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Abstract

Uncertainty estimation is essential for enhanc-
ing the reliability of Large Language Models
(LLMs), particularly in high-stakes applica-
tions. Existing methods often overlook seman-
tic dependencies, relying on token-level prob-
ability measures that fail to capture structural
relationships within the generated text. We
propose GENUINE: Graph ENhanced mUIti-
level uncertaIlNty Estimation for Large Lan-
guage Models, a structure-aware framework
that leverages dependency parse trees and hi-
erarchical graph pooling to refine uncertainty
quantification. By incorporating supervised
learning, GENUINE effectively models se-
mantic and structural relationships, improv-
ing confidence assessments. Extensive experi-
ments across NLP tasks show that GENUINE
achieves up to 29% higher AUROC than se-
mantic entropy-based approaches and reduces
calibration errors by over 15%, demonstrating
the effectiveness of graph-based uncertainty
modeling. The code is available at https:
//anonymous. 4open.science/r/GUQ-39E7.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in conversation (Wu
et al., 2023), logical reasoning (Wang et al., 2023),
and scientific discovery (Shojaee et al., 2024).
Models such as GPT-4 (Achiam et al., 2023), Gem-
ini (Team et al., 2023), and DeepSeek (Liu et al.,
2024a), trained on vast corpora and aligned to
human preferences, have significantly expanded
the potential of artificial intelligence. However,
despite these advancements, LLMs are prone to
well-documented reliability issues, including hal-
lucinations and factual inaccuracies (Huang et al.,
2025; Liu et al., 2024c¢). These issues pose serious
risks, particularly in high-stakes applications such
as medical diagnosis (Panagoulias et al., 2024), fi-
nancial decision-making (de Zarza et al., 2023),
and legal advisory systems (Cheong et al., 2024),
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Figure 1: An example highlighting the role of token
significance in uncertainty estimation. The model mis-
interprets "legal", generating an incorrect response. The
dependency parse tree helps identify critical tokens, im-
proving uncertainty quantification by reducing the influ-
ence of less relevant tokens.

where users must rely on the model’s outputs with
confidence. Therefore, uncertainty quantification,
which assesses the trustworthiness of an LLM re-
sponse, is essential for safe and effective human
and artificial intelligence interaction.

Quantifying uncertainty in LLM-generated out-
puts presents several challenges. First, LLMs of-
ten produce long-form textual responses, making
attributing uncertainty to specific components diffi-
cult. Second, hallucinations and uncertainties may
affect only a few critical tokens within an otherwise
coherent response, undermining the reliability of
the entire output. Third, identifying and aggregat-
ing uncertainty across multiple tokens in lengthy
outputs is non-trivial, requiring distinguishing se-
mantically pivotal tokens from those not pivotal.

Previous studies have explored various ap-
proaches to quantify uncertainty in LLLM outputs.
Some methods rely on self-evaluation through mod-
ified prompts (Tian et al., 2023b), though they often
inherit the model’s biases. Others use token-level
uncertainty measures based on logits, entropy, or
probability distributions (Kuhn et al., 2023; Ma-
linin and Gales, 2020, 2021). Recent advance-
ments, such as semantic entropy, cluster seman-


https://anonymous.4open.science/r/GUQ-39E7
https://anonymous.4open.science/r/GUQ-39E7
https://anonymous.4open.science/r/GUQ-39E7

tically equivalent generations and measure entropy
as an uncertainty indicator (Kuhn et al., 2023).
However, most existing methods treat all tokens
equally, overlooking findings that certain tokens
carry more semantic weight in determining out-
put validity (Liu et al., 2024b; Duan et al., 2024;
Cheng and Vlachos, 2024). Additionally, some ap-
proaches (Duan et al., 2024) depend on external
smaller models to estimate token importance, but
these models often operate independently of the
LLM’s internal representations. As a result, they
may introduce inconsistencies, misinterpret token
dependencies, or fail to capture the structural re-
lationships within the generated text, leading to
inaccurate uncertainty estimates.

