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Abstract

Context. Pretraining on large, semantically rich datasets is key for developing language models. Surprisingly,
recent studies have shown that even synthetic data, generated procedurally through simple semantic-free algorithms,
can yield some of the same benefits as natural language pretraining. It is unclear what specific capabilities such
simple synthetic data instils in a model, where these capabilities reside in the architecture, and how they manifest
within its weights.

Findings. In this short paper, we identify several beneficial forms of procedural data, together with specific
algorithmic reasoning skills that improve in small transformers. Our core finding is that different procedural rules
instil distinct but complementary inductive structures in the model. With extensive ablations and partial-transfer
experiments, we discover that these structures reside in different parts of the model. Attention layers often carry
the most transferable information, but some pretraining rules impart useful structure to MLP blocks instead. Most
interestingly, the structures induced by multiple rules can be composed to jointly reinforce multiple capabilities.

Implications. These results suggest an exciting possibility of disentangling the acquisition of knowledge from
reasoning in language models, with the goal of improving their robustness and data efficiency.

1. Introduction
What properties of pretraining data enable language models to acquire both knowledge and reasoning capabilities? While
the size and diversity of the data are empirically crucial for learning factual knowledge (Longpre et al., 2024), far less is
understood about the structural and distributional characteristics required to acquire reasoning abilities.

The value of structured data. Empirically, it has been observed that pretraining language models on computer code has
proven highly effective, likely due to the inherent compositional and recursive structure present in code (Petty et al., 2024).
Recent work suggests that procedural data, generated from simple algorithm rules 4 can offer similar benefits. For instance,
Hu et al. (2025) demonstrate that formal language data provides greater value per token than natural language when training
a 1B-parameter model. Likewise, Zhang et al. (2024) show that data generated by cellular automata can accelerate the
learning of abstract reasoning tasks and yield modest improvements in chess move prediction.

This paper. We aim to better understand the mechanisms at play when pre-training transformer-based sequence models
on procedural data (see Figure 1). We characterise and locate useful structures created in such pretrained models that
facilitate subsequent fine-tuning and generalisation on algorithmic reasoning and language modelling tasks. The literature
contains many results on the pretraining of language models with data from formal languages and simple algorithms (see
Appendix A), down to a simple identity function (Wu et al., 2022), i.e. simply learning to repeat the input. It is conceivable
that such pretraining improves over a random initialisation simply by adjusting the overall magnitude of the weights (Huang
et al., 2020). We design experiments to distinguish such trivial effects from the genuine learning of transferrable mechanisms.

Summary of findings. We bring elements of answers to the following questions.
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Figure 1: (a) We pretrain small transformers on various forms of procedural data, then fine-tune them on a series of diagnostic
tasks. The data is generated from formal languages (b) or simple algorithms such as elementary cellular automata (c).
In k-DYCK examples, matching brackets are color-coded. For STACK, ‘P’ is the pop operation. For STACK, IDENTITY, and
SET, ‘|’ acts as a separator between the input and the expected output, on which the loss is computed (bold tokens).

1. What is gained from procedural data? (Section 3) We pretrain small transformers on diverse forms of procedural data
and fine-tune them on a series of diagnostic tasks. We find that specific types of procedural data significantly enhance
particular capabilities for algorithmic reasoning.

2. Where does the useful knowledge reside in the pretrained models? (Section 4.1) We evaluate the partial transfer of
pretrained weights. We find that the beneficial effects of pretraining lie in different parts of the architecture, depending on
the task, with the most pronounced benefits often found in the attention layers.

3. How does the pretraining improve these downstream capabilities? (Section 4.2) We evaluate various perturbations of the
pretrained weights to understand how they encode useful information. For some tasks (e.g. SORTING), even shuffled
weights preserve some benefits, but all tasks undergo a significant performance drop with any kind of perturbation (e.g.
Gaussian noise). This indicates that pretraining creates non-trivial inductive structures in attention and/or MLP weights.
Moreover, these structures prove remarkably modular. The attention layers of a pretrained model can be combined with
MLPs of another to construct a better initialization that improves multiple algorithmic reasoning capabilities (Section 5).

We discuss exciting potential applications of these results in Section 6. A longer version of this paper is also in preparation.

2. Methodology
For each experiment, we train a small transformer on one form of procedural data then fine-tune it on one diagnostic task.

