
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SMOOTH REAL-TIME RENDERING VIA IMPLICIT
NESTED NEIGHBORHOODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Implicit neural representations (INRs) for surfaces have been mostly used as
intermediary representations before triangle mesh extraction. Extracting meshes
is not a real-time task and introduces unnecessary discretization to rendering,
making it difficult to fully use the smoothness of INRs in applications. Smooth
INRs are broadly used for approximating surface signed distance functions (SDFs)
through an implicit regularization (Eikonal equation) using their available high-
order derivatives. Such property also makes it easier to integrate those INRs in
pipelines that explore differentiable properties of the underlying surface. The
current real-time state-of-the-art approach uses grid-based data-structures that
introduce discretization, resulting in a non-smooth representation.
We propose an end-to-end smooth (C∞) INR framework to represent and render
surfaces in real-time using neural SDFs endowed with smooth attributes such as
normals and textures. Our approach leverages from a novel localized SDF training
based on nested neighborhoods, a multiscale surface representation, and residual
training. The framework does not depend on spatial data-structures, nor surface
extraction. We show that our representation renders detailed smooth surfaces in
real-time while the previous works can only render coarse non-smooth surfaces. We
also present applications of our representation, including integration with a pipeline
for dynamic surfaces and a way to improve performance of surface extraction via
marching cubes.

1 INTRODUCTION

Real-time rendering enables interactive applications on 3D scenes. One important choice before
rendering is how to represent the scene objects. In this setting, implicit neural representations (INRs)
are emerging as a compelling option, which encodes the surface as the zero-level set of a neural
network. They are memory efficient, continuous, infinitely differentiable when periodic activations
are used, scalable, and naturally adapted to machine learning pipelines.

Even though those properties are present, INRs for surfaces have been mostly used as intermediary
representations in neural pipelines, which usually output triangle meshes. Although that representation
excels at localized tasks because it is explicit, it is not memory efficient, nor continuous, nor scalable.
One of the reasons behind the use of triangle meshes is the non-triviality of rendering INRs for
surfaces in real-time while maintaining the aforementioned properties. The current approach for
real-time rendering of INRs resorts to discrete spatial data-structures which, analogously to triangle
meshes, cannot maintain smoothness. Easy access to derivatives makes a model ready for integration
with differentiable pipelines from the inception, increasing its possibilities for applications.

We propose a real-time rendering framework using INRs which maintain surface and attribute
smoothness. Our approach trains residual SDFs on neighborhoods of the zero-level set, resulting
in a multiscale representation. Surface attributes (normals and texture) are also defined and trained
in the surface neighborhood. Rendering-wise, we propose a multiscale sphere tracing and a normal
computation based on general matrix multiply (GEMM) (Dongarra et al., 1990) to render the surfaces.

Summarizing, our contributions are: (1) Smooth multiscale INR for surface representation; (2) Effi-
cient neighborhood training for SDF (using a residual scheme), normals, and texture; (3) Multiscale
sphere tracing; (4) GEMM-based normal computation. (5) Applications in differentiable pipelines
(dynamic surfaces) and in an adaptive sampling for fast mesh extraction via marching cubes.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Implicit representations are an essential topic in computer graphics (Velho et al., 2007). SDFs are
important examples of such functions (Bloomenthal & Wyvill, 1990) and arise from solving the
Eikonal problem (Sethian & Vladimirsky, 2000). Recently, multilayer perceptrons (MLPs) have been
used to model SDFs (Park et al., 2019; Gropp et al., 2020; Novello et al., 2022). Sinusoidal networks
(SIRENs) Sitzmann et al. (2020) are an example of such, being MLPs using sinusoidal activation.

Marching cubes (Lorensen & Cline, 1987) and sphere tracing (ST) (Hart, 1996) are classical visual-
ization methods for rendering level sets of SDFs. Neural versions of those algorithms were proposed
by (Liao et al., 2018; Chen & Zhang, 2021; Liu et al., 2020). While the initial works in neural SDFs
use marching cubes to visualize the resulting level sets, recent performance-driven approaches have
been using ST, since no intermediary representation is needed for rendering (Davies et al., 2020;
Takikawa et al., 2021). Our proposed multiscale ST considers a similar path.

Surface representations and rendering: Recent works propose INRs for disentangling base geome-
try and detail. Wang et al. (2022) describe an INR using base and displacement networks to compute
a detailed triangle mesh extracted via marching cubes for rendering. This approach is similar to our
residual SDF learning, however it relies on function composition instead of addition like ours. A
consequence is that the inference of the base and displacement network must be sequential, different
from our approach which may be parallelized. Another difference is that our residual training is done
only at the neighborhood of the zero-level set, which improves the network ability to represent the
function since it is restricted to a small neighborhood instead of the entire domain. Morreale et al.
(2022) employ INRs to model surfaces parametrically using parameterizations. Differently from our
approach, they do not deal with the rendering problem. Sharp & Jacobson (2022) describe a way to
perform geometric queries for neural SDFs using range analysis. (Genova et al., 2020) uses multiple
small implicit objects to increase detail of the representation. None of those approaches support
textures. Contextualization with triangle meshes is in Section A.1.

Real-time neural SDFs: Fast inference is needed to sphere trace SDFs in real-time. Davies et al.
(2020) show that this is possible using general matrix multiply (GEMM) (Dongarra et al., 1990;
Müller, 2021), but the capacity of their networks can not represent geometric detail. Other works in
neural SDFs store features in the nodes of octrees (Takikawa et al., 2021; Martel et al., 2021), or limit
the frequency band in training as in BACON (Lindell et al., 2021). However, octree-based approaches
reintroduce discretization to the pipeline. NGLOD (Takikawa et al., 2021) is the SOTA real-time
method for rendering neural SDFs. It uses a sparse voxel octree (SVO) to represent the neural SDF
and render its level set using a sparse ST algorithm. The vertices of the voxels store features. Then,
for a point p and a level L of the SVO, the features are interpolated inside each voxel containing
p up to the level L. The resulting interpolated points are summed and passed to a MLP fL. Thus,
besides the SVO structure, NGLOD uses a sequence of L MLPs to represent the LoD. Moreover,
the interpolation implies in INRs with non-continuous gradients at the voxels boundaries leading to
artifacts (Sec. 4.1). Ours supports smooth normals, by leveraging sinusoidal MLPs to fit each level of
the SDFs using (Novello et al., 2022). Finally, NGLOD does not support textures as our method does.

Attribute mapping: Normal mapping (Cohen et al., 1998; Cignoni et al., 1998) is a classic method
to transfer detailed normals between meshes. Besides depending on interpolation, normal mapping
also suffers distortions of the parameterization between meshes, which are assumed to have the same
topology. Recently, Wang et al. (2022) introduced detail transfer (normals) in the context of INRs. It
is based on features computed from a point cloud encoder and a convolutional module to propagate
sparse on-surface point features to the off-surface area. Queried features are obtained using bilinear
interpolation. Our approach is simpler. Inspired by (Bertalmıo et al., 2001), we use a regularization to
make attributes constant along the normals near the zero-level set. That maintains smooth attributes,
without the need of any interpolation or parametrization.

