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Abstract

Chain-of-Thought (CoT) prompting has shown
promise in enhancing the reasoning capabilities
of large language models (LLMs) by generating
natural language (NL) rationales that lead to the fi-
nal answer. However, it struggles with numerical
computation, which has somehow led to the de-
velopment of program-aided techniques. Despite
their potential, a persistent challenge remains: in-
consistencies between LLM-reported reasoning
steps and the logic in generated programs, which
we term “reasoning hallucinations.” This stems
from the inherent ambiguities of NL and the sta-
tistical nature of LLMs, which often lack rigor-
ous logical coherence. To address this challenge,
we propose a novel test-time scaling framework,
Reasoning-as-Logic-Units (RaLU), which con-
structs a more reliable reasoning path by aligning
logical units between the generated program and
their corresponding NL descriptions. By decom-
posing the initially generated program into dis-
crete units using static analysis, RaLU engages in
an iterative dialogue with the LLM to judge, re-
fine, and explain each unit. A rewind-and-correct
mechanism ensures alignment between code state-
ments and task requirements in each unit, ulti-
mately forming a cohesive reasoning path un-
der the program’s logic, from which the model
reaches a final solution. Our experiments demon-
strate that RaL.U significantly outperforms exist-
ing baselines in mathematical reasoning (GSM8K,
MATH) and algorithmic reasoning (HumanEval+,
MBPP+), underscoring its potential to advance
LLM reasoning and programming by offering en-
hanced accuracy and interpretability.
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1. Introduction

Extensive studies have shown that Chain-of-Thought (CoT)
(Wei et al., 2022) prompting can improve the reasoning ca-
pabilities of large language models (LLMs) (Mondorf &
Plank, 2024; Fu et al., 2023; Liu et al., 2023a) by requir-
ing LLMs to generate a rationale before its final decision.
Complementary to CoT and its variants, program-aided tech-
niques like Program-of-Thought (PoT) (Chen et al., 2023b)
have emerged, which decompose complex reasoning and
numerical computation by prompting LLMs to generate pro-
grams and use external interpreters to solve mathematical
problems. When combined with test-time scaling, which
dynamically allocates more computational resources during
inference, these methods optimize LLM performance in rea-
soning tasks, particularly in mathematical and algorithmic
domains (Zhong et al., 2024).

Despite these advancements, both CoT and PoT face signifi-
cant challenges. The inherent ambiguity and imprecision in
natural language (NL) impede precise calculations in CoT-
like methods (Yu et al., 2024; Gao et al., 2023). Meanwhile,
PoTs simply replace NL reasoning with programs, so they
cannot improve LLM in code generation, yet solving algo-
rithmic problems is an important aspect of LLM reasoning.
Plus, crafting accurate programs in a single attempt remains
challenging (Chen et al., 2024a), so PoT can even introduce
more errors than CoT sometimes (Li et al., 2024).

Furthermore, simple combinations of CoT and PoT cannot
yield satisfactory outcomes. Research indicates that guiding
an LLM to generate step-by-step analysis in NL before deriv-
ing programs may not outperform direct prompting (Huang
et al., 2024a). This underperformance can be traced to
inconsistencies between reasoning steps and the logic in
generated programs, which we term ‘“‘Reasoning Halluci-
nations.” The hallucinations manifest as: 1) accurate NL
step descriptions but logical errors in individual code state-
ments; 2) missing key steps or inclusion of irrelevant ones;
and 3) correct steps misordered or improperly connected.
Examples of these three types are presented in Figure 1.

These reasoning hallucinations arise from the statistical na-
ture of LLMs, which generate responses based on token
predictions rather than true reasoning. LLMs mimic reason-
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Type 1: Accurate NL step but logical errors
in the code/mathematical expression

Type 2: Missing key steps in NL descriptions
or code/mathematical expressions

Type 3: Individually correct NL steps and
correct code/expression, but wrong connections

Question (NZIATH-np 794): ZFind the smallest possible value
Y 5 2

=X -y (x—2)
, where
O-2z-x)  (z —x;(x -y @=nOh-2
Xy, and z are distinct real numbers.

Response (COT, DeepseekV3):
### Step 1: Simplify the expression
Let’s denote the expression as E.

We can rewrite each term by factoring out —1 from the
denominators where necessary.

The first term becomes:
G- - -9
V-2@-0 -E-Nc-0  @E=-Nc-9
- The second term becomes
-y -y

)2

(fblestion (GSMBK 38): John plans to sell all his toys and use )
the money to buy video games. He has 13 lego sets and he sells
them for $15 each. He ends up buying 8 video games for $20
each and has $5 left. How many lego sets does he still have?

Response (PoT, Llama-3.3):

1. First, determine the total income from selling Lego sets lego
sets. John has 13 Lego sets and he sells each one for $15. We
need to know how much money he earns in total.

2. Calculate the total cost of video games: He buys 8 video
games for $15 each. We need to find out how much money he
spends on buying these video games.

3. Find the total money from selling Lego sets: if we add the
money he spent on video games and the money he has left, we
can get the total money he got from selling the Lego sets.

4. Calculate the remaining Lego sets: By subtracting the
number of Lego sets he sold from the original number, we can
find out how many Lego sets he still has.

@lestinn (LeetCode 3200): You are given two integers red and h
blue representing the count of red and blue colored balls. You
have to arrange these balls to form a triangle such that the

1st row will have 1 ball, the 2nd row will have 2 balls, the 3rd row
will have 3 balls, and so on. All the balls in a particular row
should be the same color, and adjacent rows should

have different colors. Return the maximum height of the

triangle that can be achieved.

Response (CoT, Llama-3.3, truncated):

1. Try two starting color combinations: start with red or blue
balls, handle them separately.

2. Build triangle in a loop: use starting-color balls for odd-
numbered rows, different-color balls for even-numbered rows.
If a row is built, increment row number and try the next.

3. Loop termination: subtract row - corresponding ball number
from total. If remaining < 0, can't build the row, get max
buildable rows by subtracting 1 from current row number.

<code>

@-9G-y  G@-00-x), oot gos = 13

4. After handling both combos, return the max triangle height
achieved.
<code>

lego_price = 15
video_game_price = 20
money_left = 5
# Calculate the total mo;

- The third term becomes:
-2 _ «-2
x=ny-2 =N -2

total_money_earn
=total_money_spent + money_left

ohn gets from selling the lego sets

. L. . total_money_earn = 13*15 while True: ans = max(s -
Thus, the expression simplifies to: # Calculate the total money he spends on video games fi%2==T:x-=1 ﬁ?:ak max(ans, i-1)

5 ~ 5 o total_money_spent = 8 * video_game_price else:y-=1i else: )
E=_ (y—x) + @-y + -2 . remaining_money = total_money_earn - total_money_spent f ans = max(ans, i-1); break: [~ _ i

E=e-x G@-D0@-x G=-W0r-2 # Since John sold all his lego sets, he should have 0 lego sets ans = max(ans, i-1); break ]\f y7< 0:
...... /I:‘fts; o return ans ans = max(ans, i-1)
<Answer>-3</Answer> </code> C/C‘)de> break )
\

def maxHeightOf Triangle(self, red: int, blue: int) -> int:
ans =0

for (x, y) in [(red, blue), (blue, red)]:
i=1

(Error Analysis: In Step 1, the Al correctly pinpoint to factor
out —1 from the denominators to rewrite the expression as E.
However, it mishandled the negative signs for the third term,
i.e, the positions of y and x should be exchanged. This led to
an erroneous simplification where the negative sign was
applied twice, distorting the result. This error propagates to
the final answer, which should be 3 instead.

(Error Analysis: The critical missing step was solving for the "\(Error Analysis: The main issue with this code lies in the logic of
actual number of lego sets sold based on the $5 leftover. In
step 3, the description correctly indicates that calculating the
earned money should use the leftover (added by the money
spent). However, when writing the code, it assumed John
sold all lego sets probably the problem states he "plans to sell
all,” without actually calculating the number of lego sets sold,
_ _J\leading to a wrong final answer.

checking the remaining number of balls. Specifically, the checks
for whether x or y is less than 0 are placed after both the odd-
row and even-row ball subtractions. This means that after a
subtraction for an odd-numbered row makes x negative, the code
will still proceed to check y for negativity, and vice versa. This
can lead to incorrect results as the loop should terminate
\immediately once either color runs out of sufficient balls.

