
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Table 1: Ablation studies. LMSE refers to an MSE loss between c and x, such that F (E(x)) =
E(x). B-1, B-2, B-3, B- refers to Bleu scores with various n gram precisions.

F1 B-1 B-2 B-3 B-4 BertScore

Hateful Meme

Lϕ2 97.29 0.65 0.53 0.47 0.39 0.971
Lϕ1 + Lϕ2 98.44 0.65 0.53 0.47 0.39 0.971
Lϕ1 + Lϕ2 + LMSE 98.55 0.64 0.53 0.46 0.39 0.971
Lϕ1

+ Lϕ2
+ LC 98.33 0.64 0.53 0.46 0.38 0.971

LCAuSE 98.09 0.64 0.51 0.44 0.36 0.969

e-SNLI-VE

Lϕ2
94.66 0.39 0.27 0.19 0.15 0.905

Lϕ1
+ Lϕ2

94.08 0.39 0.27 0.19 0.15 0.905
Lϕ1 + Lϕ2 + LMSE 94.39 0.39 0.27 0.20 0.15 0.905
Lϕ1 + Lϕ2 + LC 94.94 0.38 0.27 0.20 0.15 0.905
LCAuSE 91.96 0.39 0.27 0.20 0.15 0.904

Table 2: In addition to the Counterfactual F1 score, we also report the number of comprehensible
generations (#gen), as many outputs from CAuSE tend to be gibberish when counterfactual input is
provided. To provide a more holistic evaluation of CAuSE’s performance on counterfactual inputs,
we compute the harmonic mean (HM) of the F1 score and #gen, capturing both accuracy and the
quality of generated explanations.

Hateful Meme e-SNLI-VE
F1 # gen. HM F1 # gen. HM

Lϕ1
+ Lϕ2

55.02 17 32.98 93.81 167 28.35
Lϕ1

+ Lϕ2
+ LMSE 33.33 2 3.976 85.94 322 46.84

Lϕ1
+ Lϕ2

+ LC 53.78 91 15.56 73.48 850 78.82
LCAuSE 75.81 755 75.61 85.24 986 91.43

4 RESULTS AND ANALYSIS

4.1 AUTOMATIC EVALUATION

The proposed system is evaluated across two verticals: i) Mimicking capability of the explanator
when compared to post-hoc classifier, and ii) performance under counterfactual input. The auto-
matic evaluation metric used to evaluate CAuSE performance can be grouped into two categories,
i) Faithfulness: This is measured by the obtained F1 score measured between the predicted class
by the LLM machinery (or C2) and the predicted class by the post-hoc classifier C1. The predicted
class obtained from the LLM machinery is extracted either from the prediction of ϕ2 or from C2
classifier head. ii) Plausibility: This is measured as the BLEU scorePapineni et al. (2002) and
BERTScoreZhang et al. (2020) between the generated explanation and the ground truth explanation
from the test set.

Baselines. To the best of our knowledge, ours is the first approach that generates faithful natu-
ral language explanations directly from a classifier’s hidden state. Nonetheless, we compare our
method with several Visual Language Model (VLM) baselines as there are no existing techniques
for this task in the literature. Specifically, we use zero-shot and few-shot (k = 2 or 3) prompting
with i) PaLiGemma(Beyer et al., 2024), ii) LLaVA(Liu et al., 2023), to simulate the predicted class
from a given classifier (C1), based on previous input-output examples2. Since it is challenging to
simulate a model’s behaviour without access to its hidden activations, few-shot prompting often per-
forms similarly or even worse than zero-shot prompting. The faithfulness of the explanations, as
measured by the F1 score, is inconsistent and random (below 50% for the Hateful Memes dataset
and below 33% for e-SNLI-VE), as shown in Table 3 The fine-tuned models (shown through FT
suffix) perform the best, where the F1 score reaches close to ∼ 70%.

2The specific prompting used are shown in the Appendix C
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Table 3: Various VLM-based baselines. FT as a suffix denotes finetuned model. Note that LLaVA
has 7B and PaLiGemma has 3.5B parameters respectively.

