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ABSTRACT

Many state-of-the-art neural network verifiers for ReLU networks rely on branch-
and-bound (BaB)-based methods. They branch ReLUs into positive (active) and
negative (inactive) parts, and bound each subproblem independently. Since the cost
of verification heavily depends on the number of subproblems, reducing the total
number of branches is the key to verifying neural networks efficiently. Implications
among neurons can eliminate subproblems: for example, when one or more ReLU
neurons are branched into the active (or inactive) case, they may imply that a set
of other neurons from any layers become active or inactive. In this paper, we
propose a novel optimization formulation to find these implications, and a scalable
method to solve these optimization problems among all neurons within tens of
seconds, even for large ResNets, by reusing pre-computed variables in popular
bound-propagation-based verification methods such as α-CROWN. Our method is
less restrictive than previous approaches and can produce significantly more bound
implications compared to prior work, which may benefit many BaB-based verifiers.
When evaluated on a set of popular verification benchmarks and a new benchmark
consisting of harder verification problems, we consistently reduce the verification
time and verify more problems than state-of-the-art verification tools.

1 INTRODUCTION

As deep neural networks (DNNs) have been widely adopted in safety-critical domains (Kiran et al.,
2021; Popova et al., 2018; Cao et al., 2021; Eykholt et al., 2018), providing rigorous verification
for their robustness, safety and correctness is critical. To address these concerns, neural network
verification algorithms (Ehlers, 2017; Katz et al., 2017; Tjeng et al., 2019) have been developed to
prove certain properties of a DNN rigorously. A traditional example is certifying robustness under
adversarial perturbations, where one aims to verify that the classification outcome does not change
under bounded input perturbations. More general specifications of DNNs can also be proved, and
DNN verification has become a valuable tool in different domains such as control (Everett, 2021) and
cyberphysical systems (Rober et al., 2022; Harapanahalli et al., 2023). Proving these specifications
typically requires rigorously bounding the outputs of DNNs considering input perturbations.

One popular DNN verification approach is the Branch and Bound (BaB) based methods (Bunel et al.,
2018; 2020; Palma et al., 2021; Bak et al., 2020; Wang et al., 2018a;b; 2021), which exploits the
piece-wise-linear property of ReLU-based DNNs. Since ReLU(x) = max{x, 0} consists of two
linear pieces, the verification problem can be split into two easier subproblems, each with one less
nonlinear ReLU neuron. This property is the foundation for BaB-based verification approaches and
many state-of-the-art verifiers, such as α,β-CROWN (Wang et al., 2021; Xu et al., 2020b; Zhang
et al., 2022), MN-BaB (Ferrari et al., 2021), and VeriNet (Henriksen & Lomuscio, 2020), utilized
BaB as their core verification procedure.

Specifically, a BaB-based verifier splits a ReLU neuron into inactive (inputs ≤ 0) and active (input
> 0) cases (Branching), creating two subproblems after each neuron is split; then the lower and
upper bounds of the model output for each subproblem are calculated (Bounding). The bounding
process for each subproblem typically involves solving a relaxed optimization problem, which is
often the most costly step. After one step of BaB, the output bounds usually improve and may lead
to successful verification of subproblems. If the bounds are still not tight enough, the verifier will
recursively choose the next ReLU neuron to split in each unsolved subproblem.
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The key to improving the efficiency of BaB-based verifiers is to reduce the number of subproblems
created. Several works (Kouvaros & Lomuscio, 2021; Botoeva et al., 2020) considered the correlations
(implications) among ReLU neurons: when a neuron is branched into the active (or inactive) case, it
may imply the active (or inactive) status of other neurons; a graph can then be formed based on these
bound implications (dependencies). Although bound implications may exist between any two neurons
(e.g., a ReLU in the last layer of NN is active may imply that a ReLU in the first layer should always
be inactive), existing work such as (Kouvaros & Lomuscio, 2021; Botoeva et al., 2020) can only
detect some limited form of implications between neurons, such as among neurons in the same layer
or in consecutive layers, and simple approaches such as interval bounds are used to find implications.

In our work, we first formulate the problem of finding bound implications as an optimization problem,
which leads to a stronger formulation than previous works, and opportunities to find many more
implications. This problem involves a challenging non-convex constraint, and we must avoid the
usage of linear programming (LP) or mixed integer programming (MIP) solver because of the large
number of pairs of ReLU neurons involved in finding these implications. To address this challenge, we
novelly reuse the pre-computed variables in existing bound-propagation-based verification methods
such as α-CROWN and solve a simple LP problem either in closed form solution or via gradient
descent, without relying on an expensive LP solver. We can quickly find hundreds to thousands of
bound implications between neurons using our proposed approach, significantly more compared
to previous approaches. In addition, by utilizing common split constraints in BaB, we can build
multiple bound implication graphs (BIGs), each for a subset of subproblems, to further improve the
effectiveness of bound implications. Our main technical contributions are:

• We formulate the process of finding bound implications as an optimization problem, which allows
us to find correlations between two neurons from arbitrary layers, not restricted to implications in
the same or consecutive layers in previous work;

• We propose a novel approach to reuse information from already computed in bound propagation
(e.g., α-CROWN) to quickly solve these optimization problems to find bound implications between
thousands of pairs of ReLU neurons within a few seconds. Combined with a unique filtering
strategy, our approach is scalable to large DNNs (such as 19 layer ResNets on TinyImageNet).

• Our optimization formulation is much stronger compared to existing simple approaches to find
bound implications: we found 7 to 170 times more implications among neurons on average than
previous work (Kouvaros & Lomuscio, 2021; Botoeva et al., 2020).

• When evaluated on robustness verification benchmarks on MNIST, CIFAR-10, CIFAR-100, and
TinyImageNet datasets, including new benchmarks consisting of hard verification problems, we
save up to 37% subproblems during BaB, consistently reduce the verification time, and verify more
problems compared to baseline BaB methods such as β-CROWN and MN-BaB.

2 BACKGROUND

DNN verification methods are developed to rigorously prove formal specifications on DNNs. We
let x ∈ X ⊆ Rd0 to denote the input, and let f : Rd0 → R to denote a neural network. For an
L-layer neural network, f is defined by f(x) = z(L)(x), where z(i)(x) = W (i)ẑ(i−1)(x)+b(i) and
ẑ(i)(x) = σ(z(i)(x)), where i ∈ [L] := {1, · · · , L}. Specifically, ẑ(0)(x) = x. σ is the activation
function and we focus on ReLU in this paper. We call z(i)j (x) (in short as z(i)j ) pre-activation and

ẑ
(i)
j (x) (in short as ẑ(i)j ) post-activation values of the j-th neuron in the i-th layer, j ∈ [di] and di

is the number of neurons of the i-th layer. Canonically, verification specifications can be written as
proving f(x) > 0, ∀x ∈ C; i.e., we say f(x) is verified if f(x) > 0,∀x ∈ C. DNN verification
methods solve the following optimization problem:

min f(x) = z(L)(x) s.t. z(i) = W (i)ẑ(i−1) + b(i), ẑ(i) = σ(z(i)),x ∈ C, i ∈ [L− 1]. (1)
The C defines the input region, and we focus on ℓ∞-bounded perturbations following the litera-
ture (Wong & Kolter, 2018; Xu et al., 2020b; Wang et al., 2021; Müller et al., 2022b). Therefore,
given a clean input instance x0 and the perturbation magnitude ϵ, C := {x | ∥x− x0∥∞ ≤ ϵ}.
Bound propagation methods. Bound propagation methods like CROWN (Zhang et al., 2018) and
β-CROWN (Wang et al., 2021) aim to calculate a lower bound for fL(x) without using the LP solver:

min
x∈C

fL(x) ≥ min
x∈C

a(i)
⊤
x̂(i) + c(i) (2)
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Figure 1: (a) Bound implications: based on the linear lower bounds of two neurons, if one neuron is
set to inactive (<0), the other neuron will always be active (>0) under constraints; (b) the two neurons
are connected by an edge on the Bound Implication Graph (BIG), and (c) more bound implications
create a larger BIG with multiple components. (d) During branch and bound (BaB), BIG is used to
remove unnecessary subproblems, so fewer subproblems are needed and verification time is saved.
With i = L− 1 the above holds trivially with a(L−1) = W(L), c(L−1) = b(L). Propagating bounds
from the L-layer to the previous layer repeatedly will eventually reach the input layer:

min
x∈C

fL(x) ≥ min
x∈C

a(0)
⊤
x+ c(0) (3)

This linear optimization problem can be easily solved to provide a lower bound for f(x). Eq. (3) are
usually also applied to intermediate layer neurons. In our paper, we will reuse the variables a, c which
are already available during bound propagation to build our bound implication graph efficiently.