J

Figure 1. Motivating examples reflecting the reasoning hallucinations: In Example 1, the LLM attempts to factor out the negative sign
as stated yet wrongly neglects to reverse the positions of x and y in the expression. In Example 2, the LLM overlooks the NL step
that indicates using the leftover to calculate the money earned; instead, it is misled by the question description to sell all the sets, thus
omitting this crucial step. In Example 3, the LLM incorrectly places the loop termination conditions after operating on both odd- and

even-numbered rows, which should be positioned individually.

ing by reproducing patterns linked to logical explanations
but are trained on text that often lacks rigorous logical co-
herence (Lenat & Marcus, 2023). The scarcity of detailed
mapping from NL reasoning to precise, logical expressions
like code or equations means LLMs struggle to capture the
underlying logic patterns under former expressions, not to
mention reproducing such patterns, resulting in such incon-
sistencies. Moreover, previous findings suggest this mis-
alignment also affects other reasoning tasks, raising doubts
about the authenticity of reported reasoning steps (Li et al.,
2024). Unlike factual hallucinations that can be mitigated by
introducing external information, reasoning hallucinations
are intrinsic to the model’s internal processing and pose a
unique challenge in reliable LLM reasoning.

To overcome this challenge, we propose a novel reasoning
framework that leverages programs as the logical skele-
tons and natural language as explanatory content. Our key
insight is that if the two representations of reasoning pro-
cesses, i.e., NL reasoning steps and generated programs,
are aligned in the same fundamental logic, the reasoning
path would be more reliable. Each reasoning step can be
projected to a series of code statements, and the latter serves
as the formalized implementation of the former. Hence, we
introduce our test-time scaling framework, Reasoning-as-
Logic-Units (RaLU). Figure 2 compares its reasoning path
to that of CoT, Self-consistency (Wang et al., 2023), and

Tree-of-Thought (ToT) (Yao et al., 2023) for illustration.

Specifically, our framework involves four core actions: self-
reason, self-judge, self-explain, and self-correct, organized
into three primary stages: 1) Logic Unit Extraction: The
framework begins by directly generating a program to ad-
dress the given problem. This program serves as a repre-
sentation of the reasoning process. Using a static analysis
tool, we create a control flow graph (CFG) to depict the
program’s logic. RaL.U traverses this CFG, dividing it into
logical units based on program branches like conditional
and looping statements. Each unit comprises several code
statements, implementing operations for problem-solving.
2) Logic Unit Alignment: Ral U initiates an iterative di-
alogue with the same LLM to assess the correctness of
each logic unit. Beyond being a judge, the LLM explains
the operations within each unit to ensure alignment with
the problem specification. Should errors arise, the LLM
self-corrects the unit, and the dialogue will rewind to the
previous round for re-evaluation on the corrected unit. The
reasoning path branches out until correctness is achieved or
a predefined threshold is reached. 3) Solution Synthesis:
After processing all logic units, we obtain a reasoning path
where each node is self-verified or contains a self-corrected
version of code statements and NL explanations. Using this
hybrid reasoning path as a conversation history, the LLM
generates the final solution to the reasoning task.
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Figure 2. Schematic depicting multiple strategies for test-time scaling frameworks with LLMs. Each rectangular shape symbolizes a
distinct thought (aka. step/unit), a self-contained text sequence crucial as an intermediate stage in the reasoning process. In previous
studies, all the thoughts are natural language-based, while our RaL.U uses logic units consisting of code statements and NL descriptions.

We evaluate RaLLU on four benchmarks, including two for
mathematical reasoning (GSM8K (Cobbe et al., 2021b),
MATH (Hendrycks et al., 2021)) and the other two for code
reasoning: HumanEval (Chen et al., 2021), MbPP (Austin
et al., 2021), and their plus versions (Zhong et al., 2024).
The evaluation involves three LLLM backbones: Deepseek-
V3, Llama3.3-70B-Instruct and Qwen2.5-72B-Instruct. Ex-
perimental results show that RaLU achieves a significant im-
provement in final answer accuracies or pass@ 1 compared
with best-performing baselines, with specific improvement
of 1.22%, 2.07%, 6.60%, and 2.17% on these four bench-
marks, respectively. It is worth noting that RaLLU outper-
forms the best-performing LLM family of reasoning mod-
els, o1, on HumanEval+ and MbPP+. We further perform
an extensive ablation study to demonstrate the contribu-
tions to our key design in RaLU. Our code is available at
https://github.com/DeepAccept/RalLU.

2. Related Works and Discussions
2.1. General Reasoning with LLMs

Prompting techniques have greatly improved the reasoning
abilities of LLMs. CoT (Wei et al., 2022) is the most pop-
ular paradigm, deriving a large number of variants such as
Least-to-Most (Zhou et al., 2023) and Auto-CoT (Zhang
et al., 2023). The central concept of these approaches is
“divide and conquer”—prompting LLMs to deconstruct com-
plex problems into simpler sub-tasks, systematically ad-
dress each one by reporting the process and then synthesize
a comprehensive final answer. Some studies directly let
LLMs write programs to serve as reasoning steps, such
as PoT (Chen et al., 2023b) and Program-aided Language
models (Gao et al., 2023), decoupling computation from
reasoning and language understanding. However, they can-
not improve the performance of LLMs in coding tasks and
struggle with writing perfect programs within a single query,
thus introducing more errors sometimes (Li et al., 2024). Ex-

isting studies have shown that simply mixing code and text
during pre-training or instruction-tuning stages can enhance
LLM reasoning (Ma et al., 2024), but how to effectively
combine them remains under explosion.

2.2. Code Reasoning with LLMs

Inference-side approaches for coding tasks usually focus on
debugging and refining the generated code since it is prone
to logic errors, dead loops, and other unexpected behaviors.
Many studies (Chen et al., 2023a; 2024b) generate unit tests
or feedback from the same LLM to score and refine the
generated programs, and ChatRepair (Xia & Zhang, 2023)
relies on hand-writing test cases. Another stream of studies
combines traditional software engineering tools to improve
code quality, including executors (Zheng et al., 2024; Ni
et al., 2023) and repair tools (Fan et al., 2023). Recent
studies on multi-agent frameworks (Lee et al., 2024; Hong
et al., 2024) also achieve advanced performance on coding
tasks. They borrow the information provided by software
analysis tools and embed such information into prompts to
expand the ability bounds of LLMs in code reasoning.

2.3. Test-Time Scaling for LLM Reasoning

Recent studies have revealed that using more test-time com-
putation can enable LLMs to improve their outputs (Snell
et al., 2024). A primary mechanism is to select or vote
the best CoT path from multiple independent sampling,
such as Best-of-N sampling (Cobbe et al., 2021a) and Self-
Consistency (Wang et al., 2023). Innovations like ToT (Yao
et al., 2023), Graph-of-Thought (GoT) (Besta et al., 2024),
and DeAR (Xue et al., 2024) design search-based schemes
to expanding the range and depth of path exploration, though
they are often suitable for specific tasks (e.g., the Game of
24) as they require to pre-define a fixed candidate size for
each node, leading to redundancy or insufficiency.

Another stream of research scales inference time by en-
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abling models to critique and revise their answers iteratively,
which has been applied in general reasoning tasks (Kamoi
et al., 2024; Liu et al., 2024). Intrinsic self-correction asks
LLMs to identify and fix errors based on their inner knowl-
edge without any external tools or information, such as
Self-Check (Miao et al., 2024), Self-Refine (Ranaldi & Fre-
itas, 2024), and StepCo (Wu et al., 2024). External self-
correction allows for tool usage such as code interpreters and
search engines (Gou et al., 2024; Ding et al., 2024). Recent
studies have reported that intrinsic self-correction may strug-
gle with judging or modifying their own responses (Kamoi
et al., 2024; Huang et al., 2024b). Yet, a more recent em-
pirical study shows that intrinsic self-correction capabili-
ties are exhibited across multiple existing LLMs under fair
prompting—do not directly or indirectly influence the LLM
to change or maintain its initial answer (Liu et al., 2024).

3. Reasoning-as-Logic-Units

We propose a novel structured test-time scaling framework,
Ral.U, which enforces alignment between NL descriptions
and code logic to leverage both sides. Programs ensure
rigorous logical consistency through syntax and execution
constraints, whereas NL provides intuitive representations
with problem semantics and human reasoning patterns.

Specifically, RaLU operationalizes this synergy through
three iterative stages (as shown in Figure 3): Logic Unit Ex-
traction, Logic Unit Alignment, and Solution Synthesis. The
first stage decomposes an initially generated program into
atomic logic units via static code analysis. Then, an iterative
multi-turn dialogue engages the LLM to 1) explain each
unit’s purpose in NL, grounding code operations in problem
semantics, 2) validate computational correctness and seman-
tic alignment with task requirements, and 3) correct errors
via a rollback-and-revise protocol, where detected incon-
sistencies trigger localized unit refinement. The validated
units form a cohesive, executable reasoning path. The final
stage synthesizes this path into a human-readable solution,
ensuring the final answer inherits the program’s logical rigor
while retaining natural language fluency.