To illustrate this issue, consider the example in
Fig. 1. A user inquires about legal items to carry
in the United States, but the model responds with
a list of illegal items, such as a gun, knife, and
club. The misunderstanding stems from the token
"legal," which is central to the query’s meaning. A
minor modification, replacing the word legal with
illegal, would render the response appropriate. This
example underscores two insights: certain tokens
are disproportionately influential in determining
output validity. Dependency parse trees effectively
capture the hierarchical structure of sentence mean-
ing by identifying core decision points. Building
on these insights, we propose leveraging depen-
dency parse trees and graph pooling techniques to
infer LLM prediction uncertainty in a structured
and interpretable manner.

Modeling uncertainty estimation as a graph-
based problem offers several advantages. Graphs
inherently capture dependencies between gener-
ated tokens, reflecting the autoregressive nature
of LL.Ms, where each token influences subsequent
ones. By representing an LLM response as a struc-
tured graph, we can propagate and aggregate crit-
ical information across tokens, ensuring that se-
mantically significant tokens contribute more sub-
stantially to the overall uncertainty estimate. How-
ever, this approach introduces several challenges.
Determining the optimal graph structure that accu-
rately represents token dependencies remains an
open question. Selecting appropriate graph pooling
techniques that summarize uncertainty information
effectively without losing essential context is dif-
ficult. Addressing these challenges is essential to
realize the potential of graph-based uncertainty es-
timation fully.

Our approach integrates multiple uncertainty fea-

tures to enhance robustness. Specifically, we uti-
lize probability distributions, entropy-based mea-
sures, and LLM embeddings to model uncertainty.
We introduce a hierarchical strategy to address the
challenge of aggregating uncertainty over long-
form text. We construct a dependency parse tree
for each sentence to extract structural and seman-
tic relationships. We merge sentence-level trees
into a document-level graph by connecting their
root nodes. We apply graph pooling techniques
to model uncertainty across the entire paragraph
efficiently. GENUINE involves learning pool-
ing functions that adaptively fuse different fea-
tures, capturing both local and global dependencies
within the text. Experimental results demonstrate
that this approach outperforms existing methods,
highlighting the critical role of structural relation-
ships in uncertainty estimation. Furthermore, we
compare the effectiveness of probability-based and
embedding-based features across various datasets
and LLMs, offering insights into their respective
utilities. Given that commercial LLMs typically
provide only probability and entropy features, our
findings suggest an intriguing direction for future
research. Exploring whether open-source LLMs,
which offer both probability and embedding fea-
tures, can facilitate superior uncertainty quantifica-
tion compared to their commercial counterparts.
The following are our main contributions:
e We highlight the role of semantically significant
tokens in uncertainty estimation, demonstrating
how structural relationships can enhance model un-
certainty assessment.
e We propose a graph-based framework for LLM
uncertainty quantification, integrating dependency
parse trees and graph pooling to capture structural
and semantic relationships in the generated text.
e We develop an adaptive graph pooling mecha-
nism that effectively propagates and aggregates
uncertainty information by learning to fuse multi-
ple uncertainty features.
e We conduct extensive experiments on real-world
datasets, evaluating different uncertainty features
and demonstrating that GENUINE outperforms
existing uncertainty quantification methods in as-
sessing the trustworthiness of LLM-generated re-
sponses.

2 Related Works

This section reviews prior approaches in uncer-
tainty quantification and graph pooling techniques,



highlighting their limitations and the need for a
structured, context-aware framework like GEN-
UINE.