Dataset Baselines F1 B-1 B-2 B-3 B-4 BertScore

Hateful Meme

LLaVA-0-shot 58.44 0.09 0.01 0.01 0.01 0.889
LLaVA-2-shot 46.55 0.12 0.02 0.01 0.01 0.864
PaLiGemma -FT 72.33 0.41 0.27 0.15 0.09 0.891
LLaVA-FT 72.38 0.40 0.27 0.17 0.13 0.894

e-SNLI-VE

LLaVA-0-shot 33.12 0.22 0.07 0.03 0.02 0.876
LLaVA-3-shot 35.77 0.22 0.07 0.03 0.01 0.869
PaLiGemma -FT 64.90 0.19 0.04 0.01 0.01 0.866
LLaVA-FT 64.29 0.22 0.08 0.03 0.02 0.859

Table 4: Case studies: A few example where our model succeeds. Pred: Explanation generated
from the model, GT: Ground truth explanation.

Image Path Pred GT y1 y2

489134459.jpg A woman is a female.
Just because she is sitting on a curb, it means she is outside..

A boy and a girl are two kids.
The front of a house is located outside.. E E

5631556013.jpg A man is performing on the street in front of a group of people.. man jumping from someon E E

12507.png
it promotes negative stereotypes about people
who are Muslim and suggests that all Muslims

are violent or dangerous

it promotes harmful stereotypes about Muslims,
suggesting that they are violent and intolerant. O O

91462.png it promotes racism, specifically by implying
that white people are superior to other people.

it promotes harmful stereotypes
about black women. O O

4.1.1 ABLATION STUDIES

What is the use of various loss function other thanLϕ1 andLϕ2 loss? As seen from Table 1, it can
be posed as a valid question. Indeed, when using our proposed method which uses LIIT and other
losses seem to achieve slightly lower F1 score (indicating slightly lower faithfulness) and slightly
lower BLEU score / BERTScore (indicating slightly lower plausibility). Note that this difference is
very small and it is compensated by very high counterfactual F1 score as shown in Table 2 obtained
by our method.

Why is IIT required? As can be seen from Table 1 and Table 2, good mimicking performance
under normal condition does not always entail good performance when posed with counterfactual
input. IIT ensures causal abstraction between C2 and C1 theoretically and this is also being verified
empirically by the high counterfactual F1 score obtained by our method which uses IIT.

Is Lϕ1
necessary? Lϕ1

which is used to train the LLM (ϕ1) which reconstructs the content is re-
quired, because that shows better mimicking performance (at least in Hateful meme dataset) coupled
with Lϕ2

than using Lϕ2
alone. This can be attributed to the joint training objective which ensures

that c possesses enough input information to aid in explanation generation by the second LLM ϕ2.

There is a man jumping 
from someone

two kids are 
outside

Figure 3: Examples corresponding to Table 4
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Table 5: Error Analysis: These cases demonstrate four kinds of error cases that is prevalent among
our proposed framework CAuSE.

Image Path Gen GT y ŷ

7046014201.jpg Construction work necessitates working outdoor. A juggler is juggling clubs at an outdoor plaza. E E

2731298834.jpg A dog that is jumping into the water will be wet. swimming is perform in a water. E E

151215569.jpg A man is pulling on the street so he is outdoors. A young blond girl describes a child and a man describes and adult. E E

59260.png it suggests that white people are superior to other people, which is not accurate it promotes anti-Semitism and hatred towards Jewish people. O O

A juggler is performing
outdoors.

There is water
A child is riding

an adult.

Figure 4: Memes pertaining to Error Analysis shown in Table 5

4.2 QUALITATIVE STUDIES

4.2.1 CASE STUDIES

In Table 4, we present four successful examples from the e-SNLI-VE and Facebook Hateful Memes
datasets (two from each). The first two examples are from e-SNLI-VE, while the latter two are from
the Hateful Memes dataset. In the e-SNLI-VE examples, CAuSE produces semantically accurate
explanations while correctly predicting the class as “Entailment.” A noticeable pattern emerges from
these successful cases: CAuSE tends to perform well when the class-level information can be ex-
plicitly inferred from the combination of the image and text. Specifically, for e-SNLI-VE, when
CAuSE generates accurate explanations, the hypothesis often functions like a caption for the image
premise, which aids in classification.

