
Sample-efficient reinforcement learning for
environments with rare high-reward states

Daniel Mastropietro∗
CNRS-IRIT

Université de Toulouse
31071 Toulouse, France

daniel.mastropietro@irit.fr

Urtzi Ayesta
CNRS-IRIT

31071 Toulouse, France
Ikerbasque - Basque Foundation for Science

48009 Bilbao, Spain
UPV/EHU

University of the Basque Country
20018 Donostia, Spain

urtzi.ayesta@irit.fr

Matthieu Jonckheere
CNRS-LAAS

31071 Toulouse, France
mjonckheer@laas.fr

Abstract

We introduce FVAC (Fleming-Viot Actor-Critic), an algorithm for efficient learning
of optimal policies in reinforcement learning problems with rare, high-reward
states. FVAC uses Actor-Critic policy gradient, with the critic estimated via the so-
called Fleming-Viot particle system, a stochastic process used to model population
evolution which is able to boost the visit frequency of the rare states. This frequency
boosting is obtained by forcing exploration outside a set of states identified as highly
visited during an initial exploration of the environment. The only requirements of
the method are that learning must be set under the average reward criterion, and that
a black-box simulator or emulator can be run on the environment. We showcase
the method’s performance in windy grid worlds, where a non-zero reward is only
observed at a terminal cell, which is difficult to reach due to the wind. Our results
show that FVAC learns significantly faster than standard reinforcement learning
algorithms based on Monte-Carlo exploration with temporal difference learning.

1 Introduction

Reinforcement learning (RL) excels in solving complex stochastic optimisation problems by making
minimal assumptions about the underlying model, treating systems as Markov decision processes
(MDPs) without the need to know their transition probabilities. Through interactions between an
agent and the environment, RL methods learn optimal policies through trial and error, adjusting

∗Alternative e-mail: daniel.mastropietro@gmail.com

17th European Workshop on Reinforcement Learning (EWRL 2024).

decisions based on rewards or costs received. This model-free paradigm is particularly powerful for
addressing intricate and nonlinear optimisation challenges, but can be computationally demanding.
This is especially true in vast environments where many states and actions are under-explored, yet
potentially highly informative.

This paper focuses on environments characterised by infrequently observed high-reward states, which
complicate the optimisation of objectives heavily dependent on such rare occurrences. Our broad
objective is to develop methods that optimize long-run expectations of rewards, significant in settings
where rare but critical states dictate long-term performance.

Traditional strategies for addressing the challenges of rare rewards in RL include importance sampling
[11] and reward shaping [5]. Importance sampling modifies the exploration policy to increase the
occurrence of rare events, but it provides limited improvement in environments where no policy
can effectively achieve a sufficient coverage of crucial states. Reward shaping and curiosity-driven
methods [2, 7], which adjust rewards or add incentives to explore under-visited states, often require
extensive domain knowledge and might lead to narrow or ineffective policies.

Our approach is based on a novel exploration mechanism introduced in [4, 3] that not only encourages
but enforces exploration outside of frequently visited states. It utilizes the notion of Fleming-Viot
particle system, a stochastic process used to model population evolution, to ensure a more balanced
exploration of the space, targeting states that are rarely visited. This facilitates a more effective
estimation of long-term expected values, critical for policy optimisation in complex stochastic
environments.

Contribution We extend the FVRL method (Fleming-Viot Reinforcement Learning) presented in
[3, 4] as a mechanism that leverages Fleming-Viot particle systems and policy gradient to efficiently
solve RL control problems with sparse and rare rewards, where sparse means that non-zero rewards
are accrued in very few states. Those works develop the method for continuous-time systems in
continuing learning scenarios, and showcase it on the design of threshold-type admission control
policies for queues and stochastic networks, a very specific class of policy. The threshold-type
policies allow for an ad-hoc policy parameterisation that makes the policy gradient also sparse, which
considerably facilitates the estimation of the objective functions’s gradient.

This paper extends FVRL in three ways: (i) to discrete-time episodic learning tasks (e.g. games), (ii)
to scenarios where rewards need not be sparse, and (iii) to general parameterised policies. We call
the extended method FVAC (Fleming-Viot Actor-Critic), in order to emphasize its applicability to
optimisation problems where a critic needs to be learned for all states in the environment, not only
those with non-zero gradient.

FVAC also relaxes the need for prior knowledge of the underlying Markov process about a subset A
of states with zero reward, a hyperparameter that is at the core of the method. The concept of A has
now been replaced with the set of states that are frequently visited, above a pre-specified threshold.
Thus, set A is now defined from an initial exploration of the environment, where both state visit
frequency and rewards are collected. Not only does this provide an automatic definition ofA, without
user intervention or knowledge about the problem, but also eliminates the sparsity requirement in
[3, 4] (embedded in the condition that no state in A should yield a reward). All rewards possibly
coming from visits to states in A are now integrated into the long-run expected reward estimation
through the initial exploration of the environment. This approach also makes the set of the method’s
hyperparameters easier to define, as the A hyperparameter has been replaced with a visit frequency
threshold, a much more intuitive concept.

