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Characterizing Flow Complexity in
Transportation Networks Using Graph Homology
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Abstract—Series-parallel networks generally exhibit sim-
plified dynamics, and lend themselves to computationally
tractable optimization problems. We are interested in a
systematic analysis of the flow complexity that emerges
as a network deviates from a series-parallel topology. This
letter introduces the notion of a robust p-path on a directed
acyclic graph to localize and quantify this complexity. We
develop a graph homology with robust p-paths as the
bases of its p-chain spaces. We expect that this association
between the collection of robust p-paths within a graph
and an algebraic structure will provide a framework for
the analysis of flow networks. To this end, we show that
the simplicity of the series-parallel class corresponds to
triviality of high-order chain spaces (p > 2). Consequently,
the susceptibility of a flow network to the Braess Paradox is
associated with the space of 3-chains. Moreover, the com-
putational complexity of decision problems on a network
can be related to the order of chains within the proposed
homology.

Index Terms—Network analysis, transportation
networks, large-scale systems.

I. INTRODUCTION

D IRECTED graphs are widely used to model flows in
many real-world transportation and logistic networks. A

directed acyclic graph (DAG) is said to be a series-parallel
graph if it can be constructed via sequential series and parallel
combination of edges or smaller series-parallel graphs. The
possession of a series-parallel topology is a global property
of a DAG; it is not thoroughly characterized by localized
subgraphs within the graph. Series-parallel networks exhibit
simple behavior across many different contexts. For instance,
combinatorics– a broad class of combinatorial problems can
be solved in linear-time on series-parallel graphs [1]; electrical
network analysis [2]; behavior in routing games [3], [4], [5].
Therefore, the deviation of a graph from a series-parallel
topology can be considered an increase in its flow complexity.
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Fig. 1. Braess Paradox: Addition of the link a-b slows down the o→ d
flow.

This complexity can lead to inefficiencies in traffic behav-
ior [6], [7].

The Braess paradox is a well-known example of such
behavior, when the addition of a link to a traffic network
slows the flow down. Fig. 1 shows the canonical example of
the Braess paradox: Here, the addition of link a-b breaks the
series-parallel topology of the network. As a result, the traffic
that is initially split between the routes o→ a→ d and o→
b→ d concentrates along the faster route o→ a→ b→ d,
leading to increased congestion and longer travel times than
with the originally split flow [3]. The Braess paradox has been
known to appear in transportation [8], power grids [9], [10]
and ecological networks [11].

A popular approach to a systematic study of global features
in complex networks is graph homology. Simplicial homology
has been deployed as a generalized clustering mechanism
that identifies interconnections within and among clustered
communities on undirected graphs [12], [13]. Higher-order
dynamics on networks have been studied using simplices [14].
Further, path homology [15] on directed graphs has been
shown to identify topological characteristics that classify
complex networks [16], [17]. While the intuition behind this
classification remains largely intractable, a prior interpretation
that path homology measures the consistency and robustness
of directional flow in a graph [16], [17]. In this letter, we
develop a graph homology of robust paths in line with this
interpretation.

We introduce a notion of robust path of length k (or a robust
k-path) on a DAG, where larger k is a reflection of larger flow
complexity. For instance, we find that the presence of a robust
3-path is a necessary and sufficient condition for a network to
deviate from a series-parallel topology, and that each robust
3-path is associated with a site susceptible to the Braess
Paradox. Further, a robust k-path identifies the presence
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Fig. 2. (a) Series and Parallel Combination (b) The Braess Embedding (c) Robust 2-paths combine into a robust 4-path.

of
(k+1

4

)
distinct susceptible sites within the network. This

motivates us to develop a systematic approach for the char-
acterization of flow complexity in DAGs using robust paths
as basic objects. For this purpose, we utilize the algebraic
structure of graph homology. In particular, we associate the
linear spans of robust k-paths with k-chains in a graph
homological framework and prove that the association sets up
a consistent chain complex. We demonstrate that the induced
chain complex provides a representation of the underlying
DAG where higher-order chains identify sites of high flow
complexity within the graph. We illustrate the utility of
this framework by showing that series-parallel topology of a
DAG translates to triviality of 3-chains in the chain complex.
This algebraic restatement of a known combinatorial result
is validation of how the proposed homology can be used to
systematically investigate flow complexity. We believe that our
approach can be used for the systematic localization of flow
complexity in networks, and to understand its implications.