For the Hateful Memes examples, CAuSE also generates correct explanations. In these cases, the
image and the embedded text are semantically aligned rather than contradictory (i.e., where the
image-text mismatch is used to evoke negative sentiment). In such instances, CAuSE effectively
provides explanations and correctly predicts the appropriate output class.

4.2.2 ERROR ANALYSIS

We selected four examples from the e-SNLI-VE and Hateful Memes datasets to highlight common
types of errors made by CAuSE (in Table 5). These errors can be categorized into three main types:

Lack of representation capability: In the first example, the hypothesis reads, “A juggler is per-
forming outdoors,” and the premise is entailed, as confirmed by the ground truth explanation: “A
juggler is juggling clubs at an outdoor plaza.” However, CAuSE incorrectly generates the explana-
tion: “Construction work necessitates working outdoors,” confusing the act of juggling with con-
struction work. This error likely stems from insufficient information in the initial representation, c,
used by CAuSE.

Lack of object-level representation: The post-hoc classifier relies on unimodal representations
from the CLIP architecture, which lacks fine-grained object-level details, compared to models like
Faster R-CNNRen et al. (2016). In the second example, instead of recognizing a “dog,” CAuSE
should have identified “a woman and children” for a more accurate representation.

The third example illustrates both issues: lack of object-level representation and general representa-
tion capability. These limitations prevent CAuSE from correctly describing the relationship between
“a young blonde girl,” “an adult,” and “a man pulling outdoors.”

Implicit semantic category: In the fourth example, although CAuSE correctly predicts the output
class as offensive, it does so for the wrong reasons. Even a human might struggle to recognize the

9
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implicit anti-Semitism in this meme, as neither the image nor the text explicitly convey the historical
context of the Holocaust, where six million Jews were killed. Without this prior knowledge, CAuSE
cannot fully comprehend the offence.

5 RELATED WORK

Interpretabiltiy. Interpretability is crucial for building trust in AI systems within human society.
Techniques like LIME, SHAP and RISE (Ribeiro et al., 2016; Lundberg & Lee, 2017; Petsiuk et al.,
2018) explain classifier predictions by providing feature-level explanations for local interpretabil-
ity. Although model-agnostic, these methods lack global interpretability, which is addressed by
GALE van der Linden et al. (2019), where local explanations are aggregated into a global model
understanding. Approaches like SmoothGrad Smilkov et al. (2017) and Integrated Gradients (Sun-
dararajan et al., 2017b) utilize input gradients for model explanation, while CAM Zhou et al. (2015)
highlights critical pixels for decision making in visual classification. Counterfactual generations
(Chang et al., 2019; Mothilal et al., 2020; Goyal et al., 2019) also offer insights into the inner work-
ing of the model by revealing decision boundaries. However, most of these methods often overlook
implicit features behind model decisions and lack natural language explanations. To address these
limitations, we propose a novel framework for classifier explanations which generates both faithful
and plausible natural language outputs.

Causal Interpretability. Causal interpretability refers to the ability to explain a model’s decisions
by identifying the cause-effect relationships between input features and the model’s output. Feder
et al. (2022) demonstrated how incorporating causal reasoning in NLP tasks can improve model
predictions and enhance interpretability by going beyond simple correlations between input features
and outputs. Further works by Geiger et al. (2021b); Vig et al. (2020); Meng et al. (2023) have fo-
cused on causal abstraction and causal mediation analysis, helping to create causally faithful models
and identify both direct and indirect causal factors behind certain model behaviors. In addition to
generating counterfactuals, testing models on counterfactual inputs is another critical aspect of un-
derstanding model behavior. Since creating exact counterfactuals is challenging, Abraham et al.
(2022); Calderon et al. (2022), recent research has focused on approximations Geiger et al. (2021b)
or counterfactual representations Feder et al. (2021); Elazar et al. (2021); Ravfogel et al. (2021).
Our proposed counterfactual metric is inspired by these counterfactual representations. Moreover,
most of the existing works focuses on single modality (e.g., text or vision) Feder et al. (2021); Goyal
et al. (2020). In contrast, the natural language causal explanation provided by our framework is
model-agnostic, task-agnostic, and capable of handling multimodal inputs.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented CAuSE (Causal Abstraction under Simulated Explanation), a novel
framework for generating causally faithful natural language explanations for multimodal classifiers.
By integrating Interchange Intervention Training (IIT) with a Language Model (LM) based module,
CAuSE addresses the limitations of existing interpretability methods, ensuring explanations are di-
rectly tied to the classifier’s causal reasoning. Our new Counterfactual F1 score highlights CAuSE’s
state-of-the-art performance on datasets like e-SNLI-VE and Facebook Hateful Memes.