Texture mapping (Catmull, 1974) is a technique for cost-effective rendering that maps images to
surfaces using parametrizations. In neural rendering, texture fields (Oechsle et al., 2019) shares
similarities with our neural attribute mapping but approaches a different problem. Ours processes
a point cloud with colors, while texture fields demand a 3D shape and input images, using view
dependent depth maps. We use the surface’s neighborhood to define color along normals. Texture
fields is not real-time due to its use of 4-6 ResNet blocks and complex networks for latent code
generation. In contrast, ours adopts small MLPs for efficient representation. GET3D (Gao et al., 2022)
uses texture fields for the textures in its 3D model generation, sharing an analogous contextualization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 NESTED NEIGHBORHOODS OF NEURAL SDFS

3.1 OVERVIEW

Given the iterative nature of Sphere Tracing (ST), a way to increase its performance is to optimize or
avoid iterations. We propose to use small neural SDFs to approximate earlier iterations and mapping
the normals and the texture of the desired neural SDF, avoiding later iterations. Both tasks can
be accomplished by mapping neural SDFs using nested neighborhoods, without introducing any
additional discretization. Fig. 1 shows our pipeline for smooth real-time rendering of 3D objects.

Figure 1: Our end-to-end INR framework for smooth real-time rendering. Starting from an oriented
point cloud with colors, we combine sampling techniques and loss regularizations (B and N) to
create a base, a medium, and a fine SDF to implicitly represent the surface in multiscale. The base
SDF is defined for the entire domain, while the others are residuals, defined in (nested) neighborhoods
of the surface. The colors are also trained in a neighborhood, regularized (by T) to be constant along
normals. The resulting multiscale representation can be rendered using novel sphere tracing and
attribute mapping algorithms.

The basic idea comes from the following fact: if the zero-level set of a neural SDF f is contained in a
neighborhood V of the zero-level set of another neural SDF, then we can map f into V . We follow
the notation in Fig. 2 to present an overview of our method. Let S1, S2, S3 be surfaces pairwise close
with SDFs f1, f2, f3 sorted by complexity. We use S1 and S2 to illustrate the multiscale ST and S3

to illustrate the attribute mapping.

Multiscale ST: Suppose that the ray p0 + tv, with origin at a point p0 and direction v, intersects
S2. To compute its S2 point q2, we first use f1 to sphere trace the boundary of a neighborhood of S1

(gray) containing S2. This results in q1. Then we continue sphere tracing S2 using f2, reaching q2.
In other words, we are mapping the values of f2 to the neighborhood of S1.

Neural Attribute Mapping: For shading, we need a normal at q2, which is given by N2 = ∇f2(q2).
Instead, we propose to pull the finer details of S3 to S2 to increase fidelity. This is done by mapping
the normals from S3 to S2 using N3 = ∇f3(q2). To justify this choice, note that q2 belongs to a
neighborhood of S3. Thus, N3 is the normal of S3 at its closest point q3 = q2 − ϵN3, where ϵ is
the distance f3(q2) from q2 to S3. This transfers the normal N3 to q2. Observe that N3 is also the
normal of the ϵ-level set of f3 at q2 (red dotted). Similarly, the texture color is mapped from q3 to q2
by making it constant along q3 + tN3 in the neighborhood.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 DEFINITIONS

Figure 2: Multiscale ST: to sphere
trace S2 we first sphere trace the
boundary of a neighborhood of S1

(gray), resulting in q1. Then we con-
tinue to sphere trace S2, reaching
q2. Attribute mapping: since q2 be-
longs to a neighborhood of S3, we
evaluate the normal N3 at q2 of a
parallel surface of S3 (red dotted).
These surfaces share the same nor-
mals. Color is acquired by making it
constant along the line q3 + tN3.

Figure 3: Ray intersecting S3 nested
in a δ-neighborhood of a coarse SDF
f2. Notice that sphere tracing f2 di-
rectly would lead to a false negative,
thus we use

[
|f2| < δ2

]
instead.

A neural SDF f : R3 → R is a smooth neural network ap-
proximating the Eikonal eq., i.e. ∥∇f∥ ≈ 1. This work deals
with the problem of rendering the zero-level set f−1(0) using a
sphere tracing approach. Thus, given a point p0 and a direction
v, we must iterate pi+1 = pi + vf(pi). However, evaluating
f(pi) may be prohibitive for real-time applications since it
requires many forward passes through the network, thus we
proposed to use coarse (smaller) neural SDFs approximating
f for the early iterations.

Specifically, let f1, f2, f3 be neural SDFs with zero-level sets
S1, S2, S3 sorted by complexity (we give the definitions of
fi in Sec 3.3), then to sphere trace S3 we use f1 and f2 in
the early iterations. For this, we need S3 to be nested in a
δ-neighborhood of S2, i.e. S3 ⊂

[
|f2| ≤ δ

]
(see Fig. 3).

Thus, we ray trace f−1
2 (δ) iterating pi+1 = pi+v

(
f2(pi)−δ

)
and continue the iterations in the δ-neighborhood using the
target SDF f3. Therefore, if the ray p0 + tv intersects S3, the
above procedure converges.

Moreover, to use f1 we need an additional condition. To
extend the above procedure to the sequence fi, we should first
sphere trace a coarser level set f−1

1 (δ1), then, f−1
2 (δ2), and

finally, S3. For such algorithm to converge, we need those
neighborhoods to be nested as follows, otherwise, we may
miss the hit point (see Fig. 4 (b)).

S3 ⊂
[
|f2| < δ2

]
⊂

[
|f1| < δ1

]
(1)

The choice of δ1 and δ2 values plays an important role on
rendering. Having different values for them is also necessary
to avoid issues as illustrated in Fig. 4. In Section 3.3 we
present a definition for δi relating it with the network training.

In practice, we may choose how to use the SDFs f2 and f3
to adapt to a specific performance budget. We may choose to
skip evaluating f2, instead simply mapping the normals from
f3 directly onto f1, thus decreasing the rendering cost. Iterating on f2 while mapping normals from
f3 increases the cost, but its still cheaper than performing the full pipeline. Finally, iterating on all
f ’s presents the best silhouette results, although at a greater computational cost. Section 4.2 presents
an evaluation of those cases.

Figure 4: Implications of δi in ST, when the number of iterations are fixed. (a) Using too large δ1=δ2
may result in holes (the ray do not reach the surface). More iterations would be needed using the finer
(more complex) SDF to fill those holes, defeating the idea of minimizing iterations. (b) Conversely,
reducing the deltas δ1=δ2 may miss parts of the silhouette since the target surface may not be inside
the previous neighborhood (notice the hand). (c) Using δ1 and δ2 suited for the nesting condition
implies in no holes and a better silhouette capture.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 TRAINING THE SDFS WITH NESTED NEIGHBORHOODS

This section describes approaches to define sequences of neural SDFs with nested neighborhoods.
The objective is to train this sequence sorted by inference time and find small thresholds that ensure
the nesting condition (1).