In this way, RaLLU can significantly mitigate reasoning hal-
lucinations. First, each unit seamlessly pairs executable
code with NL explanations to address the type-one hallu-
cination through explicitly aligning local logic. Second,
the LLLM focuses on only one unit per response in case of
missing a crucial step or introducing an irrelevant step, and
iterative verification ensures that the LLM notices all prob-
lem constraints. Third, these logic units are interconnected
rigorously along the program structure, ensuring logical
coherence of the reasoning path.

In summary, by structurally enforcing bidirectional align-
ment between code logic and textual justifications, we build

a self-consistent reasoning path where computational va-
lidity and conceptual clarity mutually reinforce each other.
This architecture not only minimizes logical discrepancies
but also provides transparent intermediate steps for error
diagnosis and refinement.

3.1. Logic Unit Extraction

RaLU begins with prompting the LLM to generate an ini-
tial program that serves as a reasoning scaffold for the task.
While possibly imperfect, this program approximates the
logical flow required to derive a solution, providing a struc-
tured basis for refinement.

We apply static code analysis to construct a Control Flow
Graph (CFG), where nodes represent basic blocks (sequen-
tial code statements), and edges denote control flow tran-
sitions (e.g., branches, loops). A CFG explicitly surfaces
a program’s decision points and iterative structures, whose
details are illustrated in Appendix A.2. RaLU then parti-
tions the code into atomic units by dissecting the CFG at
critical junctions—conditional blocks (if/else), loop bound-
aries (for/while), and function entries. Each unit encapsu-
lates a self-contained computational intent, such as iterating
through a list or evaluating a constraint.

3.2. Logic Unit Alignment

The alignment stage iteratively validates and refines logic
units through a stateful dialogue governed by:

i—1
Vi:LLM(\S/EBgukEBP(Z/{,-)) (1
k=0

where U; denotes the i-th unit, S is the task specification,
and the operator & represents contextual concatenation.
P(U;) instructs the LLM to handle the i-th unit, where each
turn of interaction is responsible for judging the correctness,
modifying it upon errors, and explaining it to align with the
task specification. Thus, each response V; = (J;,U;) com-
prises a judgment token J; € {OK, WRONG} and a refined
unit ﬁz The refinement adheres to:

~ Ui if J; = OK @)
" | LLMiepair (S Ui Uy, k< i) otherwise

To prevent error cascades, corrections trigger a partial
rewind: the original unit {; is replaced by the refined ver-
sion U; in the interested reasoning path. Then, I/; will be
re-validated based on previous units {Uy |k < i}. This aims
to construct a path P with all nodes able to pass self-judging:

YU, € P={U, - Ui}, Ti =O0K. 3)

The correctness process terminates under two conditions:
1) fixed-point convergence, i.e., all units satisfy J; =
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) Question: [Reasoning Task]
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G

Write code to solve this question.

top_level = 16
levels = [top_level * (0.5 ** i)

for iin range(4)]
average = sum(levels) / len(levels)

WRONG; <Fix>levels.append
(top_level*(2**1))</Fix>

The current logic calculates the square
footage of each level incorrectly.

Unit 3: levels.append(top_level*(0.5**1))
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Unit 3: levels.append(top_level*(2**i)

Q

ans = average @

Question: [Reasoning Task]

Write a program to solve this problem

based on the history conversation.

OK; This aligns with the specification ‘
and ensures the correct calculation... Q

<code>

@

L B

Solution Execution </code>

levels = [top_level * (2 ** i)
for i in range(4)]

Q

v
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top_level=16 . _,|levels.append(top_
level=[] level*(2**i)

Aligned Logic Units

Figure 3. Illustrating the three-stage process of RaLU: Logic Unit Extraction, Logic Unit Alignment, and Solution Synthesis for

operationalizing synergy in reasoning tasks.

OK A Z;{i = U;, indicating that no further are refinements
needed; and 2) a predefined iteration limit or confidence
threshold is reached. Upon triggering the second condition,
multiple candidate units will exist, and we select the optimal
version Z:li* using a normalized confidence metric. In this
case, there are multiple candidates for a unit, and none of
them has been judged as correct. We select the most con-
fident response. The confidence score is calculated as the
following equation 4, based on the log probabilities, which
express token likelihoods on a logarithmic scale (—oo, 0],
reported by the LLM.

n

Conflid) = = > o(ipy),

j=1
o(lp;) = min (e'”7 +0.005,1) x 1072,

“

where Ip; denotes the log probability of the j-th token in the
LLM’s response, mapped to a [0,1] scale via the clamping
function o. For LLMs lacking log probability outputs, we
employ a self-consistency checking process—prompting the
same LLM ranks candidates to determine Z;{z* .

Herein, we discuss whether U is more likely to be cor-
rect than its original version U for any unit, that is
P(U is correct) = p < P(U) is correct) = p'. Let’s de-
fine « = P(J(U) = OK|U is correct) (true positive rate)
and § = P(J(U) = WRONG]|U is incorrect) (true nega-
tive rate). Thus, we have:

p/ =ap + ’Yrepair[(]- - Oé)p + ﬂ(]- - p)] (5)

where Yyepair = P(R(U) is correct|J(U) = WRONG) with
R(-) representing the LLM’s repair action. Then, the condi-
tion of p’ > p is transformed as:

Yrepair > P(U is correct|J = WRONG) . 6)

See Appendix A.3 for the detailed derivation. Empirical
studies show that modern LLMs can achieve high accuracies

when serving as a judge (Thakur et al., 2024) (where « can
reach 0.9+), so the above condition can be easily achieved
with intelligent LLMs. Nevertheless, if the model is almost
perfect (p ~ 1), then using RaLLU cannot make significant
improvement even though (p’ > p).

In addition to evaluating and refining the unit, the LLM is
tasked with generating explanations that explicitly map the
unit’s behavior to the task specification. These explanations
serve two critical roles. First, they help to justify whether
the unit aligns with or violates the intended logic. Second,
they demystify the reasoning process, exposing the LLM’s
thinking about execution behavior in human-interpretable
terms. By linking concrete code elements to abstract speci-
fication requirements, the LLM acts as a translator between
implementation and intent. This dual focus on correctness
and explainability ensures that both the code and its ratio-
nale evolve cohesively during refinement.

3.3. Solution Synthesis

Through logic unit alignment, RaLLU constructs a coherent
sequence of self-verified operations paired with precise NL
explanations. This establishes a unified reasoning path that
integrates computational logic with interpretive alignment
(with problem specifications), ensuring rigorous consistency
between code behavior and reasoning steps. Guided by
this aligned reasoning path, the LLM synthesizes the struc-
tured units into a final solution using the following prompt:
“Based on the previously self-verified reasoning path, gener-
ate a correct program to solve the given problem.”

This dual-anchoring mechanism—enforcing program-
executable logic and specification-aligned reasoning—
eliminates ambiguities for response generation. We
formalize the effectiveness of RaLLU through a Bayesian
inference lens, demonstrating how iterative logic unit
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alignment systematically amplifies the likelihood of
generating correct programs.

Let C denote the event where the LLM produces a program
correctly solving the task, and C its complement. Each logic
unit O; (1 < i < n) represents a self-verified reasoning step
aligned with both program execution and problem semantics.
By Bayes’ theorem, the posterior probability of correctness,
conditioned on validated units, is:

PCI0y, ... 00 = IO Q20
- P(0q,...,0,|C) - P(C)
~ P(O4,...,0,|C)P(C) + P(Oy,...,0,|C)P(C)
(7

Note that a correct program inherently exhibits logical co-
herence, making its reasoning steps more likely to align
with human-judged validity, so P(O1,---,0,|C) >>
P(Oy,- -+ ,0,|C). This asymmetry implies:

P(Ola . 7On|0)
P(O1,...,00)

>1 = P(C|O,...,0,) > P(C)

®)

Hence, RaLLU ’s rewind-and-correct mechanism—by enforc-
ing consistency across units—statistically elevates the prior
correctness probability P(C') (initial program quality) to
a higher posterior P(C|O1,--- ,O,). This Bayesian pro-
gression quantifies how structured, self-validated reasoning
suppresses hallucinations, ensuring solutions inherit rigor
from aligned logic units.

Crucially, even if generating incorrect solutions, RaLLU
maintains granular traceability through self-contained logic
units. This enables precise identification of defective compo-
nents responsible for errors, rooted in the framework’s trans-
parency. By transforming black-box reasoning into more
debuggable processes, RalLU accelerates error correction
and enhances interpretability for human-Al collaboration.

