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Abstract
State-of-the-art image reconstruction often relies
on complex, abundantly parameterized deep ar-
chitectures. We propose an alternative: a data-
driven reconstruction method inspired by the clas-
sic Tikhonov regularization. Our approach itera-
tively refines intermediate reconstructions by solv-
ing a sequence of quadratic problems. These up-
dates have two key components: (i) learned filters
to extract salient image features; and (ii) an atten-
tion mechanism that locally adjusts the penalty of
the filter responses. Our method matches leading
plug-and-play and learned regularizer approaches
in performance while offering interpretability, ro-
bustness, and convergent behavior. In effect, we
bridge traditional regularization and deep learning
with a principled reconstruction approach.
Code: https://github.com/mehrsapo/DEAL.

1. Introduction
Image reconstruction plays a fundamental role in compu-
tational imaging and computer vision (McCann & Unser,
2019; Zeng, 2001). The task is to recover an unknown im-
age of interest x ∈ Rd from noisy measurements y ∈ RM .
Their relation is modeled as y = Hx, where the forward op-
erator H ∈ RM×d encodes the acquisition process. When
H is ill-conditioned, one can resort to the regularized recon-
struction

x̂ ∈ argmin
x∈Rd

(
∥Hx− y∥22 + λR(x)

)
. (1)

The data fidelity ∥Hx− y∥22 controls the consistency of
the reconstruction with the measurements. The regularizer
R : Rd → R≥0 encodes prior information about the solu-
tion and is also intended to make the problem well-posed.
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Both terms are balanced by the hyperparameter λ ∈ R≥0.
Throughout this paper, x is the vectorized version of a (color
or grayscale) image of size (Nin ×H ×W ).

From classic signal processing to the advent of deep learn-
ing, substantial research efforts have focused on designing
regularizers R. In the context of data-driven methods, two
primary approaches have emerged: (i) the explicit modeling
of R; and (ii) the modeling of operators associated with R,
such as its proximal operator, which is required in plug-and-
play (PnP) reconstruction (Venkatakrishnan et al., 2013).
Following the explicit approach, the starting point for this
work is the fields-of-experts (Roth & Black, 2009), which
reads

Rm : x 7→
NC∑
c=1

〈
mc, ψc(Wcx)

〉
. (2)

Here, each Wc ∈ RHW×d convolves x with the filter
template wc ∈ RNin×K×K where K denotes the spatial
kernel size. Then, the nonnegative potentials ψc ∈ C(R)
are applied entry-wise to the Wcx. Finally, the weights
mc ∈ [ϵM, 1]

HW with ϵM > 0 determine the (spatially
varying) contribution of ψ(Wcx). Every component of (2)
can be learned. Most implementations to date use mc = 1.
They differ in the parameterization of ψc and Wc for the
learning process (Chen et al., 2014; Goujon et al., 2024;
Zach et al., 2024) or include nonlinear feature transforms
(Li et al., 2020; Kobler et al., 2022). While the learning of
Wc and ψc have been studied extensively, the local weights
mc have received little attention so far.

The use of spatially varying mc in (2) is referred to as
anisotropic regularization. For instance, mc = M(y) can
be derived from the data y using heuristics (Chan et al.,
2008; Grasmair & Lenzen, 2010) or a neural network (Kofler
et al., 2023; Lefkimmiatis & Koshelev, 2023). When M
extracts features from an estimated reconstruction, it is nat-
ural to consider an iterative refinement of mc. Specifically,
the reconstruction from (1) can be fed back into M to ob-
tain an improved mc for (2). This leads to the attentive-
reconstruction process

xk+1 ∈ argmin
x∈Rd

(
∥Hx− y∥22 + λRM(xk)(x)

)
(3)

studied by Pourya et al. (2024) for ψc = | · |. We note that
their scheme is computationally demanding since each of
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their updates requires one to solve a problem that involves a
least absolute shrinkage and selection operator (LASSO).

Contribution Our contributions are as follows.

• We simplify the updates (3) by choosing ψc(·) = (·)2
for the RM(xk) from (2). Then, each update amounts
to the solution of a linear equation, which we handle
efficiently through the conjugate-gradient method.

• On the theoretical side, we establish the uniqueness
of each update in (3), the existence of a fixed point,
a condition for the convergence of (3), and a stability
result for the resulting reconstruction operator.

• We learn the filters {Wc}NC
c=1 and the attention mecha-

nism M for RM(xk) through denoising in such a way
that the iterations (3) converge. Then, given an inverse
problem with forward H, we deploy our method by
tuning only two scalar hyperparameters: (i) the noise
level; and (ii) the regularization strength λ.

• Our experimental evaluations show results on par with
state-of-the-art methods for various inverse problems.

• We empirically demonstrate the convergence and ro-
bustness of our method. We also provide visual in-
terpretations of the learned attention mechanism. Fig-
ure 7 is particularly striking: Each pixel of the denoised
image is a weighted average of the noisy data, with
the weights being well-adapted to the image structure.
This qualitative aspect goes beyond numerical metrics
and opens the door to well-performing and explainable
image reconstructions.

2. Related Literature
Learned Regularization Classic regularizers for (1)
leverage sparsity in various domains, such as image gra-
dients (Rudin et al., 1992) or wavelets (Mallat, 1999). The
parametric model (2) introduced by Roth & Black (2009)
has since spurred extensive research. Key areas of investiga-
tion include learning paradigms (Chen et al., 2014; Effland
et al., 2020), parameterization strategies (Zach et al., 2024),
and intrinsic properties like convexity (Goujon et al., 2023;
2024). More complex architectures build upon strategies
such as autoencoders (Li et al., 2020), algorithm unrolling
(Kobler et al., 2022), adversarial training (Lunz et al., 2018;
Prost et al., 2021), and energy modeling (Zach et al., 2023).