While CAuSE demonstrates robust task-agnostic performance, future work will focus on enhanc-
ing fine-grained object-level representations and extending the framework to temporal data, such as
video and audio. Additionally, we aim to explore how self-supervised learning and deeper integra-
tion of implicit cultural knowledge can further improve the framework’s scalability and contextual
understanding in real-world applications.

ETHICS STATEMENT

The datasets used in this study are publicly available. The explanations for hateful memes were
generated from publicly accessible meme data, and we adhered to copyright regulations to prevent
any infringement. Furthermore, our research received approval from the Institutional Review Board
(IRB). Since the hateful meme dataset includes content that may be offensive, we recommend that
readers approach it with discretion.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we consistently use a random seed of 42 across all experiments. The code
is available at https://anonymous.4open.science/r/CAuSE-5BD0, and model outputs
will be shared upon paper acceptance. These outputs can be cross-verified with the results generated
from the provided code. Our method is theoretically sound, supported by the proof of the proposed
theorem and proposition outlined in Appendix A, with all underlying assumptions clearly stated and
justified.
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A THEOREMS

During our training process, we have implemented IIT (Interchange Intervention Training) along
with an additional constraint that the weights of C1 and C2 become the same during training, which
is ensured by the frobenius norm term being used as a part of LCAuSE
Theorem 1. Under the above stated conditions, when C2 becomes a causal abstraction of C1 and
their weights become the same, E(x) = F (E(x)).

Proof. Without loss of generality, we have considered only two input neurons for both C1 and C2.
Under IIT, the following always holds between two output neurons (we assume that a) there exists
one intermediate intervened neuron and b) source s and base b inputs are provided as input):

softmax(y1) = softmax(y2)

=⇒ softmax(w1i(E(s)i), w2i(E(b)i)) = softmax(w′
1iF (E(s)i), w

′
2iF (E(b)i)),∀i = 1, 2

Since w = w′

=⇒
exp(

∑
i w1iE(b)i

exp(
∑
i w1iE(b)i + exp(

∑
i w2iE(s)i

=
exp(

∑
i w1iF (E(b))i

exp(
∑
i w1iF (E(b))i + exp(

∑
i w2iF (E(s))i

∀i = 1, 2
(11)

Let us assume E(b) ̸= F (E(b)) so there ∃ j such that E(b)j ̸= F (E(b))j . Let us assume,

E[b] = [p, q]

F [E[b]] = [p, ρq] (12)
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We pick s, b ∈ DE × DE so ∃s, b such that s = b when si = bi. Here DE refers to the data on
which the encoder is being trained. Finally, from Equation 11,

w21[E(s)2 − F (E(s))2] = log (exp(w12E(b)1 + w22E(b)2) + exp(w11E(s)1 + w21E(s)2))

− log(exp(w12F (E(b))1 + w22F (E(b))2) + exp(w11F (E(s))1

+ w21F (E(s))2)) (13)

Here, we name all the variables to for better readability:

w11 = β w12 = γ w21 = δ w22 = ϵ

(14)

From these, considering s = b we can rewrite the equation 13 for two output neurons as:

