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Characterizing Flow Complexity in
Transportation Networks Using Graph Homology

Shashank A. Deshpande™, Student Member, IEEE, and Hamsa Balakrishnan

Abstract—Series-parallel networks generally exhibit sim-
plified dynamics, and lend themselves to computationally
tractable optimization problems. We are interested in a
systematic analysis of the flow complexity that emerges
as a network deviates from a series-parallel topology. This
letter introduces the notion of a robust p-path on a directed
acyclic graph to localize and quantify this complexity. We
develop a graph homology with robust p-paths as the
bases of its p-chain spaces. We expect that this association
between the collection of robust p-paths within a graph
and an algebraic structure will provide a framework for
the analysis of flow networks. To this end, we show that
the simplicity of the series-parallel class corresponds to
triviality of high-order chain spaces (p > 2). Consequently,
the susceptibility of a flow network to the Braess Paradox is
associated with the space of 3-chains. Moreover, the com-
putational complexity of decision problems on a network
can be related to the order of chains within the proposed
homology.

Index Terms—Network
networks, large-scale systems.

analysis, transportation

[. INTRODUCTION

IRECTED graphs are widely used to model flows in

many real-world transportation and logistic networks. A
directed acyclic graph (DAG) is said to be a series-parallel
graph if it can be constructed via sequential series and parallel
combination of edges or smaller series-parallel graphs. The
possession of a series-parallel topology is a global property
of a DAG; it is not thoroughly characterized by localized
subgraphs within the graph. Series-parallel networks exhibit
simple behavior across many different contexts. For instance,
combinatorics— a broad class of combinatorial problems can
be solved in linear-time on series-parallel graphs [1]; electrical
network analysis [2]; behavior in routing games [3], [4], [5].
Therefore, the deviation of a graph from a series-parallel
topology can be considered an increase in its flow complexity.
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Fig. 1. Braess Paradox: Addition of the link a-b slows down the 0 — d

flow.

This complexity can lead to inefficiencies in traffic behav-
ior [6], [7].

The Braess paradox is a well-known example of such
behavior, when the addition of a link to a traffic network
slows the flow down. Fig. 1 shows the canonical example of
the Braess paradox: Here, the addition of link a-b breaks the
series-parallel topology of the network. As a result, the traffic
that is initially split between the routes 0 - a — d and 0 —
b — d concentrates along the faster route 0 - a - b — d,
leading to increased congestion and longer travel times than
with the originally split flow [3]. The Braess paradox has been
known to appear in transportation [8], power grids [9], [10]
and ecological networks [11].

A popular approach to a systematic study of global features
in complex networks is graph homology. Simplicial homology
has been deployed as a generalized clustering mechanism
that identifies interconnections within and among clustered
communities on undirected graphs [12], [13]. Higher-order
dynamics on networks have been studied using simplices [14].
Further, path homology [15] on directed graphs has been
shown to identify topological characteristics that classify
complex networks [16], [17]. While the intuition behind this
classification remains largely intractable, a prior interpretation
that path homology measures the consistency and robustness
of directional flow in a graph [16], [17]. In this letter, we
develop a graph homology of robust paths in line with this
interpretation.

We introduce a notion of robust path of length k (or a robust
k-path) on a DAG, where larger k is a reflection of larger flow
complexity. For instance, we find that the presence of a robust
3-path is a necessary and sufficient condition for a network to
deviate from a series-parallel topology, and that each robust
3-path is associated with a site susceptible to the Braess
Paradox. Further, a robust k-path identifies the presence
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of (“1") distinct susceptible sites within the network. This
motivates us to develop a systematic approach for the char-
acterization of flow complexity in DAGs using robust paths
as basic objects. For this purpose, we utilize the algebraic
structure of graph homology. In particular, we associate the
linear spans of robust k-paths with k-chains in a graph
homological framework and prove that the association sets up
a consistent chain complex. We demonstrate that the induced
chain complex provides a representation of the underlying
DAG where higher-order chains identify sites of high flow
complexity within the graph. We illustrate the utility of
this framework by showing that series-parallel topology of a
DAG translates to triviality of 3-chains in the chain complex.
This algebraic restatement of a known combinatorial result
is validation of how the proposed homology can be used to
systematically investigate flow complexity. We believe that our
approach can be used for the systematic localization of flow
complexity in networks, and to understand its implications.