The only knowledge still required about the environment is that a black-box simulator or emulator can
be run on it. Relying on the convergence guarantees in [4], we demonstrate the method application
in windy grid worlds where a non-zero reward is observed at just one terminal cell, which is very
difficult to reach due to the wind. Here, the objective is to find the optimal path amidst obstacles,
which can be likened to navigating through rare rewarding states. We employ a neural network model
as a function approximator for the policy, which allows the RL agent to generalize from limited data
and infer the shortest path to the terminal state. This application illustrates the method potential
in environments where paths to rewards are not only rare but obstructed by challenges, making
traditional exploration methods less adequate.

2

Through experiments run on a small 4x5 grid world test bench, with a few specifically placed obstacles
and a “strong” wind, and on a larger 6x8 grid world with obstacles placed at random and a milder
wind, we numerically show the significant advantage of FVAC in learning an optimal policy over a
benchmark method based on Monte-Carlo exploration of the grid world. It is important to note that,
for a fair comparison, both compared methods use the same exploration and learning budget over the
course of each experiment.

The rest of the paper is organized as follows: in Section 2 we describe the stochastic optimisation
problem and our proposal to solve it efficiently in the presence of rare high-reward states. In Section 3
we present the FVAC methodology in detail, in Section 4 we summarize the experimental results, and
we finalize with conclusions.

2 Problem description

We consider stochastic optimisation problems that can be modelled by a discrete-time MDP
(S,U ,P,R) with finite state space S, finite action space U , transition probability matrix P =
{P (x, a, x′)}x,x′∈S,a∈U , and R the space of reward functions r of the current state x, the action
taken a, and the next state x′, namely r : S × U × S → R.

We denote by π : S → U the policy applied by an agent interacting with the environment,
and by {Xn}n∈N the discrete-time Markov chain that follows the dynamics of the MDP. For
compactness of notation, we may also write Xπ

n to denote the Markov chain defined by pol-
icy π. This Markov chain has a transition probability matrix Pπ = {Pπ(x, x′)}x,x′∈S , with
Pπ(x, x′) =

∑
a∈U P (x, a, x′)π(a|x). As in [10, Chapter 10.3], we assume that the policy π

applied to the MDP results in an erdogic Markov chain, meaning that a unique stationary probability,
pπ(x), exists.

Our goal is the design of an RL algorithm that is able to efficiently find optimal policies when the
reward landscape of the MDP contains large rewards rarely observed. The proposed method, called
Fleming-Viot Actor Critic (FVAC), requires that the objective function of the optimisation problem
can be expressed as a long-run expectation, due to the characteristics of the Fleming-Viot process
behind FVAC which is used to provide a reliable estimation of the stationary distribution. The most
direct example is the long-run expected reward in RL continuing tasks, a.k.a. RL under the average
reward criterion. If the problem is not in this form, it must be cast into it before applying FVAC. A
common such scenario is when the optimisation problem naturally calls for an RL episodic task, such
as games. In order to easily cast the episodic problem into a continuing learning task setting, the
RL approach should consider the expected total reward as optimisation objective, i.e. no discount
should be used. The RL problem can then be cast into the average reward criterion setting by simply
restarting the MDP at an environment’s start state whenever an episode finishes.

To develop our method, we therefore consider as objective function the long-run expected reward
observed by the MDP under policy π, defined as:

r(π)
.
= lim

n→∞
Eπ(r(Xn, π)) =

∑
x∈S

r(x, π)pπ(x), (1)

where r(x, π) is the average reward observed at state x under policy π, i.e. r(x, π) =∑
a∈U r(x, a)π(a|x), with r(x, a) =

∑
x′∈S r(x, a, x

′)P (x, a, x′).

Before delving in Section 3 into the method’s details, we provide notation and relevant definitions.

Notation Lowercase letters are used for true quantities, e.g. vπ(x), and uppercase letters for random
and/or estimated quantities, e.g. V π(x). Exceptions are probabilities, expectations, and quantities
indicated in greek symbols for which a hat is used to indicate estimates, e.g. P̂, Ê, ϕ̂.

Initial conditions of the MDP in expectation and probability computations are indicated as subscripts.
Unless otherwise indicated, the initial conditions correspond to the stationary regime. E.g. Eπ

←
∂A

(.)

means that the expectation is computed when the underlying Markov process Xπ
n starts at the entrance

boundary of A (see definition below) following the entrance state distribution under stationarity.

3

The policy π that drives the Markov process underlying the computation of expectations, probabilities,
and estimators, is indicated as a superscript, e.g. V π(x). However, to avoid overloaded expressions,
the superscript might be sometimes omitted when obvious.

Definitions The set A mentioned in the Introduction is called the absorption set because the
underlying Markov process used to construct the Fleming-Viot particle system is absorbed when it
touches A [3]. We define the entrance boundary of A as the subset of A that can be reached in one
step from outside A, and the exit boundary of A as all the states outside A that can be reached in one

step from A2. These boundaries are denoted as
←
∂A and

→
∂A, respectively. Similarly its entrance and

exit state stationary distributions under π are respectively denoted by pπ←
∂A

and pπ→
∂A

.

We also define the killing time TK as the hitting time of A, and TA as the cycle reabsorption time to
A, i.e. the time elapsed between two consecutive entries to A. For their formal definition see [3].