In parallel, implicit regularization methods were developed.
Here, off-the-shelf denoisers have been incorporated into
iterative reconstruction algorithms in place of the proxi-
mal operators (Venkatakrishnan et al., 2013; Romano et al.,
2017; Zhang et al., 2022). Non-expansive or homogeneous

denoisers lead to a convergent scheme, but it is difficult to en-
force these conditions in the learning (Reehorst & Schniter,
2018; Hertrich et al., 2021). Recently, weaker conditions
have been proposed by Pesquet et al. (2021); Hurault et al.
(2022b).

Spatial Adaptivity An overview of spatially adaptive reg-
ularizers (2) is given in Pragliola et al. (2023). Meanwhile,
Hintermüller et al. (2017); Van Chung et al. (2017); Kofler
et al. (2023) focus on the total-variation (TV) regularizer
(Rudin et al., 1992) as a special case, using either heuristics
or deep learning to compute the mc. More general instances
are considered by Lefkimmiatis & Koshelev (2023); Neu-
mayer et al. (2023); Neumayer & Altekrüger (2025). The
first work deploys non-smooth potentials ψc and majoriza-
tion minimization to solve the problem in (1). Similar to
(3), this leads to a series of quadratic problems. The latter
works deploy differentiable ψc and solve (1) with acceler-
ated gradient descent. All approaches have in common that
they update the weights mc only once. In particular, they
do not refine mc and the reconstruction iteratively as in (3).

Iterative Refinement Lenzen et al. (2014); Lenzen &
Berger (2015) propose to iteratively refine the weights mc

for TV and update them using some heuristic. For the gen-
eral model (2) with ψc = | · |, a refinement based on neural
networks was considered by Pourya et al. (2024). Their M
has a simple architecture comparable to ours. Iterative re-
finements are also found outside of this setting, for example,
in Saharia et al. (2023) for superresolution and in Darestani
et al. (2024) for magnetic resonance imaging (MRI).

Nonlocal Laplacians Quadratic potentials ψc lead to a
symmetric positive semi-definite system as the optimality
condition for (3). Another approach to such updates is
(iterative) filtering with carefully designed graph Laplacians
(Pang & Cheung, 2017). Recently, this was incorporated
into deep architectures for image denoising (Zeng et al.,
2019; Valsesia et al., 2020) and scene flow (Teed & Deng,
2021).

Attention Mechanisms Originating in natural language
processing (Vaswani et al., 2017), attention is now widely
used in imaging (Dosovitskiy et al., 2020). Two main ap-
proaches exist: (i) images are divided into patches and pro-
cessed through scaled dot-product attention, as in SwinIR
and Restormer (Liang et al., 2021; Zamir et al., 2022); and
(ii) attention is integrated into the architecture in the form
of pointwise multiplications, as in attention-guided convo-
lutional neural networks (CNN) (Tian et al., 2020). While
patch-based methods effectively capture long-range depen-
dencies, they introduce a significant computational cost due
to the need to determine inner products across all patches.
In contrast, pointwise attention is more economical.
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3. Methodology
We specify the regularizer (2) using quadratic potentials as

Rm(x) =

NC∑
c=1

〈
m2

c , (Wcx)
2
〉
= ∥MWx∥22 , (4)

with the shorthands W = [W⊤
1 · · · W⊤

NC
]⊤ and M =

Diag(m1, . . . , mNC), where Diag returns a diagonal ma-
trix whose diagonal entries are the argument vectors. This
leads to a quadratic reconstruction problem with solutions

x̂ ∈ argmin
x∈Rd

(
∥Hx− y∥22 + λ ∥MWx∥22

)
. (5)

The question then arises as how to properly choose M and
W. Regarding a filter-based interpretation, W should be
independent of y, while M modulates the response Wx at
each location. Ideally, this modulation ought to depend on
the structure of the (unknown) x̂. With abuse of notation,
we introduce M : Rd → [ϵM, 1]

NCHW , which leads to our
attentive refinement scheme

xk+1 ∈ T (xk,y) with x0 = 0 ∈ Rd, (6)

T (z,y) = argmin
x∈Rd

(
∥Hx− y∥22 + λ ∥M(z)Wx∥22

)
.

(7)

The update (6) can be interpreted as an infinite-depth neural
network. Hence, we name it deep attentive least squares
(DEAL) for image reconstruction. If xk → x̂, we get that
x̂ ∈ T (x̂,y), namely, that x̂ is a fixed-point of the operator
(7). We restrict k < Kout and terminate the iterations (6)
when ∥xk+1 − xk∥2 / ∥xk∥2 ≤ ϵout with ϵout > 0.

3.1. Architecture

Next, we specify how the DEAL iterates (6) can be cast
as a deep neural-network structure. Figure 1 showcase the
interplay of its essential building blocks (reconstruction and
mask generation), which repeatedly exchange information.

3.1.1. RECONSTRUCTION BLOCK

At the heart of DEAL, the reconstruction block solves the
spatially adapted optimization problem in (7) for given at-
tentive weights M(xk) (see Section 3.1.2). The optimality
condition for the problem in (7) is given by the linear system

Akxk+1 = b, (8)

with Ak = H⊤H+ λW⊤M(xk)
2W and b = H⊤y. The

multi-convolution block W (see Section 3.1.3) is learn-
able. The hyperparameter λ ∈ R needs to be tuned for
inverse problems outside the training regime. To avoid
scaling ambiguities, we impose ∥W∥2 = 1 by spectral

normalization. The data y and the forward H are problem-
specific inputs that are not learnable. We solve (8) by the
conjugate-gradient (CG) algorithm with xk as the initial
guess. We use a batched CG with at most Kin steps, where
each sample terminates individually if its residue satisfies
that ∥Akxk+1 − b∥22 ≤ ϵin for ϵin > 0.

3.1.2. MASK-GENERATION BLOCK

To estimate M for (5) from local image structures, we use
the shallow CNN with learnable nonlinearities

M(x) = (ϕσ ◦W2
mix ◦φ2 ◦W1

mix ◦φ1 ◦Wmask)(x) (9)

(see Figure 1 Right). Here, σ denotes the model noise level
and needs to be tuned outside the training regime. This
choice of architecture is inspired by anisotropic diffusion
(Weickert, 1998; Bredies & Lorenz, 2018), where M is
typically computed from the gradients of a smoothed image
using pixel-wise nonlinearities.