The organization of this letter proceeds as follows. In the
brief subsection that follows the notation subsection below,
we introduce the concepts of series-parallel graphs and robust
paths, and the role of the latter in reflecting the deviation of a
flow from the series-parallel nature. In Section II, we develop
a consistent algebraic structure for the formal study of these
concepts. Subsequently in Section III, we formalise the notion
of a series-parallel topology and use the developed structure
to produce an algebraic characterization of the same, as well
as to characterize deviations from this topology. We conclude
with a brief discussion in Section IV.

A. Notation

(i) For a DAG G = (V, E), we denote a directed edge from
i ∈ V to j ∈ V by eij.

(ii) ei0,...ip is used to denote the tuple (i0, . . . , ip) ∈ Vp+1.
(iii) i ∈ G and eij ∈ G respectively mean i ∈ V or eij ∈ E .
(iv) [N] denotes the set {1, 2, . . . , N} for each N ∈ N.
(v) Union and intersection on graphs are as usual, for Gi =

(Vi, Ei), ∪iGi = (∪iVi,∪iEi) and ∩iGi = (∩iVi,∪iEi).
(vi) For DAGs G1 and G2, we say G1 ∼= G2 if G1 = G2 up to

relabelling of their vertices and edges.
(vii) Kij denotes the edge graph Kij := ({i, j}, {eij}, i, j).

(viii) K denotes a field, the reader may specialise to K = R.

B. Series-Parallel Graphs and the Braess Embedding

We are interested in a class of DAGs called two-terminal
graphs where directional flows emanate from an origin vertex
(source) and are absorbed by a destination vertex (sink).
Series-parallel graphs are two-terminal graphs obtained by
serially or parallely combining edges and/or smaller series-
parallel graphs. See Fig. 2(a) for a depiction of series and
parallel combination operations. The departure of a two-
terminal graph from the series-parallel topology is known
to follow from the appearance of the structure called the
Braess embedding or a Braess site, shown in Fig. 2(b) as a
graphical embedding within the network [3], [4]. The tuple of
the vertices involved in the embedding (e.g., (i0, i1, i2, i3) in
Fig. 2(b)) localizes the site within a network.

We wish to investigate the deviation of a graph from a
series-parallel topology in a comprehensive manner. To this
end, we introduce the notion of a robust k-path in a DAG.
The basic object in our discussion is the robust 2-path, which
we also call a triangle. We call ei0i1i2 a robust 2-path in G if
i0, i1, i2 are three vertices in G, and there exists a triangulating
pair of non-intersecting routes from i0 to i2, exactly one of
which passes through i1. If robust 2-paths occur as adjacent
structures within the graph, they give rise to longer robust
paths. Therefore, ei0,...ip is a robust p-path if eikik+1ik+2 is a
robust 2-path for each k ∈ [p− 2], and the triangulating route
that evades ik+1 does not intersect the triangulating routes of
the robust 2-path eik−1ikik+1 . We will precisely define robust k-
paths later. For illustration, see Fig. 2(c) where three adjacent
robust 2-paths (ei0i1i2 , ei1i2i3 , ei2i3i4) are shown to merge and
give rise to a robust 4-path (ei0i1i2i3i4).

We will show that the presence of a robust 3-path ensures
the presence of a Braess-susceptible site or a Braess embed-
ding within the network. More generally, long robust paths
within a network contribute to the rising flow complexity as
the network topology deviates from a series-parallel one.

II. GRAPH HOMOLOGY OF ROBUST PATHS

In Section II-A below, we define routes, two-terminal
graphs, and colored route simplices of two-terminal graphs. In
Section II-B that follows, we formalise the notion of a robust
path and embed the linear spaces spanned by the robust paths
into the homological algebra.
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A. Two-Terminal DAGs and Colored Route Simplices

A two-terminal DAG is induced by a union of linear graphs
or routes, which we define as follows. We also introduce
formal notation for segments of a route, which are shorter
routes with different origin-destination pairs.

Definition 1: (i) A route R is a tuple R = (V, E, o, d, r)
where V is a finite set of nodes or vertices, r : V → N is a
strict order on V , origin o = arg mini∈V r(i), destination d =
arg maxj∈V r(j), and, E ⊂ V ×V contains all edges eij := (i, j)
if and only if i and j are consecutive in the order r, that is,
r(i) < r(j) and � k ∈ V : r(i) < r(k) < r(j).

(ii) Let R = (V, E, o, d, r) be a route and i, j ∈ V be two
of its vertices. Define and denote another route from i to j
as follows: Ri→j := (V i→j, E i→j, i, j, r) where V i→j = {k ∈
V : r(i) ≤ r(k) ≤ r(j)}, E i→j = {eab|a, b ∈ V i→j} ∩ E . We
regard Ri→i = ({i}, φ, i, i, r) as the vertex i.

