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ABSTRACT

This paper tackles the problem of video question answering (VideoQA), a task
that often requires multi-step reasoning and a profound understanding of spatial-
temporal dynamics. While large generative video-language models perform well
on benchmarks, they often lack explainability and spatial-temporal grounding. In
this paper, we propose Agent-of-Thoughts Distillation (AoTD), a method that
enhances generative models by incorporating automatically generated Chain-of-
Thoughts (CoTs) into the instruction-tuning process. Specifically, we leverage an
agent-based system to decompose complex questions into sub-tasks, and address
them with specialized vision models, the intermediate results are then treated as
reasoning chains. We also introduce a verification mechanism using a large lan-
guage model (LLM) to ensure the reliability of generated CoTs. Extensive exper-
iments demonstrate that AoTD improves the performance on multiple-choice and
open-ended benchmarks.

1 INTRODUCTION

Video Question Answering (VideoQA) is a critical task in the computer vision community, offering
a natural interface for human-machine interaction through language (Yu et al., 2019; Wu et al., 2021;
Xiao et al., 2021; Pătrăucean et al., 2023). This synergy of visual content and language enhances the
accessibility of AI systems for the general public, allowing users to query complex visual content
with everyday language. By encompassing tasks such as action recognition, object detection, and
scene understanding, VideoQA serves as a comprehensive benchmark for evaluating AI’s ability to
interpret videos, addressing the fundamental questions of ‘who,’ ‘what,’ ‘when,’ and ‘where’ that are
crucial to understand daily life activities, pushing the boundaries of what AI systems can interpret
from dynamic visual content.

Recent literature in VideoQA has highlighted two key directions. The first focuses on training large
generative video-language models (Video-LLMs) through direct instruction-tuning, where videos
are only paired with questions and answers (Alayrac et al., 2022; Lin et al., 2024; Maaz et al., 2024;
Cheng et al., 2023). While these models have shown exceptional performance on public bench-
marks, they often lack explainability and struggle with spatio-temporal grounding. This limitation
hinders their ability to provide clear reasoning, which is essential for real-world applications where
transparency and interpretability are critical (Mitra et al., 2023).

In contrast, an emerging approach focuses on agent-based systems (Surı́s et al., 2023; Gupta & Kem-
bhavi, 2023; Hu et al., 2024b), which break down complex questions into simpler sub-tasks. Each
sub-task is handled by specialized tools, and the results are aggregated to generate a final answer.
This approach theoretically offers greater interpretability, as the reasoning process is divided into ex-
plainable steps that can be independently assessed. However, our experiments indicate that current
video understanding tools are not strong enough for building reliable agent-based systems. Addi-
tionally, the high memory demands and time-consuming nature of these systems present significant
challenges for their practical use.

In this paper, we propose enhancing the capabilities of large generative video-language models by in-
corporating automatically generated Chain-of-Thoughts (CoTs) into the instruction-tuning process.
Our approach draws inspiration from agent-based systems, which break down complex questions
into a sequence of sub-tasks, each handled by specialized models (Fan et al., 2024; Mahmood et al.,
2024; Min et al., 2024). We use the outputs from these specialized models to construct CoTs that
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  Person held the phone/camera: Frame 22 to 30.


Person closed something: Frame 15 to 22.


Person’s location: [49, 0, 201, 335] at frame 15 ···


Laptop  around the person and person closed it


Laptop’s location: [135, 0, 255, 144] at frame 15 ···


Answer: (A) The laptop.

Video-LLM

Video-LLM-AoTD

Frame 15

……

Frame 15 Frame 18 Frame 19 Frame 22

…… …

(a) Previous Video-LLM training w/o AoTD 

(b) Video-LLM training w/ AoTD 

Z

Question: Which object did the person close before they held the phone?

Possible answers: (A) The laptop. (B) The box. (C) The bed. (D) The book.

…

Thinking process

Question 
Breakdown

Temporal 
Grounding

Object 
Detection

(D) The book.

…

Question: Which object did the person close before they held the phone?

Possible answers: (A) The laptop. (B) The box. (C) The bed. (D) The book.

Figure 1: Our method, AoTD, distills multi-step reasoning and spatio-temporal understanding into
a single generative video-language model. When addressing complex VideoQA tasks, the model
trained with AoTD (as shown in (b)) enables to generate a step-by-step reasoning to get the correct
answer. In contrast, previous models trained solely on question-answer pairs (as in (a)) generate
only a final answer, often without intermediate reasoning, which can lead to incorrect conclusions.

explicitly represent step-by-step reasoning paths, capturing the reasoning processes that generative
models typically struggle to model independently.

To ensure the reliability of the constructed CoTs, we systematically evaluate existing models and
tools for atomic video understanding tasks, such as action recognition (Weng et al., 2023; Wang
et al., 2024) and language grounding (Lin et al., 2023), using a well-annotated dataset. This allows
us to identify the best-performing tools for each sub-task, preparing for effective CoTs distillation.
This process also serves as an evaluation of the broader capabilities of visual models in more gen-
eral and complex scenes, offering guidance for future exploration in the computer vision community.
Additionally, we introduce a verification mechanism with a large language model (LLM), to assess
whether the generated CoTs follow a clear, step-by-step reasoning process and contain useful infor-
mation for answering the question. This filters out low-quality or logically inconsistent reasoning
paths. The verified, high-quality CoTs are then distilled into large generative video-language mod-
els, enhancing both performance and the interpretability of their outputs. By combining the strengths
of both approaches, our method balances performance with transparency, leading to the development
of more robust, accurate, and interpretable VideoQA systems.

In summary, our contributions are three-fold: First, we propose a novel approach for enhancing
large generative video-language models (Video-LLMs) by distilling high-quality Chain-of-Thoughts
(CoTs) into their instruction tuning. These CoTs capture step-by-step reasoning paths, improving
both the model’s performance and its interpretability; Second, to automatically construct the CoTs
for any datasets, we employ an agent-based system to decompose complex VideoQA questions into
simpler sub-tasks, leveraging off-the-shelf vision models to handle each sub-task. The intermedi-
ate outputs from these models can therefore be collected as CoTs for addressing the corresponding
visual question; Third, we demonstrate through extensive experiments that our distilled model out-
performs existing methods across both multiple-choice and open-ended VideoQA benchmarks, en-
abling to deliver not only accurate answers but also clear and comprehensive reasoning explanations.

2 AGENT-OF-THOUGHTS DISTILLATION

In this paper, we propose a novel approach, termed Agent-of-Thought Distillation (AoTD), to en-
hance the Video-LLMs by training them with multi-step chain-of-thoughts (CoTs). Specifically, we
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CoT Distillation

Question: What happened after the person held the laptop?  Answer: Opened the refrigerator.