4. Experiments
4.1. Experiment Setup

Benchmarks. We use five benchmarks: three for
mathematical reasoning: GSMS8K (Cobbe et al., 2021b),
MATH (Hendrycks et al., 2021), and AQUA (Ling et al.,
2017), as well as the other two for code reasoning, Hu-
manEval (Chen et al., 2021) and Mbpp (Austin et al., 2021),
along with their extended versions with more test cases (Liu
et al., 2023b). See Appendix B.1 for more details about the
benchmarks. We evaluate RaLLU on the whole test set except
MATH. Due to resource limitation, we follow (Miao et al.,
2024) to use a subset of MATH (named by MATH-np) taken

from (Ling et al., 2023) 1. We use the metrics of the answer
accuracy and pass@]1 score for math- and code-reasoning,
respectively. All the experiments are conducted three times
independently. We report the average result in the format
of p(%o), where i is the mean, and o is the standard de-
viation. Our focus on math- and code-reasoning is due to
the availability of well-established benchmarks and the ease
of evaluating outputs. RaLLU can be directly applicable to
other domains with minimal adjustments to the prompts.

Baselines. We compare RalLU against three categories of
baselines without fine-tuning or external information: 1)
promoting methods for general purposes: Direct Prompting,
Zero-Shot CoT (Wei et al., 2022), ToT (Yao et al., 2023),
and Self-Consistency (SC) (Wang et al., 2023). 2) self-
correction-based approaches: Self-Calibration (Scal) (Ka-
davath et al., 2022), and Self-Refine (SR) (Ranaldi &
Freitas, 2024); 3) techniques specific for either task:
PoT (Chen et al., 2023b), Self-Check (SCheck) (Miao et al.,
2024), and rubber-duck debugging derived from Self-Debug
(SD) (Chen et al., 2024b). Details of these baselines are
provided in Appendix B.2.

Implementation. We deploy RalL.U on three open-source
LLMs: Deepseek-V3 (Dec 2024), Qwen2.5-72B-Instruct
(Sep 2024), and Llama3.3-70B-Instruct (April 2024). To
prevent breaches of anonymity, we do not deploy RaLLU
on commercial closed-source models such as GPTs and ol.
Instead, we compare RaLLU with the public results of these
closed-source LLMs reported on the leaderboard maintained
by (Liu et al., 2023b; Paperwithcode, 2025; Mirzadeh et al.,
2024), presented in Appendix C. We set the maximum num-
ber for self-correction turns as 3 and the maximum number
of candidate solutions/branches as 10 for Self-Consistency
and ToT. The temperature parameter is set to 0.7, and the
frequency penalty is 0.3 in all experiments.

4.2. Results

Table 1 summarizes the performance of RaLU on math and
code reasoning. Across all benchmarks and diverse LLM
architectures, RaLU consistently outperforms existing base-
lines, demonstrating its generalizability and robustness. We
analyze the advantages through three critical comparisons:

RaLU v.s. Single-Path Reasoning. Compared to direct
prompting, CoT, and PoT (single reasoning path per query),
RaL.U achieves an average improvement of +12.81% and
+14.85% for math and code reasoning, respectively, at-
tributed to its structured decomposition of problems into
logical units aligned with programmatic constraints, mitigat-
ing the inconsistencies inherent in linear reasoning chains,

"https://github.com/lzloceani/verify_
cot/blob/main/results/chatgpt3.5/natural__
program/MATH_np. json
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Table 1. Ral.U significantly increases final scores with all the three LLM backbones
with the best-performing baseline.

. AGain is the performance gain of RaLU compared

Dataset LLM Direct CoT ToT  PoT/SR* SC SCal SCheck/SD* RaLU AGain(%)
DeepSeek V3 0917 0.968 0.921 0.939 0.965 0.949 0.942 0.971 +0.310
GSMB8K Qwen2.5-72B  0.940 0.967 0.937 0.951 0.964 0.945 0.901 0.980 +1.344
Llama3.3-72B  0.826 0.944 0.904 0.876 0.945 0.928 0.881 0.964 +2.011
DeepSeek V3 0.691 0.723 0.643 0.751 0.703 0.814 0.601 0.821 +0.860
MATH-np Qwen2.5-72B  0.706  0.708 0.689 0.753 0.780 0.726 0.693 0.791 +1.410
Llama3.3-72B  0.347 0.541 0.489 0.551 0.607 0.539 0.533 0.631 +3.954
DeepSeek V3 0.768 0.811 0.772 0.799 0.839 0.807 0.783 0.843 +0.420
AQUA Qwen2.5-72B  0.764 0.799 0.791 0.807 0.779 0.811 0.772 0.846 +4.316
Llama3.3-72B  0.512 0.583 0.555 0.496 0.610 0.598 0.528 0.610 0
DeepSeek V3 0915 0.915 0.890 0.854 0.933 0.921 0.878 0.939 +0.643
HumanEval Qwen2.5-72B  0.841 0.872 0.841 0.707 0.738 0.787 0.774 0.909 +4.243
Llama3.3-72B  0.689 0.713 0.704 0.591 0.713 0.701 0.585 0.811 +13.745
DeepSeek V3 0.878 0.878 0.835 0.805 0.884 0.866 0.799 0.902 +2.036
HumanEval+ Qwen2.5-72B  0.793 0.793 0.823 0.659 0.707 0.750 0.738 0.860 +4.496
Llama3.3-72B  0.628 0.652 0.653 0.512 0.671 0.646 0.543 0.768 +14.456
DeepSeek V3 0.923  0.926 0.910 0.892 0.921 0.915 0.899 0.937 +1.188
Mbpp Qwen2.5-72B  0.921 0.894 0.910 0.862 0.921 0918 0.902 0.926 +0.543
Llama3.3-72B  0.807 0.828 0.782 0.738 0.823 0.831 0.775 0.836 +0.598
DeepSeek V3 0.783  0.778 0.759 0.720 0.791 0.786 0.767 0.833 +5.310
Mbpp+ Qwen2.5-72B  0.791 0.765 0.778 0.730 0.775 0.780 0.791 0.828 +4.678
Llama3.3-72B  0.664 0.704 0.601 0.550 0.698 0.685 0.638 0.709 +0.710

* Using the former method for math reasoning and using the latter method for code generation.

either represented in NL (CoT) or programs (PoT). We
display more cases about how RalLLU reduces reasoning
hallucinations of the combination of CoT and PoT in Ap-
pendix D.1. RaL.U enables fuller exploration in the diverse
solution subspaces, resulting in optimal solution generation.

RaLU v.s. Multi-Path Exploration. Multi-path methods
like Self-Consistency, Self-Check, and ToT aim to select the
optimal reasoning path over multiple samples. SC and ToT
rely on sampling fixed times of independent candidates (up
to 10 paths/branches), yet RaLU surpasses them by +9.55%
and +10.69% for math and code reasoning, respectively,
with far fewer candidates (< 3 per unit). This is because
RaL.U reduces cascading errors by isolating and refining
individual units with hybrid reasoning representations. In
contrast, SC or ToT might aggregate multiple incorrect paths
that share the same flawed premise.

While Self-Check improves robustness through weighted
voting—prioritizing solutions with internally consistent
steps—it suffers from two critical limitations: First, its step-
wise regeneration and comparison decorrelate errors but fail
to propagate corrected logic to subsequent steps. Second,
each re-generation requires 3+ LLM calls with redundant
contexts, incurring high costs without guaranteeing holistic
consistency. RaLLU addresses these via unit-level iterative
refinement. By decomposing reasoning into logical units,

errors are localized and resolved before subsequent units
are processed while reducing LLM calls by about 60+%. A
refined unit ¢ directly informs the context for unit ¢ 4 1, pre-
venting error propagation. This enables RaL.U to outperform
Self-Check by 15.07% on average, achieving accuracy and
efficiency through context-aware, incremental validation.

RaLU v.s. Self-Correction Methods. Many existing
self-correction-based methods (e.g., Self-Refine and Self-
Debug), often degrade performance by introducing errors
into initially correct responses—a flaw exacerbated by their
assumption of imperfection existence in the initial response
attempt. Ral.U mitigates this via a self-judgment stage,
where LLMs validate each unit before refinement. This
proactive verification yields an average gain of 18.28% over
these baselines. Though Self-Calibration applies holistic
self-judgment to reduce wrong edits, it still underperforms
RaLU by 6.13% and 9.11% for math and code, respectively,
as end-to-end validation fails to isolate localized inconsisten-
cies addressed by RaLLU ’s granular, unit-level verification.

In summary, RaLU outperforms baselines by combining
formal correctness (via code) and interpretability (via NL).
This dual approach enables precise, self-contained error
correction, significantly mitigating reasoning hallucinations.

Multiple runs. Given the inherent stochastic nature of



Submission

Table 2. The repeated three runs of experiments using Qwen-72-Instruct on Mbpp/Mbpp+ and Math-np. In each cell in the format of

=+ o, pis the mean, and o is the standard deviation.