Note: Let R1 and R2 be two arbitrary routes. If the
intersection graph R1 ∩R2 is non-empty, then we take note
of the fact that it is expressible in the following form:

R1 ∩R2 =
n0⋃

n=1

Rpn→qn
1 =

n0⋃

n=1

Rpn→qn
2 (1)

where n0 ∈ N, pn, qn ∈ V1 ∩ V2 for each n.
A union of routes that share the same origin-destination

pair induces a two-terminal DAG as follows. Acyclicity of the
induced DAG is ensured by requiring the routes to respect
each other’s order.

Definition 2: i) Let {Rα}α∈A = {(Vα, Eα, oα, dα, rα)}α∈A

be a finite collection of routes with the same origin o and
destination d (i.e. oα ≡ o, dα ≡ d) that obey the partial order
induced by {rα}α∈A:

∀δ, β ∈ A, {i, j} ∈ Vδ ∩ Vβ =⇒
rδ(i) < rδ(j)←→ rβ(i) < rβ(j) (2)

Then, the tuple G := (V := ∪α∈AVα, E :=
∪α∈AEα, o, d, (rα)α∈A) is called a two-terminal graph from
origin o to destination d induced by the collection of routes
(Rα)α∈A. We then write G = ⋃

α∈A Rα and say that i < j if
i, j ∈ V and ∃α ∈ A such that rα(i) < rα(j).

Note: We call the collection {Ri}i∈[N] a complete enumer-
ation of routes in G = ⋃

i∈[N] Ri if it contains all o to d
routes in G. All collections in this letter are assumed to be
complete enumerations. We also drop the underlying partial
order (ri)i∈[N] in our notation and use G = (V, E, o, d) to
represent the two-terminal graph.

As we will see below, a route induces a two-terminal DAG,
that we call a route-simplex. The route-simplex shares the
vertex set of the underlying route R and contains an edge eij

if j is reachable from i. A union of route simplices induced by
the constituent routes of a two-terminal DAG is declared as the
route simplex of the DAG. We attach a multi-coloring to each
edge eij in a route-simplex to record the set of routes that reach
j from i; this produces what we call a colored route simplex of
a DAG. These notions are formalised by the definition below.

Definition 3: (i) The route-simplex of Ri = (Vi, Ei, o, d, ri)

denoted by Sim(Ri) is the two terminal graph (Vi, R(Ei), o, d)

where R(E) = {eij : i, j ∈ V, r(i) < r(j)}.

Fig. 3. G =⋃
α Rα ; R(G) : dim �3(R(G)) �= 0.

(ii) The route-simplex of G = ⋃
i∈[N] Ri is defined to be

the union Sim(G) :=⋃
i∈[N] Sim(Ri).

(iii) The colored route simplex of G is the tuple R(G) :=
(V, R(E), o, d, C) where the (multi)coloring C : R(E)→ 2[N]

obeys C(epq) = {i ∈ [N]|epq ∈ Sim(Ri)}.
Consider four routes {Rα}α∈[4] = {(Vα, Eα, o, d, rα)}

with V1 = {o, 1, 2, d}, E1 = {eo1, e12, e2d},V2 =
{o, 1, 2, 4, d}, E2 = {eo1, e12, e24, e4d},V3 = {o, 3, 4, d}, E3 =
{eo3, e34, e4d},V4 = {o, 3, 5, d}, E4 = {eo3, e35, e5d} which
constitute the two-terminal graph G = ∪αRα shown in Fig. 3
below. R(G) is depicted alongside where Red, Blue, Gray and
Yellow respectively depict the colors 1, 2, 3 and 4.

B. Development of the Robust Path Homology

We now develop our graph homology of robust paths. Let
G = (V, E, o, d) = ⋃N

i=1 Ri = ⋃N
i=1(Vi, Ei, o, d, ri) be a

two-terminal DAG and R(G) = (V, R(E), C) be the colored
route simplex of G. The space of vertex tuples Vp+1 is refined
to record graph topology in the refined subset of allowed
paths.

Definition 4: (i) ei0,...ip is an elementary allowed p-path in
R(G) if eim−1im ∈ R(E) for all m ∈ [p]. (Recall Section I-A(ii).)