Active, inactive, and unstable neurons. To leverage the branch-and-bound technique, we need
to know the pre-activation bounds l(i) and u(i) for the inputs of each ReLU layer, such that
l(i) ≤ x(i) ≤ u(i). Those bounds are valid for x ∈ C, and can be obtained via cheap bound
propagation methods such as IBP (Gowal et al., 2019), CROWN (Zhang et al., 2018) or α-
CROWN (Xu et al., 2020b). Then ReLU neurons for each layer i can be classified into three
classes (Wong & Kolter, 2018): l

(i)
j ≥ 0 (active neurons), u

(i)
j ≤ 0 (inactive neurons), and

l
(i)
j ≤ 0, u

(i)
j ≥ 0 (unstable neurons). Activate and inactive neurons are already linear functions, so

only unstable neurons require branching. In Section 3, we will show that after branching on some
neurons, some previously unstable neurons become stable (active and inactive), and we will leverage
these bound implications to avoid unnecessary branching on already-stable neurons, which results in
a more efficient BaB process.

3 FINDING BOUND IMPLICATIONS FOR NN VERIFICATION

Overview. In this section, we introduce our optimization-based formulation and give an efficient
procedure to quickly generate valid bound implications among all pairs of unstable neurons from
any layers. We do this by reusing coefficients in bound propagation when intermediate layer bounds
are computed before BaB, and solving simple linear programming (LP) problems efficiently without
relying on an external solver. With the large number of implications found by our novel algorithm, we
build a bound implication graph (BIG) (similar to the dependency graph in (Kouvaros & Lomuscio,
2021)) to accelerate the BaB process. We also demonstrate that multiple BIGs can be built for
different subsets of subproblems during BaB, further improving its effectiveness.

Bound implication: intuitions with linear bounds. When assuming one neuron’s bound to be
within a smaller range (e.g., constraining an unstable neuron to be active or inactive), the bounds
of another neuron can be conditionally tightened, and may become an active or inactive neuron.
For example, considering two neurons at any two layers i1, i2 with pre-calculated linear inequality
coefficients and biases by some popular verifiers like CROWN or α-CROWN:

z
(i1)
j1
≥ 2x+ 1; z

(i2)
j2
≥ −x+ 0.5

Given the one-dimensional input perturbation −1 ≤ x ≤ 1, both neurons are unstable since their
bounds can either be positive or negative. However, if we consider the subproblem where z

(i1)
j1
≤ 0,

i.e., this neuron is split into the inactive case so consequentially 2x+1 ≤ 0, then we know x ≤ −0.5,
hence the range of z(i2)j2

improves to 1 ≤ z
(i2)
j2
≤ 1.5 accordingly, becoming an active neuron. In

other words, if we split z(i1)j1
to be inactive, then z

(i2)
j2

will automatically become active, and such
conditions commonly occur in BaB. In this example, the number of subproblems can be potentially
reduced by 1/4 (excluding one configuration of the four possibilities), saving BaB time.
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Finding bound implications: an optimization-based method. A naive way to find the implied
correlations between neurons is to directly apply a bound propagation method such as α-CROWN:
set a single unstable neuron’s pre-activation bound l

(i)
j = 0 (active split) or u(i)

j = 0 (inactive split),
and update the bounds of latter layers via bound propagation. However, a major limitation of this
approach is its scalability — given that there might be thousands of unstable neurons in a network, we
need to run bound propagation thousands of times to find all correlations. Additionally, it only finds
implications for neurons after layer i, and cannot find correlations in the same layer or prior layers.

To make the process of finding bound implications more powerful and efficient, we propose to reuse
the intermediate linear bounds during bound propagation, namely the linear relationships in Eq. (3).
Given two unstable neurons, z(i1)i2

and z
(i2)
j2

, linear bound propagation such as α-CROWN is used to

compute their linear lower and upper bounds, denoted as l(i1)j1
, u(i1)

j1
, l(i2)j2

, u(i2)
j2

:

min
x∈C

z
(i1)
j1
≥ min

x∈C
a(i1,j1)

⊤
x+ c(i1,j1) := l

(i1)
j1

; min
x∈C

z
(i2)
j2
≥ min

x∈C
a(i2,j2)

⊤
x+ c(i2,j2) := l

(i2)
j2

min
x∈C

(−z(i1)j1
) ≥ min

x∈C
a(i1,j1)

⊤
x+ c(i1,j1) := u

(i1)
j1

; min
x∈C

(−z(i2)j2
) ≥ min

x∈C
a(i2,j2)

⊤
x+ c(i2,j2) := u

(i2)
j2

Here a, c and a, c are coefficients for linear lower and upper bounds, respectively. These linear
bounds must have already been computed when calculating intermediate layer bounds l(i1)j1

, l(i2)j2
,

u
(i1)
j1

, u(i2)
j2

because they are needed during the bounding step in BaB, and no extra cost is further

needed. Due to symmetry, we focus on one case, l(i1)j1
. When the input set C is a ℓ∞-norm constraint,

l
(i1)
j1

is computed by solving this linear programming problem:

l∗no-imp := min
x

a(i1,j1)
⊤
x+ c(i1,j1) s.t. x0 − ϵ ≤ x ≤ x0 + ϵ (4)

It has a closed-form solution in O(d0) time: l(i1)j1
:= l∗no-imp = −ϵ∥a(i1,j1)∥1 + a(i1,j1)

⊤
x0 + c(i1,j1).

Now we consider the lower bound l
(i1)
j1

for the implicated neuron z
(i1)
j1

, assuming that another

implicant neuron z
(i2)
j2

is set to be inactive, i.e., z(i2)j2
≤ 0. Under this assumption, the bound on l

(i1)
j1

can be potentially improved with the additional constraint z(i2)j2
≤ 0:

l∗imp := min
x

a(i1,j1)
⊤
x+ c(i1,j1) s.t. x0 − ϵ ≤ x ≤ x0 + ϵ;

z
(i2)
j2
≤ 0 (implicant constraint)

(5)

However, it is intractable to solve Eq. (5) since z
(i2)
j2

is generally an non-convex function of x.

Considering the set S := {x : z
(i2)
j2
≤ 0,x ∈ C} is a subset of S̄ := {x : a(i2,j2)

⊤
x + c(i2,j2) ≤

0,x ∈ C}, we can solve a relaxed LP with a larger feasible set S̄ instead:

l∗relaxed := min
x

a(i1,j1)
⊤
x+ c(i1,j1) s.t. x0 − ϵ ≤ x ≤ x0 + ϵ;

a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0 (relaxed implicant constraint)

(6)

This LP problem has a special structure that we can explicitly construct an algorithm to solve Eq. (6)
in O(d0 log d0) time where d0 is the dimension of x, based on the fact that there is only one dual
variable whose value can be sorted and searched. The algorithm is presented in Appendix C.1.

Theorem 3.1. Given two unstable neurons and the LP formulations in Eq. (4), (5) and (6), the
following holds: (1) The LP in Eq. (6) is always feasible; (2) l∗no-imp ≤ l∗relaxed ≤ l∗imp.