Program Generation & Execution
def execute_command(video):

held_clip = Filter_frames_with_act(···
after_held_clip = trim(video, start=···

······
person_clip = Find(after_held_clip, 

     “person”)
answer = Query_action(person_clip)
return answer

CoT Conversion & Filtering

Execution

trace

Conversion

prompt

Unfiltered

CoTFind person [108,51,218,287] at 

frame 13

Person held the laptop  frame 13 to 18

Trim video from frame 18 to 32
······

Person opened the refrigerator

We first need to 
find when did the 
person hold the 

laptop, it 
happened from 
frame 0 to 5 ···Filter


prompt

CoT: We first need to find when 

did the person hold the ··· 

Answer: Opened the refrigerator.Answer the question 

in a word or phrase.

Explain the rationale 

to solve the question.

What happened after the person 
held the laptop?

Video-LLM-AoTD

Available Agents

Object 
Detection

Question 
Decomposition

Temporal 
Grounding

Action 
Recognition

Question 
Answering

Captioning 
Summary

Model Selection
model 1 model 2 model 3

LLM LLM

······

Figure 2: Overview on Agent-of-Thoughts Distillation (AoTD). Step 1: Selecting best-performing
agents for each sub-task to construct an agent-based system. Step 2: Decomposing question into
executable program and leveraging chosen models to solve it sequentially to generate execution
trace. Step 3: The execution trace is converted and filtered by LLM to produce high quality natural
language CoTs. Step 4: Distilling CoTs into Video-LLM with two forms of prompt, allowing
it achieve a balance between concise answers and comprehensive rationales. The final model is
Video-LLM-AoTD.

begin by developing an agent-based video understanding system to generate multi-step reasoning
chains that address complex video questions. These reasoning chains are then distilled into one
Video-LLM through instruction tuning. By combining the strengths of agent-based systems and
large generative models, our proposed AoTD enables to build more reliable and interpretable Video
Question Answering systems.

2.1 PROBLEM FORMULATION

Given a video clip with t frames, V = {x1, . . . , xt}, and a set of n questions Q = {q1, q2, ..., qn},
our goal is to train a Video-LLM capable of producing both concise answers and comprehensive
rationales. Depending on the suffix prompt ps, the model can generate different types of outputs.
The process can be formulated as:

{ai,Si} = Φ(V, qi, ps), where Si = {∅} or {si,1, si,2, . . . , si,k}

where qi denotes the i-th question, ai is the answer in free-form text, and Si represents the rationale,
consisting of the multi-step reasoning process. If the prompt specifies to only generate the answer,
Si = {∅}. Otherwise, if the prompt requires the generation of rationales, Si = {si,1, si,2, . . . , si,k},
where each si,j corresponds to a reasoning step.

Discussion. Unlike existing models that are typically instruction-tuned on VideoQA datasets using
simple question-answer pairs, which bypass the intermediate thought process, our approach em-
phasizes the importance of training with rationales, or chain-of-thoughts (CoTs). In the following
section, we outline the process for generating high-quality CoTs from existing VideoQA datasets.

2.2 COTS CONSTRUCTION WITH AGENT-BASED SYSTEM

Recent work, such as STAR (Wu et al., 2021), has introduced executable symbolic programs that
can directly decompose questions into sub-tasks. When combined with scene graphs that contain
comprehensive video information from key frames—such as object locations, interactions, and ac-
tions—these programs facilitate the generation of concise Chain-of-Thoughts (CoTs) through the
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def execute_command(video, query, possible_answers):
    hold_clip = Filter_frames_with_act(video, 
                                'person held the book')
    before_hold_clip = trim(video, end=hold_clip.start)
    put_clip = Filter_frames_with_act(before_hold_clip, 

     'person put down something')
    person_clip = Find(put_clip, 'person')
    put_objs = Query_Objs(person_clip, 

‘object put down by the person’)
 info = {'object put down by the person’: put_objs}
 answer = select_answer(query, info, possible_answers)

    return answer

Question: Which object did the person put down before they held the book?

Video input

Filter_frames_with_act
hold_clip: 
Frame 7 to 15

frame 7 frame 15

Ground Truth
Hold a book: Frame[6.64
,7.45,…,16.32]

trim
before_hold_clip: 
Frame 0 to 7

···

frame 7frame 0

Filter_frames_with_act
put_clip: 
Frame 2 to 7

frame 7

Find
person_clip:[120,0,239,
413] in frame 2 ···

frame 2 frame 2

Ground Truth
Frame[2.88,3.41,4.78,
6.12,6.64]

Ground Truth
Put something: Frame[2.88
,3.41,4.78,6.12,6.64]

···

Ground Truth
Person:[128,64,244,371] 
in frame 2.88 ···

Query_Objs
put_objs: broom

Ground Truth
Put a broom somewhere

Ground Truth Answer

The broom.

Program Output

The broom.

Object Detection Eval
Person:[119,0,241,408] 
in frame 2.88 ···

frame 2.88

···

···

frame 7

··· ···

frame 2 frame 7

Possible answers: (A) The broom. (B) The paper. (C) The door. (D) The cup.

frame 6.64

Evaluation IoU

65.8%

Figure 3: Program execution process in an agent-based system. We uniformly sample 32 frames
from the video, and to ensure scale consistency, the frame ids of key frames are normalized into
these 32 frames. The blue boxes represent the program execution steps, the red boxes denote the
ground truth for each step.

direct execution of symbolic operations. However, datasets of this nature are limited in scale. In
response to this limitation, we propose an agent-based system capable of breaking down complex
questions into simpler sub-tasks, utilizing off-the-shelf vision models. The intermediate outputs
from this system can then be employed to construct CoTs for any existing VideoQA dataset.

Agent-based VideoQA. Given a video input (V), questions (Q), and a set of visual models (M =
{ϕact, ϕdet, . . . , ϕqa}), an LLM-based agent core (π(·)) processes the question along with the docu-
mentation of the visual models (T ), which includes variables and functionalities. The agent then
decomposes the question into sub-tasks and addresses them by invoking the corresponding visual
models. It is important to note that the visual models can be arranged in various orders depending
on the specific question, ensuring flexibility in problem-solving.

Specifically, in the example illustrated in Fig. 3, the question is first decomposed into a series of sub-
tasks, including temporal grounding, object detection, and question answering. The corresponding
specialized models are then executed sequentially to address these sub-tasks, ultimately yielding the
final answer:

{ϕground, ϕdet, ϕqa} := π(qi, T ), yi = ϕground(V) → ϕdet(V) → ϕqa(V)

CoTs Construction. To ensure the correctness of outputs at intermediate steps, we leverage the
training set from STAR for hyperparameter tuning, enabling us to identify the most effective model
for each sub-task within the agent-based system. By following the provided programs, we evaluate
the performance of the corresponding vision models on tasks such as object detection and action
recognition. Given the availability of complete reasoning chains, we independently assess each
sub-task using ground truth data for all preceding steps.

Table 1 presents the evaluation results for the various sub-tasks. For question decomposition, we
compared several code LLMs, with DeepSeek-Coder-Instruct achieving the highest performance,
outperforming even GPT-3.5-Turbo. In object detection, OWL-ViT v2 recorded the highest Inter-
section over Union (IoU) score, showcasing its superior open-vocabulary detection capability. The
results for temporal grounding indicate that while UniVTG leads in performance, there remains
a need for further advancements in this area. In action recognition, our evaluations showed that
generative models outperformed discriminative models, likely due to the fine-grained action list
provided by the STAR dataset. However, the performance of both model types reveals significant
opportunities for improvement. Finally, in the one-hop question answering sub-task, all models
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Table 1: Sub-tasks definition and evaluation results. We choose 3 model candidates for each sub-
task and evaluate them in STAR training set with the corresponding metrics. Models with best
performance are placed at the bottom of each column.