The organization of this letter proceeds as follows. In the
brief subsection that follows the notation subsection below,
we introduce the concepts of series-parallel graphs and robust
paths, and the role of the latter in reflecting the deviation of a
flow from the series-parallel nature. In Section II, we develop
a consistent algebraic structure for the formal study of these
concepts. Subsequently in Section III, we formalise the notion
of a series-parallel topology and use the developed structure
to produce an algebraic characterization of the same, as well
as to characterize deviations from this topology. We conclude
with a brief discussion in Section IV.

A. Notation

(i) For a DAG G = (V, £), we denote a directed edge from
ieVtojeV by e

€ip....i) is used to denote the tuple (ip, ..., 1) € yr+t,
(iii) i € G and e;; € G respectively mean i € V or ¢;; € £.
(iv) [N] denotes the set {1,2,..., N} for each N € N.

(v) Union and intersection on graphs are as usual, for G; =
Vi, £, UiGi = (UV;, Ui&y) and NG = (NiV;, UiE).
For DAGs G| and G,, we say G| = G, if G| = G, up to
relabelling of their vertices and edges.

(vii) Kj; denotes the edge graph Kj; := ({i,j}, {e;;}, i, ).

(viii) K denotes a field, the reader may specialise to K = R.

(i)

(vi)

iy

©

(a) Series and Parallel Combination (b) The Braess Embedding (c) Robust 2-paths combine into a robust 4-path.

B. Series-Parallel Graphs and the Braess Embedding

We are interested in a class of DAGs called two-terminal
graphs where directional flows emanate from an origin vertex
(source) and are absorbed by a destination vertex (sink).
Series-parallel graphs are two-terminal graphs obtained by
serially or parallely combining edges and/or smaller series-
parallel graphs. See Fig. 2(a) for a depiction of series and
parallel combination operations. The departure of a two-
terminal graph from the series-parallel topology is known
to follow from the appearance of the structure called the
Braess embedding or a Braess site, shown in Fig. 2(b) as a
graphical embedding within the network [3], [4]. The tuple of
the vertices involved in the embedding (e.g., (ig, i1, i2, i3) in
Fig. 2(b)) localizes the site within a network.

We wish to investigate the deviation of a graph from a
series-parallel topology in a comprehensive manner. To this
end, we introduce the notion of a robust k-path in a DAG.
The basic object in our discussion is the robust 2-path, which
we also call a triangle. We call e;y; ;, a robust 2-path in G if
io, i1, ip are three vertices in G, and there exists a triangulating
pair of non-intersecting routes from iy to i, exactly one of
which passes through i;. If robust 2-paths occur as adjacent
structures within the graph, they give rise to longer robust
paths. Therefore, €ip,...i) is a robust p-path if e;;,_,;., 1S a
robust 2-path for each k € [p — 2], and the triangulating route
that evades ix4+1 does not intersect the triangulating routes of
the robust 2-path e;_;i,.,. We will precisely define robust k-
paths later. For illustration, see Fig. 2(c) where three adjacent
robust 2-paths (ejyi, i, e,-l iniz» Ciriziy) are shown to merge and

We will show that the presence of a robust 3-path ensures
the presence of a Braess-susceptible site or a Braess embed-
ding within the network. More generally, long robust paths
within a network contribute to the rising flow complexity as
the network topology deviates from a series-parallel one.

[I. GRAPH HOMOLOGY OF ROBUST PATHS

In Section II-A below, we define routes, two-terminal
graphs, and colored route simplices of two-terminal graphs. In
Section II-B that follows, we formalise the notion of a robust
path and embed the linear spaces spanned by the robust paths
into the homological algebra.
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A. Two-Terminal DAGs and Colored Route Simplices

A two-terminal DAG is induced by a union of linear graphs
or routes, which we define as follows. We also introduce
formal notation for segments of a route, which are shorter
routes with different origin-destination pairs.