Theorem 3.1 shows that our tractable formulation Eq. (6) always produces a valid lower bound for
the solution of the intractable Eq. (5), and the lower bound of the implicated neuron, l(i1)j1

can be

potentially improved given the implicant z(i2)j2
≤ 0. In other words, an implicant neuron z

(i2)
j2

split to

inactive case implies an improved lower bound of an implicated neuron z
(i1)
j1

based on our analysis,

which may change z
(i1)
j1

from an unstable neuron to an active neuron due to its improved (greater)
lower bound. In fact, there are four possible ways that two neurons may interact (inactive/active
implicant and the lower/upper bound of the implicated neuron), so four LPs like Eq. (6) can be
constructed for each pair of neurons and we gave these cases in Appendix A.
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Criteria of neurons selection. Note that the above procedure does not limit the choice of unstable
neurons, and the implicant and implicated neurons can be from any two layers j1, j2. Since every
pair of unstable neurons can be considered, the total number of possible bound implications is large.
In this section, we discuss a simple filtering process that helps us find the strong bound implications
while filtering out unuseful ones. We first present a theorem about the objective improvement in (6):
Theorem 3.2. Given two unstable neurons and the LP formulations in Equation (4), (6), if the
following condition on an implicated neuron (i1, j1) and an implicant neuron (i2, j2) holds:

a(i2,j2)
⊤
x∗ + c(i2,j2) ≤ 0 (7)

where each element of x∗ is chosen as (here the subscript k means the k-th element in a vector):

x∗
k :=


x0,k − ϵ · a(i1,j1)k , if a(i1,j1)k > 0

x0,k + ϵ · a(i1,j1)k , if a(i1,j1)k < 0

x0,k − ϵ · sign(a(i2,j2)k ), if a(i1,j1)k = 0

then l∗relaxed = l∗no-imp, i.e., the relaxed implicant constraint brings no improvement in objective (6).

The theorem constructs a solution x∗ to the problem Eq. (4), and we check if this solution already
satisfies the added implicant constraint in Eq. (6). Note the the case of a(i1,j1)k = 0 is necessary, since
due to the convolutional architecture it is indeed possible that many elements of a(i1,j1) are exactly 0.
When the objective does not improve, the relaxed implicant constraint is redundant with two cases:
Corollary 3.3. When l∗relaxed = l∗no-imp in Theorem 3.2, one of the two cases must happen:

1.
∣∣∣a(i2,j2)⊤x0 + c(i2,j2)

∣∣∣− ϵ∥a(i2,j2)∥1 > 0, i.e., the relaxed implicant constraint is too far
away from x0 and does not intersect with the ℓ∞-norm box C centered at x0 (Fig. 2(a));

2.
∣∣∣a(i2,j2)⊤x0 + c(i2,j2)

∣∣∣−ϵ∥a(i2,j2)∥1 ≤ 0 but a(i2,j2)
⊤
x∗+c(i2,j2) ≤ 0, i.e., the constraint

is not binding and does not change the solution of Eq. 4 (Fig. 2(b)).
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Figure 2: Objective improvements depend on
the intersection of implicant constraint with C.

Based on Theorem 3.2 and Corollary 3.3, we use the
following filtering procesure to quickly select pairs
of neurons to find effective bound implications. We
first select implicant neurons. Since the first case in
Corollary 3.2 only depends on the implicant but not
the implicated neuron, all unstable neurons whose
linear bounds do not intersect with C are not useful
as implicants and are removed. Then, we rank the
remaining neurons by the distance of their implicant
constraint to x0 from near to far, since a constraint
closer to x0 is more likely to cut off more feasible regions in Eq. (6). Based on the ranking, we select
top-K neurons as the implicant neurons. Then we apply Theorem 3.2 with all unstable neurons as
the implicated neurons and the selected K implicant neurons, and remove the implicated neurons
whose bounds cannot be improved based on condition (7). Finally, we solve Eq. (6) using our
fast O(d0 log d0) solver (Algorithm 1 in Appendix C) for all remaining effective pairs of implicant
and implicated neurons. Its complexity depends on the input dimension d0 and K, without direct
dependencies on DNN size. The process is done on GPUs within a few seconds even for large DNNs.

Construct the Bound Implication Graph (BIG). After finding bound implications using our novel
formulation above, we can generate a directed graph, the Bound Implication Graph (BIG), following
a similar procedure of building a dependency graph in previous work (Kouvaros & Lomuscio, 2021).
Here a BIG is a graph G = (V,E), where V = {P (i)

j |i ∈ [L], j ∈ [di]} ∪ {Q(i)
j |i ∈ [L], j ∈ [di]}

is the node set with cardinality |V| = 2
∑L

i=1 di; since each neuron can be split into either active
or inactive cases, node P

(i)
j and Q

(i)
j reflects the two cases of the neuron z

(i)
j (active and inactive,

respectively). E ⊆ {(R(i1)
j1

, R
(i2)
j2

)|R ∈ {P,Q}, i1, i2 ∈ [L], j1 ∈ [di1 ], j2 ∈ [di2 ], (i1, j1) ̸=
(i2, j2)}. An edge e = (P

(i1)
j1

, Q
(i2)
j2

) indicates that the split z(i1)j1
≥ 0 (active), implies z

(i2)
j2

is

inactive. For example, after obtaining improved bounds for z
(i1)
j1

by implying z
(i2)
j2

is inactive

(z(i2)j2
≤ 0) solving (6), if the improved objective l∗relaxed ≥ 0, indicating z

(i1)
j1

becomes active, we add
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edge (Q
(i2)
j2

, P
(i1)
j1

) to the graph. Note that in practice, we only need to maintain unstable neurons in
this graph. In addition, the bound implications can be propagated through the graph until reaching
nodes with zero out-degree, so although the bound implications found by solving (6) is only for a
pair of neurons, more neurons can be connected on the graph (Figure 1c).

During BaB, when we split z(i)j into the active (or inactive) case, we traverse BIG starting from the

node P
(i)
j (or Q(i)

j ) and find all connected nodes. If there is a path from P
(i)
j to P

(i′)
j′ (or Q(i′)

j′ ), we

can add the additional split z(i
′)

j′ >= 0 (or z(i
′)

j′ <= 0) to this subproblem. We often find that splitting
one single neuron may imply multiple other neurons are active or inactive. This greatly improves the
effectiveness of BaB since these implied neurons will not need splits anymore, and these additional
constraints help to obtain tighter bounds. We show our full algorithm to construct BIG and use BIG
during branch and bound in Algorithm 3 and 4 in Appendix C repectively.

Subproblem-specific Bound implications. We propose one additional approach to enhance BIG. In
BaB, many subproblems share the same splits constraints; for example, if the first neuron chosen by
BaB is z(i1)j1

, then the constraint z(i1)j1
≥ 0 (z(i1)j1

is active) or z(i1)j1
≤ 0 (z(i1)j1

is inactive) will appear
in all subproblems created later. Considering the first M split by BaB, up to 2M initial subproblems
are created, and all subsequently generated subproblems contain M constraints that are the same as
those in one of the initial subproblems. If we start the construction of BIG after the first M splits, we
can build up to 2M different BIGs and each BIG may benefit from additional M split constraints. In
this case, each BIG is subproblem-specific (called “subBIG”) because it includes constraints valid
only in a specific subset of subproblems. To build subBIGs, we extend bound implications with
multiple constraints from initial branches. We derive from the Eq. (5) with the implicant constraint
and additional constraints:

l∗relaxed-multi := min
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0 (implicant constraint)

a(m[k],n[k])⊤x+ c(m[k],n[k]) ≤ 0, k = 1, 2, 3, ...,M (additional split constraints)

(8)

However, with constraints, l∗relaxed-multi has no closed-form solution. We construct Lagrangian multi-
pliers and solve the dual problem by gradient descent as shown in Appendix D.

Discussion. Our framework of finding bound implications has several benefits. First, it does not
rely on expensive solvers and reuses the linear bounds for computing intermediate layer bounds for
free, which is very suitable for popular bound-propagation-based NN verifiers. Second, our bound
implications can be found between two neurons from any layers (we have no restrictions on j1, j2
above), capturing both inter- and intra-layer neuron correlations. Third, our algorithm is scalable
regarding DNN size because its complexity depends on the number of selected unstable neurons
for finding the bound implications, and the optimization problem (5) does not depend on DNN size
(except for the input dimension). Finally, BIG is independent of the actual BaB verifier used; although
our evaluation uses β-CROWN as the base BaB verifier, it can also strengthen some new BaB verifiers
not evaluated in this work. In Sec. 4, we show that our strong optimization-based formulation leads to
finding significantly more neuron implications compared to previous works (Kouvaros & Lomuscio,
2021; Botoeva et al., 2020), and also noticeably improves state-of-the-art BaB verifiers.