Sub-task name Model name Metric Number (%)

Question decomposition
CodeQwen1.5-Chat (7B) (Bai et al., 2023) 52.7
GPT-3.5-Turbo (OpenAI, 2023a) Acc 73.1
DeepSeek-Coder-Instruct (6.7B) (Daya et al., 2024) 85.7

Object detection
OWL-ViT v1 (Matthias et al., 2022) 47.3
GLIP (Li* et al., 2022) IoU 58.9
OWL-ViT v2 (Minderer et al., 2024) 63.0

Temporal grounding
LITA (13B) (Huang et al., 2024) 11.7 / 20.2
TimeChat (7B) (Ren et al., 2024) IoU / Recall 13.9 / 23.1
UniVTG (Lin et al., 2023) 24.7 / 35.3

Action recognition
InternVideo2 (1B) (Wang et al., 2024) 7.6
Open-VCLIP (Weng et al., 2023) Top1-Acc 8.9
LLaVA-NeXT-Video-DPO (7B) (Zhang et al., 2024) 18.2

Question answering
LLaMA-VID (7B) (Li et al., 2024c) 43.5
SeViLA (Yu et al., 2023a) Acc 46.5
LLaVA-NeXT-Video-DPO (7B) (Zhang et al., 2024) 53.4

performed admirably, with LLaVA-NeXT-Video-DPO standing out as a top performer, consistent
with its strong results on other benchmarks.

With these high-performing models, we implement the agent-based approach on VideoQA datasets
that consist solely of question-answer pairs. During the execution of the programs, we record all
intermediate outputs to construct the CoTs. Since the outputs from these vision models vary in
format—such as bounding boxes and free-form text—we employ another LLM to translate the exe-
cution trace into natural language, facilitating its use in the distillation process. Detailed examples
are provided in Appendix B.

2.3 COTS VERIFICATION

To further refine the quality of reasoning chains for VideoQA samples, we implement a two-step
verification process: (i) we filter execution traces to retain only those where the program can reach
correct output. For multiple-choice datasets, the output must match the correct answer exactly,
while for open-ended datasets, we prompt the LLM to verify correctness, accounting for format dif-
ferences; (ii) we prompt the LLM to evaluate the logical coherence and usefulness of the reasoning
chains in solving the problem. The model assesses whether the CoTs follow a clear, step-by-step
reasoning process and provides a binary evaluation (‘Yes’ or ‘No’) to indicate their quality (de-
tailed prompts can be found in Appendix C). This two-step approach ensures that only accurate and
high-quality CoTs are utilized for further distillation into the model.

After filtering, we provide the statistics for the generated CoTs on different datasets in Table 2. We
primarily select compositional QA datasets, as these require the model to process spatial-temporal
information from different events comprehensively.

2.4 DISTILL STEP BY STEP

In this section, we describe the process of distilling the generated CoTs into a Video-LLM. This
distillation enhances the model’s ability for spatial-temporal video understanding and multi-step
reasoning, thereby improving its performance on complex Video Question Answering (VideoQA)
tasks.

Specifically, using the generated CoTs, we can build the dataset D = {(Vj , qj , ŷj , cj , ps)}Nj=1,
where N is the total number of samples in the distilling dataset, Vj is the video input, qj is the

5
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Dataset Description # Labels # CoTs
AGQA Compositional 25.0K 5.4K
ANetQA Compositional 25.0K 3.6K
STAR Compositional 45.7K 11.2K
NExT-QA Temporal & Causal 34.1K 12.1K
CLEVRER Spatial & Temporal 21.0K -
EgoQA Ego-centric 7.8K -
Total 158.6K 32.3K

Table 2: Dataset statistics. The col-
umn “# Labels” indicates the num-
ber of VideoQA pairs, which include
the video, query, possible answers
(multiple-choice), and the correct an-
swer. “# CoTs” refers to the number of
CoTs generated using our agent-based
system for each dataset.

question, ŷj is the ground-truth answer, cj is the generated CoT, ps is the task-specific suffix prompt,
to distinguish different tasks, for example, for multiple-choice VQA, the prompt is “Answer with
the option’s letter from the given choices directly and only give the best option”, and for open-ended
VQA, the prompt is “Answer in one word or phrase”. Detailed prompts are provided in Appendix C.

At distillation stage, we minimize the cross-entropy loss of predicting both the answer and the chain-
of-thoughts, we replace the suffix prompt ps with “Explain the rationale to answer the question” to
control whether we want a question answer or a CoT to explain the thinking steps. Thus, our
optimization objective is:

L = Llabel + λLrationale =

N∑
j=1

ℓ(Φ(Vj , qj , ps), ŷj) + λℓ(Φ(Vj , qj , ps), cj)

Here we set λ to 1 to ensure the importance of answer and rationale are equally considered, which
can not only keep the capacity to predict the short question answer but also expand the ability to
generate the rationale to solve the question. Notice that not all the QA pairs can generate qualified
CoT. In that case, the Lrationale will be set to 0.

Table 3: Training and evaluation datasets statics.

Dataset Avg Size Type Train Eval
Duration (s) train eval

MC-VQA
STAR (Wu et al., 2021) 11.6 45.7K 7.1K Compositional ✓ ✓

NExT-QA (Xiao et al., 2021) 44 34.1K 5.0K Temporal & Causal ✓ ✓

CLEVRER (Yi et al., 2020) 5 21.0K - Spatial-temporal ✓ ✗

Perception-Test (Pătrăucean et al., 2023) 23 - 11.5K General ✗ ✓

MVBench (Li et al., 2024b) 5-35 - 2.0K General ✗ ✓

VideoMME (Fu et al., 2024) 1010 - 2.7K General ✗ ✓

OE-VQA
AGQA (Grunde-McLaughlin et al., 2021) 30 25.0K 2.0K Compositional ✓ ✓

ANetQA (Yu et al., 2023b) 180 25.0K 2.0K Compositional ✓ ✓

EgoQA (Grauman et al., 2022) 6.4 7.8K - Ego-centric ✓ ✗

Activitynet-QA (Yu et al., 2019) 112 - 8.0K General ✗ ✓

Video-ChatGPT (Maaz et al., 2024) 108 - 3.0K General ✗ ✓

3 EXPERIMENTS

In this section, we present the experimental setup (Sec. 3.1) and comparison results on various
VideoQA benchmarks (Sec. 3.2). Extensive ablation studies are also undertaken to further examine
the contributions of our approach in Sec. 3.3, and an evaluation on the quality of rationales generated
by the distilled model is made in Sec. 3.4.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: Comparison with Video-LLMs on MC-VQA benchmarks. LLaVA-NeXT-Video-AoTD
outperforms all other baselines the and the version without CoT distillation.