The first multi-conv layer Wmask (see Section 3.1.3) in (9)
extracts NC spatial features using the same architecture W
does in the reconstruction block. The two subsequent convo-
lution layers W1

mix and W2
mix mix the NC feature channels

using kernels of size (3× 3) without bias. The layers are
connected via learnable pointwise nonlinearities φ1 and φ2,
for which we follow Bohra et al. (2020). Specifically, each
φn is parameterized as a linear spline with Nn equally dis-
tributed knots on [0, r]. On (r,∞) we extend the splines
linearly and enforce symmetry by setting φ(x) = φ(−x)
if x < 0. In addition, we constrain them to be increasing
for x > 0. (The removal of either constraint has not led
to significant performance improvement.) To guarantee the
numerical stability of (8), the output of M must remain in
(ϵM, 1]. Hence, we process each channel c ∈ {1, . . . , NC}
individually as

ϕσc (x) = max(min(φ3(αc(σ)x), 1), ϵM), (10)

where φ3 is a symmetric linear spline as before. In contrast
to the former splines, φ3 must be non-increasing on [0,∞).
The underlying rationale is that M(x) should be close to 1
for small filter responses (constant image regions) and close
to 0 for strong filter responses (salient edges). Following
Goujon et al. (2024), we enable multilevel noise training
using the positive scalings

αc(σ) = esc(σ)/(σ + 10−5) (11)

with learnable linear splines {sc}NC
c=1. By design of M, the

first reconstruction block consists of a non-varying problem.

3.1.3. MULTI-CONV BLOCK

The Multi-Conv block advocated by Goujon et al. (2023)
consists of multiple convolution layers without nonlineari-
ties in between. It enables the efficient construction of large
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Figure 1: Left: DEAL generates a sequence of reconstructions xk+1 via (6) from the inputs y and H, initalization x0 = 0,
and hyperparameters σ and λ. When the stop condition is met, it returns x̂. Right: Architecture of the mask-generation
block.

receptive fields. We use three convolution layers, all with
kernels of size (9 × 9). Thus, the effective field of view
for this block is (25 × 25). For inputs with Nin channels,
the number of output channels are 4Nin, 8Nin, and NC af-
ter each of these successive convolution layers. We set the
group size and stride to one, and do not use a bias. In all our
experiments, we use NC = 128. This block appears in two
places: once in M(x) as WMask and in the reconstruction
block as W (i.e., the convolutions in (4)).

3.2. Training

We learn the parameters θ of DEAL for image denoising
with additive white Gaussian noise (AWGN) of standard
deviation σn ∈ [0, 50]. The denoiser DKout

θ(σn)
(y) takes the

data y and σn as input and then returns the solution of (7)
within at most Kout iterations. We have chosen this simple
training task for two reasons: (i) our learned model should
also work for other inverse problems (often called univer-
sality), as demonstrated by Hurault et al. (2022b); Goujon
et al. (2024); (ii) our choice leads to simplified computa-
tions as H = I. We provide details on initializations and
hyperparameters with a short ablation study in Appendix A.

Dataset and Loss As training set D = {xm}Mm=1, we use
the images proposed in Zhang et al. (2022). The images
x are corrupted by AWGN as y = x + σnn and fed into
DEAL, which leads to the sequence {xk}Kout

k=1 = DKout

θ(σn)
(y)

of denoised images. To estimate the parameters θ from the
training data, we use the loss

L(θ) =
{
E x∼D
σn∼U([0,50])
n∼N (0,I)

[
∥xKout − x∥22 (12)

+
γ

NC
∥M(xKout

)−M(xKout−1)∥22
]
+ γTV2(θ)

}

with γ = 10−4. This loss consists of three parts: (i) a
squared error that enforces that the output matches the clean
image; (ii) a squared penalty on the weight changes for the
last two updates of (6); and (iii) an accumulated second-
order TV regularization of all learnable splines. The latter
penalizes changes in the slopes of the splines and thereby
promotes simpler splines (Bohra et al., 2020; Ducotterd
et al., 2024). The second term in (12) vanishes if the gener-
ated weights M(xk) converge. To promote convergence of
(6) to a fixed point, we sampleKout uniformly from [15, 60]
(Anil et al., 2022).

We minimize the loss (12) using Adam (Kingma & Ba,
2015). At each step of the optimizer, we sample 16 patches
of size (128×128) randomly from D. We have two training
phases. First, we train the gray and color models for 70 000
and 40 000 steps, respectively, with an initial learning rate of
5× 10−4 that is reduced to 4× 10−4 by a cosine annealing
scheduler. Then, we continue the training of the gray and
color model for 10 000 and 5000 steps, respectively, with
an initial learning rate of 2 × 10−4 that is reduced to 1 ×
10−7 by annealing. We set ϵout = ϵin = 1 × 10−4 and
limit the number of CG steps to Kin = 50. To select the
best-performing model, we evaluate its performance every
1000 steps and keep the checkpoint with the best validation
performance. We use the set3 and set12 datasets to validate
the color and grayscale models, respectively.

Gradient Tracking We train DEAL through the deep
equilibrium framework (Bai et al., 2019) in the Jacobian
free mode. Specifically, we perform at most (Kout − 1) it-
erations without gradient tracking. Then, after convergence,
we perform one additional update (6) with gradient track-
ing. Here, an efficient backward path for the reconstruction
block is crucial, specifically for ∂θxk+1 as defined in (6).
Since the backpropagation through the CG algorithm is pro-
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hibitively memory-expensive, we propose another approach.

From (8), we have that

xk+1 = y − λL⊤
k Lkxk+1, (13)

where Lk = M(xk)W. The product rule leads to

∂θxk+1 = −λL⊤
k Lk∂θxk+1 − λ∂θ(L

⊤
k Lk)xk+1. (14)

It follows that
Ak∂θxk+1 = dk+1, (15)

where the matrix Ak is the one from (8) and only the right-
hand-side changes to dk+1 = −λ∂θ(L⊤

k Lk)xk+1. We use
auto-differentiation to obtain the gradient estimate dk+1.
We then find ∂θxk+1 by solving (15) with CG.