Value functions: In the RL average reward criterion context, the state and action value functions take
a differential form [10, Chapter 10.3], i.e. they are defined in terms of the difference between the
observed reward and the long-run expected reward, as:

vπ(x)
.
= Eπ[

∞∑
n=1

r(Xn, π)− r(π)|X0 = x]

qπ(x, a)
.
= Eπ[

∞∑
n=1

r(Xn, π)− r(π)|X0 = x,A0 = a].

The advantage function hπ(x, a) is defined as the difference between the action and the state value
functions,

hπ(x, a) = qπ(x, a)− vπ(x),

and is useful to easily compare the advantage of taking a particular action instead of another one, in
terms of maximizing the long-run expected reward.

3 Methodology

In this section we describe the FVAC method (Fleming-Viot Actor-Critic), which integrates a Fleming-
Viot estimator of the critic into the Actor-Critic policy gradient algorithm for continuing learning
tasks.

The Actor-Critic policy gradient algorithm optimizes a parameterised policy maximizing the perfor-
mance measure of the problem [10, Chapters 13.5, 13.6]. In this algorithm, the critic is the one-step
bootstrapped temporal difference (TD) error, which is an estimate of the advantage function, hπ(x, a).

For each parameterised policy πθ, the advantage function in tabular form is first estimated by a
Fleming-Viot particle system, which is then used as critic in the policy gradient step. We remark that,
contrary to the original Actor-Critic algorithm presented in [10, Chapter 13.6], FVAC, by construction,
does not allow learning the critic during the policy learning excursion, as Fleming-Viot modifies the
original MDP to boost the visit frequency of the states that are rarely observed under the original
MDP.

Because Fleming-Viot is a continuous-time stochastic process, the discrete-time MDP first needs to
be cast into a continuous-time MDP, as explained in the next section. A schematic diagram of the
FVAC method is presented in Figure 1 and is given in detail in Algorithm 1.

For simplicity of exposition, we assume that we have direct access to the reward function r, or
otherwise that the function can be easily learned (which is commonly the case).

3.1 Estimating the long-run expected reward with Fleming-Viot particle systems

The Fleming-Viot particle system (FV) is defined in [4] for continuous-time MDPs in continuing
learning tasks as a sample-efficient mechanism to estimate the long-run expected reward by boosting

2Formally, the entrance boundary is the set of states y ∈ A s.t. P (x, a, y) > 0 for some a ∈ U , x ∈ S \ A,
and the exit boundary is the set of states y ∈ S \ A s.t. P (x, a, y) > 0 for some a ∈ U , x ∈ A.

4

the visit frequency of rarely observed states. Convergence guarantees of the FV estimator are given
when the state and action spaces are finite. The reader is invited to consult the given reference for
further details.

Here we limit ourselves to explaining how the continuous-time FV estimation of the long-run expected
reward can be extended to discrete-time MDPs, which are either continuing or episodic.

We first recall that at the core of the FV estimator of the long-run expected reward presented in
[3, 4] is the estimation of the state stationary distribution, which is required to compute the long-run
expected reward using (1). The FV estimator of the stationary probability relies on the FV particle
system which is designed to boost the exploration of rarely visited states. This boost is obtained
by defining a set A of frequently visited states where the MDP is killed or absorbed, hence A is
called the absorption set. An FV particle system containing N particles works as follows: all N
particles independently follow the dynamics of the MDP until one of them is absorbed in A. At
this moment, the particle is immediately reactivated to the position (state) of one of the other N − 1
particles selected uniformly at random. The independent evolution resumes until the next absorption
is observed that leads to the next reactivation, and so forth.

Having collected trajectories through a simulation of the FV particle system, the FV estimator of the
stationary probability is constructed on the basis of the following characterisation of pπ(x), derived
from renewal theory [3, 4]:

pπ(x) =

∫∞
0

Pπ
→
∂A

(TK > t)ϕπ
→
∂A

(t, x)dt

Eπ
←
∂A

(TA)
,∀x /∈ A, (2)

where ϕπ
→
∂A

(t, x) = Pπ
→
∂A

(Xt = x|TK > t) is the occupation probability of state x conditional to
not being absorbed, when the process started at the exit boundary of A. All subscripts denote that
probabilities and expectations are to be computed when the MDP starts following the stationary
distribution of the indicated set3. The FV estimator of pπ(x) is then constructed by estimating each
of the three components of (2) as explained in [3].

We now describe how this continuous-time estimation approach can be adapted to discrete-time
settings, using Figure 1 as support diagram. Of the four steps given below, only the fourth affects
implementation; the first three are methodological. Given the original discrete-time MDP, either
continuing or episodic (box (1) in the diagram), the adaptation steps are the following:

i) Cast the process to a continuing MDP if originally episodic.
If the MDP is episodic, convert it to continuing by restarting the MDP at an environment’s
start state whenever a terminal state is reached.

ii) Cast to a continuous-time MDP, which leads to box (2) of the diagram.
The discrete-time MDP is cast to a continuous-time MDP with homogeneous jump rate
equal to 1, which has the same stationary distribution as the discrete-time MDP [1, Chapter
13].