(ii) We define the K-linear span of all elementary allowed
p-paths as the space of allowed p-paths:

Ap(R(G)) := K−span{ei0,...ip : eijij+1 ∈ R(E) ∀ j ∈ [p− 1]}.
Next, we define a linear operator on the allowed path spaces.
Definition 5: The linear boundary operator ∂p : Ap(R(G))→

Ap−1(R(G)) is a linear operator defined via its action
on elementary paths: ∂pei0,...ip =

∑
k(−1)kei0,...îk,...ip and

extended over Ap(R(G)) by linearity. Note that ∂p ≡ 0.
Elementary allowed paths are further refined to exclude non-

robust paths. The robust k-paths then become the basis set for
the space of k-chains.

Definition 6: (i) An allowed ei0i1i2 is a robust 2-path or a
triangle in G if there is a route from i0 to i2 that evades at least
one route from i0 to i2 through i1, i.e., ∃(α, β) ∈ C(ei0i2) ×
C(ei0i1) ∩ C(ei1i2) such that V i0→i2

α ∩ Vβ = {i0, i2}. We then
call the tuple of routes (Rα,Rβ), a triangulating pair of the
robust 2-path ei0i1i2 . We denote the set of all triangles (robust
2-paths) by �2(R(G)).

(ii) An allowed ei0i1i2,...ip is a robust p-path if there

exists a collection of route tuples {(Rαk ,Rβk)}p−1
k=1 such that

(Rαk ,Rβk) triangulates eik−1ikik+1 for each k ∈ [p − 1] and
Rik−1→ik+1

αk ∩Rik→ik+2
αk+1 = φ for each k ∈ [p−2]. We denote the
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set of all robust p-paths by �p(R(G)) and call the associated
collection {(Rαa ,Rβa)}k−1

a=1 a k-triangulating pair of ei0i1i2,...ik .
Definition 7: (i) The sets of 0-chains and 1-chains are

respectively defined as �0(R(G)) := K-span{V} = A0(R(G))

and �1(R(G)) := K-span{R(E)} = A1(R(G)).
(ii) The set of p-chains is defined as the K-linear span of

robust p-paths: �p(R(G)) = K-span{�p(R(G))} ⊆ Ap(R(G)).
Note: ei0,...ip ∈ �p(R(G))←→ ei0,...ip ∈ �p(R(G)).
The following proposition sets up the desired homology of

the introduced k-chain spaces {�k(R(G))}k∈N0 .
Proposition 1: For all p ≥ 1, we have
(i) ∂p−1 ◦ ∂p = 0. (ii) ∂�p(R(G)) ⊆ �p−1(R(G)).
Consequently, we obtain the following chain complex

K{0} ∂0←− �0(R(G))
∂1←− . . .

∂n←− �n(R(G))
∂n+1←−− . . .

Proof: (i) For an arbitrary ei0,...ip ,

∂p−1 ◦ ∂pei0,...ip =
q−1∑

r=0

∑

q

(−1)q+rei0,...̂ir,...̂iq,...ip

+
p∑

r=q+1

∑

q

(−1)q+r−1ei0,...̂iq,...̂ir,...ip = 0.

Therefore Proposition 1(i) follows by linearity of ∂p.
(ii) – For p = 0, 1, ∂�0(R(G)) = K{0} and ∂�1(R(G)) ⊂

K{V} = �0(R(G)) follow by definition as ∂0 = 0,
�0(R(G)) = A0(R(G)) and �1(R(G)) = A1(R(G)).

For p ≥ 2, we show that ei0,...ip ∈ �p(R(G)) =⇒
ei0,...îk,...ip ∈ �p−1(R(G)) for all k ∈ {0, . . . , p} which implies
∂p�p(R(G)) ⊂ �p−1(R(G)) by linearity of ∂p.

– For p = 2, notice that ei0i1i2 ∈ �2(R(G)) ⊂
A2(R(G)) =⇒ ei0i1 , ei1i2 ∈ R(E) which implies the existence
of routes

Ra : ei0i1 ∈ Sim(Ra);Rb : ei1i2 ∈ Sim(Rb).

It follows that ei0i2 ∈ Sim(Rc) where Rc = Ro→i1
a ∪Ri1→d

b .
Thereby ∂ei0i1i2 ∈ A1(R(G)) ≡ �1(R(G)).