3.3. Inference

Once the parameters are learned, we deploy DEAL to a gen-
eral inverse problem by plugging the corresponding forward
H and its adjoint H⊤ into the reconstruction block. This
does not affect the mask-generation block. To adapt to the
new task, we only tune two hyperparameters: the model
noise level σ and the regularization strength λ in (6). This
requires a small validation set with paired measurements
and ground-truth images. Empirically, we observe that the
tuning of λ is more important than a change in the noise
level σ. A suggested value for σ is 15. To ensure that
we find a fixed point of (6), we set Kin = Kout = 1000,
and choose the conservative stop criteria ϵin = 10−8 and
ϵout = 10−5.

4. Theoretical Results
All the proofs are provided in Appendix B. Proposition 4.1
guarantees the uniqueness of the updates (6).
Proposition 4.1. If ker(H) ∩ ker(M(xk)W) = {0}, then
Ak is positive-definite and (8) has a unique solution. More-
over, if M2(xk) ⪰ ϵM Id, then Ak ⪰ H⊤H + ϵMW⊤W
and uniqueness holds if ker(H) ∩ ker(W) = {0}.

The next results involve an estimate of the smallest eigen-
value λϵ = λmin(H

⊤H+ ϵMW⊤W) of Ak.
Lemma 4.2. Let x ∈ Rd. If ker(H) ∩ ker(W) = {0}
and M(x)2 ⪰ ϵM Id, then T (x, ·) : RM → Rd is Lipschitz-
continuous with constant ∥H∥2/λϵ.

Next, we establish the existence of fixed points for T (·,y).
Theorem 4.3. Assume that ker(H) ∩ ker(W) = {0} and
M2(x) ⪰ ϵM Id. Then, T (·,y) : Rd → Br(0) maps
into a ball around 0 with radius r = ∥Hy∥2 /λϵ. If
M2 : Br(0) → [ϵ, 1]NoutHW is Lipschitz continuous with
constant L, then T (·,y) admits a fixed point and

∥T (x1,y)− T (x2,y)∥2 ≤
L ∥Hy∥2

λ2ϵ
∥x1 − x2∥2. (16)

Table 1: Denoising of BSD68 and CBSD68 images.

Gray Color
σn 5 15 25 5 15 25

BM3D 37.54 31.13 28.61 40.19 33.52 30.71

WCRR 37.65 31.20 28.68 − − −
SARR 37.80 31.61 29.13 − − −
SAFI 37.90 31.56 29.05 − − −
DEAL (Ours) 37.85 31.61 29.16 40.33 33.95 31.31
ProxDRUNet 37.97 31.70 29.18 40.40 33.91 31.14

DnCNN − 31.72 29.23 - 33.90 31.24
DRUNet 38.09 31.94 29.48 40.59 34.30 31.69

The Lipschitz estimate (16) is very conservative and T (·,y)
appears to often be even a local contraction. If T (·,y) is
contractive for every y ∈ RM , then we get the result of
Theorem 4.4.

Theorem 4.4. Assume that ker(H) ∩ ker(W) = {0} and
M2(x) ⪰ ϵM Id. If T (·,y) : Rd → Rd is contractive in the
sense that if ∥T (x1,y)− T (x2,y)∥2 ≤ q∥x1 − x2∥2 with
q < 1 implies that the iterations (6) converge to a unique
fixed point x̂ and that

∥xk − x̂∥2 ≤ qk−1∥x1 − x0∥2. (17)

In particular, we have exponential convergence of (6). More-
over, if x̂ = T (x̂,y1) and ẑ = T (ẑ,y2), then it holds that

∥x̂− ẑ∥ ≤ 1

1− q

∥H∥2
λϵ

∥y1 − y2∥2. (18)

5. Experiments
DEAL is trained with a denoising task. We include the
results as baseline benchmark. A key strength of universal
methods like DEAL is their ability to adapt to different tasks
with a simple tuning of the hyperparameters. This is fast
and requires only a small amount of task-specific data. To
demonstrate the generalization capability, we present results
on superresolution and MRI reconstructions, comparing
DEAL to selected (mostly universal) baselines. Additional
experiments—including grayscale deblurring, hyperparame-
ter sensitivity, and generalization—are given in Appendix C.

5.1. Grayscale and Color Denoising

We corrupt ground-truth images by adding white Gaussian
noise with standard deviation σn ∈ {5, 15, 25}. We provide
in Table 1 the average peak signal-to-noise ratios (PSNR)
achieved by various methods over the images of the BSD68
set and the CBSD68 set, noticing that some approaches
are implemented only for grayscale images. First, we in-
clude (C)BM3D (Dabov et al., 2007) as a widely regarded
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Original

Original
Measurement

Measurement
WCRR

(29.51, 0.85)

WCRR
(29.51, 0.85)

SAFI
(29.99, 0.86)

SAFI
(29.99, 0.86)

DEAL (Ours)
(30.07, 0.86)

DEAL (Ours)
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(30.13, 0.85)

ProxDRUNet
(30.13, 0.85)

DRUNet
(30.49, 0.88)

DRUNet
(30.49, 0.88)

Figure 2: Denoising of the castle image for σn = 25. For each reconstruction (PSNR, SSIM) is provided.
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Figure 3: Left: Solution path and channel-wise averages M of the weights for DEAL iterations, exemplified with the castle
image and σn = 25. Right: Plot of the residual values and PSNR over the number k of outer iterations.

classic baseline. We also evaluate against WCRR (Goujon
et al., 2024), an unadaptive field-of-expert model of the form
(2) that employs weakly convex potentials ψc. We also in-
clude its data-adaptive counterpart SARR (Neumayer et al.,
2023; Neumayer & Altekrüger, 2025). Regarding the refine-
ment perspective (3), we include SAFI (Pourya et al., 2024),
which utilizes ψc = ℓ1 instead of ℓ2. Lastly, we include
the deep-learning-based approaches DnCNN (Zhang et al.,
2017a), DRUNet (Zhang et al., 2022), and ProxDRUNet
(Hurault et al., 2022a). DRUNet is among the state-of-the-
art denoisers, and ProxDRUNet is a constrained version
of it that is more amenable to PnP reconstructions. DEAL
outperforms existing spatially adaptive methods and closes
the gap to DRUNet-based approaches while having 30 times
fewer parameters. We provide qualitative results in Figure 2,
where we also provide the structural similarity-index metric
(SSIM). In the magnified part, we can see that DEAL does

better than the DRUNet-based approaches in how it retains
structures such as the tip of the tower. In Figure 3, we pro-
vide the solution path associated to (6), the averages M of
the masks M(xk), and two convergence plots. Specifically,
the weights M extract the image structure, leading to lower
regularization cost at edge features.