Steps (1) and (2) above do not change the set of optimal policies [8] and allow moving to
the average reward context of the Fleming-Viot particle system.

iii) Use uniformization [9] to create two discrete-time MDPs that allow carrying out the simula-
tion and defining the FV estimator of the stationary probability in (2):
(a) the original discrete-time MDP using uniformization constant equal to 1. This leads to

box (3).
(b) the FV particle system with N particles with uniformization constant equal to N , the

highest (and constant) jump rate of the FV system. This leads to box (4). We note that
the obtained discrete-time MDP is measured at discrete times {n/N}n≥1, which is
important for the construction of the FV estimator given below.

iv) Simulate system (a) to estimate the expected reabsorption time in the denominator of (2),
Êπ
←
∂A

(TA). Simulate system (b) to estimate the FV integral in the numerator of (2). Thanks

3The probability of a set B when the MDP starts with a given distribution µ is defined as Pπ
µ(B) =∑

x∈S Pπ
x(B)µ(x).

5

to uniformization, the estimates of the two probability functions in the FV integral are
piecewise constant with pieces of sizes that are integer multiples of 1/N . The FV estimator
of the stationary distribution can then be written as:

p̂πFV (x) =

1
N

∑N
n=1 P̂π

→
∂A

(TK ≥ n/N)ϕ̂π
→
∂A

(n/N, x)

Êπ
←
∂A

(TA)
, ∀x /∈ A, (3)

where P̂π
→
∂A

(TK ≥ n/N) is a regular moment estimator of the survival probability of the

N particles, and ϕ̂π
→
∂A

(n/N, x) is the empirical occupation proportion at state x of the N

particles at the given times n/N [3]. The estimation details of the three quantities involved
in (3) are given in Algorithm 1.

(2) Cont.-Time
Particle System

Uniformization on N particles

(5) FV Estimation(3) Discrete-Time

Policy Gradient

(1) Discrete-Time MDP

Uniformization

(same stationary measure)

(same stationary measure)

Cast to Cont.-Time

Estimation of Expected

(6) Actor-Critic

(Lines 19-33)

(Lines 14-37)

(Lines 41-43)

Continuing MDP

Continuing MDP

Continuing MDP

(4) Fleming-Viot

(same optimal policies)

of Critic

Policy

Reabsorption Time

Parameterisation

Estimation of
FV Integral

Figure 1: Diagram giving a schematic description of the FVAC method for optimal policy learning,
including the methodological adaptation of the discrete-time MDP that allows applying it. Line
numbers correspond to the section in the FVAC Algorithm 1 that is relevant to the respective box.

The estimated stationary distribution is instrumental in estimating the long-run expected reward using
(1), which in turn is needed to estimate the advantage function hπ(x, a), as explained in Section 3.3.

3.2 Learning the actor with Actor-Critic policy gradient

The optimal policy πθ(a|x) is learned by an Actor-Critic policy gradient approach where θ is the
parameter vector of a model (e.g. neural network) with state x as input, and the probability of taking
action a given state x, as output.

We aim at finding an optimal θ that maximizes the performance j(θ) defined as the long-run expected
reward, j(θ) .

= r(πθ), by stochastic gradient ascent, i.e. by iteratively updating θ with a stochastic
estimate of the gradient.

By the policy gradient theorem applied to continuing learning tasks [10, Section 13.6], the gradient
of j(θ) only depends on the gradient of the policy, and can be written as:

∇j(θ) = EXn∼pπθ ,An∼πθ

[
hπθ (Xn, An)∇ log πθ(An|Xn)

]
. (4)

Thus, the stochastic gradient ascent algorithm consists of the following update formula for θ at each
learning step t ≥ 0:

θt+1 = θt + ηt∇J(θt) (5)

6

where ηt > 0 is the learning rate at step t and ∇J(θt) is a moment estimate of the gradient in (4)
obtained from a trajectory of the MDP under πθt , as:

∇J(θt) =
1

M

M∑
n=1

Hπθt (Xn, An)∇ log πθt(An|Xn), (6)

where M is a predefined fixed number of steps taken by the MDP under policy πθt , and Hπθt (Xn, An)
is an estimate of the advantage function when following policy πθt , obtained separately from the
generated trajectory and used as critic.

Our proposed FVAC method consists of using a Fleming-Viot particle system to estimate the critic for
each value of θt –the advantage function in (6)– and then using (5) as the stochastic gradient ascent
update formula to learn an optimal θ. This integration is described in the next section.

3.3 FVAC: Learning the optimal policy with Fleming-Viot Actor-Critic

We now give the details of the FV estimation of the critic, the advantage function, and its integration
with the Actor-Critic policy gradient algorithm.

Given a policy π and following Algorithm 2 proposed in [12], the advantage function under the
average reward criterion is estimated as the one-step bootstrapped error of the target at each discrete-
time n, in other words as the TD(0) error corrected by the long-run average reward, i.e.:

Hπ(Xn, An) = Rn −Rn(π) + V π(Xn+1)− V π(Xn),

where Rn
.
= r(Xn, An, Xn+1) and Xn+1 are respectively the reward and the next state observed

after taking action An ∼ π, and Rn(π) and V π(·) are the estimates at time n of the long-run expected
reward and the state value function, respectively.