Uncertainty Quantification in LL.Ms. Uncer-
tainty quantification has been extensively studied
in traditional machine learning (Chen et al., 2019;
Zhao et al., 2020), but it remains a developing chal-
lenge for LLMs. Unlike conventional models with
well-defined solution spaces, LLMs generate open-
ended responses where multiple outputs may be
valid as long as they align with the semantic mean-
ing of the input. This flexibility complicates un-
certainty estimation, requiring approaches beyond
standard predictive confidence measures. Existing
methods for uncertainty quantification in LLMs
can be categorized into two primary approaches.
The first involves self-assessment, where the model
is prompted to estimate its own uncertainty (Ka-
davath et al., 2022; Lin et al., 2022; Tian et al.,
2023a). While intuitive, these methods often in-
herit the model’s biases and inconsistencies. The
second category relies on external uncertainty mea-
sures, such as analyzing the consistency of multiple
generations (Manakul et al., 2023) or computing
entropy over predictive distributions (Malinin and
Gales, 2020). However, these techniques typically
treat all tokens as equally important, overlooking
the fact that certain tokens contribute more to the
overall reliability of a response. Recent work ad-
dresses this limitation by incorporating semantic-
aware uncertainty estimation. Semantic entropy
(SE) (Kuhn et al., 2023) measures uncertainty at the
semantic level, grouping semantically equivalent
outputs to reduce redundancy. Other approaches
argue that not all tokens are equally important and
propose methods to weight different tokens accord-
ingly (Duan et al., 2024). Another direction of
studies shows that hidden layer activations offer
valuable uncertainty signals by capturing internal
model representations (Liu et al., 2024b). Build-
ing on this, we integrate dependency parse trees
to identify key tokens shaping response meaning,
while hidden activations provide semantic context.
This combination enables a structured and context-
aware approach to uncertainty estimation in LLMs.
Graph Pooling Approaches. The graph pooling
mechanism is essential in condensing the input
graph into a smaller-sized graph while preserv-
ing essential structural and semantic information.
Graph pooling methods generally fall into two cat-
egories: flat pooling, which applies simple aggre-
gation functions like averaging or summation (Xu

et al., 2019; Duvenaud et al., 2015), and hierar-
chical pooling, which progressively coarsens the
graph to capture multi-level relationships (Ying
et al., 2018). Among hierarchical methods, Diff-
Pool (Ying et al., 2018) uses Graph Neural Net-
works (GNNSs) to learn adaptive pooling assign-
ments, while StructPool (Yuan and Ji, 2020) ex-
tends this by incorporating high-order structural de-
pendencies. Additional strategies include memory-
based pooling (Khasahmadi et al., 2020), spectral
filtering (Defferrard et al., 2016), and expressive
pooling architectures (Bianchi and Lachi, 2023).
Unsupervised pooling techniques, such as mutual
information maximization (Liu et al., 2022), fur-
ther enable structure-preserving compression with-
out requiring labeled data. This work proposes a
hierarchical graph pooling strategy that leverages
dependency tree structures to refine uncertainty
estimation. By representing LLLM outputs as depen-
dency graphs, GENUINE captures both seman-
tic and structural relationships, enabling a more
context-aware evaluation of uncertainty. The pro-
posed framework effectively prioritizes key tokens
influencing response reliability, leading to a more
precise and interpretable confidence assessment.

3 Background

This section defines the problem statement and
provides the necessary background on dependency
parsing trees and features helpful for uncertainty
estimation in LLMs, laying the foundation for our
proposed approach.

3.1 Problem Setup

Uncertainty quantification in LLMs involves as-
sessing confidence in LLM-generated responses
based on input prompts. Given a prompt x =
{z1, 29, ...,21}, an LLM generates an output se-
quence y = {y1, Y2, ..., Yn }, Where each token y;
is sampled from a probability distribution condi-
tioned on the prompt and prior tokens:

y] Np@('|xu ylay27"'7yj—1)7 (1)

where py represents the model’s learned parameters.
This next-token probability reflects how likely the
model is to generate a particular token given the pre-
ceding context. Following (Liu et al., 2024b), un-
certainty estimation is framed as a function g(x,y)
that predicts the expected correctness of a response:

9(x,y) = E[s(y, Yirue) %, ¥] - (2)



Here, s(y, yiue) denotes an evaluation metric com-
paring the generated response y with a ground-
truth reference ye. The expectation is taken con-
sidering the semantic flexibility of natural language.
The uncertainty arises from the input prompt x and
the LLM itself rather than from a single absolute
reference answer.