5.2. Color Superresolution

Here, the forward H involves two steps: a blurring of the
image through convolution with a known kernel, followed
by a downsampling with s ∈ {2, 3} that reduces the number
of 2D measurements by a factor of s2. As further degra-
dation, an AGWN of standard deviation σn is added to the
data. Specifically, we investigate two setups: (i) a bicubic
kernel; and (ii) four Gaussian kernels with standard devia-
tions (0.7, 1.2, 1.6, and 2.0) as in (Zhang et al., 2022). We
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Figure 5: Visualizations of W⊤W. Only one eigenvalue is
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report in Table 2 the average reconstruction PSNR for the
center-cropped CBSD68 images and the number of parame-
ters for all models. This evaluation is used by Hurault et al.
(2022a), and differs from the one of Zhang et al. (2022). In
Figure 4, we provide a visual comparison. Overall, DEAL
has a nice complexity-performance tradeoff.

To deploy DEAL, we set σ = 15 in the architecture trained
for denoising and only tune the scalar hyperparameter λ
in (7) to the noise level σn, keeping it fixed across the su-
perresolution tasks. This requires only a few validation
images. Specifically, we found λ ∈ {0.1, 0.28, 2.5, 5.5}
for σn ∈ {0, 2.55, 7.65, 12.75}, respectively. An explicit
formula for λ is investigated in Table 8 of Appendix C.

We tune the other universal methods based on the recommen-
dations of their papers. DPIR (Zhang et al., 2022) represents
the state-of-the-art among PnP methods, but is tied to a fixed
number of iterations. ProxDRUnet (Hurault et al., 2022a)
addresses this by constraining DRUnet, which empirically
ensures convergence. The PnP method IRCNN (Zhang et al.,
2017b) uses a more lightweight CNN instead. While diffu-
sion models are strong in image generation, DiffPIR (Zhu
et al., 2023) cannot match DPIR in this superresolution task.

The two (bicubic for s = 2 and s = 3) end-to-end trained
SwinIR transformer models (Liang et al., 2021) perform best
in their noiseless training regime, but degrade significantly
when the setting changes (see also Table 7 in Appendix C.1).
There are no interpretable hyperparameters for adaptation,
and retraining requires significantly more data compared to
the minimal tuning of universal approaches. This lack of
generalization is a major concern in practice.

5.3. MRI Reconstruction

Now, we deploy DEAL for MRI tasks. Specifically, we
tackle the single- and 15-coil MRI setups detailed by Goujon
et al. (2023). There, the ground truth consists of knee images
from the fastMRI dataset (Knoll et al., 2020), both with
fat suppression (PDFS) and without fat suppression (PD).
The forward H involves k-fold subsampling in the Fourier
domain and corruption by AGWN with σn = 0.002. For
each of the four evaluation tasks, we use ten images to
tune the hyperparameters of all methods. In Table 3, we
report the PSNR values on centered (320 × 320) patches
of the remaining fifty test images. We compare against
the popular TV regularization, the convex CRR regularizer
(Goujon et al., 2023), its weakly convex extension WCRR,
and the ProxDRUNet. All methods are universal and can
be deployed without task-specific training. In Table 4, we
report the computation times for several methods on a Tesla
V100-SXM2-32GB GPU. We are significantly faster than
the iterative refinement approach SAFI and get close to
the (non-adaptive) WCRR baseline. Qualitative results are
given in Figure 9 of Appendix C.3.
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Table 2: Superresolution results on (256× 256) center-cropped CBSD68 dataset. The number #θ of parameters is given in
millions. SwinIR is trained with a bicubic kernel and then also deployed for the others.

Category #θ PSNR (s = 2) PSNR (s=3)
bicubic 4 different kernels bicubic 4 different kernels

Noise σn 0 2.55 7.65 12.75 0 2.55 7.65 12.75

DEAL Explicit Reg 0.85 29.91 27.99 26.58 25.75 26.83 26.20 25.27 24.59
Prox-PnP Conv. PnP 32.64 - 27.93 26.61 25.79 - 26.13 25.29 24.67

IRCNN PnP 0.19 29.84 26.97 25.86 25.45 26.74 25.60 25.72 24.38
DPIR PnP 32.64 29.63 27.79 26.58 25.83 26.70 26.05 25.27 24.66

DiffPIR [4] Diff. Model 93.56 29.73 27.84 26.48 25.63 - - - -

SwinIR [3] End to End 11.75 30.88 24.56 22.84 20.73 27.76 22.41 21.24 19.53

5.4. Computational Scalability of DEAL

Here, we investigate the scalability of DEAL. To do so, we
focus on a single-coil MRI experiment with 8-fold Carte-
sian masks of the size of the image, where only around 12
percent of the entries are nonzero. We use four images of
sizes 2562, 5122, 10242, and 20482. The largest image is
extracted from a high-resolution MRI brain image (Martinez
et al., 2023). We perform our experiments on a Tesla V100-
SXM2-32 GB GPU. In Table 5, we report the time and
memory usage for each of the images. DEAL is consistently
faster with a smaller memory footprint than Prox-DRUNet,
which is the most similar method in terms of universal-
ity, performance, and convergence properties. Noteworthy,
Prox-DRUNet fails for the image of size 20482.