Dataset Direct CoT ToT PoT/SR* SC SCal SCheck/SD RaLU
Mbpp  0.923+0.0070 0.895+0.0014  0.905+0.0045 0.860+0.0046 0.922+0.0033  0.924+0.0038 0.905+0.0038  0.957+0.0012
Mbpp+  0.7884+0.0021 0.7614+0.0052  0.7724+0.0046  0.725+0.0038  0.779+0.0061  0.787+0.0122  0.750+0.0349  0.856-0.0017

Math-np  0.705£0.0065 0.701£0.0085  0.6954-0.0045

0.7431+0.023

0.764£0.014  0.725+0.0065 0.685+0.0088  0.803+0.0085

Table 3. Average token consumption of RaLU and baselines on MATH-np using Qwen-72B-Instruct. In each cell, /o denotes the average
input and output token consumption, respectively. RaLU consumes 15x tokens compared to CoT, while saves 10x tokens compared to

multi-path reasoning baselines such as Self-Check and ToT.

Task Direct CoT ToT PoT

SC SCal SCheck RaLU

MATH-np 8x10%7x10* 8x10%/5.5x10° 7.5x107/1.2x10”

2x10%/9x10%

1.3x10%/3x10%  1.5x10°/8x10* 2x107/1.4x10%  4.8x10%/7x10°

LLMs and the absence of seed support in the official API,
we conducted two extra independent runs to further validate
the robustness of RaLLU across different model configura-
tions. To conserve computational resources, we performed
additional trials on Qwen-72B-Instruct for the MATH and
MBPP/MBPP+ benchmarks, rather than repeating the full
set of experiments. The results—reported as mean + stan-
dard deviation in Table 2—are consistent with our findings,
further confirming RalLU’s stable and reliable performance.

Inference Cost. This section compares the inference token
consumption of RaLLU and baselines on MATH-np using
Qwen-72B-Instruct, as dataset MATH is complex enough to
require the most token consumption. As shown in Table 3,
RaLU consumes 15x tokens compared to CoT, while saving
10x tokens compared to multi-path reasoning baselines such
as Self-Check and ToT.

5. Ablation Studies
5.1. CFG v.s. Line-by-line

To validate the influence of the granularity of the logic unit
on RalL.U, we replace the CFG-driven decomposition with a
line-by-line approach, treating each code line in the origi-
nally generated program as an independent logic unit. As
displayed in Figure 4, results show an average performance
decline of 7.04% across all benchmarks on Llama3.3, along-
side a 37.7% increase in token consumption.

The observed decline stems from three intrinsic limitations
of line-by-line decomposition. First, programs inherently
consist of interdependent code blocks (e.g., loops, condition-
als). Splitting them into isolated lines disrupts contextual de-
pendencies between statements. Second, while fine-grained
units obscure the hierarchical structure of program logic,
LLMs struggle to associate low-level symbol operations
(e.g., variable updates) with high-level problem-solving
goals (e.g., iterative summation), leading to fragmented
explanations and misaligned corrections. Third, line-by-line
units amplify error accumulation. For example, a variable
initialization error in line 1 may invalidate subsequent lines.

However, independent unit verification delays error detec-
tion, requiring repetitive corrections across multiple units.
In contrast, CFG-based grouping localizes errors within
bounded logical scopes.

The surge in token usage is intuitive. Each line triggers a sep-
arate verification dialogue, multiplying interaction rounds.
Moreover, the LLM repeatedly re-encounters overlapping
contexts and generates similar NL descriptions across units,
wasting tokens on redundant information.

1.0
RalU

RalLU-Line by Line
0.8

o
o

Accuracy/Score

°
>

0.2

0.0

GSM8K MATH-np HumanEval HumanEval+  Mbpp Mbpp+

Figure 4. Ablation study of logic unit granularity: line-by-line de-
composition causes 7.04% performance decline and 37.7% more
token overhead compared to the CFG method (Llama). Perfor-
mance degradation reflects contextual fragmentation and error
propagation in atomic units, while increased token costs are at-
tributed to redundant context re-verification.

5.2. NL Steps v.s. Logic Units

To further validate the necessity of program-guided logic
units, we remove the initial program generation phase and
instead treat each natural language reasoning step under the
CoT prompting as an independent unit. This ablation leads
to a 5.52% accuracy drop on mathematical tasks and 4.35%
score drop on code reasoning, as shown in Figure 5, directly
attributable to exacerbated reasoning hallucinations, The
amplified decline highlights the fundamental limitations of
pure natural language reasoning units.

We find a significant number of wrong answers can be at-
tributed to reasoning hallucinations. First, NL steps like
“compute the average by dividing the sum by the count”



Submission

1.0
RalU

NL Step

o o
o o

°
IS

Accuracy/Score

0.2

0.0

GSM8K MATH-np HumanEval HumanEval+  Mbpp Mbpp+

Figure 5. Ablation on unit abstraction: 5.52% accuracy drop
(Math) and 4.35% score decline (Code) when replacing program-
guided logic units with NL steps. Performance deterioration stems
from reasoning hallucinations exacerbated by NL’s lack of opera-
tional specificity and weak causal dependency constraints.

often lack operational specificity. While the NL step ap-
pears correct, the generated code may implement flawed
logic (e.g., total / len(items) without handling empty lists).
Unlike CFG units, which enforce alignment through static
code analysis, the free-form language allows the LLM to
hallucinate plausible-but-incorrect implementations. More-
over, the ambiguity of NL enables conceptual bundling—
multiple logical operations (e.g., loop initialization, itera-
tion, termination)—-may be compressed into a single step like
“iterate through the list.” This can lead to code with miss-
ing boundary checks or redundant variables, as the LLM
fails to decompose high-level descriptions into executable
sub-operations. In addition, the NL narrative poorly con-
strains causal dependencies. For example, a step “update
the total after checking a certain condition® might lead to
code that evaluates the condition after modifying the total.
CFG-driven units prevent such misordering by structurally
embedding control flows. Appendix D.2 provides a detailed
case study of how reasoning hallucinations are introduced
if the program-driven logic units in RaL.U are replaced by
NL steps generated through CoT.

5.3. Candidate Unit Selection

In some complex questions, the number of self-corrections
reaches the predefined threshold, necessitating the selection
of a suboptimal reasoning path before all units are verified.
In this paper, we use the confidence score (introduced in Sec-
tion 3.2) as the selection criterion. We conducted ablation
studies on Qwen-72B on MATH-np, which contains a suffi-
cient number of challenging cases (89 out of 700) where the
threshold is reached. We compared three alternative strate-
gies: random selection, selecting the candidate with the low-
est perplexity (=: exp(—1 * mean of token probabilities)),
and selecting the last generated candidate.

As shown in Table 4, the impact of the selection strategy is
minimal. Two factors can explain this. First, during self-
correction iterations, LLMs tend to generate tokens with con-

sistently high probabilities (averaging above 0.9), leading to
small variations between confidence scores and perplexity.
Second, qualitative analysis reveals that many generated
candidates are semantically equivalent, differing only in
implementation details. This explains why even random se-
lection results in only minor performance drops. Although
perplexity-based selection slightly improves performance
(+0.9%), the marginal gain suggests that the verification-
revision loop already filters out most critical errors before
selection takes place.

Table 4. Experiments with Qwen-72B-Instruct on the 89 complex
cases from MATH-np, where RaLLU reaches the budget limit of
generating candidates. In each cell, z/y indicates = correct cases
out of the 89 ones. The results show that the selection strategy has
little impact on the final results.

Confidence (RaLU)

42/89=0.472

Random
40/89=0.449  45/89=0.506 38/89=0.427

Perplexity Last

6. Conclusion

We present Reasoning-as-Logic-Units (RaLU), a pioneering
test-time scaling framework designed to tackle the issue of
reasoning hallucinations and enhance the reasoning capabil-
ities of LLMs. Unlike existing methods that often encounter
logical inconsistencies between reported reasoning steps
and generated programs, RaLLU effectively extracts logic
units from generated programs and aligns them with task
requirements using natural language explanations. This
method leverages the strengths of both natural language and
program logic, resulting in more reliable, interpretable, and
transparent LLLM reasoning. Experimental results demon-
strate that RaLU consistently outperforms existing baselines
across various LLMs, including comparisons with propri-
etary close-sourced models. We hope that our work will
inspire further research into structural reasoning, advancing
LLM problem-solving across diverse domains.