Definition 1: (i) A route R is a tuple R = (V, &, 0,d,r)
where V is a finite set of nodes or vertices, r : V — N is a
strict order on V), origin o = arg min;cyr(i), destination d =
arg maxjeyr(j), and, & C V x V contains all edges e;; == (i, j)
if and only if i and j are consecutive in the order r, that is,
ri) <r¢G)and Bk eV :r@) < rk) < r@).

(i) Let R = (W, &, 0,d,r) be a route and i,j € V be two
of its vertices. Define and denote another route from i to j
as follows: RI™/ = (Vi=J &7 i j r) where Vi7/ = {k e
V@) < rk) < ()}, £ = {ewla,b € VI N E. We
regard R~ = ({i}, ¢, i, i, r) as the vertex i.

Note: Let Ry and R, be two arbitrary routes. If the
intersection graph R N 'R, is non-empty, then we take note
of the fact that it is expressible in the following form:

no no
RiNRy =Ry = JRE ™™ (1)
n=1
where ng € N, p,, g, € V1 NV, for each n.

A union of routes that share the same origin-destination
pair induces a two-terminal DAG as follows. Acyclicity of the
induced DAG is ensured by requiring the routes to respect
each other’s order.

Definition 2: i) Let {(Rataea = {Va, Eas 0y dus o) }aea
be a finite collection of routes with the same origin o and
destination d (i.e. 0oy = 0, dy = d) that obey the partial order
induced by {ry}qeca:

V8, BeA i, jleVsnNVy =
rs(@) < rs(j) <— rg(@) < rg(j) 2

Then, the tuple G = (V = UgeaVs,& =
Uwea€as 0, d, (rq)aca) is called a two-terminal graph from
origin o to destination d induced by the collection of routes
(Ra)aeca. We then write G = | J,cq Ro and say that i < j if
i,j €V and Jo € A such that ry (i) < ry ().

Note: We call the collection {R;};c(v) a complete enumer-
ation of routes in G = (J; [y Ri if it contains all o to d
routes in G. All collections in this letter are assumed to be
complete enumerations. We also drop the underlying partial
order (r;)ie[y in our notation and use G = (V, &, 0,d) to
represent the two-terminal graph.

As we will see below, a route induces a two-terminal DAG,
that we call a route-simplex. The route-simplex shares the
vertex set of the underlying route R and contains an edge e;;
if j is reachable from i. A union of route simplices induced by
the constituent routes of a two-terminal DAG is declared as the
route simplex of the DAG. We attach a multi-coloring to each
edge e;; in a route-simplex to record the set of routes that reach
Jj from i; this produces what we call a colored route simplex of
a DAG. These notions are formalised by the definition below.

Definition 3: (i) The route-simplex of R; = (V;, &;, 0, d, 1;)
denoted by Sim(R;) is the two terminal graph (V;, R(&)), o, d)
where R(E) ={e;; 1 i,j € V, r(i) < r(j).

,/\ /\
) \ N,
Ve \/

Fig. 3. G =, Ra; R(©) : dimQ3(R(G)) # 0.

(i) The route-simplex of G = UiE[N] R; is defined to be
the union Sim(G) = Uie[N] Sim(R;).

(iii) The colored route simplex of G is the tuple R(G) =
(V,R(€), 0, d, C) where the (multi)coloring C : R(E) — 2V
obeys C(epq) = {i € [Nllepq € Sim(R;)}.

Consider four routes {Rglaci4) =
with Vi = {0,1,2,d},E& = {eo1,e12,e}, V2 =
{0,1,2,4,d}, & = {eot, €12, €24, e4a}, V3 = {0,3,4,d}, & =
{e03, €34, €aq}, V4 = {0,3,5,d}, &4 = {ep3, e35, €54} which
constitute the two-terminal graph G = U, R, shown in Fig. 3
below. R(G) is depicted alongside where Red, Blue, Gray and
Yellow respectively depict the colors 1,2, 3 and 4.