4 EXPERIMENTS

We first compare our approach to existing work that also discover bound implications or dependencies
among neurons. Then, we evaluate our bound implication graph (BIG)-enhanced verifier, on various
verification benchmarks. We leave more details about experiment setup in Appendix E.

Bound Implications Comparison. We first evaluate the number of bound implications generated
by Venus2 (Kouvaros & Lomuscio, 2021) and ours. We conduct experiments on MNIST-MLP
and CIFAR-MLP used in (Botoeva et al., 2020), CIFAR-CNN-A-Adv and CIFAR-CNN-A-Mix
from (Dathathri et al., 2020). We compare all implications generated before BaB and skip data points
that can be verified by initial MIP or α-CROWN since there is no necessity to use BaB. In Table 1, we
show that our method performs significantly better than Venus2. Especially in CNN models, Venus2
cannot find intra-layer implications because it considers implications using intermediate layer bounds
of one convolutional layer only, and no implications can be found because the convolutional layer
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Table 1: Number of bound implications generated by different methods on 4 models. Following (Boto-
eva et al., 2020), we report inter-layer (i1 ̸= i2) and intra-layer (i1 = i2) implications separately.

MNIST-MLP CIFAR-MLP CIFAR-CNN-A-Adv CIFAR-CNN-A-Mix

Avg. inter-layers
implications

Venus2 56.15 4.66 6.42 19.17
Ours 203.5 397.5 340.0 486.5

Avg. intra-layers
implications

Venus2 9.80 35.33 0 0
Ours 263.4 502.1 763.4 803.2

weights are sparse and uncorrelated. In contrast, our optimization-based formulation found hundreds
of implications that involve neurons from the same layer or different layers.

A New Benchmark with Hard Verification instances. Although we included several standard
benchmarks used in previous papers showing consistent improvements, we also identified their
shortcomings. First, many samples in these benchmarks can be verified by simple verification
algorithms (such as CROWN/DeepPoly) or attacked via PGD attacks, so they cannot accurately
reflect the recent progress of DNN verifiers. On the other hand, certain hard benchmarks have many
unsolved instances with unknown difficulty, and it is unclear whether they can be actually solved.
With only these benchmarks, it is difficult to gauge the advancement of verification tools.

Traditionally, the oval20 benchmark (Lu & Kumar, 2020; De Palma et al., 2021b) consists of hard
instances that can be solved using BaBSR (Bunel et al., 2020) with a long timeout threshold. Since
the difficulty of all benchmark instances is known with the groundtruth, many different tools are
evaluated on this benchmark and it was easy to see the progress of verifiers. However, the latest
verifiers can solve this benchmark within a few seconds per instance (Zhang et al., 2022). We thus
propose a new benchmark VeriHard in the same spirit, which contains instances that can be solved
using state-of-the-art verifiers with a long timeout. Unlike oval20, the benchmark consists of a mix of
MNIST, CIFAR-10, CIFAR-100, and TinyImageNet models, including large ResNets. By comparing
the performance of different verifiers under a shorter timeout, it can be easily used to gauge the
improvement of future verifiers. We provide more details regarding this benchmark in Appendix E.1.

Experimental setup. Our implementation is based on the open-source α,β-CROWN verifier, with
our addition of BIG and subBIGs integrated. Since our method is independent of the actual BaB
solver used, we use the popular β-CROWN algorithm as our baseline BaB method. Since new BaB
methods may also benefit from our algorithm, the improvements over the base BaB method are the
most important metric. For BIG and subBIGs construction, we select top-K implicant neurons to
derive our paired bound implications with K = 1000. For subBIGs, we use first M = 8 splits by
BaB and apply a 50-steps gradient descent with Adam optimizer to optimize our objective l∗relaxed-multi
on up to 2M = 256 unsolved subproblems. We leave more experimental details in Appendix E.2.

Verification Results on VeriHard benchmarks. We evaluate our BIG-enhanced verifiers, BIG and
subBIGs, on new proposed VeriHard benchmark. Instances included in VeriHard benchmark are
designed to be so challenging that state-of-the-art verification algorithms must make a good effort
(long timeout threshold) to verify them. For comparison, we include multiple strong verification
tools including PRIMA (Müller et al., 2022b), MN-BaB (Ferrari et al., 2021) and β-CROWN (Wang
et al., 2021). From Table 2 we can see that, the percentage of verified instances is consistently lower
than 50% even for strong verifiers, and our BIG-enhanced verifier could solve 5 to 8 more instances
compared to the strongest baseline we have on MNIST, CIFAR-10 benchmarks. For CIFAR-100
and TinyImageNet benchmarks, with large ResNet models, BIG-enhanced verifier could noticeably
reduce the explored branches compared to the β-CROWN verifier as the baseline. Figure 3 shows the
percentage of solved properties on VeriHard MNIST and CIFAR10 benchmarks vs. running time.
Though all instances are hard enough and need to be verified through BaB with at least 150 seconds,
BIG-enhanced verifier could consistently reduce the overall running time by reducing the overall
branched neurons and branching iterations.

150 185 200
VeriHard MNIST-A-Adv: Running time (in s)

0

20

40
MN-BaB
PRIMA

-CROWN
BIG
subBIGs

150 185 200
VeriHard CIFAR-A-Adv: Running time (in s)

0%

20%

40%

150 185 200
VeriHard CIFAR-A-Mix: Running time (in s)

0%

20%

40%

Figure 3: Percentage of solved properties on VeriHard {MNIST-A-Adv, CIFAR-A-Adv, CIFAR-A-
Mix} benchmarks vs. time (timeout 200s). Our BIG and subBIGs consistently outperform baselines.
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Table 2: Percentage of verified instances, average runtime, and the number of BaB branches (lower is
better) on VeriHard benchmarks. We bold the highest verified percentage and the smallest number of
branches. β-CROWN is used as our base BaB solver; BIG and subBIGs are added into β-CROWN.

VeriHard Benchmarks Metrics CROWN/
DeepPoly PRIMA MN-BaB β-CROWN BIG

(ours)
subBIGs

(ours)

MNIST-CNN-A-Adv
Ver.% 0.0 43.0 42.0 44.0 47.0 50.0

Branches - - - 60324.6 55210.4 53147.1
Time(s) 0.0 182.4 178.5 176.2 184.6 186.2

CIFAR10-CNN-A-Adv
Ver.% 0.0 40.0 38.0 42.0 45.0 50.0

Branches - - - 61012.0 56254.9 54104.8
Time(s) 0.0 176.4 174.2 176.4 181.2 183.4

CIFAR10-CNN-A-Mix
Ver.% 0.0 32.0 35.0 36.0 38.0 41.0

Branches - - - 69012.5 65302.1 63111.7
Time(s) 0.0 179.2 178.4 182.4 185.5 190.5

CIFAR100-Small
Ver.% 0.0 24.0 25.0 29.0 30.0 32.0

Branches - - - 74113.5 71054.9 70006.6
Time(s) 0.0 220.4 231.6 230.2 229.2 241.4

CIFAR100-Medium
Ver.% 0.0 27.0 27.0 30.0 30.0 30.0

Branches - - - 78856.2 75249.5 74124.9
Time(s) 0.0 220.4 231.6 239.4 234.2 230.2

CIFAR100-Large
Ver.% 0.0 29.0 28.0 29.0 29.0 31.0

Branches - - - 74016.2 72012.5 70102.0
Time(s) 0.0 234.2 229.5 230.4 235.2 246.5

TinyImageNet-Medium
Ver.% 0.0 27.0 27.0 32.0 33.0 33.0

Branches - - - 64253.9 61104.7 60082.5
Time(s) 0.0 221.4 230.5 225.8 235.9 240.2

Verification Results on Existing benchmarks. We also evaluate BIG-enhanced verifiers on a few
commonly used existing benchmarks, including MNIST benchmarks (CNN-A-Adv from SDP-
FO (Dathathri et al., 2020) and ConvSmall from ERAN (Singh et al., 2019a) models) and CIFAR-10
benchmarks (CNN-A-Mix, CNN-A-Adv from SDP-FO and ConvSmall from ERAN models), and
compare them with other strong verifier baselines. We also provide the verified accuracy upper
bound derived by PGD attack as a reference. Results are shown in Table 3. We find that our method
could consistently reduce the number of branches explored during BaB compared to the baseline
β-CROWN method, and the percentage of verified instances also consistently improved.