Model MVBench VideoMME STAR NExT-QA Perception-Test
(Acc.) (Acc.) (Acc.) (Acc.) (Acc.)

Proprietary Models
Gemini 1.0 Pro (Google, 2023) - - - - 51.1
Gemini 1.0 Ultra (Google, 2023) - - - - 54.7
Gemini 1.5 Pro (Google, 2024) - 75.7 - - -
GPT4-V (OpenAI, 2023b) 43.7 60.7 - - -
GPT4-O (OpenAI, 2024) - 66.2 - - -

Open-source Models
LLaMA-VID (7B) (Li et al., 2024c) 41.9 25.9 - - 44.6
Video-LLaVA (7B) (Lin et al., 2024) 41.0 40.4 - - 44.3
VideoChat2 (7B) (Li et al., 2024b) 51.1 33.7 59.0 68.6 47.3
VideoLLaMA2 (7B) (Cheng et al., 2024) 53.4 44.0 58.5 62.3 49.6
LLaVA-NeXT-Video (7B) (Zhang et al., 2024) 46.5 41.0 52.4 61.6 47.5
LLaVA-NeXT-Video-Instruct (7B) 53.4 43.2 72.2 77.1 50.3
LLaVA-NeXT-Video-AoTD (7B) 55.6 45.0 74.3 77.6 50.6

3.1 EXPERIMENTAL SETUP

Base model. We use LLaVA-NeXT-Video (7B) (Zhang et al., 2024) (LNV for short) as base
Video-LLM, which has shown remarkable performance on image-centric tasks, for example im-
age QA (Yue et al., 2024). We present comparison on naive instruction tuning with video question
answering dataset or with additional CoTs distillation. For CoT conversion and verification, we
prompt LLaMA-3.1-8B with the manually-designed instruction and some in-context examples. De-
tailed prompts are provided in Appendix C.

Instruction tuning. As shown in Table 2, we utilize both multiple-choice and open-ended QA data,
along with the generated CoTs, to fine-tune the base video question answering model. The result-
ing distilled model is named LLaVA-NeXT-Video-AoTD (LNV-AoTD for short). Additionally, as
baseline, we also train another version of the model using only the basic QA data, which we refer to
as LLaVA-NeXT-Video-Instruct (LNV-Instruct for short).

Evaluation benchmarks. We conduct extensive evaluations on Multiple-Choice Video QA (MC-
VQA) and Open-Ended Video QA (OE-VQA). We report the top-1 accuracy for all MC benchmarks,
which means the proportion of the output equal to the answer. For the evaluation on AGQA and
ANetQA, we sample subsets from them, due to the large volume of test set. We report a GPT-
assessed accuracy and score with the help of GPT-3.5-turbo-0613 for all OE benchmarks. The
accuracy is a binary right or wrong choice and the score means similarity of output to the answer.
We evenly select the benchmark in-domain and out-of-domain for testing to ensure a comprehensive
and reasonable evaluation of the model capability. Detailed statistics for evaluation benchmarks are
shown in Table 3.

3.2 QUANTITATIVE RESULTS

We divide the comparison into two parts: the first focuses on comparing the distilled model with
other baselines, while the second examines the difference between the instruction-tuned model and
the AoTD version. Note that, as the base model continues improving with more data and compute,
we expect our proposed idea can be used to enhance the performance of any model.

MC-VQA performance. As shown in Table 4, our LLaVA-NeXT-Video-AoTD achieves superior
performance across all benchmarks. Several key observations can be made: (i) Compared to the
base model, even a simple instruction-tuning on certain VideoQA datasets significantly enhances
the model’s question-answering performance. This improvement is notable since the base model
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Table 5: Comparison with Video-LLMs on OE-VQA benchmarks. LLaVA-NeXT-Video-AoTD
improves performance in all open-ended benchmarks compared with the Instruct version.

Model ANetQA AGQA Video-ChatGPT (Score) ActivityNet
(Acc./Score) (Acc./Score) Corr. Deta. Cont. Temp. Cons. (Acc./Score)

Proprietary Models
Gemini 1.0 Pro (Google, 2023) - - - - - - - 49.8/-
Gemini 1.0 Ultra (Google, 2023) - - - - - - - 52.2/-
Gemini 1.5 Pro (Google, 2024) - - - - - - - 56.7/-
GPT4-V (OpenAI, 2023b) - - 4.09 3.88 4.37 3.94 4.02 59.5/-
GPT4-O (OpenAI, 2024) - - - - - - - 61.9/-

Open-Source Models
VideoLLaMA (7B) (Cheng et al., 2023) - - 1.96 2.18 2.16 1.82 1.79 12.4/1.1
Video-ChatGPT (7B) (Maaz et al., 2024) - - 2.50 2.57 2.69 2.16 2.20 35.2/2.7
LLaMA-VID (7B) (Li et al., 2024c) - - 2.96 3.00 3.53 2.46 2.51 47.4/3.3
Video-LLaVA (7B) (Lin et al., 2024) - - 2.87 2.94 3.44 2.45 2.49 45.3/3.3
VideoChat2 (7B) (Li et al., 2024b) - - 3.02 2.88 3.51 2.66 2.81 49.1/3.3
VideoLLaMA2 (7B) (Cheng et al., 2024) - - 3.09 3.09 3.68 2.63 3.25 49.9/3.3
LLaVA-NeXT-Video (7B) (Zhang et al., 2024) 46.4/3.3 27.4/2.2 3.26 3.22 3.77 2.47 2.99 54.3/3.2
LLaVA-NeXT-Video-Instruct (7B) 47.1/3.1 59.3/3.4 2.96 2.81 3.35 2.42 2.82 50.0/3.3
LLaVA-NeXT-Video-AoTD (7B) 53.9/3.4 60.9/3.6 3.11 3.00 3.60 2.41 2.91 53.2/3.4

was primarily trained on static images and struggled with video understanding. (ii) Our model,
trained with CoTs distillation, demonstrates further performance enhancements across all bench-
marks, particularly on the compositional VideoQA benchmark (STAR) and comprehensive bench-
marks (VideoMME, MVBench). This suggests that our AoTD method effectively improves the
model’s ability to address complex problems and interpret spatial-temporal scenes. (iii) The distilled
model consistently outperforms all other baselines across all benchmarks, even when compared to
more powerful models. This finding illustrates that our method effectively bridges performance gaps
created by varying model components.

OE-VQA performance. As shown in Table 5, LLaVA-NeXT-Video-AoTD outperforms the In-
struct variant across all open-ended VideoQA benchmarks. Notably, it achieves a greater percentage
increase compared to the Multiple-Choice (MC-VQA) benchmarks, suggesting that CoTs distilla-
tion may be more effective for open-ended generation than for multiple-choice selection. While
the distilled model scores higher than most models listed in the table, it does not surpass LLaVA-
NeXT-Video on certain benchmarks. We conjecture this is due to the model’s extensive training on
images, that can also benefit the question answering without requiring complex reasonings, as also
suggested by the findings in VideoLLaMA2 (Cheng et al., 2024). Additionally, the inherent chal-
lenges of evaluating open-ended VQA may influence the results. Assessments conducted by GPT
can be biased or inaccurate, and the metrics we employ primarily indicate general trends rather than
providing absolute accuracy.