Impact Statement

This paper presents work whose goal is to advance the field
of machine learning by improving the reliability and accu-
racy of large language models (LLMs) in complex reason-
ing tasks. By addressing reasoning hallucinations through
logic-aligned hybrid reasoning processes, our framework
enhances LLMs’ general capabilities to generate coherent
and logically consistent solutions, particularly in mathemat-
ical and algorithmic domains, without any fine-tuning or
re-training. Potential societal benefits include more trust-
worthy Al systems for education, technical problem-solving,
and decision-support applications. There are many broader
societal consequences of our work, none of which we feel
must be specifically highlighted here.
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A. Illustrations of RalLU
A.1. A Complete Example

This section showcases how RalLU solves a code generation task using an LLM (e.g., deepseek V3 in this example). The
question comes from Mbpp 77. In the initial response, RaLU simply uses direct prompting to ask the LLM to write a
program for the given specification.

Original Attempt. [User] You are an expert in Python coding. Wrap your program in a <code> </code> block. No more
test cases or any other contents.

Specification: Write a function to find the Eulerian number a(n, m), the entry point is “eulerian_num”.
assert eulerian_num(3, 1) ==4

[AI] <code>
1 def eulerian_num(n, m):
2 ifm<Oorm>=n:

3 return O

4 ifn==0:

5 return 1

6 return (n - m) * eulerian_num(n - 1, m - 1) + (m + 1) * eulerian_num(n - 1, m)
</code>

Afterward, we extract Control Flow Graph (CFG) from the initial program, and then we transverse the CFG to transform it
into text by describing the logic flow of the code statements. Therefore, we obtain a list of logic units:

o #ENTER FUNCTION# eulerian_num
#BRANCH# If Condition ‘if m < 0 or m >= n’ is satisfied, then RUN ‘return 0’

o #BRANCH# Otherwise, when Condition ‘if m < 0 or m >=n’ is not satisfied, then #BRANCH# If Condition ‘if n ==
0’ is satisfied, then RUN ‘return 1’

 #BRANCH# Otherwise, when Condition ‘if n == (0’ is not satisfied, then RUN ‘return (n - m) * eulerian_num(n - 1, m -
1) + (m + 1) * eulerian_num(n - 1, m)’
#EXIT FUNCTION#

Then, Ral.U initializes a continuous dialogue with the same LLM. In each turn of interaction, the LLM is promoted to
judge the correctness of the current logic unit. If this unit is determined as wrong, the LLM will generate the fixed version
simultaneously.

U1-L. [User] ## Process
Unit 1: #ENTER FUNCTION# eulerian_num
#BRANCH# If Condition ‘if m < 0 or m >= n’ is satisfied, then RUN ‘return 0’

[AI] (confidence: 96.50) OK

Analysis: This step correctly handles the edge case where ‘m’ is less than 0 or greater than or equal to ‘n’. According to the
specification, the Eulerian number ‘a(n, m)’ should return 0 in such cases. The logic aligns with the requirement, so this step
is correct.

The correctness of unit 1 is checked by the LLM.

U2-1. [User] Unit 2: #BRANCH# Otherwise, when Condition ‘if m < 0 or m >=n’ is not satisfied, then #BRANCH# If
Condition ‘if n == 0’ is satisfied, then RUN ‘return 1’

[AI] (confidence: 98.96) WRONG

<Fix>

#BRANCH# Otherwise, when Condition ‘if m < 0 or m >=n’ is not satisfied, then #BRANCH# If Condition ‘if m == 0’ is
satisfied, then RUN ‘return 1’
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</Fix>

Analysis: This unit incorrectly checks for the condition ‘if n == 0’. According to the specification and the logic of Eulerian
numbers, when ‘m == 0’, the function should return 1. The condition should be checking if ‘m == 0’, not ‘n == 0’. This
correction aligns with the requirement.

Herein, the reasoning path branches off by fixing the original logic unit. Then we rewind and replace unit 2 with the fixed
one:

U2-II. [User] Unit 2: #BRANCH# Otherwise, when Condition ‘if m j 0 or m ;=n’ is not satisfied, then #BRANCH# If
Condition ‘if m == 0’ is satisfied, then RUN ‘return 1’

[AI] (confidence: 97.61) OK
Analysis: This unit correctly handles the case where ‘m == 0’. According to the specification, when ‘m == 0’, the Eulerian
number ‘a(n, m)’ should return 1. The logic aligns with the requirement, so this unit is correct.

U3-1. [User] Unit 3: #BRANCH# Otherwise, when Condition ‘if n == 0’ is not satisfied, then RUN ‘return (n - m) *
eulerian_.num(n - 1, m - 1) + (m + 1) * eulerian_num(n - 1, m)” #EXIT FUNCTION#

[AI] (confidence: 98.70) WRONG

<Fix>

#BRANCH# Otherwise, when Condition ‘if m == 0’ is not satisfied, then RUN ‘return (n - m) * eulerian_.num(n- 1, m- 1) +
(m + 1) * eulerian_num(n - 1, m)*

#EXIT FUNCTION#

</Fix>

Analysis: The unit incorrectly checks for ‘if n == 0’, which is already handled in the first branch (‘if m <0 orm >=n’).
Instead, it should proceed to calculate the Eulerian number using the recursive formula when ‘m !=0’. The corrected step
ensures that the recursive calculation is performed only when ‘m != 0’, aligning with the specification.

In the dialogue round for unit 3, given that the previous historical conversation could serve as a priori conditions for the
LLM, it successfully carried forward the modifications made to unit 1, thus ensuring the consistency of the context.

U3-II. [User] Unit 3: #BRANCH# Otherwise, when Condition ‘if m == 0’ is not satisfied, then RUN ‘return (n - m) *
eulerian num(n - 1, m - 1) + (m + 1) * eulerian_num(n - 1, m)‘ #EXIT FUNCTION#

[AI] (confidence: 98.71) OK Analysis: This unit correctly implements the recursive formula for calculating the Eulerian
number ‘a(n, m)’ when neither of the previous conditions (‘m < 0 or m >=n’ or ‘m == 0’) is satisfied. The logic aligns
with the requirement, as it uses the correct recurrence relation:

‘(n - m) * eulerian_.num(n - 1, m - 1) + (m + 1) * eulerian_num(n - 1, m)’.

This step is logically correct and adheres to the specification.

After generating a self-checked and self-corrected reasoning path, we take it as a history conversation. Note that the original
program is not included in case of confusion.

Final Synthesis. [User] You are an expert in Python coding. Your task is to write a correct program to meet the given
specification based on the previous conversation. Your program can contain several functions, but make sure the main entry
point is eulerian_num.

Strict Requirement: Ensure to return the complete function wrapped in a <code> </code> block! No test cases!

Specification: Write a function to find the Eulerian number a(n, m), the entry point is “eulerian_num”.
assert eulerian_num(3, 1) == 4

[AI] <code>
1 def eulerian_num(n, m):

2 ifm<Oorm>=n:

3 return 0

4 elif m==0:

5 return 1

6 return (n - m) * eulerian_.num(n - 1, m - 1) + (m + 1) * eulerian_num(n - 1, m)
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</code>

By changing the condition from ‘if n == 0’ to ‘elif m == 0’, the program is successfully corrected. Through fine-grained
alignment (among the requirement in natural language, step descriptions, and the generated program), RaLU can effectively
correct subtle logical errors. Moreover, by taking the previous conversations as conditions, it can better prevent the
propagation of errors from previous steps.

The trajectories will be made publically available as soon as the end of anonymity, where all the cases using RaLLU can be
shown directly.
A.2. CFG-Driven Logic Units of Code

Figure 6 displays an example of transforming a program into a CFG and how RaL.U organizes the graph to obtain a linear
sequence of logic units. To enhance interpretability, units are annotated with human-readable descriptors (e.g., “LOOP
BEGIN: Process each item in list X”’). These labels bridge low-level code operations with high-level problem-solving intent,
priming subsequent alignment stages.

Original Program CFG Logic Units

def parse_music(music_string: str): parse_musie l #ENTER FUNCTION# parse_music
noteitoibea.ts ={ :0': 4, '9|': 2,1} RUN [
notes = music_string.split() note_to_beats = {'0": 4, ‘ol 2,"|": 1}
beats = [note_to_beats[note] notes = music_string.split()
for note in notes] beats = []
return beats !

note_to_beats = {"0" 4, 'o[: 2, "|': 1}
notes = music_string.split()
beats =[]

for note in notes:

beats.append(note_to_beats[note])

#LOOP BEGIN# If looping
Condition “for note in notes" is
satisfied, then enter the loop:

l beats.append(note_to_beats[note])

#LOOP END# If not satisfying the
looping Condition for note in
notes’, then jump out of the loop.

RUN ‘return beats’
#EXIT FUNCTION#

Figure 6. This figure depicts what a CFG looks like and how it is transformed into units. Nodes and edges in the CFG represent code
blocks and control flow transitions, respectively. RaLU divides the CFG into atomic logic units at key points, with each unit labeled for
better understanding.