Table 3: Percentage of verified instances, average runtime, and the number of BaB branches (lower is
better) on existing benchmarks. We bold the highest verified percentage and the smallest number of
branches. β-CROWN is used as our base BaB solver; BIG and subBIGs are added into β-CROWN.

Existing Benchmarks Metrics CROWN/
DeepPoly PRIMA SDP-FO MN-BaB Venus2 β-CROWN BIG subBIGs Upper

Bound

MNIST-CNN-A-Adv
Ver.% 1.0 44.5 43.4 - 35.5 70.5 71.0 71.5 76.5

Branches - - - - - 4021.1 3530.2 2069.1 -
Time(s) 0.1 135.9 >20h - 148.4 21.0 23.7 29.3 -

MNIST-ConvSmall
Ver.% 15.8 59.8 - - - 72.7 72.8 73.2 73.2

Branches - - - - - 2739.4 2510.4 2112.2 -
Time(s) 3.0 42.0 - - - 5.89 7.47 9.07 -

CIFAR10-CNN-A-Adv
Ver.% 21.5 41.5 39.6 42.5 47.5 45.0 45.5 46.0 65.0

Branches - - - - 20462.6 19340.6 12671.2 -
Time(s) 0.5 4.8 >25h 68.3 26.0 110.2 110.8 142.5 -

CIFAR10-CNN-A-Mix
Ver.% 23.5 37.5 39.6 35.0 33.5 41.5 41.5 42.5 53.0

Branches - - - - - 22344.4 21996.8 20462.9 -
Time(s) 0.4 34.3 >25h 140.3 72.4 35.6 36.3 69.2 -

CIFAR10-ConvSmall
Ver.% 35.9 44.6 - - - 46.3 46.3 46.5 73.2

Branches - - - - - 5325.0 5072.0 4203.6 -
Time(s) 4.0 13.0 - - - 5.25 5.85 7.02 -

Table 4: The number of implicated neurons
found in benchmarks of VeriHard dataset.

VeriHard Benchmark Bound Implications
BIG subBIGs

MNIST-A-Adv 934.25 1424.48
CIFAR10-A-Adv 5603.46 8403.24

CIFAR100-Medium 16624.05 20042.23
TinyImageNet-Medium 15352.49 18023.23

Impacts of BIG on branching. In Table 4, we show the ac-
tual number of implicated neurons on BIG/subBIGs found
by our algorithm in various networks, and the number is
often large. In addition, we visualize how BIG helps branch
and bound procedure in Figure 4, by showing the trends of
1) Global lower bounds; 2) Cumulative explored branches;
3) Used bound implications vs. the branching iterations. We
compare our BIG-enhanced verifier (BIG, subBIGs) to the baseline β-CROWN verifier. We can
find that both BIG and subBIGs could steadily tighten the lower bound during BaB, and noticeably
reduce the number of explored branches towards complete verification. In addition, during each
branching round, we can fix several additional implicant neurons from unstable to stable to tighten the
intermediate bounds thus global lower bounds. We leave more visualization results in Appendix F.
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Figure 4: {(Left) Global lower bounds; (Middle) Total explored branches; (Right) Average used
bound implications} trends along with branching iterations on one specific instance in VeriHard-
CIFAR10-A-Adv benchmark. More than one neurons are branched per iteration thanks to BIG, and
the bounds and the number explored branches both improve noticeably. Baseline BaB methods like
β-CROWN can branch only one neuron per BaB iteration.

5 RELATED WORK

The DNN verification methods are divided into two categories, complete (Katz et al., 2017; Tjeng
et al., 2019; Xu et al., 2020b; Wang et al., 2021; Bunel et al., 2018) and incomplete (Zhang et al., 2018;
Wong & Kolter, 2018; Wang et al., 2018a;b). Complete verification is proven NP-complete (Katz
et al., 2017), and current verifiers are based on SMT (Katz et al., 2017), off-shelf solvers (Tjeng et al.,
2019; Bunel et al., 2018; Dutta et al., 2017), and specialized branch-and-bound (BaB) (Bunel et al.,
2018; Wang et al., 2021; Bunel et al., 2020). Branch-and-bound is usually the most effective technique
in practice and has been used in top toolkits in the verification of neural network competitions (Bak
et al., 2021; Müller et al., 2022a). On the other hand, incomplete verification is usually efficient with
polynomial time complexity but is conservative. Existing incomplete verifiers are based on bound
propagation (Wang et al., 2018a; Zhang et al., 2018; Wang et al., 2018b; Xu et al., 2020a; Gowal
et al., 2019), abstract interpretation (Singh et al., 2019b; Gehr et al., 2018; Müller et al., 2022b; Singh
et al., 2019a), convex relaxation (Palma et al., 2021; Tjandraatmadja et al., 2020), duality (Wong &
Kolter, 2018; De Palma et al., 2021b; Dvijotham et al., 2019), and semi-definite programming (Chiu
& Zhang, 2023; Anderson et al., 2020a; Dathathri et al., 2020; Batten et al., 2021; Raghunathan et al.,
2018). Specifically, the cheap bound propagation technique can be efficiently combined with the
branch-and-bound to accelerate complete verification (Xu et al., 2020b; Wang et al., 2021).

Neuron dependency as a potential way to improve the tightness of bounds is also studied in a few
papers (Anderson et al., 2020b; Palma et al., 2021; Müller et al., 2022b; Zhang et al., 2022), but they
usually aim to improve the bounding step, and the implication relationships among ReLUs during
branching were not discussed. Ehlers (2017) first discussed case-analysis-based search by recording
the dependencies between ReLU splits to reduce the number of branches. The most relevant existing
work is Venus and Venus2 (Botoeva et al., 2020; Kouvaros & Lomuscio, 2021), which also explores
the dependency among unstable ReLU neurons, but with a weaker method to find neuron implications.
First, for dependency from different layers (inter-layer), they only consider the case where a neuron
in one layer is set to be inactive (0), and propagate the interval bounds to the layers following it; thus,
only two out of four kinds of implications can be found, and the interval bounds can also too loose to
find implications. Second, our method can find implications for neurons before the implicated neuron.
For example, by setting a neuron in layer 3 to be active or inactive, we may imply that a neuron in
layer 1 or 2 is active or inactive, impossible in the prior work. Third, for same-layer dependency, our
methods use bound equations that are propagated to the input layer, which utilizes tighter bounds on
the input x0 rather than the relatively looser intermediate layer bounds. Finally, our formulation is
optimization-based, allowing us to optimize and find the strongest implications. These benefits lead
to significant improvements in finding neuron implications (even without considering subBIGs), as
we demonstrated in Sec. 4.

6 CONCLUSION

In this paper, we proposed a novel technique to quickly find bound implications for branch-and-bound-
based neural network verification algorithms. Our optimization-based formulation is less restrictive
and stronger than prior work, allowing us to find more implications to guide the branch-and-bound
process. Our method has been demonstrated on multiple benchmarks with consistent improvements
in terms of verified accuracy and the number of branches.
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APPENDIX

A FOUR CASES OF NEURON INTERACTIONS

In Section 3, we discussed how to find neuron implications between two neurons. Since each ReLU
neuron has two possible statuses (active or inactive), there are four kinds of possible implications.
We list all four possibilities and their corresponding optimization formulation here:

1. An implicant neuron z
(i2)
j2

split to inactive case implies an improved lower bound of an implicated

neuron z
(i1)
j1

(this is the case in (6) discussed in Section 3):

l∗relaxed := min
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0

(9)

2. An implicant neuron z
(i2)
j2

split to active case implies an improved lower bound of an implicated

neuron z
(i1)
j1

:

l∗relaxed := min
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≥ 0

(10)

3. An implicant neuron z
(i2)
j2

split to inactive case implies an improved upper bound of an implicated

neuron z
(i1)
j1

:

l∗relaxed := max
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0

(11)

4. An implicant neuron z
(i2)
j2

split to active case implies an improved upper bound of an implicated

neuron z
(i1)
j1

:

l∗relaxed := max
x

a(i1,j1)
⊤
x+ c(i1,j1)

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ; a(i2,j2)
⊤
x+ c(i2,j2) ≥ 0

(12)

Note that all four optimization problems have the same nature and can be solved using the same
technique discussed in Section C.1. we will only use Eq. (6) as an example since all other three
cases can be converted to Eq. (6). For instance, to solve Eq. (10), we can change the implicant
constraint to −a(i2,j2)⊤x − c(i2,j2) ≤ 0; to solve Eq. (11), we can change the max objective to
minx −a(i1,j1)

⊤
x− c(i1,j1).