3.2 Dependency Parse Trees in NLP

Dependency parse trees provide a structured rep-
resentation of syntactic relationships, defining hi-
erarchical dependencies such as subjects, objects,
and modifiers within a sentence. These structures
have been widely applied in various NLP tasks,
including relation extraction (RE) (Fundel et al.,
2006; Bjorne et al., 2009), named entity recogni-
tion (NER) (Jie et al., 2017), and semantic role
labeling (SRL) (Marcheggiani and Titov, 2017).
They also enhance summarization by prioritizing
salient information while filtering redundant con-
tent (Li et al., 2014; Xu and Durrett, 2019).

This work uses dependency parse trees to model
structural relationships in LLM-generated text.
These trees serve two key purposes: (1) They pro-
vide a hierarchical organization of tokens, helping
distinguish pivotal words that shape response mean-
ing, (2) They offer a consistent structure across dif-
ferent sentence formations, making them adaptable
for modeling uncertainty in diverse LLM outputs.

3.3 Features for Uncertainty Estimation

Uncertainty estimation in LLMs relies on extract-
ing meaningful features from the generated text.
Prior studies (Xiao et al., 2022; Kadavath et al.,
2022; Lin et al., 2022; Tian et al., 2023a; Kuhn
et al., 2023; Liu et al., 2024b) have demonstrated
the effectiveness of token-level probability metrics,
such as entropy, in uncertainty estimation. We cat-
egorize these features based on their sources (Liu
et al., 2024b):

White-box features: These features are derived
from hidden-layer activations, capturing the inter-
nal representation of tokens and providing insights
into model confidence. These features are available
only in open-source LLMs.

Grey-box features: These include roken probabili-
ties and transformations such as entropy, offering
uncertainty signals applicable to both open-source
and commercial LLMs. The entropy of a discrete
distribution p over the vocabulary V is defined as
H(p) = = > ,cpp(v)log (p(v)). Given a prompt-
response pair (x,y) = (21, ..., Tk, Y1, ---, Yn), the
entropy features for the j-th output token are given
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Figure 2: Dependency parse tree example

by H(qs(yj|x,y1, ..., yj—1)), where gg denotes the
LLM. The detailed mathematical definition of the
features is provided in Appendix A.1.

4 Approach

This section details our approach, including graph
formulation, hierarchical learning, and joint opti-
mization, enabling a more structured and context-
aware uncertainty estimation for LLMs.

4.1 Graph Formulation

We transform dependency parse trees into graphs
to structure LLM-generated text for uncertainty es-
timation. We first obtain the dependency tree using
the Stanford NLTK parser, where each word serves
as a node, and directed edges represent dependency
relations. As shown in Fig. 2, the root word, such as
"prefer," has dependent words like "I" and "flight,"
forming a tree-like structure.

To extend this formulation beyond individual
sentences, we construct a paragraph-level graph by
linking the root nodes of multiple sentence-level
dependency trees. Prior work (Duan et al., 2024)
estimates uncertainty at the sentence level using
a separate model to compute similarity, but such
approaches may overlook deeper semantic rela-
tionships between sentences. Instead, GENUINE
learns inter-sentence relations directly, ensuring a
more cohesive uncertainty estimation. Connecting
root nodes across sentences enables cross-sentence
token interactions, allowing uncertainty informa-
tion to propagate effectively across the entire out-
put. This formulation ensures that pivotal words
influence the overall confidence estimation. The
resulting global dependency graph provides a struc-
tured representation of LLM output, enhancing the
ability of the proposed approach to assess uncer-
tainty in LLM-generated text.

4.2 Hierarchical Learning

Transforming dependency parse trees into
graphs enables us to frame uncertainty estimation
as a graph aggregation problem, where each LLM-
generated output is represented as a graph with
nodes corresponding to words and edges capturing
dependency relations. Each node has token-level



features, such as next-token probability, entropy,
and hidden state embeddings. We propose a hierar-
chical graph pooling approach inspired by semantic
parsing trees (Song and King, 2022) to aggregate
this information efficiently.

In a dependency graph (Fig. 2), words appear
at different levels based on their distance from the
root token, which often signifies their semantic
importance. Higher-level words generally play a
more critical role in defining the sentence’s mean-
ing and, consequently, have a greater impact on
uncertainty. To capture this, we introduce graph
pooling, which groups tokens at different hierar-
chical levels, mitigating the effect of noisy words
while assigning appropriate contributions to each
token’s uncertainty estimate.