A.3. Condition of Applying Self-Repair

The correctness of a unit I/ involves two conditions: First, the LLM believes U/ is correct and I{ is actually correct, then we
have:

P(U is correct|.] = OK) = ap. )
Second, the probability of I/ being judged as wrong is (true negative rate plus false positive rate):
P(J =WRONG) = (1 — a)p+ 5(1 — p). (10)
Then, the probability of correctly repairing the unit is:
P(U is correct|.J = WRONG) = Ypepair - [(1 — a)p + B(1 — p)]. (11)
. Thus, we can rewrite p’ as:
p/ = ap+’7repair : [(1 —OZ)P+5(1 _p)]- (12)
To compare p’ and p, we have:

/

p'—p=—p( — ) +Yrepair - [(1 —a)p+ B(1 — p)]

(1—a)p (13)
(1—a)p+pB(1—p)

(1= a)p+ Bl —p)]-(Vrepair —

P(J=WRONG)
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Note that the first term is the probability of judging the unit as WRONG so that it is always positive. The condition of
p' — p > 0 is then transformed to:

(1-ap
repair > . 14
vt = (U= a)p+ B(1 — p) (4
Note that P({/ is correct|.J = WRONG) = 2 is;z)}r:;gg;";mm) , that is:
1—
P(U is correct|.J] = WRONG) = (1= a)p (15)

(1—a)p+B(1—p)

equal to the right part of equation 14, so the condition of p’ > p i8S Vyepair > P(U is correct|J = WRONG).

B. Details of Experiment Setup
B.1. Benchmarks

* GSMS8K (Cobbe et al., 2021b) is a widely recognized benchmark to evaluate the reasoning and problem-solving
capabilities of LLMs, whose name stands for “Grade School Math 8K,” reflecting its focus on grade school-level math
problems. The dataset contains approximately 8,500 carefully crafted math problems. Each problem in GSM8K is
presented as a word problem, typically involving basic arithmetic operations (addition, subtraction, multiplication, and
division) and sometimes simple algebraic concepts.

* MATH (Hendrycks et al., 2021) is proposed as a comprehensive benchmark designed to assess the mathematical
reasoning capabilities of LLMs. It comprises 12,500 competition mathematics problems, which are carefully curated to
cover a wide range of mathematical concepts and varying levels of difficulty. We use a subset taken from (Ling et al.,
2023) named MATH-np, specifically tailored to assess the deductive reasoning skills of LLMs. It includes problems
that require multi-step reasoning and the application of mathematical concepts in a structured manner.

HumanEval (Chen et al., 2021) is a benchmark dataset to evaluate the code generation capabilities of LLMs, introduced
by OpenALl. It consists of 164 hand-written Python programming problems, each with a problem specification (prompt),
a predefined function signature, and a set of test cases. The primary metric used to evaluate model performance is the
pass @k metric, which measures the percentage of tasks for which at least one of the & generated code samples passes
all the test cases. Note that we only report pass@]1.

* AQUA (Ling et al., 2017) is an algebraic word problem dataset collected by DeepMind, designed to evaluate the
mathematical reasoning capabilities of LLMs. The questions are mainly algebraic word problems described in natural
language, covering basic to medium-complexity scenarios such as profit calculation, proportion distribution, speed-time
relationship, etc. There are 254 questions in the test set, and all of them are manually screened to ensure diversity and
logical rigor, and their annotation quality is cross-validated.

e Mbpp (Austin et al., 2021), or Mostly Basic Python Problems, is a benchmark designed to evaluate the program
synthesis capabilities of LLMs, consisting of over 900 Python programming tasks, whose problems share the same
structure with that of HumenEval. It covers a wide range of basic to moderately complex Python programming
problems.

¢ HumanEval+/Mbpp+ (Liu et al., 2023b) come from EvalPlus, a rigorous evaluation framework designed to assess the
performance of LLMs in code generation by expanding the test cases of well-known benchmarks such as HumanEval
and MBPP. It also maintains a leaderboard to track and compare the performance of various LLMs.

B.2. Baselines
In our experiments, we reproduce the baselines strictly following their released code and prompts.
* Chain-of-Thought (CoT) (Wei et al., 2022) involves instructing the model to "think step by step” before arriving at
a final answer. It enhances the reasoning capabilities of LLMs by explicitly guiding them to break down complex

problems into a series of logical, intermediate steps. This approach mimics human reasoning by decomposing a
problem into smaller, manageable sub-problems and solving them sequentially.
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Thee-of-Thought (ToT) (Yao et al., 2023) enhances LLM reasoning capabilities by simulating human problem-solving
strategies. ToT breaks down the problem-solving process into smaller, manageable, intermediate steps called “thoughts.”
For each state in the thought tree, the LLM generates multiple potential next thoughts. Each generated thought is
evaluated for its potential to lead to a solution. Then, it employs search algorithms such as Breadth-First Search (BFS)
or Depth-First Search (DFS) to explore the thought tree systematically. The structured nature of the thought tree makes
the reasoning process more transparent and interpretable.

¢ Program-of-Thought (PoT) (Chen et al., 2023b) or its similar approach Program-Aided Language Model (PAL) (Gao
et al., 2023) both represent a novel approach that combines the strengths of LLMs with the precision of programming
languages. The LLM reads a natural language problem and generates a program as the intermediate reasoning step.
They aim to decompose reasoning and computing by offloading the solution step to a symbolic interpreter, which
leverages the LLM’s reasoning abilities while mitigating its weaknesses in logical and arithmetic operations. PoT or
PAL will degrade to direct prompting in the face of program generation tasks.

* Self-Consistency (SC) (Wang et al., 2023) is a decoding strategy designed to improve the accuracy and reliability
of reasoning processes. It involves generating multiple reasoning paths for a given problem and selecting the most
consistent answer among them (majority voting). The consistency can be directly computed (for numerical calculation
tasks) or determined by LL.Ms (either the same LLLM or another LLM).

* Self-Calibration (SCal) (Kadavath et al., 2022) an advanced prompting technique designed to enhance the accuracy and
reliability of LLMs by enabling them to evaluate their own outputs. The LLM generates an initial answer to a given
question, and it is prompted to assess the correctness of its own response.

» Self-Refine (SR) (Ranaldi & Freitas, 2024) is an iterative refinement technique designed to enhance the output quality of
LLMs by incorporating self-generated feedback. Specifically, the LLM generates an initial response to a given prompt,
and the same LLM evaluates the initial output and provides actionable feedback, identifying areas for improvement.
With the feedback, the same LLM refines the initial output, aiming to improve its quality. This response-feedback-refine
pipeline can be repeated multiple times until the output meets a predefined stopping criterion.

* Self-Debugging (SD) (Chen et al., 2024b) is an innovative technique designed to enable LLMs to identify and correct
errors in the code they generate without requiring additional model training or human intervention. This method is
inspired by the “rubber duck debugging” technique used by human programmers, where explaining code line-by-line
in natural language helps identify and fix errors. Since it targets program bugs, it cannot be directly applied to
mathematical reasoning tasks.

¢ Self-Check (SCheck) (Miao et al., 2024) is a prompting technique that enables LLMs to evaluate their own reasoning
and identify errors in their step-by-step solutions. It first provides several step-by-step solutions through CoT prompting.
Then, it identifies the relevant context and target for each step in its reasoning process. Afterward, the LLM generates
an independent alternative step based on the extracted context. The original step is compared with the regenerated
alternative. If they match, the original step is deemed correct. The reasoning path with the most “correct” steps will be
selected (weighted majority voting).

C. Additional Comparisons
C.1. RaLU v.s. Closed-Source LLMs

As shown in Table 5, in cross-domain benchmarks (mathematical reasoning and code generation), RaLLU exhibits better
reasoning capabilities to mainstream closed-source models (i.e., GPT-40, GPT-4-Turbo, and Claude-Sonnet-3.5) and
significantly outperforms GPT-3.5-Turbo (+38.16% on average).

RaLU achieves the highest scores on the extended versions of code generation benchmarks (HumanEval+/Mbpp+), despite
its slightly lower performance on original HumanEval/MBPP (A=-2.24%). This inversion reveals a critical insight that
unit-level correction benefits to solving multi-constraint tasks, since the augmented test suites introduced by the plus version
of benchmarks require models to simultaneously satisfy competing constraints. While closed-source models often overfit to
dominant patterns in pretraining data, RaLU’s unit-level rewind mechanism enables iterative constraint alignment. This
explains the 9.46% improvement on mathematical reasoning benchmarks where LLMs struggle with numerical computation.
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Table 5. RalLU using open-sourced LLMs (DeepSeek-V3 or Qwen2.5-72B) can even outperform state-of-the-art closed-source LLMs,
whose results are reported by previous studies. It achieves SoTA results on both mathematical reasoning benchmarks by making an
improvement of 9.46%, though there are no results on o1 models so we have to omit them. RaL U also enhances code generation by 2.61%
on the plus versions of benchmarks compared to ol-preview, despite the slight decline (-2.24%) on the standard benchmarks.