Procedural pretraining. We pretrain the model for standard next-token prediction on data generated from formal languages
and simple algorithms (Figure 1a). The following selection is motivated by prior work on procedural data. See Appendix B
for details. (1) k-DYCK: a formal language of nested brackets. (2) k-DYCK SHUFFLE: a variant with matching braces that
are not necessarily nested. (3) STACK, a simulation of a stack memory; the model must predict the final contents of the
memory. (4) IDENTITY: the model must repeat the input. (5) SET: the model must remove repeated tokens from the input.
(6) Complex elementary cellular automaton (ECA RULE 110): a binary sequence with deterministic Markovian evolution.

Fine-tuning on diagnostic tasks. Prior work with procedural data focused on language modelling (Appendix A) while we
aim to identify specific improved skills. We thus fine-tune each model on tasks that span a range of algorithmic reasoning ca-
pabilities: memory recall (NEEDLE-IN-A-HAYSTACK), arithmetic (ADDITION, REVERSED ADDITION, MULTIPLICATION),
sorting (SORTING), and handling of natural language (LANGUAGE MODELLING). See Appendix B.3 for details.

Architecture. Our focus is on the data, hence we use a simple GPT-2-type architecture (Radford et al., 2019), with
2 layers, 4 attention heads, and a hidden size of 16, or a larger configuration for more challenging tasks (MULTIPLICATION,
LANGUAGE MODELING). See Appendix B.2 and B.4 for details on hyperparameters.

Weight transfer. We denote the weights of a transformer model as T =(E,A,F) where E corresponds to the embedding
and unembedding layers (tokens and positions), A = {A(1), . . . ,A(L)} to the attention, and F = {F(1), . . . ,F(L)} to the
MLPs across L layers. When the vocabulary of the pretraining and fine-tuning tasks cannot be aligned, we reset the token
embeddings to average pretrained vector (Hewitt, 2021), as an unbiased initialisation before fine-tuning. The positional
embeddings are transferred if the pretrained context length is sufficient, or randomly initialised otherwise.

3. Different Procedural Tasks Improve Distinct Reasoning Capabilities
Prior work on procedural data demonstrates its value for general language modelling (Hu et al., 2025). However it is not
clear what exact skills improve in this setting. In this section, we show that different forms of procedural data improve
specific capabilities for algorithmic reasoning. See Appendix B–C for additional details and results.
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Setup. We first pretrain a model Tpre=(Epre,Apre,Fpre) on procedural data. We then transfer all weights from Tpre into a
new model Tfull=(Epre,Apre,Fpre), referred to as “full-model” transfer. Tfull is then fine-tuned on a downstream diagnostic
task. We compare its performance to a randomly initialised baseline Trand=(Erand,Arand,Frand) that undergoes the same
fine-tuning. For LANGUAGE MODELLING, we increase the hidden size to 64. For MULTIPLICATION, we use the larger
gpt2-mini architecture5 to enable a comparison with a model pretrained on OpenWebText.
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Figure 2: Models pretrained on carefully-chosen procedural data (blue) significantly improve specific downstream diagnostic
tasks, compared to a random initialisation (light gray) or pretraining on natural language (dark gray, shown for MULTIPLI-
CATION). See Appendix C for full results, including cases where procedural pretraining brings no benefit.

Results. Figure 2 shows that procedurally pretrained models can largely outperform randomly initialized ones for
every downstream task, confirming that procedural pretraining data can instil meaningful “soft inductive biases” in
transformers. Furthermore, we observe that the different forms of procedural data yield different improvements across the
downstream tasks. This indicates that each procedural task imparts distinct inductive biases that are each relevant to
different downstream tasks. For example, for HAYSTACK, pretraining on k-DYCK can inject an effective memory recall
capability (in order to match the nested brackets), which cannot be provided by SET, k-DYCK SHUFFLE or ECA (see also
Table 3). Notably, for MULTIPLICATION, procedural pretraining outperforms pretraining on OpenWebText.

4. Characterising the Effects of Procedural Pretraining
4.1. The Benefits from Pretraining Often Reside in Specific Architectural Components

Procedural pretraining creates useful “soft inductive biases” in a model, but where do they reside? This section shows that
different forms of procedural data act on different parts of the architecture.

Setup for selective transfer. Given a procedurally-pretrained model Tpre=(Epre,Apre,Fpre) from Section 3, we initialise
models for fine-tuning with selected components: attention-only transfer Tattn = (Erand,Apre,Frand), MLP-only transfer
Tmlp=(Erand,Arand,Fpre), or full-model transfer Tfull=(Epre,Apre,Fpre). In all cases, the entire model is fine-tuned.
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Figure 3: Results of the selective transfer of procedurally-pretrained weights. Each color is a different type of transfer: Tfull ,
Tmlp , Tattn. The horizontal dotted line is the baseline performance with a random initialisation. See Appendix C for full
results including the variance across seeds.