Formally, given a dependency graph G = (V, £),
where V represents words and £ defines their syn-
tactic relations, we define an adjacency matrix
A € R™ " and a feature matrix X € R™*?, In-
spired by hierarchical graph pooling methods (Ying
et al., 2018), we define the node clustering process
using a learned soft assignment matrix:

S! = Softmax(f (A", &, 0,)), (3)

where A’ and X" represent the adjacency and fea-
ture matrices at pooling layer [, and f in a GNN
with learnable parameters 6.

Before pooling, information propagates across
the graph to model connectivity between clusters:

zh= A xhe,), 4)

where 6, are the parameters of the GNN responsi-
ble for feature transformation. Using the learned
assignment matrix S', the graph is iteratively coars-
ened to generate a more compact representation:

+1 [ =l d
X't = Szl e R X
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Here, X! and A’ are iteratively refined representa-
tions at each pooling level, ensuring that semanti-
cally important tokens retain greater influence in
uncertainty estimation. By hierarchically aggregat-
ing token-level uncertainty, GENUINE enhances
interpretability and robustness, providing a struc-
tured estimation of confidence in LLM-generated
responses.

4.3 Joint Optimization
Uncertainty estimation in LLMs relies on multi-

ple feature types as discussed in Section 3.3, includ-
ing hidden states (white-box features), probability,

and entropy (grey-box features), each contribut-
ing differently to uncertainty estimation. Prior
work (Liu et al., 2024b) highlights that hidden
states encode valuable uncertainty information due
to the misalignment between model pretraining and
uncertainty estimation. Additionally, hidden states
capture semantic relationships among tokens, mak-
ing them crucial for confidence evaluation.

We propose a joint optimization framework to
integrate these features effectively. The framework
of GENUINE shown in Fig. 3 consists of a se-
mantic pooling module, which leverages hidden
state embeddings, and a structural pooling mod-
ule, which utilizes probability and entropy features.
Both modules share the same dependency parse
tree, ensuring a unified structural representation.
The outputs from these modules are then fed into
a fusion module, which learns a joint graph pool-
ing matrix to combine information from both the
semantic and structural components. This fused
graph pooling matrix is further optimized to bal-
ance structural and semantic uncertainty signals,
refining the final uncertainty estimation.

Rather than merging features at the node level,
we fuse them at the assignment matrix level to
ensure a balanced integration of structural and se-
mantic information. There are three key reasons
for this choice. First, direct feature fusion would
overemphasize embeddings, as their dimensional-
ity is significantly larger than probability and en-
tropy features. Second, embeddings contain rich
semantic context but provide limited insights into
generation-specific uncertainty, whereas probabil-
ity and entropy features offer more precise con-
fidence indicators. Third, the assignment matrix
inherently captures token importance and relation-
ships, making it a more suitable fusion point for
diverse feature types.

To achieve this, we introduce an end-to-end
learnable fusion module, where the fused assign-
ment matrix is computed as:

Si = Softmax(g (‘S;;rey? S\lvhitea 08*))7 (6)
where Sérey and vahite are the assignment matrices
at pooling layer [ from the structural and semantic
modules, respectively, and 6, denotes the learn-
able parameters of the fusion function g.

Following this, a GNN propagates information
across the graph, refining node representations
through:

Zi :f(AEk>X>ol<702*)> (7
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Figure 3: The Overview of GENUINE, composed of three modules: (1) pooling based on grey-box features, (2)
pooling based on white-box features, and (3) a learnable fusion process integrating both modules.

where f is a GNN with learnable parameters 6.,..
These updated assignment and node embedding
matrices are used to refine the graph iteratively:
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Here, X, encodes probability and entropy features,
while embeddings enhance the model’s semantic
understanding. The independent assignment matri-
ces Sérey and Sévhite are jointly optimized to capture
both structural and contextual uncertainty, improv-
ing the robustness of LLM confidence evaluation.