6. Interpretability and Robustness
We conclude empirically from Figures 4 and 10 that DEAL
is not tied to a specific number Kout of iterations (6). In
particular, doing more updates does not degrade the per-
formance, unlike many PnP methods such as DPIR. The
convergence to a fixed point (see Theorem 4.3) occurs for
all experiments. In particular, both the relative error and the
PSNR converge. To demonstrate the robustness regarding
initialization, we instantiate the superresolution task. As
we see in Figure 4, DEAL converges (in about 10 steps) to
the same reconstruction, independently of the initialization,
which is in accordance with Theorem 4.4. The relative er-
rors for this task are given in Figure 11 of Appendix C.4,
where the empirical convergence is emphasized once more.

We present visualizations for all parts of our architecture in
Appendix D. Remarkably, we find mostly finite differences
and their higher-order counterparts at various scales within
W (see Figure 13 in the appendix). These filters extract
the salient features of the input. The impulse response of
W⊤W and its Fourier transform are given in Figure 5.
Empirically, we observe that ker(W) = span(1d) with d

Table 3: PSNR values for the MRI experiment.

4-fold single coil 8-fold multi-coil
PD PDFS PD PDFS

Zero-fill (H⊤y) 27.40 29.68 23.80 27.19
TV 32.44 32.67 32.77 33.38
WCRR 35.78 34.63 35.57 35.16
SARR 36.25 34.77 35.98 35.26
SAFI 36.43 34.92 36.06 35.36
DEAL (Ours) 36.59 34.92 36.21 35.32
ProxDRUNet 36.20 35.05 35.82 35.12
PnP-DnCNN 35.24 34.63 35.11 35.14

Table 4: Time (seconds) for the MRI experiment.

4-fold single coil 8-fold multi-coil
PD PDFS PD PDFS

WCRR 12 20 9 8
SAFI 436 470 388 326
DEAL (Ours) 14 17 22 18
ProxDRUNet 113 38 170 105

as in (2). This is a practical certification for Proposition 4.1.

Our attention mechanism is multiplicative, see (4), rather
than based on a traditional key-query parameterization. We
present two striking interpretations of the mechanism. For
simplicity, we focus on the castle-denoising example from
Figure 2 with the final solution xk. In Figure 6, we illus-
trate two learned filters within Wc and the corresponding
responses Wcxk. The associated weights (masks) mc(xk)
are well-adapted to the structural features captured by these
filters. In effect, the mask suppresses the image structures in
the final squared responses (mc(xk)⊙ (wc ∗ xk))

2, which
leads to a reduced regularization cost in (4). Hence, DEAL
preserves salient structures. This is desirable as the image
structure should not contribute to the cost.
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Method (256× 256) (512× 512) (1024× 1024) (2048× 2048)
Time (s) Mem. (GB) Time (s) Mem. (GB) Time (s) Mem. (GB) Time (s) Mem. (GB)

DEAL (Ours) 6.4 0.38 36.0 1.51 173.0 6.03 1800.0 24.11
Prox-DRUNet 18.5 0.87 62.1 3.38 240.0 13.35 NA NA

Table 5: Runtime and memory footprint in terms of different image sizes for MRI reconstruction.
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Figure 6: Learned filters. Left to right: Two filters Wc

along with (Wcxk)
2; corresponding masks mc(xk); and

adapted squared response.

Next, we describe our second interpretation. Since we are in
the denoising setting (H = I), we have that xk = A−1

k−1y,
with Ak−1 = I+λW⊤M(xk−1)

2W. Therefore, the map-
ping from the measurements y to the solution xk is linear.
More precisely, the nth component of the vectorized recon-
struction xk is a weighted average of the measurements y
with the weight given by the nth row of A−1

k−1. To extract
this row, we apply A−1

k−1 to the nth unit vector en. In Fig-
ure 7, we see that A−1

k−1en aligns well with the structure
of the neighborhood around the nth pixel. This indicates
that spatial information is encoded into Ak−1 during the
refinements. For instance, directional averaging is observed
in the first and second rows of Figure 7, while the image
of its third row exhibits little structure and DEAL averages
over a larger region, with an emphasis on the center pixel.
Thus, at equilibrium, DEAL acts as an adaptive averaging
mechanism, intelligently averaging the noisy measurements
y, with weights that emerge from our iterative refinements.

7. Conclusion
We have presented deep attentive least squares (DEAL) for
image reconstruction. DEAL builds upon classic signal-

y xk = A−1
k−1y A−1

k−1en

0

.05

.1

0

.05

.1

.15

10−4

10−3

10−2

Figure 7: Adaptive-averaging interpretation. Left: Measure-
ments y. Middle: Reconstruction xk with focus on its nth
entry (in red). Right: Weight associated to A−1

k−1 at posi-
tion n with xk[n] = ⟨A−1

k−1en,y⟩. Top to bottom: Three
regions of the castle image.

processing ideas, which we blended with recent advances in
deep learning, particularly, infinite-depth networks. It con-
sists of two parts: (i) an iterative refinement of intermediate
reconstructions based on a least-square-type problem; and
(ii) a recurrent attention mechanism that adapts the prob-
lem spatially. We achieved competitive performance on
different tasks while being able to provide interpretability,
universality, and theoretical guarantees.

So far, we have only trained DEAL on a denoising task. If
sufficient data are available, it appears possible to fine-tune
all components of DEAL to further improve its performance.
Moreover, DEAL is designed for the ℓ2 data fidelity, and
devising extensions for other data-fidelity terms is an inter-
esting direction of future work.

Impact Statement
We aim to advance the field of image reconstruction by com-
bining deep-learning tools with classic signal-processing
techniques. We provide an architecture for the solution of
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inverse problems that is interpretable and leads to compet-
itive reconstruction quality. To the best of our knowledge,
our work does not raise any ethical or societal concerns.
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A. Ablation Studies
For the linear splines φ1, φ2, and φ3 that appear in M, we fix r = 3, Nn = 31. Moreover, we initialize φ1 and φ2 as the
absolute value | · | and φ3 as e−(·)2 , motivated by classic anisotropic diffusion (Weickert, 1998). Each sc in (11) has 14 knots
in the range [−1, 51]. They are initialized as the constant function 3. We choose σ = σn in M, where σn is the standard
deviation of the noise associated with a sample. We set λ = κ(σn) with a learnable spline κ defined using 52 knots in
[−1, 51] initialized as the identity. The denoisers are strongly tied, particularly, W and M must cope with various settings.