δq(1− ρ) = log(exp(βp+ δq) + exp(γp+ ϵq))︸ ︷︷ ︸
P1

− log(exp(βp+ δρq) + exp(γp+ ϵρq))︸ ︷︷ ︸
P2

(15)

ϵq(1− ρ) = P1 − P2 (16)

This means, under IIT if :

δq(1− ρ) = P1 − P2 + k1 (17)

and

ϵq(1− ρ) = P1 − P2 + k2 (18)

then , k1 = k2 = 0

Now, we impose pairwise, equality of weights β = γ and δ = ϵ. Using this condition, the individual
equations will become:

ϵq(1− ρ) = ϵq(1− ρ) + k1 (19)
ϵq(1− ρ) = ϵq(1− ρ) + k2 (20)

=⇒ k1 = k2 = 0 (21)

The above condition where we consider pairwise equality of weights is a degenerate case. In this
situation, every input node has the same weightage as it is passed to the deeper layers. This is an
edge case rarely seen in real training scenarios.

We obtain the following values of k when the degenerate case is not considered:

k1 = log (exp(βp+ δρq) + exp(γp+ ϵρq))

− log (exp(βp+ δq) + exp(γp+ ϵq))

+ δq(1− ρ) (22)

k2 = log (exp(βp+ δρq) + exp(γp+ ϵρq))

− log (exp(βp+ δq) + exp(γp+ ϵq))

+ ϵq(1− ρ) (23)

The above values of ki ̸= 0 ∀i = 1, 2. However, this is a contradiction since, this violates the
property of (IIT). This means our initial assumption of F (E(b)) ̸= E(b) is wrong. This proves that
F (E(b)) = E(b).

Also, it is noteworthy that in the equations 19 k1 = k2 = 0 only when ρ = 1. This again validates
our claim that E(b) = [p, q] = F (E(b))
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Definition. LLM machinery F coupled with the classifier C2 is called Explanator, while the encoder
with the classifier C1 is called the Post-hoc classifier. We also assume the following, there exists
a function δ which maps a set of variables (VE) in E to a set of variables (VF ) in F , such that
δ : VE → VF . We also assume that we intervene in a neuron ie ∈ VE , such that a mapped neuron
δ(ie) ∈ VF is also intervened. Under this intervention schema, the intervened outputs of E and F
are denoted as F INT (E(s), E(b)) and EINT (s, b). The following lemma shows their relation.

Lemma 1. If C1 and C2 become identical (their weights are equal and they are causal abstraction of
each other), F INT (E(s), E(b)) = EINT (s, b), meaning F is a causal abstraction of E.

Proof. By Theorem 1, we know that if C1 and C2 become identical, then F (E(x)) = E(x). This
entails F acts as a perfect autoencoder considering F only accepts input from E. The source (s) and
base (b) equivalent input for F would be E(s) and E(b), respectively. When supplied with E(s)
and E(b) and an interchange intervention is performed in F , the F being a perfect autoencoder will
try to reconstruct E(s) but due to intervention with E(b), the output will also contain a part of E(b).
F being a linear function of E(x), we can write:

F INT (E(s), E(b)) = f1(E(s), E(b), wF )E(s) + f2(E(s), E(b), wF )E(b) (24)
ψ1E(s) + ψ2E(b) (25)

[as F INT (x) = F (x) = x and by previous argument] (26)

Note that EINT (s, b) = E(s, b) (denoting a function of (s, b)) and as E is a linear function of s, b,
by similar argument:

EINT (s, b) = E(s, b) = g1(s, b, wE)E
INT (s) + g2(s, b, wE)E

INT (b) (27)

= ϕ1E(s) + ϕ2E(b) [as EINT (x) = E(x)] (28)

If the contribution of E(s) towards its reconstruction by F , as quantified by ψ1 and its equivalent
contribution (through s) towards the intervention in E are the same then ψ1 = ϕ1. Physically
this means s is as important to E as E(s) is important to F for any equivalent b and E(b). This
is satisfied trivially when E and F give equal importance to any data point x and its transformed
version E(x), which is exactly ensured in training by the fact that E(x) = F (E(x)). This further
implies ψ1

ϕ1
→ 1, and ψ2

ϕ2
→ 1. We observe, F INT (E(s), E(b)) = EINT (s, b).