We define the coarse SDF f1 as a small sinusoidal MLP which will be used at the first ST iterations.
Then, we define the medium and fine SDFs f2, f3 simply using a residual scheme as follows

fi+1 = fi + ri, for i = 1, 2. (2)

In other words, to define a fine SDF fi+1 we sum the coarser SDF fi with a residual sinusoidal MLP
ri with a wider bandlimit. For this, we use the frequency parameter ω0 of SIREN. We refer to this
sequence fi as multiscale SDFs.

We now define the nesting parameters δ1 and δ2 to enforce the SDFs fi to be nested during training,
that is, (1) must hold. First, we train the base SDF f1 in the whole domain Ω, then we note that we
can train fi+1 for i = 1, 2 restricted to

[
|fi| < δi

]
since the ST (see Alg. 1) do not evaluate fi+1

outside this region.

Specifically, let {xj , Nj}nj=1 be an oriented point cloud (the ground-truth) consisting of points xj and
their normals Nj sampled from a surface S. To train the INRs fi we follow the common approach of
defining loss functions to enforce the Eikonal eq. E(f) :=1−∥∇f∥=0 to be satisfied.

B(f1)=
1

n

∑
j

f1(xj)
2 +

(
1−

〈
∇f1, Nj

〉)
︸ ︷︷ ︸

Ldata(f1)

+

∫
Ω

E(f1)
2dx, N(fi) = Ldata(fi) +

∫
[
|fi−1|<δi−1

]E(fi)
2dx. (3)

B is used to train the base SDF f1 in the whole domain Ω, while N only trains f2 and f3 on a
δi−1-neighborhood of the previously trained SDFs. This neighborhood training allows representing
detailed SDFs f2 and f3 using small residual networks, see comparisons in Fig. 16. We define
appropriate δi to enforce the sequence fi to satisfy the nesting condition (1). Precisely, we define δi
such that

[
|fi| < δi

]
contains the point cloud {xj} using the following formula.

δi = (1 + ε) ∗max
j

|fi(xj)| . (4)

Thus the training would force the zero-level set f−1
i+1(0) to approximate {xj} inside

[
|fi| < δi

]
for i = 1, 2. In other words, the nesting condition would be satisfied by construction.

3.3.1 SAMPLING THE GROUND-TRUTH SDF NEAR THE INPUT ORIENTED POINT CLOUD

In practice, to discretize the term
∫
E(fi)

2dx in
[
|fi−1| < δi−1

]
, we use an average on a dithering

sampling around {xj} with a radius of 2δi−1. Then, we remove points outside the region using fi−1.
Fig. 5(a) depicts how this samplings works.

Figure 5: a) illustrates the dithering sampling for the Eikonal regularization of the SDF fi. Points
outside the δi−1-neighborhood of fi−1 (red) are removed. (b.1, b.2) illustrate the procedure for
computing the displacement tj used to sample the ground-truth SDF near xj . Starting with tj > δi−1,
we iteratively decrease it by ϵ until the corresponding point falls within the neighborhood (green).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Additionally, we improve Ldata for i = 2, 3 using the tubular neighborhood of {xj}, see Fig. 5(b).
Specifically, for each point xj we compute a number tj ≤ δi−1 such that the distance of xj + tNj ,
with t ∈ [0, tj], to {xj} is exactly t. Observe that with {tj} in hands, we have fi(xj + tNj) = t and
∇fi(xj + tNj) = Nj for each t ∈ [0, tj]. Hence, during sampling we can also supervise the training
of fi near the original point cloud.

We use an iterative approach to compute {ti}. We start with tj = δi−1. Then, we compute the
distance of xj + tjNj to {xj}, if it is different from tj we replace tj by tj − ϵ; where ϵ > 0 is a small
number. The iteration ends when all tj do not need to be updated. Finally, note that the computation
of ti can be performed as a preprocessing step and executed in parallel.

3.4 MULTISCALE SPHERE TRACING

We propose the multiscale sphere tracing (Alg. 1), a variation of the classic algorithm to render
multiscale SDFs f1, f2, f3. Let p be a point and v be a direction, it approximates the first intersection
(if it exists) between S3 = f−1

3 (0) and γ(t) = p+ tv, with t > 0.

Specifically, we assume p /∈
[
|f1| ≤ δ1

]
. The multiscale ST is based on the fact that to sphere trace

S3 we can first sphere trace f−1
1 (δ1) using f1 (Fig. 3). Lines 3-6 describe the ST of f−1

j (δj) for
j = 1, 2, 3 (line 1). If j = 3 we sphere trace S3 instead of its neighborhood (line 4).

ALGORITHM 1: Multiscale ST
Input: Sequence of nested neural SDFs {fi},

point p, direction v, threshold ϵ>0
Output: End point p

1 for j = 1, 2, 3 do
2 t = +∞;
3 while t > ϵ do
4 t = (j==3)?f(p):fj(p)− δj ;
5 p = p+ tv;
6 end
7 end

If γ∩S3 ̸= ∅, the ST approximates the first hit
point between γ and S3. This is due to the nesting
condition, which ensures that if γ∩S3 ̸=∅ implies
γ ∩ f−1

2 (δ2) ̸= ∅, and then γ ∩ f−1
1 (δ1) ̸= ∅.

For the inference of a neural SDF, in Line 4 of
Alg. 1, we use the GEMM alg. (Dongarra et al.,
1990) for each layer. To finish the rendering, we
need to compute the normals and the textures.

3.5 NORMAL AND TEXTURE MAPPING

Figure 6: Volumetric texture
mapping. The texture g should
be constant along the normals
N near the coarse surface S
(red/green). Having such vol-
umetric representation in the
δ-neighborhood ensures that g
can be assigned to any point in
the coarse surface S.

Let S be a surface nested in a δ-neighborhood of the zero-level set
of a neural SDF f , that is, S ⊂

[
|f | ≤ δ

]
. Assume f to be a finer

neural SDF, then the neural normal mapping assigns to each p ∈ S
the attribute g(p) :=∇f(p). This is a restriction of ∇f to S and
maps the normal of f−1(0), along the minimum path connecting it
to p. The attribute g is constant along the path since f is a SDF.

We explore two cases. First, let S be a triangle mesh. We use the
neural normal mapping to transfer the detailed normals of the level
sets of f to S. This approach is analogous to the classic normal
mapping which depends on UV parameterizations. Since our method
is volumetric, such parameterizations are not needed (see Fig. 9 -
middle). For the second case, let S be the zero-level set of another
coarse neural SDF. We can use the neural normal mapping to avoid
the overhead of additional ST iterations (see Fig. 9 - left). In this
case, we do not need to extract a surface using marching cubes.