B PROOFS

We now give the proofs for the two theorems in Section 3. Here Theorem 3.1 shows the possibility of
solving a cheap linear programming problem to find bound implications, and Theorem 3.2 shows
how we can reduce the number of optimization problems by filtering out some neurons that do not
help find bound implications.

Theorem 3.1. Given two unstable neurons and the LP formulations in Eq. (4), (5) and (6), the
following holds: (1) The LP in Eq. (6) is always feasible; (2) l∗no-imp ≤ l∗relaxed ≤ l∗imp.

Proof. (1) To show that (6) is always feasible, we must show that there exists some x such that
x0 − ϵ ≤ x ≤ x0 + ϵ also satisfies the other constraint a(i2,j2)

⊤
x+ c(i2,j2) ≤ 0.

Given that the neuron z
(i2)
j2

is an unstable neuron, we know that l(i2)j2
≤ 0. By definition of l(i2)j2

, we

know that min
x0−ϵ≤x≤x0+ϵ

a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0, so such a x must exist to satisfy the constraint.

13
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(2) The objective l∗relaxed and l∗imp have one additional constraint compared to l∗no-imp, so l∗no-imp ≤ l∗relaxed
and l∗no-imp ≤ l∗imp. It remains to prove l∗relaxed ≤ l∗imp.

Define S := {x : z
(i2)
j2

(x) ≤ 0,x ∈ C} and S̄ := {x : a(i2,j2)
⊤
x + c(i2,j2) ≤ 0,x ∈ C}. Here

C is the set x0 − ϵ ≤ x ≤ x0 + ϵ. We claim that S ⊆ S̄. This is true because given any x′ ∈ C,
if z(i2)j2

(x′) ≤ 0 (by definition, x′ ∈ S), we have a(i2,j2)
⊤
x′ + c(i2,j2) ≤ z

(i2)
j2

(x′) ≤ 0 since

a(i2,j2)
⊤
x′ + c(i2,j2) is a linear lower bound of z(i2)j2

(x′) found by α-CROWN. Thus, S ⊆ S̄.

Since S ⊆ S̄, (6) has the equal or larger feasible region compared to (5), and thus l∗relaxed ≤ l∗imp.

Theorem 3.2. Given two unstable neurons and the LP formulations in (4), (6), if the following
condition holds:

a(i2,j2)
⊤
x∗ + c(i2,j2) ≤ 0

where each element of x∗ is chosen as (here the subscript k means the k-th element in a vector):

x∗
k :=


x0,k − ϵ · a(i1,j1)k , if a(i1,j1)k > 0

x0,k + ϵ · a(i1,j1)k , if a(i1,j1)k < 0

x0,k − ϵ · sign(a(i2,j2)k ), if a(i1,j1)k = 0

then l∗relaxed = l∗no-imp, i.e., there is no improvement. Additionally, one of the two cases must happen:

1.
∣∣∣a(i2,j2)⊤x0 + c(i2,j2)

∣∣∣− ϵ∥a(i2,j2)∥1 > 0, i.e., the relaxed implicant constraint does not
have an intersection with the ℓ∞ box C;

2.
∣∣∣a(i2,j2)⊤x0 + c(i2,j2)

∣∣∣− ϵ∥a(i2,j2)∥1 ≤ 0 but a(i2,j2)
⊤
x∗ + c(i2,j2) ≤ 0.

Proof. The linear programming problem (4) has a closed form optimal solution:

x′
k :=


x0,k − ϵ · a(i1,j1)k , if a(i1,j1)k > 0

x0,k + ϵ · a(i1,j1)k , if a(i1,j1)k < 0

don’t care, if a(i1,j1)k = 0

If this solution x′
k already satisfies the additional constraint a(i2,j2)

⊤
x+ c(i2,j2) ≤ 0 added in (6),

this constraint is redundant and thus l∗relaxed = l∗no-imp.

For the indices k where a
(i1,j1)
k = 0, since x′

k is unconstrained, we can choose x′
k that minimize

a(i2,j2)
⊤
x + c(i2,j2) to satisfy the new constraint in (6) as much as possible, by setting x′

k =

x0,k − ϵ · sign(a(i2,j2)k ). So the setting of x∗
k gives an optimal solution of (4) that has the minimum

violation of the new constraint in (6). If x∗
k satisfies the new implicant constraint, the constraint is

redundant, and l∗relaxed = l∗no-imp.

Now, we define the set Ŝ := {x : a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0}. Due to Theorem 3.1, the LP in (6) is

always feasible, so Ŝ ∩ C ≠ ∅. Geometrically, the constraint a(i2,j2)
⊤
x+ c(i2,j2) ≤ 0 is redundant

in two cases:

1. C ∈ Ŝ, or the ℓ∞ box C does not intersect with the line a(i2,j2)
⊤
x+ c(i2,j2) = 0. In this case, the

ℓ∞ distance from this line to the origin is greater than ϵ:∣∣∣a(i2,j2)⊤x0 + c(i2,j2)
∣∣∣

∥a(i2,j2)∥1
> ϵ

And this is the first case in this Theorem.

2. C∩ Ŝ ̸= C, when the line a(i2,j2)
⊤
x+c(i2,j2) = 0 cuts through C (ℓ∞ distance is less than or equal

to ϵ), however it does not remove the existing optimal solution for (4), i.e., a(i2,j2)
⊤
x∗ + c(i2,j2) ≤ 0.

This theorem allows us to filter out implicant neurons that have large ℓ∞ distance to the origin first.
Using the remaining implicant neurons, we further check each implicated unstable ReLU neuron
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to see if xx satisfies the above constraint. This allows us to eliminate these pairs of neurons in
calculation.

C ALGORITHMS

We show the full algorithms discussed in Section 3 in this section.

C.1 CLOSED-FORM SOLUTION OF THE RELAXED LP

In Section 3, we show that it is possible to use a fast optimization algorithm in O(d0 log d0) time,
where d0 is the neural network input dimension. Here we present this algorithm.

We solve the problem by adding a Lagrange multiplier ρ and derive a dual form of Eq. (6):

min
x0−ϵ≤x≤x0+ϵ

max
ρ≥0

a(i1,j1)
⊤
x+ c(i1,j1) + ρ(a(i2,j2)

⊤
x+ c(i2,j2))

≥max
ρ≥0

min
x0−ϵ≤x≤x0+ϵ

(a(i1,j1) + ρa(i2,j2))
⊤
x+ c(i1,j1) + ρc(i2,j2)

=max
ρ≥0

(a(i1,j1) + ρa(i2,j2))
⊤
x0 + c(i1,j1) + ρc(i2,j2) − ∥(a(i1,j1) + ρa(i2,j2))∥1 · ϵ

=max
ρ≥0

−∥(a(i1,j1) + ρa(i2,j2))∥1 · ϵ+ ρ(a(i2,j2)
⊤
x0 + c(i2,j2)) + a(i1,j1)x0 + c(i1,j1)

(13)

Note that the inner minimization is solved in closed form using Hölder’s inequality. The maximization
problem over the dual variable ρ is a one-dimensional, non-smooth, piece-wise linear, and concave
optimization problem and can be solved by checking super-gradients at the endpoints of all linear
pieces. We list the solving procedure in Algorithm 1:
Algorithm 1 The closed-form solution of Eq. (6).