Theorem 2: If C1 and C2 become identical (their weights are equal and they are causal abstraction
of each other), the Explanator becomes a causal abstraction of the Post-hoc classifier.

Proof. From lemma 1, we showed F is a causal abstraction of E. For any intervention performed
between E and F , their outputs are equal, which are being fed to C1 and C2 respectively. As for the
same input, C1 and C2 outputs will match, the final output from the explanator and post hoc classifier
will also match. If any intervention is performed between C1 and C2, their output will also match
because they were trained to be causal abstraction of each other.

So in summary, for pairwise interchange intervention betweenE and F or C1 and C2, the final output
from post-hoc classifier and explanator will match. This is the definition for causal abstraction.
Therefore, the explanator becomes a causal abstraction of the post-hoc classifier.

B SOME GENERIC THEORETICAL RESULTS

Notation: Assume two identical neural nets N1 and N2. Their weights are w and ŵ. These two
neural nets are trained on two different datasets: D1 and D2. We denote activation at an arbitrary
layer’s neuron as in, where the subscript i denotes the NNs. We also assume k = i2

i1
. The following

lemma shows a relation.
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Interchange Intervention

Source Base Source Base

Figure 5: Structure ofN1 andN2 are assumed to be the same. The red neuron denotes the intervened
neuron.

Lemma 2. ForN1 andN2, after convergence, k = f(D1,D2, x), where x denotes the network input.

Proof. After training is complete, assume the optimal weights are w∗
1 and w∗

2 . Naturally, w∗
1 =

ψ1(D1) and w∗
2 = ψ2(D2). k, being a ratio of the activation of two neural nets, will depend on their

inputs, and converged weights. Therefore, k = f(w∗
2 , w

∗
1 , x) = f(D1,D2, x).

Lemma 3. If outputs under interchange intervention are equal (as satisfied by IIT training objective),
then k must be of the form f(DIIT , s, b) to ensure N2 and N1 are the causal abstraction of each
other.

Proof. Suppose, the neural networks converge to a state where both N1 and N2 have the parameter
values w∗ and ŵ∗. Refer to Figure 5.

If the outputs are equal after intervening on V1, and identically V2 neuron ofN1 andN2 respectively,
then:

w∗
1s1 + w∗

2s2︸ ︷︷ ︸
i1

+w∗
3b3 = ŵ∗

1s1 + ŵ∗
2s2︸ ︷︷ ︸

ki1

+ŵ∗
3b3 (29)

Assume k = f(DIIT , s, b, α). From Equation 29,

f(DIIT , s, b, α) = 1− ψ(w∗, ŵ∗, s, b)

i1
(30)

We know IIT optimizes the weights such that two neural nets become causal abstraction of each
other. This is done essentially by confounding on DIIT , where s, b ∼ DIIT and DIIT → w∗ and
DIIT → ŵ∗.3 This argument necessistates the RHS of Equation 30 depends only onDIIT , s, and b.
For LHS to be equal, it also must depend on these parameters, facilitating α as a spurious variable.

The equation itself is the necessary as well as the sufficient condition (i.e. the definition) for causal
abstraction which is satisfied when k = f(DIIT , s, b). Thus i) Equality of output of two neural nets
under interchange intervention and ii) k = f(DIIT , s, b) together pose as a necessary and sufficient
condition for causal abstraction between N1 and N2

Note: Although this is shown for the above neural network having specific architecture, this holds
true regardless of the architecture, as the functional form of RHS and LHS must match.

3→ denotes the causal arrow, i.e. by optimizing on DIIT , we obtain both w∗ and ŵ∗
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We assume E and F are encoder and LLM machinery respectively having weights of wE and wF .
The encoder and LLM machinery are followed by C1 and C2 respectively having weights w and
ŵ. Let us assume w∗

E is the optimized weight of the encoder when it is fine-tuned with x ∼ DE .
Further, assume we have done IIT on C1 and C2 keeping the encoder frozen.