{(VOU gola o, d1 rOl)}

B. Development of the Robust Path Homology

We now develop our graph homology of robust paths. Let
G = WEod = UL R = UL V& 0,d 1) be a
two-terminal DAG and R(G) = (V, R(£),C) be the colored
route simplex of G. The space of vertex tuples VP*! is refined
to record graph topology in the refined subset of allowed
paths.

Definition 4: (i) ej,,..i, is an elementary allowed p-path in
R(@) ife;, ,i, € R(E) for all m € [p]. (Recall Section I-A(ii).)

(i) We define the K-linear span of all elementary allowed

p-paths as the space of allowed p-paths:

Ap(R(G)) = K—span{e;,, i, : i, € RE) Vjelp—1]}

Next, we define a linear operator on the allowed path spaces.

Definition 5: The linear boundary operator d,, : A,(R(G)) —
A,_1(R(G)) is a linear operator defined via its action
on elementary paths: dpej,,. i, Zk(_l)keio,...i,..,ip and
extended over A,(R(G)) by linearity. Note that 9, = 0.

Elementary allowed paths are further refined to exclude non-
robust paths. The robust k-paths then become the basis set for
the space of k-chains.

Definition 6: (i) An allowed e;y;,;, is a robust 2-path or a
triangle in G if there is a route from ij to ip that evades at least
one route from iy to iy through iy, i.e., I(a, B) € Cleiyiy) x
Cleiyiy) N Cleiyiy) such that Vi > N Vg = {io, i2}. We then
call the tuple of routes (R, Rg), a triangulating pair of the
robust 2-path e;;,;,. We denote the set of all triangles (robust
2-paths) by A>(R(9)).

(ii)) An allowed e;y; P20y is a robust p-path if there
exists a collection of route tuples {(Rg,, Rﬁk)}’,:;i such that
(R.ak’R.ﬂk) trigngglates €ir_yizir, for each k € [p — 1] and
RN R, 2 = ¢ for each k € [p—2]. We denote the
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set of all robust p-paths by A,(R(G)) and call the associated
collection {(Ry,, Rﬁa)}];;ll a k-triangulating pair of e;;,;,...i; -
Definition 7: (i) The sets of 0O-chains and I1-chains are
respectively defined as Q¢(R(G)) := K-span{V} = Ay(R(G))
and Q;(R(9)) = K-span{R(E)} = A1 (R(9)).
(ii) The set of p-chains is defined as the K-linear span of
robust p-paths: ©2,(R(G)) = K-span{A,(R(G))} € A,(R(G)).
Note: ejy, i, € Ap(R(G)) <> eiy,..i, € Qp(R(9)).
The following proposition sets up the desired homology of
the introduced k-chain spaces {2k (R(9))}ken,-
Proposition 1: For all p > 1, we have
(i) 9p—1 03y = 0. (ii) 92, (R(G)) € 2p—1(R(G)).
Consequently, we obtain the following chain complex
Opt1

K{0} & QR©@) &L ... & Q,R(©G) L

Proof: (i) For an arbitrary €ip...ips

q—
ZD DTeq 5 By

8p 108 p€i, ..
r=0 q
_1\9+r—1 PN _
+ Z YD 5 5, =0
r=q+1 ¢

Therefore Proposition 1(i) follows by linearity of d,.

(i) — For p = 0, 1, 920(R(G)) = K{0} and 022, (R(G)) C
K{V} = Qy(R(G)) follow by definition as 39 = O,
Q0(R(9)) = Ao(R(9)) and 21(R(G)) = A1(R(9)).

For p > 2, we show that ¢, ; € ,(RG) =
€ig.. Ty € Q,_1(R(G)) for all k € {0, ..., p} which implies
p2p(R(G)) C 2p—1(R(G)) by linearity of d,.