3.3 ABLATION STUDY

Analysis on CoT filtering. To demonstrate the effectiveness of our filtering mechanism, we trained
an alternative model without CoTs filtering while maintaining all other settings. The amount of CoTs
distillation data increased to 36.3K. As shown in Table 6, the model’s performance declines signif-
icantly on both the Multiple-Choice (MC-VQA) and Open-Ended VQA (OE-VQA) benchmarks
when the CoT filtering mechanism is not utilized. This confirms that employing large language
models (LLMs) to filter CoTs is an crucial for enhancing data quality.

Analysis on model transferability. As AoTD is a distillation method that leverages Chain-of-
Thoughts (CoTs), it can theoretically be applied to any Video-LLMs. To assess the transferability
of our method, we conduct experiments on another very recent model, LLaVA-OneVision(7B) (Li
et al., 2024a). As shown in Table 6, our method still achieves significant improvements on the
benchmarks, demonstrating both the transferability and robustness of the approach. Due to the rapid
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advancements in the computer vision field, evaluating all models and benchmarks is prohibitively
infeasible. Thus, we focus on assessing a single model against selected benchmarks to provide a
representative evaluation.

3.4 EVALUATION ON RATIONALES

To verify whether the model has effectively learned multi-step reasoning through CoTs distillation,
we analyze the rationales generated by the model. Specifically, we extract and evaluate the temporal
and spatial information embedded within these rationales. This approach extends beyond merely
assessing the correctness of the final answer, which could be influenced by biases or other external
factors. By examining the reasoning process in detail, we gain a more accurate understanding of the
model’s ability to perceive and reason about spatial and temporal relationships.

Evaluation protocols. We randomly select 200 samples from the STAR validation set and perform
inference on this subset using the suffix prompt, recording the generated rationales. From these
rationales, we extract the predicted temporal windows and bounding boxes, comparing them to the
ground truth. For the spatial evaluation, we calculate the IoU between the predicted and ground
truth bounding boxes. For the temporal evaluation, we compute both IoU and Recall, leveraging the
frame-level scene graph annotations provided in the STAR dataset.

Evaluation results. Table 7 presents the evaluation results. For comparison, we also test Uni-
VTG for temporal reasoning and OWL-ViT v2 for spatial reasoning. The results show that LLaVA-
NeXT-Video-Instruct struggles to generate valid rationales, even when using the suffix prompt. In
contrast, LLaVA-NeXT-Video-AoTD demonstrates comparable performance to specialized models
in both spatial and temporal reasoning, indicating that the model successfully acquired these abilities
through the distillation process.

Table 6: Ablation results of CoT filtering and
model transferability.

Model Filtering MVBench STAR AGQA
(Acc.) (Acc.) (Acc. / Score)

LNV-AoTD ✗ 53.7 73.3 59.5/3.5
LNV-AoTD ✓ 55.6 74.3 60.9/3.6
Onevision - 58.0 65.9 39.0/3.0
Onevision-Instruct - 59.2 75.8 65.6/3.7
Onevision-AoTD ✓ 60.5 76.6 65.7/3.7

Table 7: Temporal and spatial abilities evalua-
tion result.

Model Temporal Grounding Spatial Grounding
IoU (%) Recall (%) IoU (%)

UniVTG 22.8 31.0 -
OWL-ViT v2 - - 64.7
LNV-Instruct ✗ ✗ ✗
LNV-AoTD 21.7 34.0 45.2

4 RELATED WORK

Video-language models (Video-LLMs). Most existing Video-LLMs are composed of a pre-trained
visual encoder(like CLIP (Radford et al., 2021) or SigLIP (Zhai et al., 2023)) to encode video frames
into a sequence of visual features, an adapter to transfer the visual features to tokens which can be
understood by the language model, and a pre-trained LLM to output the final response. These mod-
els achieve strong ability for general vision-language tasks like Video question-answering (think
the task as auto-regressive generation with question as prompt prefix). More recent works such as
VideoLLaMA2 (Cheng et al., 2024), LLaVA-NeXT-Video (Zhang et al., 2024) and Videochat2 (Li
et al., 2024b), with their excellent architecture design and reasonable instruction tuning data collec-
tion, have achieved a new level of zero-shot results in Video QA task. However, current end-to-end
models still lack of interpretability for questions, as well as the ability to think and visually process
complex problems in multiple steps, leads to their weakness in real complex scenarios, which is an
important part for embodied learning and autonomous driving.

Visual Programing and Agents. With the progress of LLMs, some recent works (Gupta & Kemb-
havi, 2023; Surı́s et al., 2023) begin to try to use LLM as planner to solve the complex reasoning task
in real scenarios. They attempt to decompose the question into some easier sub-questions, and use
different specialist models as agents to solve these sub-questions, and finally gather them to get the
answer of the raw question. MoReVQA (Min et al., 2024) proposes a multi-stage system, consisting
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of an event parser, a grounding module, and a reasoning module with an external memory, getting a
strong zero-shot Video QA ability while is able to create interpretable intermediate outputs. VURF
(Mahmood et al., 2024) proposes a self-refinement method to resolve the LLM hallucinations to get
a more concise program based on the context cues. These models demonstrate a strong ability to
obtain trustworthy answers based on the intermediate evidence they get, but they lag far behind the
end to end model in terms of inference speed, and often require some in-context examples to assist
them in solving problems, which undoubtedly brings a lot of trouble to the use of these agent-based
models.

Chain-of-Thought (CoT). Recent advancements in Chain-of-Thought (Wei et al., 2022; Yao et al.,
2024) have made significant improvements in boosting the capabilities of LLMs. Though there have
been several works enhancing the power of LLMs through distilling the CoT into the model, we still
note a lack of research focused on applying CoT to video scenarios, as videos often have complex
spatio-temporal relationships, and multi-step thinking is needed to solve the problems happened in
these scenes. MotionEpic (Fei et al., 2024) develops a Video-of-Thought reasoning framework by
integrating video spatial-temporal scene graph. But it requires explicit training on the graph encoder,
which needs additional graph data, and cannot be directly migrated to other common Video-LLMs.
Thus, we construct natural language CoTs which are involved with spatial-temporal information to
adapt to any different models.

Visual CoT. The potential of Chain-of-Thought (CoT) reasoning extends beyond NLP to the visual
domain. Several studies (Zhang et al., 2023; Mitra et al., 2024; Shao et al., 2024; Gao et al., 2024b)
have applied CoT to visual understanding tasks, using powerful MLLMs for CoT generation or tool-
based architectures for step-by-step problem solving. However, these methods face limitations, such
as errors in CoT generation by MLLMs or high time and memory costs for tool-based approaches.
Recent works like Visual Program Distillation (VPD) (Hu et al., 2024a) and Fact (Gao et al., 2024a)
aim to maintain CoT accuracy and diversity while leveraging MLLMs to directly generate CoTs.
These methods decompose complex tasks through code programs, invoking expert models to ad-
dress sub-tasks, and use the generated CoTs as training data for fine-tuning visual-language models,
thereby improving the model’s ability to generate rationales directly. While all these methods focus
on image-based domains, they overlook the video domain, where CoT is especially suitable due
to the complex spatio-temporal nature of video understanding tasks. To bridge this gap, we pro-
pose AoTD, a method inspired by VPD and Fact, tailored to the video domain. Video-STaR (Zohar
et al., 2024) also constructs CoTs using videos and existing labels for instruction tuning, without
developing an agent-based system.