Similarly, we define a neural network g : R3 → C to encode a texture
on the δ-neighborhood of f with codomain C being the RGB space.
We denote the attribute mapping associated to the triple {S, f, g} a
neural texture mapping. To train the parameters ϕ of g we use the

following loss functional: T(ϕ) =
∫
f−1(0)

(g− g)2dx+
∫[

|f |≤δ
]⟨∇g,∇f⟩2dx. where the first term

forces g to fit to the ground-truth texture g, and the second term asks for g to be constant along the
gradient paths, that is, it regularizes the network on the δ-neighborhood of f . Fig. 6 depicts how the
texture mapping works.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.6 GEMM-BASED ANALYTICAL NORMAL CALCULATION FOR MLPS

We propose a GEMM-based analytical computation of normals, which are continuous and do not
need auto-differentiation. This results in smooth normals, as shown in Fig. 7c. To compute the
normals, we recall that a MLP with n− 1 hidden layers has the following form:

f(x)=Wn ◦ hn−1 ◦ · · · ◦ h0(x) + bn, (5)
where hi(xi)=φ(Wixi+bi) is the i-layer. The activation φ is applied on each coordinate of the linear
map Wi :RNi→RNi+1 translated by bi∈RNi+1 . The gradient of f is given using the chain rule:

∇f(x)=Wn · Jhn−1(xn−1) · · · · · Jh0(x), with Jhi(xi) = Wi ⊙ φ′[ai| · · · |ai] (6)
J is the Jacobian, xi :=hi−1◦· · ·◦h0(x), ⊙ is the Hadamard product, and ai=Wi(xi)+bi. Eq. 6 is
used in (Gropp et al., 2020; Novello et al., 2022) to compute the level set normals analytically.

We now use Eq. 6 to derive a GEMM-based algorithm for computing the normals (∇f) in real-
time. The gradient ∇f is given by a sequence of matrix multiplications which is not appropriate
for a GEMM setting because Jh0(x) ∈ R3×N1 . The GEMM algorithm organizes the input points
into a matrix, where its lines correspond to the points and its columns organize them and enable
parallelism. We can solve this problem using three GEMMs, one for each normal coordinate.
Therefore, each GEMM starts with a column of Jh0(x), eliminating one of the dimensions. The
resulting multiplications can be asynchronous since they are completely independent.

The j-coord of ∇f is given by Gn=Wn·Gn−1, where Gn−1 is given by iterating Gi=Jhi(xi)·Gi−1,
with the initial condition G0 = W0[j]⊙ φ′(a0). The vector W0[j] denotes the j-column of W0. We
use a kernel and a GEMM to compute G0 and Gn. For Gi with 0<i<n, observe that

Gi=(Wi ⊙ φ′ [ai| · · · |ai]) ·Gi−1=(Wi ·Gi−1)⊙ φ′(ai).

The first equality comes from Eq. 6 and the second from a commutative property of the Hadamard
product. The second expression needs fewer computations and is solved using a GEMM followed by
a kernel. Please refer to Appx A.2 for a detailed algorithm.

4 EXPERIMENTS

Neural Armadillo Training (s)
(64, 1) (base) 23.6
(128, 1) (residual) 40.2
(256, 1) (residual) 85.1
Total 148.9
IDF 100.1
NGLOD 1628.0

Table 1: Although our method
is real time for rendering, its
training time is comparable to
IDF which depends on march-
ing cubes to render, losing
the smoothness of INRs. Our
training is one order of magni-
tude faster than NGLOD.

We compare our framework against SOTA methods, present ablation
studies and additional applications. For the sphere tracing related
experiments, we fix the number of iterations for better control of
parallelism. All experiments are conducted on an NVidia RTX 3090.

We use a notation to refer to the MLPs: (N, d) means a MLP with d
hidden layers of the form RN→RN . Additionally, (64, 1)▷(256, 1)
means a multiscale SDFs with a MLP with two hidden layers R64→
R64, and a MLP with two hidden layers R256→R256.

4.1 COMPARISONS

Surface: First, we compare our neighborhood-nesting approach with SOTA methods for surface
representation. The first one is implicit displacement fields (IDF)(Wang et al., 2022), which disentan-
gles shape and detail. The second one is NGLOD(Takikawa et al., 2021), which is the only real-time
rendering method that uses neural SDFs. Tab. 1 compares the training times. Even though our
rendering is real-time, we have comparable training times against IDF, which rely on mesh extraction
for rendering. Our training is one order of magnitude faster than NGLOD.

Figs. 7 and 15 show rendering comparisons. 7a uses the real-time configuration for NGLOD,
recommended by the authors in their code repository. As discussed in Sec. 2, its formulation results
in non-continuous normals, causing discretization artifacts. To increase geometric details using
NGLOD, we have to consider a non-real-time LOD 5 configuration (7b), which has less discretization
artifacts. 7c shows our real-time rendering framework. Since our approach works on the smooth
setting, we support smooth normals. 7d shows the surface generated by IDF, after a marching cubes
extraction of resolution 5123. Note that IDF and NGLOD do not support textures.

Normals: We compare our GEMM normal calculation with torch.autograd. As shown in
Tab. 5, ours performs 2× faster. We tested 6 different INRs trained for Armadillo, Happy Buddha,
and Lucy, varying between 2-3 hidden layers.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 7: Render comparison.

(a) NGLOD LOD 0 (real-time).
Note the discretization artifacts (mo-
saic appearance).

(b) NGLOD LOD 5 (not real-time).
Less artifacts.

(c) Ours, with configuration
(64, 1) ▷ (128, 1) ▷ (256, 1)
(real-time). Note the smooth
normals.

(d) IDF (not real-time). Surface
extracted using marching cubes.

Textures: Since our approach is the first to address textures for
neural SDFs in real-time, we present a comparison against classical
uv-textures on meshes. We present the MSE between the images
generated by our method and the texture meshes. We consider the
models: Spot, Bob, Bunny, Egg, and Earth. The corresponding
MSEs are: 0.0329, 0.0434, 0.0720, 0.0291, and 0.0033. Please refer
to Fig. 17 (Appx. A.3) for the images used to compute the MSEs.
Fig. 8 shows the neural texture mapping applied to coarse surfaces.

Since our method defines the textures in a neighborhood of the
surface, no parameterization or uv-map is needed. Inference is
simple and consists of a single MLP evaluation for a batch of points.
The results show that our approach achieves good appearance while
uncoupling it from geometry in a compositional manner.

4.2 ABLATION STUDIES

Residuals: First, we evaluate the impact of the residual approach.
Fig. 10 shows that residuals eliminate spurious components when
applied to neighborhood training. We use this property to accelerate
marching cubes in the case mesh extraction is needed.

To evaluate the efficiency of coarse neural SDFs to represent the
ground-truth SDFs, Tab. 2 shows the Hausdorff distances between
their zero-level sets and the original point clouds. All distances are
within the third decimal digit, which means they are very close to
the ground-truth. This fact corroborates our assumption that coarse
surfaces in nested neighborhoods can be used to accelerate rendering.

Neural normal mapping and multiscale ST: Regarding image
quality and perception, Fig. 9 shows the case where the coarse
surface is the zero-level of a neural SDF (left) and when it is a
triangle mesh (middle), showing that our representation can also be beneficial for rendering meshes.
An overall evaluation of the algorithm with other models is given in Fig. 16 (Appx. A.3). In all cases,
normal mapping increases fidelity.