We used NC = 128 number of filters. We observed that a reduction of NC to 64 or 32 degrades the performance for
denoising on σ = 25 by around 0.1 and 0.15, respectively. We also observed that going beyond the filter size (9× 9) in the
Multi-Conv block does not improve the performance. The proposed constraints and initializations for the learning of the
nonlinearities stem from the learning of such parts without any constraints and with zero initialization.

Since we used a shallow CNN for mask generation, we could not achieve good performance with conventional nonlinearities.
Therefore, we use the deep-spline framework of (Bohra et al., 2020). We initially learned the splines with zero initialization
and no constraints. There, we observed that φ1 and φ2 tended toward symmetric potentials, while the last ϕc resembled
cutoff functions. These observations lead to our proposed configuration. The total number of parameters for all the learnable
splines is fewer than 2000. Adding more spline knots (parameters) did not improve performance.

The attention mechanism is crucial for DEAL. Without it (M = Identity), the filter bank collapses to a single high-order
Laplacian and leads to a huge drop in performance, as much as about 4dB in denoising for σn = 25 with the grayscale
images.

B. Proofs
B.1. Proof of Proposition 4.1

Proof. Assume that there exists x ∈ Rd \ {0} ∈ ker(Ak), so that x⊤Akx = 0. By definition of Ak, this implies that
x⊤H⊤Hx = 0 and x⊤W⊤M2(xk)Wx = 0. Hence, we get that x ∈ ker(H) and x ∈ ker(M(xk)W), which is a
contradiction. For M2(xk) ⪰ ϵM Id, we estimate Ak ⪰ H⊤H+ ϵMW⊤W and the uniqueness as in the first part.

B.2. Proof of Lemma 4.2

Proof. Let x̂ = T (x,y1) and ẑ = T (x,y2), so that Axx̂ = H⊤y1 and Axẑ = H⊤y2. This implies that Ax(x̂ − ẑ) =
H⊤(y1 − y2) and we estimate

∥x̂− ẑ∥2 ≤ ∥H∥2
λϵ

∥y1 − y2∥2. (19)

B.3. Proof of Theorem 4.3

Proof. First, we investigate the range of T (·,y). By definition of T (·,y), it holds for any x ∈ Rd that

∥T (x,y)∥2 = ∥A−1
k H⊤y∥2 ≤

∥Hy∥2
λϵ

. (20)

For the second part, we want to apply the Brouwer fixed-point theorem. To this end, we must prove that T (·,y) is continuous.
Let x1,x2 ∈ Rd, x̂1 = T (x1,y), and x̂2 = T (x2,y). Then, it holds that

A1x̂1 −A2x̂2 = 0

A1x̂1 −A1x̂2 = A2x̂2 −A1x̂2

x̂1 − x̂2 = A−1
1 (A2 −A1)x̂2. (21)

Incorporating (20) and the normalization ∥W∥2 = 1, we further infer that

∥x̂1 − x̂2∥2 ≤∥A−1
1 ∥2∥W∥22∥M2(x2)−M2(x1)∥2∥x̂2∥2

≤L
∥Hy∥2
λ2ϵ

∥x2 − x1∥2. (22)

Hence, T (·,y) is Lipschitz-continuous and a fixed point exists.
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B.4. Proof of Theorem 4.4

Proof. Due to the Banach fixed-point theorem, the exponential convergence rate (17) holds. To estimate the difference of
x̂ = T (x̂,y1) and ẑ = T (ẑ,y2), we use the contractivity of T (·,y1) and Lemma 4.2 to get that

∥x̂− ŷ∥2 = ∥T (x̂,y1)− T (ẑ,y2)∥2 ≤∥T (x̂,y1)− T (ẑ,y1)∥2 + ∥T (ẑ,y1)− T (ẑ,y2)∥2

≤q∥x̂− ẑ∥2 +
∥H∥2
λϵ

∥y1 − y2∥2. (23)

From this, we readily infer (18).

C. Additional Experiments
C.1. Sensitivity to Hyperparameter Tuning and Generalization

Based on our observations in various setups, we always choose the model noise level σ = 15. In contrast, λ must be adapted
to the data noise level. This is typical for variational regularization, where λ scales with the square of the data noise level
σ2
n. We investigate this closer for multi-coil MRI reconstruction at data noise level σn = 0.002. We give in Table 6 the

reconstruction PSNR for different model noise levels σn and regularization strengths λ. Indeed, the performance depends
primarily on λ. Interestingly, even a tenfold change in λ maintains a reasonable reconstruction quality. In general, a higher
λ leads to blurred images, while a lower λ does not remove the artifacts.

Table 6: Hyperparameter Effect.

σ
λ

0.01 0.1 1 10

5 27.0 33.77 32.25 29.28
15 32.5 33.88 31.8 28.31
25 33.05 33.61 31.42 27.75
50 32.96 33.05 30.96 26.75

Table 7: PNSR across kernels.

Method Bicubic A B C D

DEAL 29.91 29.59 29.76 28.57 27.21
SwinIR 30.88 25.72 25.85 24.50 23.66

Regarding the adaptation of λ to the noise level σn, we can also use a theoretically motivated closed-form formula for λ. As
we see in Table 8, the performance drop is marginal compared to the fine-tuned case.

Table 8: Average reconstruction PSNR over 4 kernels for superresolution with s = 2 on centered-cropped CBSD68 data.