Dataset ol Preview ol Mini GPT-40 GPT-4-Turbo Claude-3.5-Sonnet GPT-3.5-Turbo Ours (RaLU)

GSMSK 0.969 0.951 0.948 0.926 0.950 0.822 0.980
MATH-np - - 0.697 0.590 0.623 0.347 0.821
HumanEval 0.963 0.963 0.927 0.902 0.872 0.835 0.939
HumanEval+ 0.890 0.890 0.872 0.866 0.817 0.707 0.902
Mbpp 0.955 0.931 0.876 0.857 0.894 0.825 0.937
Mbpp+ 0.802 0.788 0.722 0.733 0.743 0.697 0.833

C.2. RaLU on a smaller model

To demonstrate the effectiveness of RaLLU on a smaller model, we supplemented experiments with Qwen2.5-14B on MATH
and Mbpp/Mbpp+. As shown in Table 6, RaLU still provides significant improvements for smaller yet capable models.

Table 6. RaL.U achieves the best performance with Qwen-14B-Instruct on Mbpp/Mbpp+ and MATH-np, showing its generalizations
among different scales of LLMs.

Dataset Direct CoT ToT  PoT/SR* SC SCal SCheck/SD RaLU AGain(%)

Mbpp 0.840 0.860 0.831 0.804 0.868 0.852 0.852 0.902 +3.917
Mbpp+ 0.725 0.733 0.720 0.698 0.754 0.706 0.714 0.839  +11.273

MATH-np 0.603 0.691 0.651 0.731 0.751 0.710 0.593 0.784 +4.394

D. Case Studies
D.1. Reasoning hallucinations in CoT-PoT-integrated method (single reasoning path)

[User] You are an expert in coding. Your goal is to write a program to meet the given specification. Let’s think it step by
step. Show your thinking process explicitly. Example Response:

<code>

def add_nums(a, b):

return a+b

</code>

Analysis: Using operation ‘+ to directly implement the requirement of returning the sum of two numbers.

**Strict Requirement**: Ensure to return the complete function wrapped in a <code> </code> block! No test
cases!

Specification: In this task, you will be given a string that represents a number of apples and oranges that are dis-
tributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total
number of the oranges and apples and an integer that represent the total number of fruits in the basket. Return the number of
the mango fruits in the basket.

For example:

fruit_distribution(5 apples and 6 oranges”, 19) +19-5-6=8

fruit_distribution(“0 apples and 1 oranges”,3) -»3-0-1=2

fruit_distribution(*2 apples and 3 oranges”, 100) —100 - 2 - 3 =95

fruit_distribution(“100 apples and 1 oranges”,120) —+120 - 100 -1 =19

[AI (Deepseek V3)] Let’s break down the problem step by step:
1. **Input Analysis**:
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- The input is a string ‘s’ that contains the number of apples and oranges in the format ‘X apples and Y oranges’.
- The second input is an integer ‘n’ representing the total number of fruits in the basket.

2. **QObjective™*:
- We need to extract the number of apples (‘X’) and oranges (‘Y’) from the string ‘s’.
- Then, calculate the number of mangoes by subtracting the sum of apples and oranges from the total number of fruits ‘n’.

3. ** Approach**:

- Use string manipulation to extract ‘X’ (apples) and ‘Y’ (oranges) from the string.
- Convert these extracted values to integers.

- Subtract the sum of apples and oranges from ‘n’ to get the number of mangoes.

4. **Implementation™*:

- Split the string into parts using spaces or specific keywords like “apples” and “oranges”.
- Extract numerical values corresponding to apples and oranges.

- Perform arithmetic operations to find mangoes.

Here’s how we can implement this:
<code>

1 def fruit_distribution(s, n):

# Split the string into parts

2 parts = s.split()

# Extract apple count

3 apple_count = int(parts[0])

# Extract orange count

4 orange_count = int(parts[2])

# Calculate mango count

5 mango_count = n - apple_count - orange_count
6 return mango_count

</code>

Analysis:

- The function splits the input string into parts using spaces.

- It extracts apple count as an integer from index 0.

- It extracts orange count as an integer from index 2.

- Finally, it calculates mango count by subtracting apple and orange counts from total fruits ‘n’.

The NL reasoning correctly emphasizes extracting numerical values for apples (X) and oranges (Y) from the input string.
However, the code fails to parse the string correctly. For example, for an input “5 apples and 6 orange” in a standard test
case, splitting by spaces produces a list of [5, apples, and, 6, oranges]. The code erroneously takes parts[2] (value “and”) for
oranges, which is not a numerical value. This causes a ValueError when converting ”and” to an integer.

Instead, RaLLU correctly fixes this error during the self-judging and self-correcting by responding with:

[AI (Deepseek V3)] WRONG
<Fix>

RUN [

parts = s.split()

apples = int(parts[0])

oranges = int(parts[3])
mangoes = n - apples - oranges
return mangoes

]
</Fix>
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Analysis: The step incorrectly assumes that the oranges count is always at index 2 of the split string. However,
in the input string format, the oranges count is at index 3. The correction adjusts the index to 3 to correctly extract the
number of oranges. This aligns with the specification, which requires extracting the number of apples and oranges from the
string and calculating the number of mangoes.

D.2. Reasoning hallucinations in CoT-step-driven RaLU (ablation study)

[User] You are an expert in solving math questions. Your goal is to return the final answer to solve the given question and
show your thinking process explicitly. Let’s think it step by step. For example:

Question: John has 10 apples. He gives away 4 and then receives 5 more. How many apples does he have?

Response:

<Step>1: John starts with 10 apples.</Step>

<Step>2: He gives away 4, so 10 - 4 = 6.</Step>

<Step>3: He then receives 5 more apples, so 6 + 5 = 11.</Step>

<Answer>11</Answer>

Question: Find the integer that lies between v/—45 and +/—101.”

[AI (Llama3.3)]

<Step>1: The expression /—45 is equal to —3, because (—3)3 = —27. Therefore, —4 < {/—45 < —3.</Step>
<Step>2: The expression /—101 is equal to —5, because (—5)% = —125. Therefore, —6 < ¢/—101 < —5.</Step>
<Step>3: Comparing the two intervals, —5 < —4, we can see that the integer that lies between v/—45 and v/—101 is —4
and —5.</Step>

<Answer>-4 or -5</Answer>

After several turns of self-checking and self-correcting the steps, this LLM writes a program to solve this problem:

[AI (Llama3.3)] <code>

# We know that -45 and -101 are both negative, so their cube roots will also be negative.

# To find the integer between these two cube roots, we first need to find the cube roots themselves.
# Calculate the cube root of -45 and -101

1 root45 = round(-45 ** (1/3.0))

2 rootl01 = round(-101 ** (1/3.0))

# Now, we need to find the integer between these two roots.

# Since both roots are negative, we can use the min function to get the one that’s closer to zero
3 ans = max(root45, root101)

4 print(ans)

</code>

Given the execution result of its written program, the LLM responds as follows:

[AI (Llama3.3)] Based on the given program and the calculated ‘ans’, I will show my thinking process explicitly. Since we
are trying to find the integer between v/—45 and v/—101, we first calculated the cube roots themselves using the program.
The results are ‘root45 = -3” and ‘root101 =-5". Now, we need to find the integer between these two roots. Since both roots
are negative, we can use the ‘max’ function to get the one that’s closer to zero. The program calculated ‘ans = max(root45,
root101) = max(-3, -5) = -3’. However, we need to find the integer that lies between /—45 and +/—101. Since ‘-3’ is the
cube root of ‘-45’, we need to add 1 to it to get the integer that lies between the two cube roots. Therefore, the final answer
is:<Answer>-3 + 1 = -2</Answer>

Though the generated code correctly calculates /—45 ~ —3.56 and rounds it to —4, and /—101 ~ —4.66 rounded to -5,
it still misinterprets the code’s output as —3 leading to an invalid adjustment —3 + 1 = —2. This is because in the original
CoT steps, the LLM incorrectly state that v/—45 ~ —3, which is mathematically flawed. In the final response, it conflates
the code’s output (—4) with the incorrect initial NL reasoning (—3), creating a disjointed argument. This misconnection
invalidates the final answer. Additionally, the final NL explanation introduces an extraneous step: “we need to add 1 to it.”
This is not mathematically justified, as the correct answer has already been computed by “ans = max(root45, root101)”. The
addition of 1 is a hallucinated step.
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