Results. Figure 3 shows that selective transfer often outperforms full transfer, showing that the useful inductive biases
reside in specific parts of the model. Tattn frequently yields the best performance, and in some cases substantially so. With
IDENTITY pretraining for HAYSTACK, Tattn improves by 80 percentage points over Tfull (18.8%→ 99.0%). This indicates
that the attention layers encode a useful inductive bias for algorithmic reasoning, while MLP weights encode mechanisms
specific to the pretraining that do not transfer. Similar observations are made for STACK and SET pretraining for HAYSTACK.
In contrast, on REVERSED ADDITION, Tmlp and Tfull outperform Tattn.

These results generally show that the inductive biases from procedural pretraining reside in different parts of the model, and
that they can be transferred independently, with the attention layers being the most consistently transferable carrier.

5https://huggingface.co/erwanf/gpt2-mini
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4.2. Pretraining Creates Soft Inductive Biases in Precisely Structured Weights

Transformers are sensitive to the initialization: simply adjusting the magnitude of random weights has a big impact (Huang
et al., 2020). We aim to distinguish such trivial effects from the genuine learning of transferrable soft inductive biases.

Setup. We introduce two types of perturbations to pretrained weights and examine the resulting performance drop after fine-
tuning. (1) Additive Gaussian noise checks whether inductive biases are encoded in precise weight structures; (2) Random
per-layer weight shuffling checks for benefits merely from the weight magnitudes. Shuffling destroys any precise structure
but preserves the distribution of weight values. We apply the perturbations on the best transfer configurations from §4.1 and
report a relative improvement score (1.0 corresponds to unperturbed pretrained weights, 0.0 to a random initialisation, Trand).
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Figure 4: Relative downstream improvement using pretrained weights with pertur-
bations (noise or shuffling). See Appendix C for full results and details.

Results. Gradually increasing noise consistently degrades performance, indicating
that precise structure is crucial. HAYSTACK and ADDITION are highly sensitive
to shuffling, suggesting that pretraining encodes information beyond weight
magnitudes. In contrast, LANGUAGE MODELLING and SORTING are more robust,
implying that some cases partially benefit from adjusted magnitudes.

5. Combining Multiple Pretraining Tasks
Since pretraining tasks act on different layers, can we combine components and benefits from several pretrained models?

Setup. We define T 1
pre and T 2

pre as two models pretrained on two types of procedural data, respectively. We then transfer
specific components from the two models (e.g. the attention layers Apre from T 1

pre and the MLP layers Fpre from T 2
pre) to

initialise a combined model Tcomb. The combined model is then fine-tuned on various downstream tasks.

Pretraining configuration HAYSTACK ADDITION REVERSED ADDITION SORTING

SET (Full transfer) 18.9±26.6 53.4±0.1 44.6±5.1 93.5±1.6

SET (Attention only) 88.9±27.1 81.1±12.2 54.4±10.4 98.1±2.8

ECA (Full transfer) 10.5±0.5 69.6±7.9 91.0±16.1 76.9±1.4

ECA (MLPs only) 8.71±1.0 63.1±14.4 70.5±31.6 77.1±8.1

SET (Attention) + ECA (MLPs) 94.4±2.5 80.3±13.9 82.9±16.9 99.4±0.2

Table 1: Comparison of a modularly com-
posed model with models pretrained on
individual procedural data types. Com-
bining SET attention and ECA MLP lay-
ers performs strongly on all four tasks.

Results. In Table 1, we show an example with SET and ECA, where we combine the attention layers from SET and MLPs
from ECA. Compared to other configurations that only rely on one procedural task, which fail at least on one downstream
task, the combined model (last row) consistently performs reasonably well on all four tasks. This suggests that the useful
structures can be modularly composed into a single “initialisation” that facilitates fine-tuning on multiple tasks.

6. Discussion and Open Questions
We showed that pretraining transformers on well-chosen procedural tasks creates useful structure in different parts of the
architecture. We identified capabilities that significantly improve with specific forms of procedural data. We also verified
that the improvements cannot be explained with trivial effects such as a better weight magnitude. These results open exciting
questions and possibilities to take full advantage of procedural data.
Why are specific forms of procedural data helpful? We miss a first-principle explanation why specific forms of data help
specific capabilities. E.g. why does HAYSTACK benefit from k-DYCK but not the SHUFFLE variant? How is pretraining with
formal languages different from ECAs? Our positive and negative examples could support a comparative analysis.
Combining pretraining tasks. It is not clear which specific forms of procedural data could help training a generalist LLM.
Data mixture optimization (Fan et al., 2023; Xie et al., 2023; Ye et al., 2024) could help balance multiple procedural rules.
This procedural data could be merged with standard pretraining data, or instead be used as a “pre-pretraining” curriculum.
Closed-form initialisation. Expanding simple procedural rules into millions of training examples seems computationally
wasteful. Can we characterise the resulting structure in pretrained models to directly instantiate it in initial weights?
Knowledge vs. reasoning. LLMs’ difficulties to reason robustly may be rooted in entangled representations of knowledge
and reasoning (Han et al., 2025). Procedural data could teach reasoning independently from specific semantic information.