The above one-step bootstrapped estimation of the advantage function using a Fleming-Viot particle
system is obtained from the following general estimation scheme: the state value function vπ(x) is
learned using TD(0) updates at every transition of the FV particles that is consistent with the original
MDP (i.e. particle reactivations are excluded), and the long-run expected reward r(π) is estimated
using the procedure described in Section 3.1 on the data collected by the FV learner trajectories.
Details are given in the FVAC Algorithm 1.

The learned advantage function is then used as critic to perform one learning step of an Actor-Critic
policy learner. The Actor-Critic learner updates the θ parameter of the parameterised policy πθ using
update formula (5), which uses an estimate of the gradient of the performance measure computed by
(6) from a pre-defined number M of simulation steps of the Markov chain under the current policy
πθ

4.

The process of learning the advantage function by Fleming-Viot and feeding it into the Actor-Critic
policy gradient step is repeated until a pre-specified given condition is reached, such as a maximum
number of policy learning steps or obtaining sufficiently small variations in consecutive θ estimates.

4 Experimental results

To showcase the method, we consider the problem of learning the shortest path of simple 2D mazes
with a single exit, defined as grid worlds with a fixed start location and one terminal cell, the only
state with positive reward. The state space is made up of all cells of the grid world and the action
space is the set {0, 1, 2, 3} representing all possible movements of the agent, respectively {UP,
RIGHT, DOWN, LEFT}.

In order to easily parameterise the rareness of the single reward state, we add a homogeneous wind of
varying intensity defining the probability with which the agent is deviated one cell in the direction of
the wind after having moved, obstacle permitting, in the chosen direction.

4No convergence guarantees to an optimal policy exist when the policy optimisation problem is non-convex,
such as a neural network.

7

The policy πθ is parameterised by a three-layer neural network with |S| input neurons representing
each cell on the grid world and 4 output neurons representing each of the four possible actions at
each cell. The hidden layer contains 12 neurons.

Experiments were run using simulation of the MDP on the two mazes depicted in Figure 2 with
wind blowing uniformly in the left direction: a smaller 4 × 5 maze with obstacles placed in four
specifically chosen cells and intensity 0.8 of the wind, and a larger 6× 8 maze with randomly placed
obstacles in approximately 50% of the cells and intensity 0.5 of the wind. Also shown is the relative
visit frequency of the cells during the initial exploration of the environment under the initial random
policy5, from which the absorption setA is defined following the procedure described in Algorithm 1,
whose cells are highlighted in different shades of orange6. Although not shaded, the start state is also
part of the absorption set in both cases.

(a) 4× 5 maze (b) 6× 8 maze

Figure 2: The two windy mazes used in the policy learning experiments. S: start cell, F: finish cell,
black cell: obstacle location that the agent cannot visit, orange cells: locations belonging to the
identified absorption set A as described in Algorithm 1, presenting a relative visit frequency of at
least 5% from the initial exploration of the environment (darker colors indicate higher frequencies
and in both cases, the start state is also part of the absorption set). Percent values represent the relative
cell visit frequency observed during the initial exploration of the environment under the random
policy for T = 500 steps. Rewards are zero everywhere except at F where it is +1. The blue arrow
indicates a homogeneous wind to the left, which is 0.8 in the smaller 4× 5 maze and 0.5 in the larger
6× 8 maze.

Each experiment consists of running the FVAC method and a benchmark method on a certain number
of replications, as follows:

1. The FVAC algorithm is run first on a predefined number of policy learning steps (150 in this
case). The number of steps used by the Fleming-Viot estimation of the advantage function
at each policy learning step, on each replication, is taken note of.

2. The benchmark method is then run on as many replications and for the same number of
policy learning steps, using, at each policy learning iteration, as many steps as the average
number observed by FVAC along the policy learning process at the respective replication.

The above setup allows a fair comparison between the FVAC and the benchmark method, as it
guarantees that both use the same total number of simulation steps over all policy learning steps.

We use the so-called TDAC (Temporal Difference Actor-Critic) as benchmark method, in which
TD(0) learns the advantage function at each policy learning step. The hyperparameteter setup of the
FVAC algorithm corresponds to the default values presented in Algorithm 1.

5Considering the policy parameter θ is given by the parameters of the neural network used to model the
policy, all weights and biases are initialized to random values sampled from a zero-mean Gaussian distribution
with 0.01 standard deviation, except the biases of the 4 output neurons which are initialized to 1. This setup
guarantees that the policy is approximately uniformly random. Weights are not exactly set to zero, as otherwise
no learning ever takes place, due to the characteristics of the back-propagation algorithm.

6The threshold for the minimum relative visit frequency is the default one: αA = 5%.

8

The learning curves of FVAC and TDAC over 10 replications are presented in Figure 3. We observe
that FVAC outperforms TDAC, both on average and median learning. For the 4×5 maze (Figure 3(a)),
the average and median learning curves of FVAC reach a stable value around 0.020 (representing 50
steps from start to finish), which is consistent with the shortest path of the problem given the strong
wind, whereas TDAC doesn’t reach this level and remains practically stuck at 0 in median. For the
6× 8 maze (Figure 3(b)), TDAC also remains at 0 in median compared to a very fast learning curve
by FVAC, while on average TDAC reaches half of the value reached by FVAC. Additionally, the
variability observed in the FVAC learning curves is negligible compared to that of the TDAC learning
curves, thanks mostly to a very appropriately identified absorption set A which keeps exploration
away from the uninteresting set of cells and close in part to the finish state, as shown in Figure 2(b).