1: Inputs: a(i1,j1), c(i1,j1), a(i2,j2), c(i2,j2), x0, ϵ
2: Outputs: The optimal solution of Eq. (6): l∗relaxed

3: q ← −a(i1,j1)/a(i2,j2)

4: I ← argsort(q) ▷ Dominates time complexity
5: a

(i2,j2)
sorted ← {a

(i2,j2)
I1

· ϵ,a(i2,j2)I2
· ϵ, ....,a(i2,j2)Id0

· ϵ} ▷ Sort a(i2,j2) by index I and scale by ϵ

6:
(
a
(i2,j2)
−

)
i
← −

∑i
k=1(|a

(i2,j2)
sorted |k), i ∈ [d0] ▷ Cumulative sum of |a(i2,j2)sorted | by its length d0

7: a
(i2,j2)
+ ← a

(i2,j2)
− − a

(i2,j2)
−d0

▷ Shift a(i2,j2)− to positive range

8: ∇a← a
(i2,j2)
+ + a

(i2,j2)
− + (a(i2,j2)

⊤
x0 + c(i2,j2)) ▷ Calculate super-gradient

9: i∗ ← i where∇ai = 0 ▷ Find the index of super-gradient is 0
10: ρ∗ ← max (qIi∗ , 0) ▷ Find the best ρ and introduce it to Eq. 13
11: l∗relaxed ← −∥(a(i1,j1) + ρ∗a(i2,j2))∥1 · ϵ+ ρ∗(a(i2,j2)

⊤
x0 + c(i2,j2)) + a(i1,j1)x0 + c(i1,j1)

12: l∗0 ← −∥a(i1,j1)∥1 · ϵ+ c(i2,j2) + a(i1,j1)x0 + c(i1,j1) ▷ Objective when ρ = 0

13: if l∗relaxed < l∗0 then
14: l∗relaxed ← l∗0 ▷ Compare to l∗0 , which is an additional end point

15: Return: l∗relaxed

C.2 ALGORITHM OF BIG CONSTRUCTION AND UTILIZATION

In Algorithm 3, We will introduce how to construct BIG after we obtain the linear equation of all
unstable neurons (can be calculated by CROWN or α-CROWN) in the verification process. Note that
there are For loops Algorithm 3, the calculations inside them are independent and can be calculated
in parallel though. In our experiments, we construct BIG efficiently by computing all implications
only in four batches for four cases of neuron interactions.
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Algorithm 2 Filter Top-K constraints by distance to x0.
1: Inputs: constraints of all unstable neurons a,a ∈ RN×d0 and c, c ∈ RN , where N is number of

unstable neurons and d0 is the length of the model input x0; perturbation size ϵ, K, S = ∅,S = ∅
2: function TOPKFILTERING(a,a, c, c,x0, ϵ,K)
3: for p = 1 to N do
4: S ∪ |a(ip,jp)⊤x0 + c(ip,jp)| − ϵ · ||a(ip,jp)||1
5: S ∪ |a(ip,jp)⊤x0 + c(ip,jp)| − ϵ · ||a(ip,jp)||1
6: ▷ Sort from nearest to farthest distance
7: S = argsort(dp)[: K] ▷ Indices of Top-K inactive implicant constraints
8: S = argsort(dp)[: K] ▷ Indices of Top-K active implicant constraints
9: return S,S

D BOUND IMPLICATIONS WITH ADDITIONAL SPLIT CONSTRAINTS

To solve Eq. (8), we leverage k Lagrange multipliers ρi, where i ∈ [1, 2, .., k] to derive the dual form
solution:

max
ρ≥0

min
x

a(i1,j1)
⊤
x+c(i1,j1) +

M∑
k=1

ρi(a
(m[k],n[k])⊤x+ c(m[k],n[k]))

s.t. x0 − ϵ ≤ x ≤ x0 + ϵ

(14)

For the ℓ∞-norm constraint of x, the inner minimization has a closed-form solution:

max
ρ≥0

a(i1,j1)
⊤
x0 + c(i1,j1) − ∥a(i1,j1)∥1 · ϵ +

M∑
k=1

ρia
(m[k],n[k])⊤x0 + ρic

(m[k],n[k]) − ∥ρia
(m[k],n[k])∥1 · ϵ

(15)

Then, we can easily solve ρ by projected gradient descent using an optimizer like Adam (Diederik
et al., 2014).

E EXPERIMENTAL DETAILS

E.1 VERIHARD BENCHMARK

The VeriHard benchmark includes models from existing benchmarks, such as MNIST-A-Adv,
CIFAR-A-Adv, CIFAR-A-Mix from SDP-FO (Dathathri et al., 2020), and CIFAR100-small,
CIFAR100-medium, CIFAR100-large, and TinyImageNet-medium from the neural networks compe-
tition (VNN-COMP (Bak et al., 2021; Müller et al., 2022a)). VeriHard applies a careful selection of
perturbation size ϵ for each instance, aiming to increase the verification challenge while ensuring
solvability. We will illustrate our ϵ configuration algorithm as follows:

We start by determining the unknown range [ϵl, ϵr] of each instance. Given an instance with an initial
ϵl = 0, we increment ϵl step by step with step-size α = 0.01, applying CROWN verification after
each step, until the vanilla CROWN verifier fails to verify the instance at the current ϵl. Conversely,
we initialize ϵr to 1.0, decreasing it by the same step size 0.01 until PGD attack succeed with
perturbation bound ϵr. In this case, any ϵ configuration within the range [ϵl, ϵr] enforces verification
using the BaB process.

For determining the final ϵ, we employ β-CROWN as our reference verifier. Binary search on ϵ is
used to assess the feasibility of verifying the instance within a timeout t, which is randomly sampled
from the interval [0.8T, 1.5T ] (T is the final timeout designated for the instance). The resulting ϵ will
make β-CROWN verifier running time to be as close to the given timeout t as possible.

In VeriHard dataset, for MNIST and CIFAR10 instances, the actual timeout T is set to 200 seconds,
whereas for CIFAR100 and TinyImageNet instances, T is set to 250 seconds. We crafted 100
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Figure 5: {(Left) Global lower bounds; (Middle) Total explored branches; (Right) Average used
bound implications} trends along with branching iterations on one specific instance in VeriHard-
MNIST-A-Adv benchmark. More than one neurons are branched per iteration due to BIG, and the
bounds and the number explored branches both improve noticeably.
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Figure 6: {(Left) Global lower bounds; (Middle) Total explored branches; (Right) Average used
bound implications} trends along with branching iterations on one specific instance in VeriHard-
CIFAR10-A-Adv benchmark.
instances from each benchmark, assigning the respective ϵ to each instance following the algorithm
mentioned before. We will release our benchmark in the standard VNNLIB format.

E.2 EXPERIMENTAL SETUP

Our implementation is based on the open-source α, β-CROWN verifier by integrating BIG and
subBIGs construction and branching utilization code into that. For BIG and subBIGs construction, we
select top-K implicant neurons to derive our paired bound implications as mentioned in Theorem 3.2
with K = 1000. Specifically for subBIGs, we use first M = 8 splits by BaB and apply a 50-steps
gradient descent with Adam optimizer to optimize our objective l∗relaxed-multi on up to 2M = 256
unsolved subproblems with initial learning rate as 0.1 and its decay factor as 0.99. Throughout our
experiments, we employ Filtered Smart Branching (FSB) (De Palma et al., 2021a) as our branching
heuristics and apply Adam optimizer to optimize both α and β for 20 iterations during verification
process. The initial learning rate is set to be 0.1 for α optimization and 0.05 for β, while the
corresponding decay ratio is set to be 0.995 for α and 0.98 for β. All our experiments are conducted
on one NVIDIA A100 GPU device (80G memory). Timeout for classic benchmark is aligned with
prior work: MNIST-CNN-A-Adv (200s), CIFAR10-CNN-A-Adv (200s), CIFAR10-CNN-A-Mix
(200s), MNIST-ConvSmall (180s), CIFAR10-ConvSmall (180s). For VeriHard benchmark, we set
timeout to be 200 seconds for MNIST and CIFAR10 instances and 250 second for CIFAR100 and
TinyImageNet instances.

F VISUALIZATION OF BIG-ENHANCED BAB PROCESS

In this section, we provide more figures showing the bounds improvements, the number of branches,
and the average number of branched neurons per BaB iteration, on different benchmarks and data-
points.