4



Transformers Pretrained on Procedural Data Contain Modular Structures for Algorithmic Reasoning

References
Abnar, S., Dehghani, M., and Zuidema, W. Transferring inductive biases through knowledge distillation. arXiv preprint

arXiv:2006.00555, 2020.

Aryabumi, V., Su, Y., Ma, R., Morisot, A., Zhang, I., Locatelli, A., Fadaee, M., Üstün, A., and Hooker, S. To code, or not to
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A. Related Work
What is learned by pretraining language models. The quantity (Kaplan et al., 2020) and quality (Longpre et al., 2024)
of pretraining data are empirically critical for the performance of large language models. But recent results also question
the value of the data, showing that some benefits of pretraining are attributable to the optimization objective more than the
actual data. Balestriero & Huang (2024) compared models trained for text classification from random initialization with
fine-tuning from a pretrained checkpoint. They found that pretraining provides little benefit for tasks that do not involve text
generation. Krishna et al. (2023) showed success in re-using the same data for pretraining and fine-tuning, showing also that
the pretraining objective matters more than the data being used. The same conclusion follows from results of pretraining on
synthetic data devoid of semantic meaning, e.g. for machine translation (He et al., 2023), computer vision (Baradad et al.,
2021), visual navigation (Wang et al., 2022), and reinforcement learning (Baradad et al., 2022). This paper examines such
purely synthetic pretraining to understand the exact capabilities that can be obtained from procedurally-generated data.

What matters in pretraining data. The selection of data to pretrain frontier models mostly relies on experimenta-
tion (Longpre et al., 2024). However, several key distributional and structural properties of the data have also been identified,
such as data repetition to foster generalization (Charton & Kempe, 2024) and burstiness to enable in-context learning (Chan
et al., 2022). Computer code is empirically very effective as pretraining data for LLMs, as it improves their abilities for
compositional generalization and math-related tasks (Aryabumi et al., 2024; Petty et al., 2024). This presumably results
from the abundant compositional and recursive patterns in computer code, but a better understanding of the mechanisms at
play is lacking to reap the full benefits of structure in pretraining data. In this paper, we replicate the positive effects of
structured pretraining data in controlled settings, and study how such data imparts useful inductive biases to the model.

Pretraining on procedural data. Most attempts to train language models with synthetic data follow a linguistic perspective,
using formal languages to imitate properties of natural language (Chiang & Lee, 2022; Goodale et al., 2025; McCoy &
Griffiths, 2023; Papadimitriou & Jurafsky, 2023; Ri & Tsuruoka, 2022). Recent work considers increasingly simpler forms
of synthetic data such as input/outputs of simple algorithms (Lindemann et al., 2024; Wu et al., 2022). In these papers,
specific forms of synthetic pretraining data prove helpful to subsequent fine-tuning on natural language tasks. Hu et al. (2025)
provide strong empirical benefits, showing that data generated from formal languages is more valuable token-per-token than
natural language for training a 1B-parameter language model. Zhang et al. (2024) pretrain on traces of cellular automata
and show marginal but consistent improvements on simple reasoning tasks. Our study complements this line of work by
examining more closely the pretrained models on diagnostic tasks, rather than evaluating their general handling of natural
language. We identify specific capabilities imparted by specific types of procedural tasks, and locate useful structure in
different parts of the architecture. We also investigate methods to combine the benefits from multiple complementary tasks.

Procedural data in vision and RL. Vision transformers (ViTs) have been trained on synthetic data of increasingly simple
nature (Baradad et al., 2021). Nakamura et al. (2024) pretrained ViTs on a single fractal image with augmentations that
remarkably match the performance of ImageNet-pretrained models after fine-tuning. This indicates that structural properties
of the data matter more than its semantic contents. Similar results exist in reinforcement learning with models pretrained on
data generated from random Markov chains (Wang et al., 2023) and noise-based images (Baradad et al., 2022).