— For p = 2, notice that ¢;,;,;, € 2(R(G)) C
A2(R(G)) = eiyi;» €y, € R(E) which implies the existence
of routes

Ra D€ € Sim(Ra); Rb D€, € Sim(Rb).
It follows that e;,;, € Sim(R,) where R, = Ry~ URL 4.
Thereby de;yiyi, € A1(R(G)) = Q1(R(9)).

— For p > 2, let €i,..i, € Q,(R(G)). Then €y ...iy and

€y, ..

both belong to €2,_1(R(G)) as they are respectively

-2
and {(Rey. RN
Further, for k € [p — 11, ¢, 5 i € 2-1(R©@) as

it is p — l-triangulated by {(Raa,Rﬁa)a_l} U {(R o—)zk U

-1

d
R lk%d R {Hlk LU le 1= ) (R%:ik U R:)];I:Id’,}zlk 1—>1k+1 U

R’;,:f”’)} ¥ (R RV ! . Tt follows that de;, i €

©,-1(R(G)). This completes the proof of this proposition. H

dp

. -1
p — l-triangulated by {(Re;, Rp)}i_,

I11. ROBUST PATHS IN SERIES PARALLEL GRAPHS

We build a formal definition of a series-parallel graph in
Section III-A and investigate chain complexes induced by them
in Section III-B. We find that dim 2,(R(G)) = 0 for all p > 2
if and only if G is a series-parallel graph which presents a
notable correspondence between the developed homological
algebra and emergent combinatorial complexity as G deviates
from a series-parallel topology.

A. Series-Parallel Two-Terminal DAGs

We define parallel and series combinations below (Recall
Fig. 2), following which an inductive definition for a series-
parallel graph follows.

Definition 8: Let Gy = (V1, &1, 01,d1) = |J; R} and G, =
W2, 2,00, dp) = Uj Rjz be two-terminal graphs.

(i) If G; and G, satisfy d| = 02,V NV = {dy}, then a
series combination of G; and G, is the two-terminal graph
G — G =G UG = V& 01,d)) = Ui,j(Rl-l - Rjz)
where V=V UV,; £€=&U&,.

(ii) If G| and G; satisfy 01 = 0p =t 0, d| = d» =: d and
V1 NV, = {o,d}, then, a parallel combination G; and G; is
the two-terminal graph Gi||G = G1 UG, = (V,€,0,d) =
U/e{l 2)ie(IN}]) 'R, where V =V UV, £€=&U&,.

(iii) A two- termmal graph G is a series-parallel graph if and
only if 1) § = Kjp or 2) G = G — G, for series-parallel
graphs G| and G, or 3) G = G,||G, for series-parallel graphs
g1 and Go.

A series-parallel graph G can hence be represented as a
series and parallel combination of edges. For instance, the
graph G; in Fig. 2(a) expressible as follows in an ‘edge-
combinatorial’ representation:

Gi = G2 = ((Kipiy = Kiyis)[1(Kigin = Kinis))- 3)

B. Path Complexes of Series-Parallel Graphs

Given G| and G, along with their respectively induced chain
complexes {Q2x(R(G1))}ken, and {2,,(R(G1))}men,, We state
what can be inferred about the complex induced by their
combinations in the two propositions that follow.

Proposition 2: Let G = (V1, &1, 0,d) = UiE[Nl]’R} and
G = V2, &,0,d) = Uiy, Rjs and, G = (V,€,0,d) =
GillG2 = Ujent,zieqnn R} = Uyerny Re be their parallel
combination. Further, let R(G)) = (V;, R(&)), C;) for each i =
1,2 and R(G) = (V, R(£), C). Following relations then hold.

(1) dim Qo(R(9)) = dim Qo(R(G1)) + dim Qo(R(G2)) — 2

(ii) dim ©1(R(9)) = dim Q1(R(G1)) + dim Q1 (R(G2)) — 1.

@iii) 22(R(9)) 2 22(R(G1)) U Q22(R(G2)).

(iv) dim 2,(R(G)) = dim ,(R(G1))+dim ,(R(G>)), p > 2.