Figure 8: Neural texture mapping. All networks are (256, 3), except for the the earth, which is
(512, 3). The first case on the left is a sphere traced surface. The other cases are marching cubes of
(64, 1) SDFs, except for the bunny, which is (128, 2). No parameterization or uv-map is needed.

Model Nets Dist.

Arm. (64,1) 0.0035
(256,3) 0.0021

Bunny
(64,1) 0.0024
(256,1) 0.0019
(256,3) 0.0021

Buddha
(64,1) 0.0051
(256,1) 0.0019
(256,3) 0.0016

Lucy
(64,1) 0.0071
(256,1) 0.0024
(256,3) 0.0017

Table 2: Hausdorff distance
between the trained models
and the ground-truth.

The result may be improved using the multiscale ST, as shown in
Fig. 9 (right). Adding ST iterations using a neural SDF with a better
approximation of the surface improves the silhouette (right).

Real-time renderer: We evaluate a GPU version implemented in
a CUDA renderer, using neural normal mapping, multiscale ST, and
the GEMM-based analytical normal calculation (implemented using
CUTLASS). Tab. 3 shows the results. Notice that the framework
achieves real-time performance and that using neural normal map-
ping and multiscale ST improves performance considerably. An
ablation study varying the number of sphere tracing iterations per
level of detail is presented in Tab. 6 (Appx.).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Normal mapping on coarse surfaces to add detail

Coarse mesh
Coarse mesh

+

normal mappingCoarse SDF

Coarse SDF

+

Normal mapping

Silhouette evaluation on rendering a multiscale SDF
ST on the implicit surface Ray tracing the extracted mesh

ST on the
coarse SDF +

Normal
mapping

Adding
integrations

on the middle
level

Figure 9: Left: neural normal mapping onto a neural SDF. First, the coarse (64, 1) SDF. Then, the
neural normal mapping of the (256, 3) SDF onto the (64, 1). Middle: neural normal mapping onto half
of a triangle mesh. The normals of the (256, 3) SDF are used. The mesh is the marching cubes of the
(64, 1) SDF. The mean square error (MSE) is 0.00262 for the coarse case and 0.00087 for the normal
mapping, an improvement of 3×. The baseline is the marching cubes of the (256, 3) SDF. Right:
Silhouette evaluation. First a (64, 1)▷(256, 3), then a (64, 1)▷(256, 2)▷(256, 3) configuration.
Notice how the silhouette improves with the additional (256, 2) level.

Figure 10: Evaluation of the residual ap-
proach. Note that training the SDFs in the
neighborhoods (first row: center, right) re-
sults in spurious components outside the
neighborhood as would be expected. Us-
ing the residual approach eliminates those
components (second row: center, right).

Model FPS Speedup Size
(256, 3) (SIREN baseline) 19.8 1.0X 777
NGLOD (real-time) 20.0 1.0X 96
(64, 1) (coarse) 124.1 6.3X 18
(64, 1) ▷ (128, 1) (res, NM) 80.0 4.0X 86
(64, 1) ▷ (128, 1) ▷ (256, 1) (res, NM) 41.2 2.1X 349
(64, 1) ▷ (128, 1) ▷ (256, 1) (res) 32.2 1.6X 349
(64, 1) ▷ (256, 2) (NM) 70.4 3.6X 538
(64, 1) ▷ (256, 2) ▷ (256, 3) (res, NM) 40.4 2.0X 1315
(64, 1) ▷ (256, 2) ▷ (256, 3) (res) 31.7 1.6X 1315

Table 3: Real-time evaluations using multiscale ST,
GEMM normals, and normal mapping, in a CUDA ren-
derer. The number of iterations is 20 for the first neural
SDF and 5 for the subsequent ones. (NM) indicates nor-
mal mapping of the last SDF and (res) indicates the resid-
ual approach. Images are 5122. Size is in KB. Note that
the residual approach allows smaller networks and that
all cases result in speedups. Although NGLOD runs at an
average of 20 FPS, its underlying INR cannot represent
fine geometric details in such setting, see Fig. 7(a).

4.3 ADDITIONAL APPLICATIONS

Model Baseline No culling Culling Speedup

Arm. 10.385 8.234 2.177 4.7×
Buddha 10.384 8.195 1.913 5.4×
Lucy 10.404 8.410 1.481 7.0×

Table 4: Average marching cubes runtime
comparison in seconds. Note that we aver-
aged the runtime of 100 runs, while discard-
ing the first, used as a warmup. Surface recon-
structions are shown in Fig. 18, in the Appx.

The flexibility of our multiscale SDF representation
enables additional applications, including integration
into differentiable pipelines and fast mesh extraction
using the marching cubes algorithm.

Neural implicit surface evolution. Note that neural
SDFs provide a smooth representation of a static
scene. By adding an additional input coordinate, we
can encode time into the representation. We leverage
this approach to train dynamic evolutions of static
neural SDFs, following the training schemes introduced in (Novello et al., 2023). Fig. 11 presents
an example of interpolation between the Spot and Bob models using this method. Importantly, the
implicit model handles topology changes, demonstrating that our representation can be integrated
into differentiable pipelines. The visualization is in real-time (120 FPS) using an extension of our
multiscale ST to dynamic SDFs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 11: A dynamic multiscale SDF is trained using the pipeline from (Novello et al., 2023). Note
the change in topology (c-d), which is challenging to handle using meshes. Also, octree/mesh-based
approaches require generating a surface for each time, an overhead that our model avoids.

Residuals remove spurious components. This property is a direct consequence of our residual
approach. Fig. 10 shows that residuals eliminate spurious components when applied to neighborhood
training. We use this property to accelerate marching cubes in case of mesh extraction.

Figure 12: Adaptive marching
cubes. For grid vertices outside
the δ1 neighborhood (blue), only
the coarse SDF f1 is evaluated.
For points in the neighborhood
(green) the residual f2 is added.

Improving Marching Cubes performance. We can use our
multiscale SDF to speed up mesh extraction. Experiments show
that our representation improves the performance of grid evalu-
ation, by avoiding inference at finer levels for vertices far from
the zero-level set. The key idea is to use the coarse version of the
neural SDF for grid vertices culling. Only those in the nesting
neighborhood of the coarse surface use finer SDF, enabling an
adaptive sampling of SDF values. Fig. 12 shows the approach,
Fig. 18 (Appx.) shows the surface reconstructions, and Tab. 4
demonstrates a maximum performance improvement of 7×. For
all cases, the baseline SDF is approximated by a single MLP with
configuration (256, 3), while the multiscale SDFs have configura-
tion of (64, 1)▷(128, 1)▷(256, 1). Note that surfaces occupying
smaller domain region have a greater speed up since the number
of vertices on their nesting neighborhoods decrease.

Reconstruction from (noisy) point-clouds. Our method may also be integrated into surface recon-
struction pipelines, allowing the use of potentially noisy point-clouds as input. See Fig. 13 in the
Appx. for details.