5 Experiments

This section evaluates GENUINE across multiple
dimensions: (1) its effectiveness in assessing uncer-
tainty (Section 5.2), (2) an ablation study to analyze
the role of the fused modules (Section 5.3), (3) a
scalability test to assess computational efficiency
(Section 5.4), (4) the impact of dependency parse
trees on uncertainty estimation (Appendix B.2),
(5) a parameter analysis to determine the sensitiv-
ity of GENUINE to hyperparameter tuning (Ap-
pendix B.3), and (6) the impact of LLM parame-
ters on GENUINE’s uncertainty estimation perfor-
mance (Appendix B.4). Due to space constraints,
the results for experiments on dimensions 4, 5, and
6 are presented in Appendix B.

5.1 Experimental Setup

We evaluate GENUINE using different LLM
architectures, multiple datasets spanning various
NLP tasks, and state-of-the-art baselines. All ex-
periments are conducted on a Linux server with 64

AMD EPYC 7313 CPUs and an Nvidia Tesla A100
SXM4 GPU with 80 GB memory.

LLMs. We consider open-source LLMs, includ-
ing Llama2-7B, Llama2-13B, Llama3-8B (Touvron
et al., 2023), as well as Gemma-7B and Gemma2-
9B (Gemma Team et al., 2024). The respective
tokenizers provided by Hugging Face are used, and
model parameters remain unchanged.

Datasets. We evaluate uncertainty estimation on
three NLP tasks: question answering, machine
translation, and summarization. Each dataset is
split into training (60%), validation (10%), and test
(30%) sets, with five runs performed to mitigate the
effects of randomness in parameter optimization.
Few-shot prompting is adopted, with templates de-
tailed in Appendix A.2.

Question Answering. We use the CoQA (Reddy
et al., 2019) and TriviaQA (Joshi et al., 2017)
datasets to assess LLMs’ ability to generate re-
sponses based on contextual understanding and
pre-trained knowledge. Additionally, we include
the Finance QA dataset (Taori et al., 2023), which
evaluates domain-specific knowledge in financial
contexts. Rouge-1 (Lin and Och, 2004) is used
as the scoring function, labeling a response y; as
correct if s(yi, ¥i wrue) > 0.3.

Machine Translation. We evaluate translation qual-
ity using the WMT 2014 dataset (Bojar et al., 2014),
with BLEU score (Papineni et al., 2002) as the
metric. A response y; is considered correct if
S(Yiy}’i,true) > 0.3.

Summarization. The CNN (Hermann et al., 2015)
dataset is used for summarization task, where gen-
erated outputs are labeled as correct if they achieve
a Rouge-L score of at least 0.35, following (Quach
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Figure 4: Comparison of AUROC on five datasets, four LLMs, and six baselines. Error bars denote variance over
five runs. GENUINE and its transformations outperform baselines for all datasets and LLMs.

etal., 2024).

Baselines. We compare GENUINE against
four categories of state-of-the-art baselines: (1)
A4C (Tian et al., 2023b), which directly queries
the LLM for its self-assessed uncertainty, (2) En-
tropy and probability-based methods, including
Avg Probability (Prob) and Avg Entropy (Ent),
as defined in Table 2 in the Appendix A.1, (3)
Semantic-aware methods, such as Semantic En-
tropy (SE) (Kuhn et al., 2023) and SAR (Duan
et al., 2024), and (4) A supervised uncertainty esti-
mation approach (Sup) (Liu et al., 2024b). Details
of the prompt templates for each dataset are pro-
vided in the Appendix A.2.

Evaluation Metrics. We adopt the methodol-
ogy from (Liu et al., 2024b; Kuhn et al., 2023)
to assess how well GENUINE distinguishes be-
tween correct and incorrect responses using un-
certainty scores. The primary metric is the area
under the receiver operating characteristic curve
(AUROC), which measures the ability to rank cor-
rect responses higher than incorrect ones based on
uncertainty. In addition to AUROC, we evaluate
calibration performance using Expected Calibra-
tion Error (ECE) (Naeini et al., 2015), quantify-
ing the deviation between estimated probabilities
and actual correctness. Furthermore, we report the
Brier score (Herniandez-Orallo et al., 2011) and
negative log-likelihood (NLL) (Hastie et al., 2001)
to assess how well GENUINE aligns uncertainty
estimates with true confidence levels. We present
the AUROC performance in the main paper, while
additional results for ECE, Brier score, and NLL
are provided in Appendix B.1.