– For p > 2, let ei0,...ip ∈ �p(R(G)). Then ei1,...ip and
ei0,...ip−1 both belong to �p−1(R(G)) as they are respectively

p − 1-triangulated by {(Rαk ,Rβk)}p−1
k=2 and {(Rαk ,Rβk)}p−2

k=1.
Further, for k ∈ [p − 1], ei0,...̂ik,...ip ∈ �p−1(R(G)) as

it is p − 1-triangulated by {(Rαa,Rβa)
k−2
a=1} ∪ {(Rα

o→ik
k−1
∪

R
β

ik→d
k

,R
β

o→ik−1
k−1

∪ Rik−1→d
αk ), (Ro→ik

βk−1
∪ Rik→d

αk+1 ,Rik−1→ik+1
αk ∪

Rik+1→d
βk+1

)} ∪ {(Rαa ,Rβa)}p−1
a=k+2. It follows that ∂pei0,...ip ∈

�p−1(R(G)). This completes the proof of this proposition.

III. ROBUST PATHS IN SERIES PARALLEL GRAPHS

We build a formal definition of a series-parallel graph in
Section III-A and investigate chain complexes induced by them
in Section III-B. We find that dim �p(R(G)) = 0 for all p > 2
if and only if G is a series-parallel graph which presents a
notable correspondence between the developed homological
algebra and emergent combinatorial complexity as G deviates
from a series-parallel topology.

A. Series-Parallel Two-Terminal DAGs

We define parallel and series combinations below (Recall
Fig. 2), following which an inductive definition for a series-
parallel graph follows.

Definition 8: Let G1 = (V1, E1, o1, d1) = ⋃
i R1

i and G2 =
(V2, E2, o2, d2) =⋃

j R2
j be two-terminal graphs.

(i) If G1 and G2 satisfy d1 = o2,V1 ∩ V2 = {d1}, then a
series combination of G1 and G2 is the two-terminal graph
G1 → G2 := G1 ∪ G2 = (V, E, o1, d2) = ⋃

i,j(R1
i → R2

j )

where V = V1 ∪ V2; E = E1 ∪ E2.
(ii) If G1 and G2 satisfy o1 = o2 =: o, d1 = d2 =: d and

V1 ∩ V2 = {o, d}, then, a parallel combination G1 and G2 is
the two-terminal graph G1||G2 := G1 ∪ G2 = (V, E, o, d) =⋃

j∈{1,2}i∈([Nj]) R
j
i where V = V1 ∪ V2; E = E1 ∪ E2.

(iii) A two-terminal graph G is a series-parallel graph if and
only if 1) G ∼= K12 or 2) G ∼= G1 → G2 for series-parallel
graphs G1 and G2 or 3) G ∼= G1||G2 for series-parallel graphs
G1 and G2.

A series-parallel graph G can hence be represented as a
series and parallel combination of edges. For instance, the
graph G1 in Fig. 2(a) expressible as follows in an ‘edge-
combinatorial’ representation:

G1 → G2 =
((

Ki0i1 → Ki1i3

)||(Ki0i2 → Ki2i3

))
. (3)

B. Path Complexes of Series-Parallel Graphs

Given G1 and G2 along with their respectively induced chain
complexes {�k(R(G1))}k∈N0 and {�m(R(G1))}m∈N0 , we state
what can be inferred about the complex induced by their
combinations in the two propositions that follow.

Proposition 2: Let G1 = (V1, E1, o, d) = ⋃
i∈[N1] R1

i and
G2 = (V2, E2, o, d) = ⋃

j∈[N2] R2
j , and, G = (V, E, o, d) =

G1||G2 = ⋃
j∈{1,2}i∈([Nj]) R

j
i ≡

⋃
α∈[N] Rα be their parallel

combination. Further, let R(Gi) = (Vi, R(Ei), Ci) for each i =
1, 2 and R(G) = (V, R(E), C). Following relations then hold.

(i) dim �0(R(G)) = dim �0(R(G1))+ dim �0(R(G2))− 2.

(ii) dim �1(R(G)) = dim �1(R(G1))+ dim �1(R(G2))− 1.

(iii) �2(R(G)) ⊇ �2(R(G1)) ∪�2(R(G2)).
(iv) dim �p(R(G)) = dim �p(R(G1))+dim �p(R(G2)), p > 2.
Proof: (i) Follows since �0(R(G)) is a linear space spanned

by all vertices of R(G): dim �0(R(G)) = |V1 ∪ V2| = |V1| +
|V2| − 2 = | dim �0(R(G1))| + | dim �0(R(G2))| − 2.

(ii) Follows since �1(R(G)) is a linear space spanned by all
edges of R(G): dim �1(R(G)) = |R(E1)∪R(E2)| = |R(E1)|+
|R(E2)|−|R(E1)∩R(E2)| = dim �1(R(G1))+dim �1(R(G2))−
|{eod}| = dim �1(R(G1))+ dim �1(R(G2))− 1.