(a) 4× 5 maze (b) 6× 8 maze

Figure 3: Learning curves for the windy maze environments depicted in Figure 2: comparison
between FVAC and TDAC over 10 replications of learning a near-optimal policy leading to the
shortest path from S to F. Both the average (± its standard error) and the median learning curves
are plotted for each method. The main FVAC hyperparameters are the default ones: number of FV
particles N = 20, initial exploration steps T = 500, and threshold for absorption set αA = 5%. The
remaining hyperparameters take the default values given in Algorithm 1. The blue line plotted on the
right axis corresponds to the budget ratio described in the text whose average is 1 by design, which
guarantees a fair comparison between FVAC and TDAC. Experiments were run using Python-3.6
on a Windows 10 (64-bit) computer, with execution times by replication varying in the range 13-19
minutes for FVAC and 7-20 minutes for TDAC in the 4× 5 maze, and in the range 14-25 minutes for
FVAC and 20-80 minutes for TDAC in the 6× 8 maze.

5 Conclusions

The FVAC (Fleming-Viot Actor-Critic) method, which uses Fleming-Viot particle systems to learn the
critic of Actor-Critic policy gradient methods, was presented as a way to solve stochastic optimisation
problems under the average reward criterion, in particular when their performance measure is strongly
affected by high-reward rarely observed states.

The method generalizes the FVRL algorithm presented in [3, 4] in that a general parameterised
policy can be used, and no sparsity assumption is imposed on the reward landscape. This makes the
method applicable to very general RL problems, either continuing or episodic, with the restriction
that episodic learning tasks must be defined under the average reward criterion, i.e. without discount.
The only requirement of the RL environment is that a black-box simulator or emulator can be run on
it. That is, at the present moment, FVAC cannot be applied on previously collected data.

Using windy grid worlds as test bench, the FVAC method was seen to clearly outperform, in terms of
learning curves, the so-called TDAC benchmark method which uses TD(0) to learn the critic during
Monte-Carlo excursions. We observed that, if the absorption set A is favorably identified to keep
exploration away from uninteresting states and close to the high-reward states, the improvement of
FVAC over TDAC can be dramatic, as was the case for the 6×8 labyrinth with random obstacles. The

9

fact that the same number of samples is used in each experiment across the two compared methods,
makes FVAC a more sample-efficient approach than TDAC for learning near-optimal policies, while
maintaining comparable execution times.

Paths for future work include (i) applying FVAC to other discrete-time RL problems, such as the
mountain car problem [6] or card games, (ii) devising strategies to appropriately define the method’s
hyperparameters, particularly the number of particles N , and (iii) extending the applicability of FVAC
to discounted reward learning settings.

Acknowledgements

This work was partially supported by the French National Research Agency under the program
"Investments for the Future" with reference code ANR-11-LABX-0040.

10

References
[1] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31.

Springer Science & Business Media, 2013.

[2] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

[3] Daniel Mastropietro, Urtzi Ayesta, Matthieu Jonckheere, and Szymon Majewski. Efficient
reinforcement learning with Fleming-Viot particle systems: application to stochastic networks
with rarely observed rewards. working paper or preprint, May 2023.

[4] Daniel Mastropietro, Szymon Majewski, Urtzi Ayesta, and Matthieu Jonckheere. Boosting
reinforcement learning with sparse and rare rewards using Fleming-Viot particle systems. In
15th European Workshop on Reinforcement Learning (EWRL 2022), Milano, Italy, September
2022.

[5] Maja J Mataric. Reward functions for accelerated learning. In Machine learning proceedings
1994, pages 181–189. Elsevier, 1994.

[6] Andrew William Moore. Efficient memory-based learning for robot control. Technical Report
UCAM-CL-TR-209, University of Cambridge, Computer Laboratory, November 1990.

[7] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2778–2787. PMLR, 06–11 Aug 2017.

[8] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 1994.

[9] S.M. Ross. Simulation. Elsevier Science, 2022.

[10] Richard Sutton and Andrew Barto. Reinforcement Learning, an introduction. MIT Press, 2018.

[11] Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted
transfer of samples in reinforcement learning. In International Conference on Machine Learning,
pages 4936–4945. PMLR, 2018.

[12] Yiming Zhang and Keith W Ross. On-policy deep reinforcement learning for the average-reward
criterion. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 12535–12545. PMLR, 18–24 Jul 2021.

11

A Fleming-Viot Actor Critic algorithm (FVAC)

Algorithm 1 Tabular FVAC: Fleming-Viot Actor Critic policy learning under the average reward
criterion with tabular critic (required definitions are given in Section 2)

Input: [Problem specific]
pS : the initial state law of the environment.
r: the reward function defined in Section 2.