Partial transfer from pretrained transformers. Zhang et al. (2023) and (Xu et al., 2023) showed that copying subsets
of pretrained weights could transfer specific capabilities. Abnar et al. (2020) used knowledge distillation to transfer the
inductive biases of one architecture into another. The “mimetic initialization” of self-attention (Trockman & Kolter, 2023) is
a procedure handcrafted to imitate the locality bias of pretrained models. We also evaluate the partial transfer of pretrained
weights, which reveals that different pretraining tasks create useful structure in different parts of the architecture.

Pretraining as an inductive bias. Pretraining transformers on synthetic data has been used to mimic the inductive biases
of Bayesian inference (Müller et al., 2021) and Solomonoff Induction (Grau-Moya et al., 2024). Goodale et al. (2025)
showed that well-chosen formal languages can teach complex mechanisms (e.g. counters) to a sequence model. Pretraining
can generally be seen as a soft inductive bias for subsequent fine-tuning. But there is a large gap in our understanding of
its effects compared to those of hard inductive biases of neural architectures (Teney et al., 2024; 2025). Han et al. (2025)
argue that the difficulties of LLMs to reason robustly is due to their entangled representation of knowledge and reasoning.
Much remains to be understood about how both are learned from the same data (Ruis et al., 2024). Our results suggest that
procedural data could be one way to acquire reasoning mechanisms independently from specific pieces of knowledge.
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B. Experimental Details
B.1. Procedural Data Generation

k-DYCK. We generate sequences consisting of correctly formed, nested parentheses using k distinct bracket pairs, where
each bracket is treated as an individual token. Thus the vocabulary size is 2k. For our experiments, we evaluate models with
k ∈ 4, 8, 16, and fix all training sequences to a length of 128 tokens. Each sequence is constructed incrementally using a
stack-based approach that enforces syntactic validity. At each step, the generator samples either an opening or a closing
bracket based on a predefined probability (popen = 0.49) following Papadimitriou & Jurafsky (2023). We ensure that every
opened bracket is eventually closed. Specifically, if the number of remaining tokens equals the number of currently open
brackets, the generator switches to exclusively emitting the appropriate closing brackets to guarantee a balanced sequence.

k-DYCK SHUFFLE. Shares the same vocabulary of opening and closing parentheses as k-DYCK, but relaxes the structural
constraint of well-nestedness. Every open token has a corresponding close but they do not need to be properly nested. We
use the implementation provided by Hu et al. (2025). Like k-DYCK we always use a sequence length of 128 tokens and
evaluate k ∈ 4, 8, 16. Our opening token probability is (popen = 0.50). As stated by Hu et al. (2025), the final sequence may
be invalid due to truncation, but we also did not see any negative consequences of this.

STACK. Consists of sequences that simulate stack-based operations, where the first part of the input encodes a sequence of
push and pop operations and the second part represents the resulting stack contents. Tokens are pushed onto a stack with
a 75% probability in the first two-thrids of the sequence and popped with 75% probability in the later one third portion.
Each push inserts a unique token, and pops remove the top of the stack. We ensure only a single occurance of a token
can be present on the stack at any point in time. The input sequence is followed by a separator token and the remaining
stack contents (in top-to-bottom order). The model is trained to autoregressively predict the stack tokens after the separator.
We train using curriculum learning: starting with input sequences of length 4, we increase the length by 2 once the model
achieves 99% accuracy on the current sequence length. The curriculum progresses until reaching a maximum sequence
length of 20. This gradually exposes the model to increasingly complex stack manipulations, allowing it to build algorithmic
competence over time. The vocabulary size is set to 103, comprising 100 pushable tokens, a dedicated pop token, a separator
token, and a padding token.

IDENTITY. The setup mirrors that of the STACK, also employing curriculum learning. Each input sequence consists of
randomly sampled tokens, which are concatenated with a separator token. The target output is an exact copy of the input
sequence. The model is trained to autoregressively reproduce the input tokens following the separator, requiring it to
replicate the input structure. The vocabulary is set to 102 tokens, comprising 100 valid input elements, along with dedicated
tokens for padding and separation.

SET. Also uses curriculum learning to progressively increase input length. Each input sequence consists of randomly
sampled tokens and is followed by a separator token. The target output is a de-duplicated version of the input sequence,
preserving the original order of first occurrence for each token. This requires the model to remember which elements have
already appeared while autoregressively generating the output. The vocabulary size is 102, with 100 tokens representing
valid input elements and two special tokens for the separator and padding.