(iii) Note that if R ∈ {Rα}α∈[Nj] for j = 1, 2, then R ∈
{Rα}α∈[N]. Thus, if a pair (Rα,Rβ) triangulates ei0i1i2 in
R(Gj) for j ∈ {1, 2}, then it also triangulates the 2-path
in R(G). It follows that �2(R(Gj)) ⊂ �2(R(G)) =⇒
�2(R(Gj)) ⊆ �2(R(G)) for each j, and thus, (iii) holds.

(iv) Let j ∈ {1, 2} and ei0,...ip ∈ �p(R(Gj)). Then eik−1ikik+1 ∈
�2(R(Gj)) =⇒ eik−1ikik+1 ∈ �2(R(G)) for each k ∈ [p − 1]
which in turn implies ei0,...ip ∈ �p(R(G)). Thus, �p(R(G1))⊕
�p(R(G2)) ⊂ �p(R(G)). On the other hand, if eik−1ikik+1 does
not have a triangulating pair in R(Gj), then it cannot not have
one in R(G) either unless (ik−1, ik+1) �= (o, d) since then
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at least one of ik−1 and ik+1 does not belong G−j (where
−j ∈ {1, 2}, j �= −j). Hence, �p(R(G1)) ⊕ �p(R(G2)) =
�p(R(G)) follows. Further, since p > 2 and V1 ∩V2 = {o, d},
�p(R(G1)) ⊥ �p(R(G2)) and the proposed follows.

Proposition 3: Let G1 = (V1, E1, o, h) and G2 =
(V2, E2, h, d) be two two-terminal graphs and G = G1 → G2 =
(V, E, o, d) be their series combination. Then, the following
hold.

(i) dim �0(R(G)) = dim �0(R(G1))+ dim �0(R(G2))− 1.

(ii) dim �p(R(G)) = dim �p(R(G1))+dim �p(R(G2)) ∀p > 1.

Proof: (i) Follows since �0(R(G)) is a linear space spanned
by all vertices of R(G): dim �0(R(G)) = |V1 ∪ V2| = |V1| +
|V2| − 1 = | dim �0(R(G1))| + | dim �0(R(G2))| − 1.

(ii) For p = 1 follows since �1(R(G)) is a linear space
spanned by all edges of R(G): dim �1(R(G)) = |E1 ∪ E2| =
|V1|+|V2| = | dim �1(R(G1))|+| dim �1(R(G2))|. Now notice
that no pair of routes can triangulate ejhk for all j, k ∈ V with
j < h < k since h belongs to every route of G by definition.
Thus ei0,...ip ∈ �p(R(G)) requires h ≤ i0 or h ≥ ip which
is equivalent to ei0,...ip ∈ �p(R(G2)) or ei0,...ip ∈ �p(R(G1))

respectively. Thus, �p(R(G)) = �p(R(G1))⊕�p(R(G2)) and
the proposed follows.

We are now in a position to establish our main result.
Theorem 1: Let G = (V, E, o, d) = ∪α∈ARα be a two

terminal DAG. Then,
(i) If G is a series-parallel graph, then dim �p(G) = 0 for

all p ≥ 3.
(ii) If G is not a series-parallel graph, then

dim �3(R(G)) > 0.
Proof: (i) If G is a series-parallel graph, then using

Propositions 2. (iv), 3.(ii), and the edge combinational repre-
sentation of G = (V, E, o, d), we deduce

dim �p(R(G)) =
∑

eij∈E
dim �p

(
R(Kij)

) = 0 ∀ p ≥ 3. (4)

(ii) If G is not series-parallel, then sequentially decomposing
G serially and/or parallely one eventually arrives at a two-
terminal subgraph G′ = (V ′, E ′, o′, d′) �= Ko′d′ which is
not decomposable further. Since G′ ⊆ G, we have an A′ ⊆
A such that G′ = ∪α∈A′Ro′→d′

α . Note that |A′| > 1 since
|A′| = 1 implies G′ is a single o′ → d′ route which is serially
decomposable by definition.

Case 1: Suppose that ∃ k ∈ V ′ : eo′kd′ ∈ �2(R(G′)) and
let (Ro′→d′

α ,Ro′→d′
β ) be the corresponding triangulating pair

whereby Ro′→d′
α ∩ Ro′→d′

β = {o′, d′} (Recall Definition 7).