Method σn = 2.55 σn = 7.65 σn = 12.75

DEAL (fine-tuned) 27.99 26.58 25.75
DEAL (λ = 0.1 + 0.035σ2

n) 27.97 26.57 25.75

To provide further evidence for the good generalization of DEAL, we perform superresolution with a downsampling rate of
s = 2 without noise, where the SwinIR is trained on the bicubic kernel and λ is fine-tuned on the bicubic task. Then, we
apply SwinIR and DEAL to new kernels with no further change for both models. In Table 7, the kernels A-D are Gaussian
kernels with different standard deviations (0.7, 1.2, 1.6, and 2.0). Then, the reconstruction PSNR on the center-cropped
CBSD68 images is given. We conclude that SwinIR needs retraining for new kernels, while DEAL still performs well in the
presence of a kernel mismatch with the hyperparameters being tuned on the bicubic kernel and deployed on the Gaussian
ones.
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C.2. Grayscale Deblurring

Here, we evaluate the performance of the DEAL approach on a grayscale-deblurring task. We use the same setup as DPIR
for this experiment (Zhang et al., 2022). This includes two blur kernels of sizes (17× 17) and (27× 27) from (Levin et al.,
2009) and additive Gaussian noise with σn = 2.55 and σn = 7.65. In Table 9, we report the PSNR of the reconstructions for
the Set3 images, namely Cameraman, House, and Monarch. We set the model noise level σ = 15 and λ ∈ {0.5, 2.5} for the
two given AWGN noise levels. We also compare with model-based EPLL (Zoran & Weiss, 2011) and the learning approach
FDN that is specific to deblurring (Kruse et al., 2017). We observe that we are consistently the second-best method on this
task after DPIR. We provide a visual comparison with DPIR in Figure 8.

Table 9: PSNR for grayscale deblurring.

σ = 2.55 σ = 7.65

17x17 27x27 17x17 27x27
C.man House Monarch C.man House Monarch C.man House Monarch C.man House Monarch

EPLL 29.18 32.33 27.32 27.85 28.13 22.92 24.82 28.50 23.03 24.31 26.02 20.86
DEAL (Ours) 31.72 35.20 32.77 31.64 35.03 32.48 27.89 32.24 28.26 27.79 32.11 28.15
FDN 29.09 29.75 29.13 28.78 29.29 28.60 26.18 28.01 25.86 26.13 27.41 25.39
IRCNN 31.69 35.04 32.71 31.56 34.73 32.42 27.70 31.94 28.23 27.58 31.55 27.99
DPIR 32.05 35.82 33.38 31.97 35.52 32.99 28.17 32.79 28.48 27.99 32.87 28.27

Blur Kernel

Original
Measurements 
 (17.01, 0.42)

DEAL (Ours) 
 (31.64, 0.89)

DPIR 
 (31.97, 0.90)

Original
Measurements 
 (18.60, 0.43)

DEAL (Ours) 
 (35.03, 0.88)

DPIR 
 (35.52, 0.89)

Original
Measurements 
 (13.92, 0.22)

DEAL (Ours) 
 (32.48, 0.94)

DPIR 
 (32.99, 0.95)

Figure 8: Both kernel and deblurring results for noise level σn = 2.55.
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C.3. Visualizations for MRI Reconstruction

We provide in Figure 9 visual reconstruction examples obtained with the different methods from Table 3. We also provide
the solution path and the convergence plots for DEAL in Figure 10.

Original Zero-fill 
 (22.66,0.613)

WCRR 
 (33.15,0.875)

SAFI 
 (33.69,0.887)

DEAL (Ours)
 (34.08,0.886)

ProxDRUNnet 
 (33.66,0.872)

Figure 9: Eight-fold multi-coil MRI reconstructions for a PD image of the knee.

x0 10.56

M(x0)

x1 24.12

M(x1)

x2 28.29

M(x2)

x10 33.98

M(x10)

x20 34.08

M(x20)

x32 34.08

M(x32)
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PSNR of xk

10−6

10−4

10−2
∥xk+1−xk∥

∥xk∥

Figure 10: Solution and mask path for the 8-fold multi-coil MRI reconstruction for a PD image of the knee.

C.4. Convergence Plot for Superresolution

In Figure 11, we represent the convergence plot for the superresoluion task on the setup of Figure 4.

0 5 10 15 20 25
Iteration k

10 6

10 5

10 4

10 3

10 2

10 1

100

xk + 1 xk

xk
x0 = x
x0 = 0
x0 = H y
x0 (0, I)
x0 ([0, 1])

Figure 11: Convergence plot for the superresolution task with s = 2 and noise level σn = 2.55 for different initializations.
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D. Visualization of Model Components
Now, we inspect the components of our learned grayscale model. In Figure 13, we depict the impulse response of W,
namely, the equivalent convolution kernels of the block(a.k.a filters). The convolutions of Wmask have similar structure,
as we see in Figure 14. In addition, we depict the learned splines in Figure 12. For ϕσc , we visualize three noise levels
σ ∈ {5, 15, 25} and channels c ∈ {44, 93, 99}. The three visualized channels correspond to vertical edge filters of various
scales, see Figure 13. They resemble threshold functions that set high responses to zero. This results in less regularization in
the regions that have high responses to the filters that are often activated by the image structures. This is a desirable behavior
as the structure of the image should not contribute to the regularization cost. Additionally, the widths of the last spline ϕσc
are increasing for all channels with respect to the noise level σ. Thus, more regularization is performed at higher noise
levels. Moreover, we show the channel-wise average of the masks for the noisy and the denoised castle image in Figure 15.
The masks remove the undesirable contribution of the image to the filter responses Wx of the regularizer. This results in
lower penalization of the edges and yields sharper solutions.
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Figure 12: Learned splines in the mask-generation network M (Figure 1) for grayscale model.
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Figure 13: Effective convolution kernels for the Multi-Conv block W in the grayscale model. All plots use the same range,
where neutral gray corresponds to zero.
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Figure 14: Effective convolution kernels for the Multi-Conv block Wmask in the grayscale model. All plots use the same
range, where neutral gray corresponds to zero.
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Figure 15: Filter responses and masks. From left to right: channel-wise average of (i) the squared response to the noisy
image (top) and the solution of the castle denoising problem (bottom); (ii) the masks computed on the noisy image (top) and
the solution (bottom): (iii) corresponding adapted responses.
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