G ABLATION STUDIES ON GCP-CROWN

GCP-CROWN (Zhang et al., 2022) enhances NN verification efficiency by introducing general
cutting plane methods through mixed integer programming (MIP) solver. The derived cutting
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Figure 7: {(Left) Global lower bounds; (Middle) Total explored branches; (Right) Average used
bound implications} trends along with branching iterations on one specific instance in VeriHard-
CIFAR10-A-Mix benchmark.

plane constraints could also help reduce the number of branches within verification. We conduct
experiments on showing the average number of branches on various benchmarks by utilizing β-
CROWN, GCP-CROWN, BIG, and the combined approach GCP-CROWN+BIG. Results are shown
in Table 5. It is worth noting that GCP-CROWN heavily relies on a MIP solver to find cutting planes,
and for CIFAR100 and TinyImageNet models, GCP-CROWN cannot provide useful cutting planes
due to its high computational cost.

Table 5: Total number of branches (less is better) on MNIST, CIFAR10, CIFAR100, and TinyImageNet
benchmarks. GCP-CROWN+BIG could further reduce the number of branches compared with GCP-CROWN
only. Note that GCP-CROWN cannot scale to CIFAR100 and TinyImageNet, yet our bound implications can
still bring improvements.

Number of Branches β-CROWN GCP-CROWN BIG GCP-CROWN+BIG
MNIST-CNN-A-Adv 53120.9 22250.4 45130.4 21230.4

CIFAR10-CNN-A-Mix 50614.2 24103.7 46132.4 23792.5
CIFAR10-CNN-A-Adv 55764.8 28607.1 50014.2 28204.6

CIFAR100-small 74113.5 - 70006.6 -
TinyImageNet-medium 64253.9 - 60082.5 -

From this table we can see that, GCP-CROWN+BIG could further reduces branch counts compared
to GCP-CROWN alone. Note that GCP-CROWN cannot scale to CIFAR100 and TinyImageNet, yet
our bound implications can still bring improvements.

We also exported the cutting planes from GCP-CROWN and compared them to our implications on
the same set of instances. We report the average number of implications found by us, the average
number of cutting planes in GCP-CROWN, and the overlaps. Here overlap means that GCP-CROWN
finds a constraint mentioning the same pair of two neurons as we found as implicated and implicant
neurons. Results are shown in Table 6.

Table 6: The average number of implications in BIG, GCP-CROWN, and the average number of overlaps
with the cutting plane constraints in GCP-CROWN. Here overlap means that GCP-CROWN finds a constraint
mentioning the same pair of two neurons as we found as implicated and implicant neurons.

Average Implications GCP-CROWN BIG Overlaps
MNIST-CNN-A-Adv 574.2 761.7 102.2

CIFAR10-CNN-A-Mix 683.7 1103.3 89.9
CIFAR10-CNN-A-Adv 796.9 1289.7 104.2

As we can see, the implications only take a minority of the overall implications we found with our
method. This is expected because GCP-CROWN uses a MIP solver to generate cutting planes, which
is unaware of the underlying neural network architecture and uses generic methods (such as Gomory
cuts) to find implications among variables.

H LIMITATIONS

Our method suffers from several limitations which are commonly existed by most existing BaB-
based verification methods (Wang et al., 2021; Ferrari et al., 2021; Zhang et al., 2022; Xu et al.,
2020b), and is limited by the capability of existing verifiers, which focuses on branch-and-bound
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for ReLU networks only. For other non-linear activations and non-perception networks (such as
Transformers), applying our method to the very recent work on BaB-based verification for general
non-linear functions (Shi et al., 2023) could be an interesting future work. Our method also cannot
support the verification of very large neuron networks, such as NNs with billions of parameters.
Improving the overall computational efficiency could be our future direction.
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Algorithm 3 Construct BIG
1: Inputs: constraints of all unstable neurons a,a ∈ RN×d0 and c, c ∈ RN , where N is number of

unstable neurons and d0 is the length of the model input x0; perturbation size ϵ, K
2: Outputs: BIG: G(V,E)
3: S,S← TOPKFILTERING(a,a, c, c,x0, ϵ,K) ▷ Get indices of Top-K constraints from Alg. 2
4: for p = 1 to N do ▷ Iterate implicant neurons
5: for q = 1 to N do ▷ Iterate implicated neurons
6: if p ∈ S then
7: ▷ Consider inactive implicant constraint to improve lower bound
8:

x∗
k :=


x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k − ϵ · sign(a(ip,jp)k ), if a(iq,jq)k = 0

9: if a(ip,jp)⊤x∗ + c(ip,jp) > 0 then ▷ Useful implicant constraint
10: l∗relaxed ← Solve Eq. 6 with the implicated neurons: a(iq,jq)

⊤
x+ c(iq,jq)

11: if l∗relaxed ≥ 0 then ▷ z
(iq)
jq

become to active

12: E ← E ∪ (Q
(ip)
jp

, P
(iq)
jq

) ▷ add edge (Q
(ip)
jp

, P
(iq)
jq

) to the graph

13: ▷ Consider inactive implicant constraint to improve upper bound
14:

x∗
k :=


x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k − ϵ · sign(a(ip,jp)k ), if a(iq,jq)k = 0

15: if a(ip,jp)⊤x∗ + c(ip,jp) > 0 then ▷ Useful implicant constraint
16: l∗relaxed ← Solve Eq. 10 with the implicated neurons: a(iq,jq)

⊤
x+ c(iq,jq)

17: if l∗relaxed ≤ 0 then ▷ z
(iq)
jq

become to inactive

18: E ← E ∪ (Q
(ip)
jp

, Q
(iq)
jq

) ▷ add edge (Q
(ip)
jp

, Q
(iq)
jq

) to the graph

19: if p ∈ S then
20: ▷ Consider active implicant constraint to improve lower bound
21:

x∗
k :=


x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k + ϵ · sign(a(ip,jp)k ), if a(iq,jq)k = 0

22: if a(ip,jp)
⊤
x∗ + c(ip,jp) < 0 then ▷ Useful implicant constraint

23: l∗relaxed ← Solve Eq. 11 with the implicated neurons: a(iq,jq)
⊤
x+ c(iq,jq)

24: if l∗relaxed ≥ 0 then ▷ z
(iq)
jq

become to inactive

25: E ← E ∪ (P
(ip)
jp

, Q
(iq)
jq

) ▷ add edge (P
(ip)
jp

, Q
(iq)
jq

) to the graph

26: ▷ Consider active implicant constraint to improve upper bound
27:

x∗
k :=


x0,k − ϵ · a(iq,jq)k , if a(iq,jq)k > 0

x0,k + ϵ · a(iq,jq)k , if a(iq,jq)k < 0

x0,k + ϵ · sign(a(ip,jp)k ), if a(iq,jq)k = 0

28: if a(ip,jp)
⊤
x∗ + c(ip,jp) < 0 then ▷ Useful implicant constraint

29: l∗relaxed ← Solve Eq. 12 with the implicated neurons: a(iq,jq)
⊤
x+ c(iq,jq)

30: if l∗relaxed ≤ 0 then ▷ z
(iq)
jq

become to active

31: E ← E ∪ (P
(ip)
jp

, P
(iq)
jq

) ▷ add edge (P
(ip)
jp

, P
(iq)
jq

) to the graph

32: Return: G(V,E)
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Algorithm 4 Generate subproblems in one BaB iteration with BIG.

1: Inputs: G(V,E), selected unstable neuron z
(i)
j

2: Outputs: BIG-generated subproblems.
3: SP ← {P (i)

j },SQ ← {Q(i)
j } ▷ traverse BIG starting from node P

(i)
j and Q

(i)
j

4: while SP has unvisited nodes do
5: Pick a unvisited node X

(i′)
j′ out from Sp

6: for e = (X
(i′)
j′ , Y

(i∗)
j∗ ) ∈ E do

7: SP ← SP ∪ {Y (i∗)
j∗ }

8: Mark node X
(i′)
j′ as visited

9: while SQ has unvisited nodes do
10: Pick a unvisited node X

(i′)
j′ out from SQ

11: for e = (X
(i′)
j′ , Y

(i∗)
j∗ ) ∈ E do

12: SQ ← SQ ∪ {Y (i∗)
j∗ }

13: Mark node X
(i′)
j′ as visited

14: Add splits z(i
′)

j′ ≥ 0 (or z(i
′)

j′ ≤ 0) from nodes in SP to subproblem z
(i)
j ≥ 0

15: Add splits z(i
′)

j′ ≤ 0 (or z(i
′)

j′ ≤ 0) from nodes in SQ to subproblem z
(i)
j ≤ 0
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