5 CONCLUSION

Model Autograd Ours Resolution

Armadillo 256x2 0.007 0.003 512x512
Armadillo 256x2 0.024 0.010 1024x1024
Armadillo 256x3 0.010 0.005 512x512
Armadillo 256x3 0.025 0.012 1024x1024
Buddha 256x2 0.008 0.005 512x512
Buddha 256x2 0.021 0.014 1024x1024
Buddha 256x3 0.011 0.005 512x512
Buddha 256x3 0.024 0.012 1024x1024
Lucy 256x2 0.007 0.004 512x512
Lucy 256x2 0.021 0.012 1024x1024
Lucy 256x3 0.011 0.007 512x512
Lucy 256x3 0.025 0.015 1024x1024

Table 5: Runtime comparison, in seconds, be-
tween Pytorch autograd and our algorithm to cal-
culate the normals. Ours performs 2× faster.

We propose an end-to-end INR framework to
render surfaces in real-time using smooth neu-
ral SDFs endowed with smooth attributes such
as normals and textures. It leverages on spatial
neighborhoods and residual training, achieving
real-time performance without the need of spatial
data structures. The multiscale ST accelerates the
surface evaluation, the neural attribute mapping
transfers surface attributes from a neural SDF to
another surface, and the GEMM-based analyti-
cal normal computation provides smooth normals
without the need of auto-differentiation. More-
over, we demonstrate that our multiscale neural
SDF can be easily adapted to differentiable, time-
dependent pipelines for surface evolution. Addi-
tionally, we leverage the nesting neighborhood to
accelerate mesh extraction using marching cubes.

Limitations and future work. As common for SDF-based representations, our approach is not
suitable for representing sharp edges. This is a natural consequence of the function smoothness and
may be solved by incorporating local features into the function, a path we would like to explore in
future work. The multiscale ST could probably be applied into neural SDF-based 3D reconstruction
or inverse rendering tasks to reduce the training time. Nested neighborhoods could be adapted for
unsigned distance functions too. Improvements can be done for further performance optimization.
For example, using fully fused GEMMs may decrease the overhead of GEMM setup (Müller, 2021).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marcelo Bertalmıo, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. Variational problems
and partial differential equations on implicit surfaces. Journal of Computational Physics, 174(2):
759–780, 2001.

Jules Bloomenthal and Brian Wyvill. Interactive techniques for implicit modeling. ACM Siggraph
Computer Graphics, 24(2):109–116, 1990.

Edwin Earl Catmull. A subdivision algorithm for computer display of curved surfaces. The University
of Utah, 1974.

Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM Trans. Graph., 40(6), dec 2021. ISSN
0730-0301. doi: 10.1145/3478513.3480518. URL https://doi.org/10.1145/3478513.
3480518.

Paolo Cignoni, Claudio Montani, Claudio Rocchini, and Roberto Scopigno. A general method
for preserving attribute values on simplified meshes. In Proceedings Visualization’98 (Cat. No.
98CB36276), pp. 59–66. IEEE, 1998.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving simplification. In
Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp.
115–122, 1998.

Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. On the Effectiveness of Weight-Encoded
Neural Implicit 3D Shapes. 2020. URL http://arxiv.org/abs/2009.09808.

Jack J Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain S Duff. A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software (TOMS), 16(1):1–17, 1990.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan
Gojcic, and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned
from images. Advances In Neural Information Processing Systems, 35:31841–31854, 2022.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local deep
implicit functions for 3d shape. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4857–4866, 2020.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. arXiv preprint arXiv:2002.10099, 2020.

John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces.
The Visual Computer, 12(10):527–545, 1996.

Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. Sdfdiff: Differentiable rendering of
signed distance fields for 3d shape optimization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1251–1261, 2020.

Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit surface
representations. In Proceedings of CVPR, pp. 2916–2925, 2018.

David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. BACON: Band-limited
Coordinate Networks for Multiscale Scene Representation. 2021. URL http://arxiv.org/
abs/2112.04645.

Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng Cui. Dist:
Rendering deep implicit signed distance function with differentiable sphere tracing. In Proceedings
of CVPR, pp. 2019–2028, 2020.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

11

https://doi.org/10.1145/3478513.3480518
https://doi.org/10.1145/3478513.3480518
http://arxiv.org/abs/2009.09808
http://arxiv.org/abs/2112.04645
http://arxiv.org/abs/2112.04645

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon
Wetzstein. ACORN: Adaptive Coordinate Networks for Neural Scene Representation. ACM
Transactions on Graphics, 40(4):1–13, may 2021. ISSN 0730-0301. doi: 10.1145/3450626.
3459785. URL https://dl.acm.org/doi/10.1145/3450626.3459785http://
arxiv.org/abs/2105.02788.

Luca Morreale, Noam Aigerman, Paul Guerrero, Vladimir G Kim, and Niloy J Mitra. Neural
convolutional surfaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19333–19342, 2022.

Thomas Müller. Tiny CUDA neural network framework, 2021. https://github.com/nvlabs/tiny-cuda-
nn.

Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinícius da Silva, Hélio Lopes, and Luiz Velho.
Exploring differential geometry in neural implicits. Computers & Graphics, 108, 2022. ISSN 0097-
8493. doi: https://doi.org/10.1016/j.cag.2022.09.003. URL https://dsilvavinicius.
github.io/differential_geometry_in_neural_implicits/.

Tiago Novello, Vinícius da Silva, Guilherme Schardong, Luiz Schirmer, Hélio Lopes, and Luiz Velho.
Neural implicit surface evolution. In Proceedings of the IEEE/CVF international conference on
computer vision, 2023.

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture
fields: Learning texture representations in function space. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4531–4540, 2019.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of CVPR,
pp. 165–174, 2019.

James A Sethian and Alexander Vladimirsky. Fast methods for the eikonal and related hamilton–
jacobi equations on unstructured meshes. Proceedings of the National Academy of Sciences, 97
(11):5699–5703, 2000.

Nicholas Sharp and Alec Jacobson. Spelunking the deep: Guaranteed queries on general neural
implicit surfaces via range analysis. ACM Transactions on Graphics (TOG), 41(4):1–16, 2022.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai,
Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural Geometric Level of Detail: Real-time
Rendering with Implicit 3D Shapes. pp. 11353–11362. IEEE, jun 2021. ISBN 978-1-6654-
4509-2. doi: 10.1109/CVPR46437.2021.01120. URL https://ieeexplore.ieee.org/
document/9578205/.

Luiz Velho, Jonas Gomes, and Luiz H de Figueiredo. Implicit objects in computer graphics. Springer
Science & Business Media, 2007.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689, 2021.

Yifan Wang, Lukas Rahmann, and Olga Sorkine-Hornung. Geometry-consistent neural shape
representation with implicit displacement fields. In The Tenth International Conference on Learning
Representations. OpenReview, 2022.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10371–10381, June 2024.