ECA RULE 110. We adopt the training setup and codebase released by Zhang et al. (2024), where data is procedurally
generated from Elementary Cellular Automata (ECA) using Rule 110, a Class IV rule known for its complex, Turing-
complete behavior. To enable next-token prediction over binary state sequences, their approach modifies the standard GPT-2
architecture by replacing the token embedding layer with a linear projection that maps binary vectors directly into the
model’s embedding space. Similarly, the output softmax is replaced by a linear projection back to binary space. This design
allows the model to process raw binary sequences and remain deterministic, aligning with the deterministic nature of ECA
dynamics. For transfer into our downstream tasks, we compute and extract the average of the learned input embeddings
over the ECA pretraining data. These averaged embeddings are then used to initialise the embedding layers of our target
transformer models, enabling effective transfer of structure without relying on a pretrained embedding layer.
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B.2. Procedural Pretraining

We list in Table 2 the hyperparameters for each type of procedural data other than ECA.

Task SEQ. LENGTH BATCH SIZE LEARNING RATE WARMUP STEPS VOCAB. SIZE EARLY STOPPING MAX STEPS

k-DYCK 128 256 1 × 10−4 100,000 2 × k — 1,000,000
K DYCK SHUFFLE 128 256 1 × 10−4 100,000 2 × k — 1,000,000
STACK 4–20 256 5 × 10−4 1,000 103 100 VALIDATION CHECKS 1,000,000
SET 2–20 256 5 × 10−4 1,000 102 100 VALIDATION CHECKS 1,000,000
IDENTITY 4–20 256 5 × 10−4 1,000 102 100 VALIDATION CHECKS 1,000,000

Table 2: Pretraining hyperparameters for each procedural task. All use AdamW and a weight decay of 0.01.

ECA RULE 110. We adopt the training configuration from Zhang et al. (2024). Models are pretrained for next-token
prediction using data generated from ECA rule 110. In each epoch, a fresh dataset is generated from a new random initial
state. This setup effectively simulates infinite data. Training proceeds for up to 10,000 epochs with early stopping based on
validation loss. We use a batch size of 64 (60 time steps, 100 spatial dimensions), the Adam optimiser with a learning rate of
2× 10−6, weight decay of 0.01, and gradient clipping (norm ≤ 1.0). A learning rate warm-up over the first 10% of training
steps is followed by cosine annealing.

B.3. Description of Downstream Diagnostic Tasks

HAYSTACK. We adopt the task as implemented by Zhong & Andreas (2024) that is publicly available. This task assesses a
model’s ability to perform retrieval over long sequences. Each input consists of a series of key-value pairs in the format
[m1, c1,m2, c2, . . . ,mk, ck,mu], where each mi is a distinct marker, and each ci is the corresponding value. The sequence
concludes with a query marker mu, and the model is required to locate its earlier occurrence and return the associated value
cu. For all experiments we set k = 30. Accuracy is computed on cu.

ADDITION. This task requires the model to learn the structure of arithmetic addition presented in forward (non-reversed)
notation. This is seen as a harder task than the reversed addition for transformers, as the least significant digits, which are
critical to determining carry operations, appear later in the sequence. This forces the model propagate carry information
backward through the input, which is misaligned with the auto retrogressive training procedure. Each input sequence takes
the form a+b= where a and b are randomly sampled integers with a digit length n and the output is their sum. Inputs and
outputs are tokenised at the digit level, with symbol tokens (+, =) assigned unique indices. Models are trained to predict
only the result digits, with cross-entropy loss computed exclusively on those output positions. For all experiments we set n
= 5. Accuracy is computed at the token level on the result digits.

REVERSED ADDITION. We again use the implementation by Zhong & Andreas (2024). This task evaluates a model’s
ability to perform multi-step arithmetic by adding two length n integers represented as sequences of digits. To simplify
the positional dependencies, both the inputs and the output are reversed: for instance, the sum ab+ cd = efg is encoded
with input b a d c and output g f e. The model must predict the digit-wise sum in left-to-right order, reflecting carry
propagation across digit positions. We set n = 10 and accuracy is computed at the token level.

MULTIPLICATION. We evaluate the model’s ability to perform multi-digit multiplication. Each input sequence represents an
equation of the form a× b =, where a and b are randomly sampled n-digit integers. The model is required to output the
digits of their product. Inputs and outputs are tokenised at the digit level, with the multiplication operator × and the equals
sign = assigned special token IDs. For all experiments, we set n = 5. Loss and accuracy are computed only over the output
portion of the sequence corresponding to the product digits.

SORTING. This task evaluates a model’s ability to perform algorithmic reasoning by sorting a sequence of integers. The input
consists of a list of n integers sampled uniformly from the range [0, P − 1], where P is the size of the symbol vocabulary.
We set n = 10 and P = 100. The model receives the input sequence followed by a separator token and is trained to output
the sorted version of the input immediately after the separator. For example, given an input sequence 6 3 5 and separator
|, the expected output is 3 5 6. The model is trained autoregressivley and is evaluated only on the tokens following the
separator, where we calculate accuracy at the token level.