Proof: (i) Follows since ©20(R(G)) is a linear space spanned
by all vertices of R(G): dim Qu(R(G)) = V1 UW| = |Vi| +
V2| =2 = |dim Qo(R(G1))| + | dim Qo(R(G2))| — 2.

(ii) Follows since 21 (R(G)) is a linear space spanned by all
edges of R(9): dimQ(R(9)) = IR UR(&)| = IRED|+
IR(&) = IR(ENNR(&)] = dim Q4 (R(G1))+dim 21 (R(G2))—
l{eoa}| = dim 21 (R(G1)) + dim 1(R(G2)) — 1.

(iii) Note that if R € {Ralaen;) for j = 1,2, then R €
{Ra}aevy- Thus, if a pair (R, Rg) triangulates e;y,;, in
R(G)) for j € {1,2}, then it also triangulates the 2-path
in R(G). It follows that A(R(G)) C A2(R(G) =
Q2(R(G))) € Q2(R(G)) for each j, and thus, (iii) holds.

@iv) Letj € {1,2} and Cig,...ip € Q,,(R(gj)) Then Ciy_yiriryy €
D RG)) = e i, € 2(R(G)) for each k € [p — 1]
which in turn implies e;,,._;, € ©,(R(G)). Thus, Q,(R(G1)) ®
Q,(R(G2)) C ©2,(R(G)). On the other hand, if e;,_,;;,,, does
not have a triangulating pair in R(G;), then it cannot not have
one in R(G) either unless (ix—1, ix+1) # (0,d) since then
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at least one of iy and ixy does not belong G_; (where
—j € {1,2},j # —j). Hence, 2,(RG1) & (R(G) =
Q,(R(G)) follows. Further, since p > 2 and V1 NV, = {o, d},
2,(R(G1)) L 2,(R(G2)) and the proposed follows. |

Proposition 3: Let G V1, €1,0,h) and G, =
W2, &2, h, d) be two two-terminal graphs and G = G| — G =
V, &, 0,d) be their series combination. Then, the following
hold.

(1) dim Qo(R(G)) = dim Qo(R(G1)) + dim Qy(R(G2)) — 1.

(ii) dim 2, (R(G)) = dim 2,(R(G1))+dim 2,(R(G2)) Vp > 1.

Proof: (i) Follows since Q0(R(G)) is a linear space spanned
by all vertices of R(G): dim Qy(R(G)) = |V UWz| = V1| +
V2| = 1= |dimQ0(R(G1)| + |dim Qo(R(G2))| — 1.

(i) For p = 1 follows since Q1(R(G)) is a linear space
spanned by all edges of R(G): dimQ;(R(G)) = |E1 U &| =
WVil+1V2| = | dim €1 (R(G1))[+] dim 2 (R(G2))|. Now notice
that no pair of routes can triangulate ej for all j, k € V with
Jj < h < k since h belongs to every route of G by definition.
Thus ¢;,..i, € Q,(R(G)) requires h < iy or h > i, which
is equivalent to ¢;,, i, € 2,(R(G2)) or €io,...i, € 2,(R(G1))
respectively. Thus, ©,(R(G)) = 2,(R(G1)) & 2,(R(G,)) and
the proposed follows. |

We are now in a position to establish our main result.

Theorem 1: Let G = (V,€,0,d) = UygeaRy be a two
terminal DAG. Then,

(i) If G is a series-parallel graph, then dim 2,(G) = 0 for
all p > 3.

i) If G is
dim 23(R(G)) > 0.

Proof: (i) If G is a series-parallel graph, then using
Propositions 2. (iv), 3.(ii), and the edge combinational repre-
sentation of G = (V, &, o, d), we deduce

dimQ,(R(@) = Y dimQ,(R(Ky) =0V p=3. 4

E,'JE(S

not a series-parallel graph, then

(i) If G is not series-parallel, then sequentially decomposing
G serially and/or parallely one eventually arrives at a two-
terminal subgraph ¢’ = (V',&,0,d) # K,y which is
not decomposable further. Since G’ € G, we have an A’ C
A such that §' = UaeA/Rg/_’d,. Note that |A’| > 1 since
|A’| = 1 implies G’ is a single o’ — d’ route which is serially
decomposable by definition.