Input: [Optimizer]
I: the number of optimisation iterations (policy learning steps). Default: 150.
η: the initial learning rate used by the optimizer responsible for learning the policy (e.g. Adam,
BFGS, SGD, etc.). Default: 0.05 for Adam optimizer.

Input: [Critic learning by FV]
N : the number of FV particles used to learn the expected reward and the value functions at each
policy learning step. Guideline: inverse function of the smallest probability among the states
expected to yield large rewards. Default: 20.
T : the number of steps used to estimate the expected reabsorption time E(TA) used in the FV
estimator of the stationary distribution. Guideline: proportional to E(TA) which sometimes can
be inferred in order of magnitude. Default: 500.
αA: the minimum relative visit frequency threshold that should be observed during an initial
exploration for a state to be classified as part of the absorption set A. Default: 5%.
L (stopping threshold): the simulation stops when either L simulation steps over all particles has
been reached or when at least 100 ∗ β% (defined below) of the FV particles have been absorbed
at least once. Guideline: proportional to N . Default: 60N
β: the proportion of absorbed FV particles at least needed to stop the FV simulation when the
number of simulation steps is smaller than L. Default: 100%.
ϵ: probability of a random action to ensure ergodic Markov chains under all policies parameterised
by modelM. We denote by ϵ-π the policy π that is affected by this random action selection at
every step. Default: 10%.

Input: [Actor learning with policy gradient]
M : the number of steps used at each policy learning step to estimate the gradient in (6). Guideline:
proportional to the number of states in the environment. Default: 5|S|.
M: the structure and characteristics of the model used to learn the parameterised policy, πθ.
Default: a 3-layer neural network model with |S| dummy input neurons representing the states,
12 hidden neurons, and |U| output neurons giving the policy obtained from the softmax function
applied to the output neurons.

Output: Estimate of a parameter vector θ∗ for which the parameterised πθ∗ policy near-maximizes
the long-run expected reward of a reinforcement learning continuning task.

1: Initializations:
• Policy parameter θ0 s.t. πθ0(a|x) is (approximately) uniformly distributed ∀x ∈ S.

• Exit state distribution p̂
ϵ-πθ−1
→
∂A

(x) is uniformly distributed ∀x ∈ S.

• Average reward estimate: R
ϵ-πθ−1 = 0.

• State value function estimates: V ϵ-πθ−1 (x) = 0,∀x ∈ S.
• Advantage function estimate: Hϵ-πθ−1 (x, a) = 0,∀x ∈ S,∀a ∈ U

2: A ← ESTIMATEABSORPTIONSET(T, pS)
3: for t = 0 to I − 1 do
4: Hϵ-πθt ← ESTIMATEADVANTAGEFUNCTIONUSINGFV(A, t, ϵ-πθt)
5: ∇J(θt)← COMPUTEPERFORMANCEGRADIENT(M , Hϵ-πθt , πθt)
6: Update parameter estimate: θt+1 ← θt + ηt∇J(θt)
7: end for
8: Estimate optimum parameter θ∗ ← θI .

12

9: function ESTIMATEABSORPTIONSET(T , pS , π, αA)
10: Simulate T time steps of the Markov chain {Xπ

n}n∈N initialized at x0 ∼ pS , the environ-
ment’s start state law.

11: Compute the state visit count, f(x),∀x ∈ S.
12: A ← {x ∈ S : f(x)/T > αA}

return A
13: end function

14: function ESTIMATEADVANTAGEFUNCTIONUSINGFV(A, t, θt)
15: Initialize, using estimates from the previous policy learning step:

• R
ϵ-πθt

0 ← R
ϵ-πθt−1

• V ϵ-πθt (x)← V ϵ-πθt−1 (x),∀x ∈ S
• Hϵ-πθt (x, a)← Hϵ-πθt−1 (x, a),∀x ∈ S,∀a ∈ U

16: Estimate, from an initial exploration of the environment:
Êϵ-πθt
←
∂A

(TA), p̂
ϵ-πθt
→
∂A

, R
ϵ-πθt
0 ← ESTIMATESFROMINITIALEXPLORATION(T, ϵ-πθt , p̂

ϵ-πθt
→
∂A

,A, Rϵ-πθt
0)

17: Initialize the FV N -particle system, using the exit distribution p̂
ϵ-πθt
→
∂A

just estimated to select

the start state of each particle.

18: Initialize, done← False, n← 0, and:
• Nabs ← 0 (Nabs ≤ N is the number of FV particles absorbed at least once so far)
• tn ← 0 (tn is the time of the n-th first absorption time of the FV particles; by simulation

construction, it always increases as n increases, which permits the iterative estimation of the
FV integral done in function UPDATEREWARDWEIGHTEDFVINTEGRAL())

• I ← 0 (I is a vector indexed by the states outside A where the expected reward under the
current policy is non-zero, used to store the reward-weighted FV integral appearing in the
numerator of the stationary distribution estimate in (3))

19: while not done do
20: Choose uniformly at random an FV particle (i) and update its state following the dynamics

of the MDP. Record the following transition tuple (X
(i)
n , A

(i)
n , X

(i)
n+1).