Following would be the dependency of various weights: i) w∗
E = f1(DE), ii) w∗

F =
f2(w

∗
E ,DIIT , w∗, ŵ∗), iii) w∗ = f3(DIIT ) and iv) ŵ∗ = f4(DIIT ). Without loss of generality

we can assume DIIT = DE , as both s, b and x are being sampled from the same dataset. The
functional dependencies then boil down to the fact that all the weights are a function of DIIT .

Being a closely trained system with only one dataset DE = DIIT , and from lemma 1, the
most generalized version linking the intervened output from F and E will be F INT (E(s, b)) =
ϕ(DIIT , s, b)EINT (s, b).
Upon the assumption thatE and F are two variables (i.e. neurons, composed of all other neurons in-
side E and F ) inside C1 and C2 respectively, their intervened output depends only on ϕ(DIIT , s, b).
Also, E and F are assumed to be be inside C1 and C2 respectively would mean for any input (s, b),
their intervened outputs remain the same. Both of these satisfy the necessary and sufficient require-
ments for causal abstraction as per Lemma 2. This is complementary to Theorem 2 and its proof,
shown by assuming these strong conditions.

C PROMPTS

0-shot Meme Dataset Prompt

Prompt: Is this image offensive? If it is offensive, give
a single-line explanation, otherwise simply state that it is
’not offensive’.

images/sample image0.png

Few-shot Meme Dataset Prompt

Prompt 1: Is this meme offensive? Answer briefly. Give 1
line explanation only if it is offensive.

images/sample image1.png

Assistant: This meme is offensive. {Explanation} goes here.

Prompt 2: Is this image offensive? Answer briefly. Give 1
line explanation only if it is offensive.

images/sample image2.png

Assistant: This meme is not offensive.

Prompt 3: Is this image offensive? Answer briefly. Give 1
line explanation only if it is offensive.

images/sample image3.png
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0-shot SNLI VE Prompt

Prompt: Answer with ’entailment’, ’contradiction’, or
’neutral’ if the hypothesis that [Insert hypothesis here]
follows the image, contradicts it, or is neutral to it.
Also, give a 1-line explanation for your answer.

images/sample image snli.png

Few-shot SNLI VE Prompt

Prompt 1: Answer with ’entailment’, ’contradiction’,
or ’neutral’ if the hypothesis that [Insert entailment
hypothesis] follows the image, contradicts it, or is neutral
to it. Also, give a 1-line explanation for your answer.

images/sample image snli 0.png

Assistant: Entailment. {Explanation} goes here.

Prompt 2: Answer with ’entailment’, ’contradiction’, or
’neutral’ if the hypothesis that [Insert contradiction
hypothesis] follows the image, contradicts it, or is neutral
to it. Also, give a 1-line explanation for your answer.

images/sample image snli 1.png

Assistant: Contradiction. {Explanation} goes here.

Prompt 3: Answer with ’entailment’, ’contradiction’, or
’neutral’ if the hypothesis that [Insert neutral hypothesis]
follows the image, contradicts it, or is neutral to it.
Also, give a 1-line explanation for your answer.

images/sample image snli 2.png

Assistant: Neutral. {Explanation} goes here.

D DATASET AND EXPERIMENTATION

The e-SNLI-VE dataset includes human-annotated explanations for both text and images. For of-
fensive memes, we generated explanations using the Jurassic-14 language model through zero-shot
prompting, as detailed in Appendix Section C via its relevant prompts. In this context, the LLM-
generated explanations serve as the ground truth. The experiments were conducted on a Kaggle
kernel with PyTorch version 2.1.2 and a single P-100 GPU, with a random seed of 42 maintained for
all runs. Additionally, baseline VLM models were implemented using PEFT5 and LoRA(Hu et al.,
2021). The code is available anonymously for review.

Table 6: Train-test splits for e-SNLI-VE and Hateful Memes datasets.
Dataset Train Split Test Split

e-SNLI-VE 9000 1000
Hateful Memes 6997 1000

4https://www.ai21.com/blog/announcing-ai21-studio-and-jurassic-1
5https://github.com/huggingface/peft
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