Define a subset D′ ⊂ A′: D′ = {δ : Ro′→d′
δ ∩Ro′→d′

α = {o′, d′}
and D′c = A′ \D′. Note that β ∈ D′ and α ∈ D′c so that D′, D′c
are both non-empty. Now consider the following two-terminal
graphs induced by the partition {D′, D′c}:

G′D′ =
⋃

D′
Ro′→d′

δ = (V ′D′ , E ′D′ , o′, d′
);

G′D′c =
⋃

D′c
Ro′→d′

δ = (V ′D′c , E ′D′c , o′, d′
)
.

If V ′D′ ∩ V ′D′c = {o′, d′} then G′ = GD′ ||GD′c which contra-
dicts the supposition that G′ is not decomposable parallely.
Otherwise if j ∈ V ′D′ ∩ V ′D′c , j /∈ {o′, d′} then j ∈ Ro′→d′

δ0
for

some δ0 ∈ D′c and j /∈ Ro′→d′
α . Further, choose a γ ∈ D′ with

j ∈ Ro′→d′
γ (γ exists since j ∈ VD′). Then, at least one of the

following two vertices exist outside {o′, d′, j}:


1 = minRj→d′
δ0
∩Ro′→d′

α , 
2 = maxRo′→j
δ0
∩Ro′→d′

α .

If 
1 exists outside {o′, d′, j} then eo′j
1d′ ∈ �3(R(G′)) as it is

3-triangulated by {(Ro′→d′
α ,Ro′→j

γ ∪Rj→d′
δ0

), (Ro′→d′
γ ,Rj→
1

δ0
∪

R
1→d′
α )}.
Similarly if 
2 exists outside {o′, d′, j}, eo′
2jd′ ∈

�3(R(G′)) as eo′
2j is 3-triangulated by {(Ro′→d′
γ ,Ro′→
2

α ∪
R
2→d′

δ0
), (Ro′→d′

α ,Ro′→j
δ0
∪Rj→d′

γ )}. Thus, dim �3(R(G′)) > 0
and we arrive at a contradiction since 0 = dim �3(R(G)) >

dim �3(R(G′)) following G′ ⊂ G =⇒ �3(R(G′)) ⊂
�3(R(G)).

Case 2: Now suppose that � k ∈ V : eo′kd′ ∈ �2(R(G′)).
If G′ has only two routes, i.e., A′ = {a, b}, then, Ro′→d′

a ∩
Ro′→d′

b = {o′, d′} will imply that (Ro′→d′
a ,Ro′→d′

b ) triangulate
some eo′kd′ for some k ∈ Ro′→d′

a ∪Ro′→d′
b , a contradiction to

the supposition of Case 2. So let k ∈ Ro′→d′
a ∩Ro′→d′

b . This
allows G′ the serial decomposition G′ = Ro′→k

a ∪ Ro′→k
b →

Rk→d′
a ∪Rk→d′

b .
Now let |A′| > 2. If there is a vertex k common across

all routes, i.e., ∃k ∈ V ′ such that k ∈ Ro′→d′
a for all a ∈

A′, G′ admits the serial decomposition G′ = ⋃
A′ Ro′→k

a →⋃
A′ Rk→d′

a and we arrive at a contradiction. So suppose
otherwise, that for each k ∈ V ′ \ {o′, d′}, there is a route
in G′ that excludes k. We will show that this supposition
contradicts at least one of the two: (i) dim �3(R(G′)) = 0 or
(ii) �j : eo′jd′ ∈ �2(R(G′)), the supposition of Case 2.

We begin by establishing the existence of a pair j0, k0 ∈ V ′
such that eo′j0k0 ∈ �2(R(G′)). Pick an arbitrary β ∈ A′ and
take j0 as the second vertex in the route Ro′→d′

β i.e. j0 =
minRo′→d′

β such that j0 �= o′. Then there is a route Ro′→d′
α that

excludes j0. Take k0 = minRo′→d′
α ∩ Ro′→d′

β , k0 > o′. Then

k0 > j0 since j0 is the second smallest vertex in Ro′→d′
β . This

selection ensures eo′j0k0 ∈ �2(R(G)) with the triangulating pair
(Ro′→d′

α ,Ro′→d′
β ). By supposition, there exists a route Ro′→d′

γ

that excludes k0.
– Let 
α = minRo′→d′

α ∩Ro′→d′
γ such that 
α �= o′ and note

that if 
α > k0, then eo′k0
α
∈ �2(R(G′)) with triangulating

pair (Ro′→d′
γ ,Ro′→d′

α ).