5 CONCLUSION & LIMITATION

In this work, we present Agent-of-Thought Distillation (AoTD), a novel approach aimed at distill-
ing multi-step reasoning and spatial-temporal understanding into a large generative video-language
model (Video-LLM). Our method introduces an agent-based system that automates the generation of
Chain-of-Thoughts (CoTs) from various Video Question Answering (VideoQA) datasets by break-
ing down complex questions into manageable sub-tasks that can be addressed by specialized vision
models. Extensive experiments validate that the distilled model significantly enhances performance
on both Multiple-Choice (MC-VQA) and Open-Ended VQA (OE-VQA) benchmarks, underscoring
the effectiveness of our approach.

Despite these advancements, several limitations remain and we leave them as future work: (i) Simi-
lar to prior approaches, the effectiveness of our agent-based system is contingent upon the progress
of the underlying visual model components. Enhancing its ability to generalize across diverse
datasets is essential for broader applicability. (ii) While our primary focus has been on compositional
VideoQA tasks, and we have demonstrated improvements across a series of benchmarks, achieving
holistic enhancements will require further exploration into creating a more balanced distribution of
training data. (iii) Furthermore, our agent-based framework has the potential to address additional
video-related tasks, such as video captioning and referring segmentation. We aim to expand our
methodology to these domains, which could yield even more robust and versatile applications in the
future. Overall, we believe AoTD represents a promising future direction for advancing multimodal
reasoning abilities in Video-LLMs.
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A EXPERIMENTAL DETAILS

A.1 TRAINING DETAILS

For all models, their projection layers and language model are finetuned and visual encoder is frozen.
We use a cosine learning rate schedule, with warm up ratio 0.03 and learning rate 4e-5. For both
Instruct and AoTD setting, we finetune the model with batch size 48 and totally 1 epoch. We believe
that longer training will get a better performance on in-domain benchmarks but maybe a destroy on
out-of-domain benchmarks.

A.2 SPECIALIZED MODELS EVALUATION DETAILS

In this section we will show the details about each sub-task’s evaluation from data preparation to
evaluation metric.

Question Decomposition. Since there may be multiple valid ways to decompose the same prob-
lem, we evaluate only the accuracy of the final output in this sub-task. Specifically, the model takes
the query and instruction as input and generates an executable program. We replace all intermediate
outputs within the program and focus on whether the final output matches the correct answer. If the
decomposition is correct, the final output must align with the answer. Any programs that cannot be
executed or that lead to an incorrect answer are considered failures.

Object Detection. To evaluate the performance of detection models, we sample frames with scene
graph annotations from the input video clip and provide them, along with the text query, as input to
the model. The model then outputs a series of bounding boxes that exceed a confidence threshold.
We select the bounding box with the highest confidence as the final output and calculate the IoU to
assess accuracy.

Temporal Grounding. Since scene graphs provide both the start and end frame IDs, as well as
key frame IDs for each event, we use IoU and Recall as metrics to capture different aspects of model
performance. The model takes the video clip and text query as input and outputs the predicted start
and end frame IDs. We calculate IoU based on the alignment between the predicted and annotated
start and end frame IDs, and we compute Recall using the key frame ID annotations to evaluate how
well the model captures important frames.

Action Recognition. For discriminative models, we provide the video clip and a list of action
labels as input to complete a classification task. For generative models, we provide the video clip
along with an instruction prompt, asking the model to generate five actions most relevant to the
video, ranked by likelihood. We then use the top-ranked output from each model to calculate the
Top-1 accuracy for both approaches.

Question Answering. The evaluation of question answering follows a similar approach to previ-
ous methods. The model takes the video clip and question as input and returns an answer, from
which we directly calculate the accuracy. The key difference between this sub-task and a standard
QA task is that the answers are based on a series of information collected by preceding agents,
allowing for a more accurate assessment of the model’s pure question-answering ability.

B MORE RESULTS

Here we introduce some examples to show the process from query to Chain-of-Thought using our
agent-based pipeline. We can find that our pipeline is able to decompose complex questions into
easier sub-tasks and the final CoT retains step-by-step problem-solving ideas and spatial-temporal
information representing video understanding ability.
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Frame 8 Frame 19 Frame 20 Frame 24

······ ··· ···

def execute_command(video_clip, query, possible_answers:
    middle_clip = trim(video_clip, start=video_clip.num_frames//4, end=video_clip.num_frames//4*3)
    throw_clip = Filter_frames_with_act(middle_clip, 'man throw the plane')
    throw_captions = Video_caption(throw_clip)
    man_bboxes = Find(throw_clip, 'man')
    throw_reason = Video_query(throw_clip, query='why does the man have to throw the plane first',  

          possible_answers=possible_answers)
    info = {'reason why the man has to throw the plane first': throw_reason, 'what happened in the target 

                                                         video': throw_captions}
    answer = select_answer(query, info, possible_answers)
    return answer

call function trim

trimmed video from frame 8 to frame 24

call Filter_frames_with_act

filter action man throw the plane

find action from frame 16 to frame 20

call function Video_caption

frame 16: A man and a child playing plane in a park.

frame 17: A man and a child standing in a grassy field.

frame 18: A man and a child standing in a grassy field.

frame 19: A man and a child playing plane in a park.

call function Find

finding man

find man at [283, 45, 330, 247] in frame 16

find man at [215, 117, 249, 263] in frame 17

find man at [189, 122, 220, 266] in frame 18

find man at [201, 132, 236, 277] in frame 19

call function Video_query

Question: why does the man have to throw the plane first

Answer: The man has to throw the plane first because it is a remote control airplane and needs to be launched into the air 

              before the young boy can start playing with it.

call function select_answer

select: D

program output: get it start flying

To solve this question, we first need to find when the man is throwing the plane in the middle of the video. The man is 
throwing the plane from frame 16 to frame 20.

Next, we should find where the man is to better know why he has to throw the plane first. We can do this by analyzing the 
man's bounding box region in each frame. The man's bounding box is [283, 45, 330, 247] in frame 16, [215, 117, 249, 
263] in frame 17, [189, 122, 220, 266] in frame 18, and [201, 132, 236, 277] in frame 19.

By analyzing the man's bounding box region, we can see that the man is playing with a remote control airplane and needs 
to launch it into the air before the young boy can start playing with it. This is because the airplane needs to be in the air 
for the boy to play with it.

Therefore, the answer is that the man has to throw the plane first because it is a remote control airplane and needs to be 
launched into the air before the young boy can start playing with it. So the answer should be get it start flying.