LANGUAGE MODELLING. This task uses the TinyStories dataset (Eldan & Li, 2023), a collection of short, synthetically
generated English-language narratives. Each story consists of simple sentences intended for early readers. We frame this as
a last-token prediction task. The model is given the first 63 tokens of a 64-token sequence sampled from a passage and is
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trained to predict the 64th token. To simplify the vocabulary, we restrict the model to the top 2,000 most frequent tokens
from the dataset. Accuracy is computed based on whether the predicted token matches the correct token at position 64,
testing the model’s ability to use contextual information for natural language completion. We adapt code from the Pluto
repository 6 for this task.

B.4. Downstream Training

HAYSTACK, FORWARD ADDITION, REVERSED ADDITION, and SORTING. We trained models for 104 steps with a batch
size of 1,000. The training data is generated dynamically. We used the AdamW optimizer with a learning rate of 10−3

and weight decay of 10−3. We always use an architecture consisting of 2 layers, 4 attention heads, and 16-dimensional
embeddings. We report mean and standard deviation over 10 seeds. The main body of the paper reports only mean accuracy
for clarity; the full statistics including standard deviations are presented in Appendix C.

MULTIPLICATION. These experiments employed a larger model with 4 layers, 8 attention heads, and 512-dimensional
embeddings. Thus, we use a smaller training batch size (64 vs. 1,000), resulting in approximately 156k update steps
compared to 10k steps for the afforementioned reasoning tasks, despite using the same number of training examples. We
optimize with AdamW using a learning rate of 10−3, weight decay of 10−3, and 500 warmup steps. We run this over 3
seeds, and report standard deviations in Appendix C.

LANGUAGE MODELLING. We used a larger architecture with 2 layers, 4 attention heads, and 64-dimensional embeddings.
Models are trained for 1 epoch on 1.2 million TinyStories sequences of length 64 using a batch size of 64 and vocabulary
size of 2,000. The learning rate is set to 2× 10−3 with 10% linear warmup steps and cosine decay. We also run this over 10
seeds, and report standard deviations in Appendix C.

6https://github.com/tanaydesai/pluto
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C. Additional Results

Pretraining task HAYSTACK ADDITION REVERSED ADDITION MULTIPLICATION SORTING LANGUAGE MODELLING

RAND INIT. 11.3 ± 0.4 59.1 ± 7.0 76.4 ± 23.2 42.7 ± 5.3 82.7 ± 11.6 40.2 ± 0.2

4-DYCK 98.3 ± 1.1 52.7 ± 0.3 35.7 ± 2.5 46.7 ± 4.6 56.3 ± 19.2 41.6 ± 0.2
8-DYCK 93.6 ± 1.3 53.4 ± 0.3 48.9 ± 4.9 44.5 ± 0.9 98.7 ± 0.3 41.2 ± 0.2
16-DYCK 96.9 ± 1.0 87.8 ± 4.2 83.5 ± 0.6 39.4 ± 3.3 95.5 ± 1.0 41.0 ± 0.5

4-DYCK SHUFFLE 7.3 ± 0.6 54.5 ± 0.2 87.8 ± 12.9 41.8 ± 3.7 61.0 ± 1.4 41.0 ± 0.3
8-DYCK SHUFFLE 9.6 ± 0.3 67.7 ± 0.8 90.1 ± 5.9 37.4 ± 0.1 84.1 ± 5.7 41.2 ± 0.3
16-DYCK SHUFFLE 18.6 ± 26.3 70.8 ± 5.5 87.0 ± 12.8 44.0 ± 0.1 71.1 ± 5.4 41.2 ± 0.3

STACK 55.2 ± 39.3 62.3 ± 5.3 34.9 ± 0.2 46.6 ± 2.0 21.3 ± 0.6 38.4 ± 0.3

IDENTITY 18.8 ± 14.3 54.7 ± 0.2 42.7 ± 0.9 46.6 ± 2.7 19.9 ± 0.5 37.9 ± 0.2

SET 18.9 ± 26.6 53.4 ± 0.1 44.6 ± 5.1 43.5 ± 8.4 93.5 ± 1.6 40.05 ± 0.5

ECA 10.5 ± 0.5 69.6 ± 7.9 91.1 ± 16.1 — 76.9 ± 1.4 —

Table 3: Full results across all pretraining tasks and downstream tasks. Each cell reports the mean accuracy ± standard
deviation over 10 random seeds, except for MULTIPLICATION and LANGUAGE MODELLING, which is over 3 seeds. A
subset of these results is visualised in Figure 2.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