– Let 
β = minRo′→d′
β ∩Ro′→d′

γ such that 
β �= o′ and note
that if 
β > k0, then eo′k0
β

∈ �2(R(G′)) with triangulating
pair (Ro′→d′

γ ,Ro′→d′
β ).

– If both 
α < k0 and 
β < k0, then the intersection graphs

Ro′→d′
γ ∩Ro′→k0

α and Ro′→d′
γ ∩Ro′→k0

β contain other vertices
in addition to o′ so let pα and pβ be the maximal vertices in
the above two intersection graphs and note that pα < k0 and
pβ < k0 hold by definition.

– Now if pα < pβ , then eo′pαpβk0 ∈ �3(R(G′)) as it

is 3-triangulated by {(Ro′→d′
β ,Ro′→pα

α ∪ Rpα→d′
γ ), (Ro′→d′

α ,

Ro′→pβ

β ∪Rpβ→d′
γ )}.

Authorized licensed use limited to: MIT. Downloaded on November 13,2025 at 19:32:32 UTC from IEEE Xplore.  Restrictions apply. 



1630 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

Fig. 4. Representative Topologies for each case in the proof of the
Proposition 1.

– Otherwise if pα > pβ , then eo′pβpαk0 ∈
�3(R(G′)) as it is 3-triangulated by {(Ro′→d′

α ,Ro′→pβ

β ∪
Rpβ→d′

γ ), (Ro′→d′
β ,Ro′→pα

α ∪Rpα→d′
γ )}.

This long line of reasoning thus brings us to the following
conclusion. If there is a route for every vertex in V ′ \ {o′, d′}
that excludes it, then there exists at least one 2-path eo′jk ∈
�2(R(G′)). Further, existence of a 2-path eo′jk ∈ �2(R(G′))
implies one of the following two implications:

– Either dim �3(R(G′)) �= 0 which is a contradiction to the
presupposition on G′

– Or there is a pair j′, k′ ∈ V ′ with k′ > k such
that eoj′k′ ∈ �2(R(G′)). One can then set j = j′, k = k′
and inductively run the same line of arguments again to
obtain either dim �3(R(G′)) �= 0 or k′ = d′ which is a
contradiction to the presupposition of Case 2. The proof rests
here.

We have shown that series-parallel graphs associate with
a chain complex truncated at order two, that is, robust paths
of length three and above are absent in the associated chain
complex. The topological simplicity of series-parallel graphs
is thus mapped onto an algebraic simplicity in the graph
homology of robust paths.

C. Robust 3-Paths and the Braess Paradox

We say that a graph H is embedded in a graph G if upon
deletion of suitable edges and vertices in G, and subsequent
merging of edges eij and ejk in the graph obtained upon
the deletion into a single edge eik, the result is a graph
G′ that is isomorphic to H. For example, for G in Fig. 3,
deleting e35, e5d and merging the pairs eo1, e12 to eo2 and
eo3, e34 to eo4 yields a graph isomorphic to the Braess
embedding in Fig. 2(b) with (i0, i1, i2, i3) ∼= (o, 2, 4, d). Any
robust 3-path eik−2ik−1ikik+1 in G induces the Braess embedding
(ik−2, ik−1, ik, ik+1), as can be seen in Fig. 4. A robust p-path
ei0,...ip with p > 3 contains

(p
4

)
robust 3-paths within itself

and hence identifies a large collection of interacting Braess-
susceptible sites. Conversely, if (i0, i1, i2, i3) induce a Braess
embedding in G, then reintroduction of all deleted edges and
vertices in the embedding reconstructs G that contains the
robust 3-path ei0i1i2i3 with the structure shown by Case 1 in
Fig. 4.

IV. CONCLUSION

In this letter, we introduced the notion of a k-robust path
in a DAG G, which localizes the deviation of a graph G from
a series-parallel topology for, with larger k signifying larger
deviation. We showed that the association of the K-linear
spaces of robust k-paths with k-chains in a chain complex
sets up a consistent graph homology. We established that the
topological simplicity of series-parallel graphs translates into
a triviality of k-chains in the induced complex for k ≥ 3, and
any non-triviality therein deviates the graph from the simple
topology. We further discussed the resulting correspondence
between the space of 3-chains and Braess-susceptible sites
within a network. With this discussion serving as an illustrative
example, we believe that the graph homology developed with
robust paths as its basis will be a useful tool for the systematic
characterization of complex behavior in flow networks and
analyze combinatorial optimization problems on them, which
remains a direction for future study.
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