12

https://dl.acm.org/doi/10.1145/3450626.3459785 http://arxiv.org/abs/2105.02788
https://dl.acm.org/doi/10.1145/3450626.3459785 http://arxiv.org/abs/2105.02788
https://dsilvavinicius.github.io/differential_geometry_in_neural_implicits/
https://dsilvavinicius.github.io/differential_geometry_in_neural_implicits/
https://ieeexplore.ieee.org/document/9578205/
https://ieeexplore.ieee.org/document/9578205/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron Lipman.
Multiview neural surface reconstruction by disentangling geometry and appearance. Advances in
Neural Information Processing Systems, 33:2492–2502, 2020.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
Advances in Neural Information Processing Systems, 34:4805–4815, 2021.

Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu.
Gs-lrm: Large reconstruction model for 3d gaussian splatting. European Conference on Computer
Vision, 2024.

A APPENDIX

A.1 ON THE IMPORTANCE OF SMOOTH REPRESENTATIONS AND REAL-TIME RENDERING

This section clarifies why the smoothness and real-time rendering of our multiscale INR are important,
and presents a contextualization with triangle meshes showing applications where the mentioned
properties are essential.

Our objective is not to replace meshes, in fact, we show that using our multiscale INR allows fast
mesh extraction using marching cubes (Section 4.3). Rather, we provided an implicit representation
for SDFs suitable for specific tasks depending on two main properties: 1) high order differentiability
(smoothness); 2) fast level set rendering (especially when surface extraction may be prohibitive).

For an example, Section 4.3 gives an application of our method on surface evolution using differential
equations that explores those two properties. Specifically:

Smoothness. We use the method Neural implicit surface evolution (Novello et al., 2023) (NISE)
which trains dynamic SDFs using the level-set method. Thus, in addition to the Eikonal regularization
necessary for the SDF, we need higher derivatives to compute differential properties (e.g. mean
curvature). For this, we use the smoothness our INR, making its integration with NISE easier.
Conversely, using meshes for surface evolution is challenging because the representation should be
adapted to handle the lack of differentiability. Finally, meshes cannot easily handle topology changes
(eg. the Spot-Bob interpolation shown in Figure 11). Creating holes in the mesh during animation is
a hard task due to its fixed topology. This problem is easily avoided using our implicit representation.

Fast rendering. To visualize the resulting animation, the zero-level sets must be evaluated fast during
evolution for real-time rendering. This is achieved by integrating our multiscale INR with NISE. On
the other hand, using meshes would be prohibitive because the mesh should be extracted for each
time instant of the animation, which cannot be done in real-time. Preprocessing the animation is also
unfeasible since each mesh extraction may take dozens of megabytes (see the comments about mesh
extraction below), creating an unacceptable memory footprint. Using our sphere tracing we only
need to store the underlying MLP.

Finally, an additional objective of providing real-time rendering for neural SDFs is making its
integration in neural pipelines more appealing. For example, fast rendering of such INRs is useful in
inverse rendering tasks since it helps accelerate training. Previous works that propose such pipelines
include DIST (Liu et al., 2020) and SDFDiff (Jiang et al., 2020). Additionally, SDF is popular
surface representation in 3D reconstruction from images using differentiable volume rendering (eg.
NeuS (Wang et al., 2021) and volSDF Yariv et al. (2021)).

Mesh extraction and SDF training as pre-processing for rendering. Extracting a mesh from
a trained neural SDF results in a substantial memory footprint, especially when the zero-level set
is highly detailed. This is primarily due to the cubic complexity of grid generation for marching
cubes. For example, we trained a multiscale SDF in our experiments using the following architecture:
(128, 1) for coarse level, (256, 1) for medium level, and (256, 2) for fine level. Generating the
grid of resolution 5123 and running the marching cubes for this case demands approximately 20
GB of GPU memory while rendering with our sphere tracing using an image resolution of 5122
requires significantly less—approximately 5 GB, including the GEMM buffers used to parallelize
the pixel computation. Additionally, storing high-resolution meshes is costly in terms of memory.
For this experiment, the output mesh has 43 MB of storage, while the underlying multiscale MLP
representation needs only 857 KB, showing that our representation is significantly more compact.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 GEMM-BASED NORMAL COMPUTATION ALGORITHM
ALGORITHM 2: Normal computa-
tion
Input: neural SDF fθ , positions P
Output: Gradients ∇fθ(P)

1 for j = 0 to 2 (async) do
2 using a GEMM: // Input

Layer
3 A0 = W0 · P + b0
4 using a kernel:
5 G0 = W0[j]⊙ φ′(A0);

P0 = φ(A0)
// Hidden layers

6 for layer i = 1 to n− 1 do
7 using GEMMs:
8 Ai = Wi · Pi−1 + bi;

Gi = Wi ·Gi−1

9 using a kernel:
10 Gi = Gi ⊙ φ′(Ai);

Pi = φ(Ai)
11 end
12 using a GEMM: // Output

layer
13 Gn = Wn ·Gn−1

14 end

Algorithm 2 presents the gradient computation for a batch
of points as described in Section 3.6. The input is a matrix
P ∈ R3×k with columns storing the k points generated by
the GEMM version of Algorithm 1. The algorithm outputs a
matrix ∇fθ(P) ∈ R3×k, where its j-column is the gradient of
fθ evaluated at P [j]. Lines 2−5 are responsible for computing
G0, Lines 6 − 11 compute Gn−1, and Line 13 provides the
result gradient Gn. Table 5 shows a comparison between this
algorithm and automatic differentiation using pytorch.

A.3 ADDITIONAL EXPERIMENTS

Point cloud from images: Fig 13 shows our model trained
with a point cloud reconstructed from an image. We use Depth
Anything (Yang et al., 2024) to generate the depth of the pixels
and use that depth to create the point cloud based on the view.

More complex shapes: Fig. 15 shows a comparison of our
representation against NGLOD (Takikawa et al., 2021) and
IDF Wang et al. (2022) in the complex Asian Dragon shape.
We achieve a fidelity near IDF in a real-time context.

Integration with NeuS (Wang et al., 2021): NeuS employs an implicit representation based on
SDFs to accurately reconstruct 3D surfaces. The SDF gradient plays a crucial role in defining surface
normals, smoothly calculating volumetric density, and ensuring geometric consistency through
Eikonal regularization. It is also utilized to guarantee smooth transitions between geometry and
density during volumetric rendering, enabling the modeling of detailed and complex surfaces. By
combining these techniques with differentiable rendering, NeuS offers an efficient and robust approach
for tasks such as surface reconstruction and 3D texture generation. Summing the gradients of two
SDF networks, guided by our loss function, enhances NeuS by enabling a multi-scale representation
and improving stability. One network can model large-scale structures, while the other captures fine
details, with their combined gradients seamlessly integrating these scales for a more comprehensive
representation. This multi-scale approach ensures better handling of complex geometries, particularly
in challenging scenarios like thin structures or noisy inputs. Furthermore, the combined gradient
mitigates irregularities and noise, leading to a smoother and more stable representation that better
satisfies regularization constraints, such as the Eikonal condition, ultimately improving reconstruction
quality, training robustness, and reducing processing time.