Case 1: Suppose that 3 k € V' : eyia € Q0(R(G)) and
let (Rg/”d/, Rg/*d/) be the corresponding triangulating pair
whereby RS~ NRG 4 = {0/, d'} (Recall Definition 7).
Define a subset D' CA: D' = {5 : Rg,”‘l HRZ,_)d/ ={0,d}
and D' = A’\D'. Note that 8 € D" and « € D’ so that D', D"®
are both non-empty. Now consider the following two-terminal
graphs induced by the partition {D’, D’}

/ 4
Gy = UR:; == (v, &y, 0, d);

D/
g/D/c = URg/*)d/ = ( /D/c, b/c, 0/7 d/)
D/L‘
If Vi, NV, = {0/,d'} then §' = Gp||Gpe which contra-

dicts the supposition that G’ is not decomposable parallely.
Otherwise if j € V;, N Vy,.,j ¢ {0',d'} then j € Rgo_“i for

some 8y € D' and j ¢ Rg/_)d/. Further, choose a y € D’ with
/ 4 . . .

JER ~d (y exists since j € Vpy). Then, at least one of the

following two vertices exist outside {0, &, j}:

. jd d’ '—j /—>d'
ElzmmR{; ﬂRg_’d, Ezzmango_”ﬂRg_)d.

If ¢ exists outside {0', d’, j} then eyjp, 0 € Q3(R(G")) as it is
3-riangulated by (RG>, Ri’*fungjd/), Ry~ jo“ U
Ra ).

Similarly if €, exists outside {o',d',j}, eypnja €
Q3(R(G") as ey, is 3-triangulated by {(RS ™7, RS~E U
R, (RG> Ry IURY™)). Thus, dim Q3(R(G) > 0
and we arrive at a contradiction since 0 = dim Q3(R(G)) >
dim Q3(R(G)) following ¢ ¢ ¢ = Q3(R(G)) C
23(R(9)).

Case 2: Now suppose that A k € V : ey € Q20(R(G)).
If G’ has only two routes, i.e., A’ = {a, b}, then, RZ,”"/ N
Ry~ = {0, d'}y will imply that (R >4, Ry =) triangulate
some e,y for some k € RZ/_"’/ U Rz/ﬁd/, a contradiction to
the supposition of Case 2. So let k € Rz/ﬁd/ N RZ/_’d/. This
allows G’ the serial decomposition G’ = RZI_”‘ U RZ/”k —
Rléad’ U ng_)d/~

Now let |A’| > 2. If there is a vertex kK common across
all routes, i.e., 3k € V' such that k € RZ/_”’ for all a €
A’, G admits the serial decomposition G' = |,/ Rg/*k —
Un Rffd/ and we arrive at a contradiction. So suppose
otherwise, that for each k € V' \ {0/, d’}, there is a route
in G’ that excludes k. We will show that this supposition
contradicts at least one of the two: (i) dim Q3(R(G")) = 0 or
(ii) 3 : evjar € (R(G)), the supposition of Case 2.

We begin by establishing the existence of a pair jg, ko € V'
such that eyjx, € 22(R(G"). Pick an arbitrary g € A’ and
take jo as the second vertex in the route Rg”" i.e. jo
min R‘f’;”d’ such that jo # o'. Then there is a route Rg,_’d’ that
excludes jo. Take kg = min Rg/_’d/ N R%/”d/, ko > o'. Then
ko > jo since jo is the second smallest vertex in R? 4" This
selection ensures ek, € 22(R(G)) with the triangulating pair
(Rg/_’d/, Rg/_’d/). By supposition, there exists a route R‘}’,/_’d/
that excludes kg.

—Let £, = min RS ¢ OR}”,/_)"/ such that £, # o’ and note
that if £, > ko, then ey, € Q> (R(G")) with triangulating
pair (R4 Ry =7).