Program

Execution Trace

CoT

Question: Why does the man have to throw the plane first in the middle of the video?
Possible answers: (A) chase the ball (B) the toy car hit the wall (C) put on earmuffs (D) get it start flying (E) bounce baby on cushion Question

Answer: (D) get it start flying 

Figure 4: Example form NExT-QA (Xiao et al., 2021)
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Frame 9 Frame 12 Frame 13 Frame 16

······ ··· ···

def execute_command(video_clip):
   spray_clip = Filter_frames_with_act(video_clip, 'woman holds up a bottle of spray')
   after_spray_clip = trim(video_clip, start=spray_clip.end)
   sweep_clip = Filter_frames_with_act(after_spray_clip, 'person with the ring and the earring is 

                                         sweeping something')
   answer = Video_query(sweep_clip, 'what is the glass object')
   obj_bboxes = Find(sweep_clip, answer)
   return answer

To solve this question, we first need to find when the woman holds up a bottle of spray, from the video we can find that 
the woman holds up a bottle of spray from frame 2 to frame 9.

Then we should focus on the time period after is, which is frame 9 to frame 32.

The person with the ring and the earring sweeps something from frame 10 to frame 16.

By analyzing the video scene, we can find the woman is sweeping the windsheld with towel.

The wnidsheld can be found at [ 26,  91, 179,  292] in frame 10, [ 26,  88, 181,  293] in frame 11 and so on.

So the answer should be windsheld.

Program

Execution Trace

CoT

Question: What is the glass object that the person with the ring and the earring is sweeping after the woman holds up a bottle of spray? Question

call Filter_frames_with_act

filter action woman holds up a bottle of spray

find action from frame 2 to frame 9

call function trim

trimmed video from frame 9 to frame 32

call Filter_frames_with_act

filter action person with the ring and the earring is sweeping something

find action from frame 10 to frame 16

call function Video_query

Question: what is the glass object

Answer: windshield

call function Find

finding windshield

find windshield at [ 26,  91, 179,  292] in frame 10

find windshield at [ 26,  88, 181,  293] in frame 11

find windshield at [ 26,  86, 182,  292] in frame 12

find windshield at [ 27,  90, 172,  292] in frame 13

find windshield at [ 27,  88, 179,  292] in frame 14

find windshield at [ 27,  89, 183,  293] in frame 15

program output: windshield

Answer: car window

Figure 5: Example form ANetQA (Yu et al., 2023b)

C PROMPTS

In this section we present the prompts used in our agent-based pipeline for generating program,
converting execution trace and filtering rationales.

C.1 PROMPT FOR PROGRAM GENERATION

For each video and query, we call a LLM to decompose the query to a Python program under the
guidance of the prompt below. We modify the ViperGPT (Surı́s et al., 2023) prompt to adapt to the
visual agents we use.

1 def Query_Objs(clip, query):
2 """
3 Query the objects that appear in video clip and match the query descriptions.
4 Parameters
5 -------
6 clip:
7 a list of video frames.
8 query:
9 Description of the target object.

10 Returns
11 -------
12 a list of bounding boxes of the objects that match the query.
13 Examples
14 -------
15 #return white_objs
16 def execute_command(video_clip):
17 white_objs = Query_Objs(video_clip, "white object")
18 return white_objs

17
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19 """
20
21 def Query_Actions(clip, obj=None):
22 """
23 Find the actions happened in the video clip, if obj is not None, query the actions related

to it.
24 Parameters
25 -------
26 clip:
27 a list of the video frames.
28 obj:
29 object class which is used to query the actions related to it.
30 Returns
31 -------
32 a list of actions classes happened in the video clip.
33 Examples
34 -------
35 #return actions
36 def execute_command(video_clip, query, possible_answers):
37 actions = Query_Actions(video_clip)
38 return actions
39 """
40
41 def Filter_frames_with_act(clip, action):
42 """
43 filter a new video clip containing the time period in which the target action occurred
44 Parameters
45 -------
46 clip:
47 a list of video frames.
48 action:
49 the target action which is used to filter frames.
50 Returns
51 -------
52 a new video clip ontaining the time period in which the target action occurred.
53 Examples
54 -------
55 #return jump_clip
56 def execute_command(video_clip, query, possible_answers):
57 jump_clip = Filter_frames_with_act(video_clip, "person is jumping")
58 return jump_clip
59 """
60
61 def Filter_frames_with_obj(clip, obj):
62 """
63 filter a new video clip that the target object occured.
64 Parameters
65 -------
66 clip:
67 a list of video frames.
68 obj:
69 class or description about the target object.
70 Returns
71 -------
72 a new video clip that the target object occured in it.
73 Examples
74 -------
75 #return shoe_clip
76 def execute_command(video_clip, query, possible_answers):
77 shoe_clip = Filter_frames_with_obj(video_clip, "shoe")
78 return shoe_clip
79 """
80
81 def trim(clip, start=None, end=None):
82 """
83 Returns a new video clip containing a trimmed version of the original video at the [start,

end] clip.
84 Parameters
85 ----------
86 clip:
87 a list of video frames.
88 start : Union[int, None]
89 An int describing the starting frame in this video clip with respect to the original

video.
90 end : Union[int, None]
91 An int describing the ending frame in this video clip with respect to the original

video.
92
93 Returns
94 -------
95 a new video clip with start and end.
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96 """
97 def Find(clip, obj):
98 """
99 find all bounding boxes around a certain object in the video clip,

100 and collates them into a collection of frames.
101 Parameters
102 ----------
103 clip:
104 a list of video frames.
105 obj:
106 the object to look for.
107 Returns
108 -------
109 a new video clip composed of crops of the object.
110 Examples
111 --------
112 # Return the shoe_clip
113 def execute_command(video_clip, query, possible_answers):
114 shoe_clip = Find(video_clip, "shoe")
115 return shoe_clip
116 """
117
118 def select_answer(query, info, possible_answers):
119 """
120 Uses a language model to choose the option that best answers the question given the input

information.
121 Parameters
122 ----------
123 query:
124 the input question.
125 info:
126 Any useful information to answer the question.
127 possible_answers:
128 a list of possible answers to the question.
129 Returns
130 -------
131 one answer chosen from the possible answers.
132 Examples
133 --------
134 # Return the answer
135 def execute_command(video_clip, query, possible_answers):
136 clip_summary = Video_summary(video_clip)
137 info = {
138 "summary of the target video": clip_summary
139 }
140 answer = select_answer(query, info, possible_answers)
141 return answer
142 """
143 def exist(clip, query):
144 """
145 judge whether a object exists in the video.
146 Parameters
147 ----------
148 clip:
149 a list of video frames.
150 query:
151 query to the object class.
152 Returns
153 -------
154 Return True if the object specified by query is found in the video, and False otherwise.
155 Examples
156 --------
157 # Return the flag
158 def execute_command(video_clip, query, possible_answers):
159 flag = exist(video_clip, "shoe")
160 return flag
161 """
162 def Video_summary(clip, query):
163 """
164 give a brief summary of the video clip related to the query.
165 Parameters
166 ----------
167 clip:
168 a list of video frames.
169 query:
170 a question about the video.
171 Returns
172 -------
173 return a brief summary of the video clip.
174 Examples
175 --------
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176 # Return the clip_summary
177 def execute_command(video_clip, query, possible_answers):
178 clip_summary = Video_summary(video_clip, query)
179 return clip_summary
180 """
181 Write a function using Python and the functions (above) that could be executed to provide an