Ours

Input views

GS-LRM

Noisy point cloud neural SDF + texture

OursDepth
anything

Single view
Depth map neural SDF + texture

Figure 13: Training a textured SDF from images/noisy point cloud. On the left, our model (neural
SDF + texture) is trained using the unprojection of a depth map, which is computed from a single
view using Depth Anything. The resulting vase is rendered at 32.1 FPS. On the right, we show a
reconstruction derived from a noisy point cloud, extracted from multiple views using GS-LRM (Zhang
et al., 2024). By combining our method with this feed-forward 3D model (GS-LRM), we achieve fast
reconstruction of the SDF with texture.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 14: Integration of our multiscale representation SDF with NeuS (Wang et al., 2021). We
compared the results of the first 20k iterations out of 300k total training iterations against a baseline
NeuS model with 8 layers and 256 neurons in Fig. 14. Our approach demonstrates the ability to
capture finer details even in the initial iterations.

Our loss function, when applied to the NeuS model, was able to generate detailed surfaces in just a
few epochs of training. We trained a coarse model with 8 MLP layers and 64 neurons and a residual
network, also with 8 MLP layers but 128 neurons. Both models follow the architecture of IDR (Yariv
et al., 2020). We compared the results of the first 20k iterations out of 300k total training iterations
against a baseline NeuS model with 8 layers and 256 neurons in Fig. 14. Notably, our approach,
which combines the gradients of the two MLP networks, demonstrates the ability to capture finer
details even in the initial iterations.

Broader perceptual evaluation: On the paper we exemplify results using one model for each
experiment. Fig. 16 shows a broader perceptual evaluation of the multiscale sphere tracing and the
neural normal mapping using several models. Fig. 17 also shows the images we use to calculate the
MSE to compare the neural texture mapping with the rendering baseline.

Accelerated Marching Cubes qualitative evaluation: Fig. 18 shows high-fidelity reconstructions
computed using our acceleration for the marching cubes algorithm.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 15: Comparison of our representation against NGLOD (Takikawa et al., 2021) (the reference
real-time approach) and IDF Wang et al. (2022) (the reference non-real-time fidelity approach).
We achieve high-fidelity real-time performance even for more complex shapes. Notice that our
representation is able to learn the fine details of the dragon scales.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Coarse Normal mapping Multiscale ST Baseline

Figure 16: Comparison between our method and the SIREN baseline. The columns represent different
configurations. From left to right: (64,1), (64,1) ▷▷▷ (256,1), and the baseline (256,3). The
second column uses neural normal mapping and the third uses multiscale sphere tracing. Notice that
fidelity is improved in the second column and the third column refines the results.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Baseline Ours

Figure 17: Images we use to calculate the MSE between the ground-truth textured meshes and our
approach.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 18: From left to right: Marching cubes reconstruction of Armadillo, Buddha and Lucy using
our proposed grid culling method.

A.4 ABLATION STUDIES

We performed three additional ablation studies for our approach: (i) detail level influence on time
performance, (ii) loss term assessment, (iii) δ influence over the reconstructions. Table 6 shows
the impact of sphere tracing iterations in time performance for all detail levels. It shows that our
approach may used in a variety of performance budgets. Tables 7,8, and 9 show the ablation results
of our loss function using different weights for each component, while maintaining the remaining
hyper-parameters fixed. We performed these studies both for a single intermediate level (medium)
and an additional refinement level beyond it (fine). Note that all studies used the Lucy mesh as a
baseline. Table 10 shows the results for varying the delta values while maintaining the remaining
hyper-parameters fixed.

f1 f2 f3 FPS f1 f2 f3 FPS f1 f2 f3 FPS
20 0 0 127.7 20 20 0 48.1 20 20 20 20.8
30 0 0 102.2 30 30 0 33.9 30 30 30 14.2
40 0 0 84.3 40 40 0 27.7 40 40 40 10.9
50 0 0 71.1 50 50 0 22.0 50 50 50 8.8

Table 6: Ablation study of the performance impact of sphere tracing iterations. f1, f2, and f3 columns
represent the number of sphere tracing iterations for the coarse, medium, and fine SDF respectively.
FPS (frames per second) columns are the average of runs with several different δ1 and δ2 values.

Gradient constraint Approx. Error

0.0 0.0013
10.0 0.0013
30.0 0.0013

100.0 0.0012
300.0 0.0013

1000.0 0.0014
3000.0 0.0017

10000.0 0.0022
30000.0 0.0030

(a) Gradient constraint fine level

Gradient Constraint Approx. Error

0.0 0.0086
10.0 0.0084
30.0 0.0082

100.0 0.0078
300.0 0.0074

1000.0 0.0069
3000.0 0.0073

10000.0 0.0087
30000.0 0.0116

(b) Gradient constraint medium level

Table 7: Gradient constraint ablation studies.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Normal Constraint Approx. Error

0.0 0.0017
10.0 0.0013
30.0 0.0013

100.0 0.0013
300.0 0.0013

1000.0 0.0013
3000.0 0.0013

10000.0 0.0013
30000.0 0.0013

(a) Normal constraint fine level.

Normal Constraint Approx. Error

0.0 0.0073
10.0 0.0074
30.0 0.0077

100.0 0.0081
300.0 0.0083

1000.0 0.0085
3000.0 0.0086

10000.0 0.0087
30000.0 0.0087

(b) Normal constraint medium level.

Table 8: Normal constraint ablation studies.

SDF Constraint Approx. Error

0.0 0.0076
10.0 0.0013
30.0 0.0013

100.0 0.0013
300.0 0.0013

1000.0 0.0012
3000.0 0.0013

10000.0 0.0013
30000.0 0.0013

(a) SDF constraint fine level.

SDF Constraint Approx. Error

0.0 0.0490
10.0 0.0080
30.0 0.0079

100.0 0.0079
300.0 0.0080

1000.0 0.0081
3000.0 0.0080

10000.0 0.0082
30000.0 0.0082

(b) SDF constraint medium level.

Table 9: SDF constraint ablation studies.

Max delta fraction Medium level error Fine level error

1.01 0.0098 0.0048
1.05 0.0098 0.0048
1.10 0.0100 0.0049
1.20 0.0101 0.0049
1.30 0.0103 0.0050
1.50 0.0106 0.0051
2.00 0.0113 0.0053
5.00 0.0139 0.0066

Table 10: Ablation studies of the delta factor. We multiply the delta by the values in the first column
and measure the SDF error compared to the Open3D calculated SDF, which we use an ground-truth.

20

	Introduction
	Related Work
	Nested Neighborhoods of neural SDFs
	Overview
	Definitions
	Training the SDFs with nested Neighborhoods
	Sampling the ground-truth SDF near the input oriented point cloud

	Multiscale Sphere Tracing
	Normal and texture mapping
	GEMM-based Analytical Normal Calculation for MLPs

	Experiments
	Comparisons
	Ablation Studies
	Additional Applications

	Conclusion
	Appendix
	On the importance of smooth representations and real-time rendering
	GEMM-based normal computation algorithm
	Additional experiments
	Ablation studies