4-DYCK 98.3 ± 1.1 8.7 ± 0.5 11.6 ± 0.5
16-DYCK SHUFFLE 18.6 ± 26.3 8.9 ± 0.9 16.5 ± 10.6
STACK 55.2 ± 39.3 7.1 ± 0.6 98.9 ± 0.8
IDENTITY 18.8 ± 14.3 7.0 ± 0.9 99.0 ± 1.7
SET 18.9 ± 26.6 8.3 ± 0.7 88.9 ± 27.1
ECA 10.5 ± 0.5 8.7 ± 1.0 11.6 ± 1.0

Table 4: HAYSTACK task accuracy (mean ± standard deviation over 10 seeds) for models initialised with weights from
different pretraining tasks. We report results for full model transfer, MLP-only transfer, and attention-only transfer.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

16-DYCK 87.8 ± 4.2 60.0 ± 6.6 59.2 ± 10.4
16-DYCK SHUFFLE 70.8 ± 5.5 61.7 ± 6.9 55.3 ± 4.9
STACK 62.3 ± 5.3 61.1 ± 9.4 56.2 ± 5.0
IDENTITY 54.7 ± 0.2 58.3 ± 7.2 69.7 ± 13.1
SET 53.4 ± 0.1 59.6 ± 6.4 81.1 ± 12.2
ECA 69.6 ± 7.9 63.1 ± 14.4 65.8 ± 12.8

Table 5: ADDITION task accuracy (mean ± standard deviation over 10 seeds) for models initialised with weights from
different pretraining tasks. We report results for full model transfer, MLP-only transfer, and attention-only transfer.

Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

16-DYCK 83.5 ± 0.6 64.0 ± 26.4 49.1 ± 20.3
8-DYCK SHUFFLE 90.1 ± 5.9 65.8 ± 24.8 63.3 ± 18.1
STACK 34.9 ± 0.2 74.4 ± 24.7 42.1 ± 8.1
IDENTITY 42.7 ± 0.9 71.7 ± 29.2 45.2 ± 3.7
SET 44.6 ± 5.1 71.2 ± 23.7 54.4 ± 10.4
ECA 91.1 ± 16.1 70.5 ± 31.6 75.5 ± 27.2

Table 6: REVERSED ADDITION task accuracy (mean ± standard deviation over 10 seeds) for models initialised with weights
from different pretraining tasks. We report results for full model transfer, MLP-only transfer, and attention-only transfer.
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Pretraining task FULL TRANSFER MLP ONLY ATTENTION ONLY

8-DYCK 98.7±0.3 72.8±3.1 71.4±5.7
8-DYCK SHUFFLE 84.1±5.7 78.2±8.6 62.9±6.7
STACK 21.3±0.6 71.0±2.2 77.5±12.2
IDENTITY 19.9±0.5 74.5±8.1 91.3±10.1
SET 93.5±1.6 73.5±1.5 98.1±2.8
ECA 76.9 ± 1.4 77.1±8.1 73.9±3.2

Table 7: SORTING task accuracy (mean ± standard deviation over 10 seeds) for models initialised with weights from
different pretraining tasks. We report results for full model transfer, MLP-only transfer, and attention-only transfer.

Perturbation HAYSTACK ADDITION REVERSED ADDITION SORTING LANGUAGE MODELLING

Pretrained 98.9 ± 0.8 87.8 ± 4.2 90.1 ± 5.9 98.7 ± 0.3 41.6 ± 0.2
Shuffled 17.2 ± 12.7 61.0 ± 9.1 82.9 ± 23.5 94.2 ± 4.2 41.1 ± 0.4
0.01 noise 98.6 ± 1.7 77.6 ± 20.1 74.0 ± 21.0 96.0 ± 7.6 41.5 ± 0.5
0.05 noise 50.8 ± 30.5 62.1 ± 13.3 91.0 ± 15.7 71.9 ± 26.1 41.1 ± 0.3
0.10 noise 32.9 ± 6.1 56.4 ± 7.4 83.6 ± 21.5 37.9 ± 5.8 40.2 ± 0.1
Random init 11.3 ± 0.4 59.1 ± 7.0 76.4 ± 23.2 82.7 ± 11.6 40.2 ± 0.2

Table 8: Mean accuracy (± standard deviation over 10 seeds) across five downstream tasks under different perturbation
conditions. Pretrained models were selected based on best individual performance per task: STACK (attention-only) for
HAYSTACK, 16-DYCK for ADDITION, 8-DYCK SHUFFLE for REVERSED ADDITION, 8-DYCK for SORTING, and 4-DYCK
for LANGUAGE MODELLING.
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