—Let £g = min Rg/_’d, OR‘;/_"’/ such that £g 3 o' and note
that if £g > ko, then €o'koty € Q,(R(G")) with triangulating
pair (Rl’j’”d/, R%/_’d/).

—If both £, < ko and £g < ko, then the intersection graphs
R‘}f—)d/ ARS* and R;/_)d/ N R’g%ko contain other vertices
in addition to o’ so let p, and pg be the maximal vertices in
the above two intersection graphs and note that p, < ko and
pp < ko hold by definition.

— Now if py < pg, then eyp,psk, € Q3(R(G)) as it
is 3-triangulated by (R~ Ry 77U Ry~), (RY~Y,

Ry~ URY ™)
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Fig. 4. Representative Topologies for each case in the proof of the
Proposition 1.

— Otherwise if pg >  pg, then

Q3(R(G")) as it is 3-triangulated by {(RZQCI,,RZ%M g

Rl;ﬁ_’d ), (R%,_)d/, Rg/_’[’a U R[;/a_)d,)}.

This long line of reasoning thus brings us to the following
conclusion. If there is a route for every vertex in V' \ {0/, d'}
that excludes it, then there exists at least one 2-path eyj; €
22(R(G")). Further, existence of a 2-path ey € Q22(R(G"))
implies one of the following two implications:

— Either dim Q3(R(G")) # 0 which is a contradiction to the
presupposition on G’

— Or there is a pair j,k € V' with ¥ > k such
that e,y € Q22(R(G’)). One can then set j = j,k = K
and inductively run the same line of arguments again to
obtain either dim Q3(R(G")) # 0 or k¥ = d' which is a
contradiction to the presupposition of Case 2. The proof rests
here. |

We have shown that series-parallel graphs associate with
a chain complex truncated at order two, that is, robust paths
of length three and above are absent in the associated chain
complex. The topological simplicity of series-parallel graphs
is thus mapped onto an algebraic simplicity in the graph
homology of robust paths.

€o'pgpaky €

C. Robust 3-Paths and the Braess Paradox

We say that a graph H is embedded in a graph G if upon
deletion of suitable edges and vertices in G, and subsequent
merging of edges e; and ej in the graph obtained upon
the deletion into a single edge ey, the result is a graph
G’ that is isomorphic to H. For example, for G in Fig. 3,
deleting e35, es4 and merging the pairs e,1, €12 to e,y and
€03, €34 10 e,4 yields a graph isomorphic to the Braess
embedding in Fig. 2(b) with (ig, i1, i2, i3) = (0, 2,4, d). Any
robust 3-path e;,_,;,_,ii,, in G induces the Braess embedding
(fk—2, ik—1, ik, ik+1), as can be seen in Fig. 4. A robust p-path
€iy...i, With p > 3 contains (}) robust 3-paths within itself
and hence identifies a large collection of interacting Braess-
susceptible sites. Conversely, if (i, i1, i2, i3) induce a Braess
embedding in G, then reintroduction of all deleted edges and
vertices in the embedding reconstructs G that contains the
robust 3-path e;y; i,;; with the structure shown by Case 1 in
Fig. 4.

V. CONCLUSION

In this letter, we introduced the notion of a k-robust path
in a DAG G, which localizes the deviation of a graph G from
a series-parallel topology for, with larger k signifying larger
deviation. We showed that the association of the K-linear
spaces of robust k-paths with k-chains in a chain complex
sets up a consistent graph homology. We established that the
topological simplicity of series-parallel graphs translates into
a triviality of k-chains in the induced complex for k > 3, and
any non-triviality therein deviates the graph from the simple
topology. We further discussed the resulting correspondence
between the space of 3-chains and Braess-susceptible sites
within a network. With this discussion serving as an illustrative
example, we believe that the graph homology developed with
robust paths as its basis will be a useful tool for the systematic
characterization of complex behavior in flow networks and
analyze combinatorial optimization problems on them, which
remains a direction for future study.
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