answer to the query.
182
183 Consider the following guidelines:
184 - Use base Python (comparison, sorting) for basic logical operations, start/end, math, etc.
185 - Objects with mutiple names like "phone/camera", "cup/glass/bottle" with slash, input them as

a whole object name.
186 - Just use the class and function appear above except for some base python operations.
187 - Only answer with a function starting def execute_command, do not answer any extra words and

symbols before and after the function.
188 - No text that is not related to function can appear.
189 - the answer only begins with "def execute_command" and ends with "return answer".
190
191 Here are some examples of the function you should write:
192 -------
193 question: What else is the person able to do with the door?
194 possible answers: ["Hold the door.", "Put down the door.", "Close the door.", "Open the door."

]
195 def execute_command(video_clip, query, possible_answers):
196 door_clip = Filter_frames_with_obj(video_clip, "door")
197 person_clip = Find(door_clip, "person")
198 clip_summary = Video_summary(person_clip, query)
199 door_actions = Query_Actions(person_clip, "door", possible_answers=possible_answers)
200 door_actions =
201 info = {
202 "actions the person able to do with the door else": door_actions,
203 "summary of the target video": clip_summary
204 }
205 answer = select_answer(query, info, possible_answers)
206 return answer
207 -------
208 Query: INSERT_QUERY_HERE
209 possible answers: INSERT_POSSIBLE_ANSWERS_HERE

C.2 PROMPT FOR EXECUTION TRACE CONVERSION

After getting the execution trace by running the program step by step, we use a LLM to convert
the trace into a natural language CoT. The LLM takes query, execution trace, possible answers (in
MC-VQA) and execution trace as input. The instruction prompt is as follow:

1 Given a video and a question, I wrote the function execute_command using Python, and the other
functions above that could be executed to provide an answer to the query.

2 As shown in the code, the code will print execution traces.
3 I need you to rewrite the execution trace into a natural language rationale that leads to the
answer.

4
5 Consider the following guidelines:
6 - Use all the bounding box information in the rationale, do not use words like "so on" to omit

the bounding box, just write all of them into the rationale.
7 - Referencing the execution trace, write a reasoning chain that leads to the most common human

answer. Notice that the output should be the same as the human answer, not necessarily the
program output.

8 - If some part of the rationale lacks logic, add reasonable content to make it logical.
9

10
11 Here are some examples of the rantionale you should write:
12 -----
13 Question: What did the person do with the table?
14 def execute_command(video_clip, query, possible_answers, time_wait_between_lines, syntax):
15 table_clip = Filter_frames_with_act(video_clip, ’person interacting with table’)
16 person_clip = Find(table_clip, ’person’)
17 table_bboxes = Find(table_clip, ’table’)
18 clip_summary = Video_summary(person_clip)
19 person_action = Query_Actions(person_clip, ’table’, possible_answers=possible_answers)
20 info = {’actions the person do with the table’: person_action, ’summary of the target

video’: clip_summary}
21 answer = select_answer(query, info, possible_answers)
22 return answer
23 Execution trace:
24 call Filter_frames_with_act
25 filter action person interacting with table
26 find action from frame 2 to frame 11
27 call function Find
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28 finding person
29 find person at [139, 141, 229, 342] in frame 2
30 find person at [151, 123, 242, 349] in frame 3
31 find person at [153, 121, 242, 274] in frame 4
32 find person at [158, 123, 255, 261] in frame 5
33 find person at [163, 124, 270, 262] in frame 6
34 find person at [153, 121, 242, 351] in frame 7
35 find person at [95, 113, 196, 316] in frame 8
36 find person at [83, 113, 196, 285] in frame 9
37 find person at [112, 116, 201, 332] in frame 10
38 call function Find
39 finding table
40 find table at [183, 140, 269, 257] in frame 2
41 find table at [194, 131, 269, 255] in frame 3
42 find table at [227, 129, 269, 252] in frame 4
43 find table at [226, 165, 269, 258] in frame 5
44 find table at [233, 170, 270, 259] in frame 6
45 find table at [217, 129, 269, 256] in frame 7
46 find table at [217, 122, 270, 254] in frame 8
47 find table at [221, 123, 269, 256] in frame 9
48 find table at [225, 125, 270, 263] in frame 10
49 call function Video_summary
50 summary result: The video shows a man in a kitchen, bending over and holding an orange object,

surrounded by various kitchen items and furniture, with a focus on his actions and the
domestic setting.

51 call function Query_Actions
52 Query table
53 Answer: tidied up.
54 call function select_answer
55 the information used: - actions the person do with the table: tidied up.
56 - summary of the target video: The video shows a man in a kitchen, bending over and holding an

orange object, surrounded by various kitchen items and furniture, with a focus on his actions
and the domestic setting.

57 program output: Tidied up.
58 Rationale:
59 To solve this question, we first have to find when did the person interact with the table.
60 From the video, we can see that the person is interacting with the table from frame 2 to frame

11.
61 In this time period, we can find person at [139, 141, 229, 342] in frame 2, [151, 123, 242,

349] in frame 3, [153, 121, 242, 274] in frame 4 and so on.
62 Table can also be found at [183, 140, 269, 257] in frame 2, [194, 131, 269, 255] in frame 3,

[227, 129, 269, 252] in frame 4 and so on.
63 By analyzing the person and table bounding box region, we can see that the person is holding

an orange object to clean the table in the kirchen environment.
64 So the answer should be tidied up.
65 ------------------------------------------------
66 Now, look the question, program and execution trace, please transfer these information to a

rantionale.
67 Question: INSERT_QUESTION_HERE
68 INSERT_PROGRAM_HERE
69 Execution trace:
70 INSERT_EXECUTION_TRACE_HERE
71 Rationale:

C.3 PROMPT FOR COT FILTERING

In order to obtain high quality distillation data, we continue using LLM to filter CoTs. We prompt
the LLM to select those CoTs that are truly helpful for solving questions and reflect the step-by-stpe
thinking process. The prompt is as follows:

1 I will give you a question and a rationale to solve the question, you need to judge whether
the rationale is thinking step by step and helpful to solve the question.

2 If yes, return True, If not, return False. no need to explain.
3 Here is the question and rationale:
4 Question: INSERT_QUESTION_HERE
5 Rationale: INSERT_RATIONALE_HERE
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C.4 PROMPT FOR INFERENCE

Question: question content
Options:
(A) option content
(B) option content
(C) option content
(D) option content
Answer with the option’s letter from the given choices directly and only give the best option. /
Explain the rationale to answer the question.

Question: question content
Answer in one word or phrase. / Explain the rationale to answer the question.
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