21: Update Hϵ-πθt (x, a) and V ϵ-πθt (x) (in this order) by TD(0), i.e.:

Hϵ-πθt (X(i)
n , A(i)

n) ← R(i)
n −R

ϵ-πθt + V ϵ-πθt (X
(i)
n+1)− V ϵ-πθt (X(i)

n)

V ϵ-πθt (X(i)
n) ← V ϵ-πθt (X(i)

n) + γnH
ϵ-πθt (X(i)

n , A(i)
n),

where R
(i)
n = r(X

(i)
n , A

(i)
n , X

(i)
n+1) and γn is an appropriately adjusted learning rate required to

guarantee the convergence of stochastic approximation algorithms [10], e.g. γn = 1/fn(X
(i)
n),

where fn(x) is the visit count function of state x at the current time step n, and f0(X
(i)
0) = 1.

22: n← n+ 1
23: if chosen particle i experiences an absorption then
24: if this is the first absorption event for particle i then
25: Nabs ← Nabs + 1

26: I, tn ← UPDATEREWARDWEIGHTEDFVINTEGRAL(n,Nabs, N,S,A, r, ϵ-πθt , ϕ̂, I, tn)
27: Update the average reward with the FV contribution:

R
ϵ-πθt ← R

ϵ-πθt

0 + I/Êϵ-πθt
←
∂A

(TA) Nabs/(N +Nabs)

28: end if
29: Reactivate the particle to the position of a randomly chosen particle among the other
N − 1 particles.

30: end if
31: ϕ̂← UPDATEPHI(n,N,S,A, r, ϵ-π, ϕ̂)
32: done← n = L or Nabs > βN .
33: end while
34: if Nabs < N then
35: Consider all non-absorbed particles as censored observations at tn = n/N :

I, tn ← UPDATEREWARDWEIGHTEDFVINTEGRAL(n,Nabs + 1, N,S,A, r, ϵ-πθt , ϕ̂, tn, I)
36: end if

return Hϵ-πθt

37: end function 13

38: function ESTIMATESFROMINITIALEXPLORATION(T, π, p̂ →
∂A

,A, Rπ

0)
39: Simulate T time steps of the Markov chain {Xπ

n}n∈N initialized at x0 ∼ p̂ →
∂A

, an exit state
distribution, and compute:

• the estimated expected reabsorption time to A as Êπ
←
∂A

(TA) =
T̃
C , where T̃ is the number of

steps over all observed full return cycles to A and C is the number of full return cycles;
• the exit state distribution p̂π→

∂A
as the relative frequency of each observed exit state over all

exit events;
• the updated average reward, R

π

0 ← R
π

0 + (R
π

T − R
π

0)/2, where R
π

T is the average reward
observed during the current T -step excursion, and the factor 1/2 reflects the fact that the
average reward estimate before this update, R

π

0 , is also based on T observations.
return Êπ

←
∂A

(TA), p̂
π
→
∂A

, R
π

0

40: end function

41: function COMPUTEPERFORMANCEGRADIENT(M,H, πθt)
42: Simulate M time steps of the Markov chain {Xπθt

n }n∈N initialized at x0 ∼ pS , the environ-
ment’s start state law, and compute the performance gradient∇J(θt) using (6):

∇J(θt) =
1

M

M∑
n=1

H(Xn, An)∇ log πθt(An|Xn),

return ∇J(θt)
43: end function

44: function UPDATEREWARDWEIGHTEDFVINTEGRAL(n,Nabs, N,S,A, r, π, ϕ̂, I, tn−1)
45: tn ← n/N
46: Let Ac = S \ A
47: Let Y = {x ∈ S : r(x, π) ̸= 0}

⋂
Ac the set of states outside A with non-zero reward under

policy π.
48: for all y ∈ Y do
49: Compute the contribution from the piecewise constant ϕ̂(., y) function in the latest inter-

absorption interval (tn−1, tn]:
Φn(y) =

∑
i:tn−1<si≤tn(si − si−1)ϕ̂(si−1, y),

where the si’s are the times at which ϕ̂(., y) changes.
50: Update the FV integral at y, weighted by the expected reward observed at y, r(y, π):

I(y)← I(y) + 1

N
(1− Nabs − 1

N
)Φn(y)r(y, π),

where 1/N is the discrete step size multiplying the sum in (3), and 1− (Nabs − 1)/N is
the contribution from the estimated survival probability function, P̂(TK ≥ t), which is constant in
(tn−1, tn].

51: end for
return I, tn

52: end function

53: function UPDATEPHI(n,N,S,A, r, π, ϕ̂)
54: Let Ac = S \ A
55: Let Y = {x ∈ S : r(x, π) ̸= 0}

⋂
Ac the set of states outside A with non-zero reward under

policy π.
56: for all y ∈ Y do
57: ϕ̂(n/N, y)←

∑N
i=1 1{X

(i)
n = y}/N (proportion of N particles at y).

58: end for
59: end function

14

	Introduction
	Problem description
	Methodology
	Estimating the long-run expected reward with Fleming-Viot particle systems
	Learning the actor with Actor-Critic policy gradient
	FVAC: Learning the optimal policy with Fleming-Viot Actor-Critic

	Experimental results
	Conclusions
	Fleming-Viot Actor Critic algorithm (FVAC)