5.2 Performance of Uncertainty Estimation

We evaluate GENUINE on the AUROC met-
ric, comparing its performance against state-of-the-
art baselines. The results in Fig. 4 demonstrate
that GENUINE consistently outperforms existing
methods, particularly in tasks involving long-form
text generation, such as WMT, Finance, and CNN.
Integrating dependency-based structural modeling
enhances uncertainty estimation by mitigating er-
ror propagation over extended sequences. This is
especially valuable for applications requiring con-
textually accurate long-form responses, such as
legal, medical, and financial Al assistants. Addi-
tionally, GENUINE exhibits superior calibration
performance, as confirmed by ECE, NLL, and Brier
score results in Appendix B.1, reducing uncertainty
misalignment in downstream tasks.

The results further highlight that response length
significantly impacts uncertainty estimation. Ta-
ble 4 in the Appendix presents the dataset and
LLM output lengths. In shorter responses, such as
those in TriviaQA and CoQA, GENUINE achieves
modest gains over SAR, improving AUROC by
2% for Llama3-8B and 1% for Llama2-7B. How-
ever, the advantage becomes more pronounced in
longer responses, such as those in WMT, Finance,
and CNN, with 29% and 15% improvements in
WMT for Llama3-8B and Llama2-7B, respectively.
Traditional token-wise uncertainty models struggle
with cumulative errors over long sequences, mak-
ing structured uncertainty estimation essential for
trustworthy Al applications, including conversa-
tional agents and document summarization.

Feature selection also plays a crucial role in
uncertainty estimation. While combining multi-



Table 1: Ablation study of fusion process on TriviaQA

Methods Llama3-8B | Gemma2-9B

) AUROC 1 AUROC 1
Simple concat | 0.809+0.096 | 0.963+0.015
GENUINE | 0.894+0.032 | 0.969+0.009

ple features generally improves performance (Triv-
i1aQA, CoQA, WMT), hidden-layer embeddings
alone (GENUINE-white) perform best on Finance
and CNN datasets. Longer sequences accumulate
token-wise uncertainty errors, affecting entropy-
based methods, whereas hidden-layer features pro-
vide a stable representation, remaining robust re-
gardless of sampling strategy. These findings sug-
gest that open-source LLMs with access to internal
representations offer a significant advantage in un-
certainty modeling. Future research should explore
dynamic feature selection mechanisms, optimizing
uncertainty estimation based on sequence length
and task-specific requirements.

These results underscore the importance of struc-
tured uncertainty estimation and suggest that in-
corporating hierarchical representations, adaptive
modeling, and task-aware feature selection can fur-
ther enhance uncertainty estimation in real-world
NLP applications. By leveraging dependency pars-
ing, GENUINE provides a robust framework for
improving confidence calibration, making LLMs
more reliable for high-stakes decision-making.

5.3 Ablation Study

To assess the impact of the fused assignment
matrix, we conduct ablation experiments on the
TriviaQA dataset using Llama3-8B and Gemma2-
9B. As shown in Table 1, the fusion process (Fig. 3)
improves AUROC by 10.5% for Llama3-8B and
0.6% for Gemma2-9B compared to simple concate-
nation. These results demonstrate that the fusion
strategy effectively integrates structural and seman-
tic uncertainty signals, enabling more robust un-
certainty propagation across tokens. In contrast,
simple concatenation fails to capture meaningful
relationships between uncertainty features, lead-
ing to suboptimal performance. The consistent im-
provement across models highlights the importance
of structured feature fusion in uncertainty estima-
tion. By jointly optimizing structural and semantic
representations, GENUINE enhances both robust-
ness and interpretability, making it well-suited for
uncertainty-aware applications.

5.4 Scalability

We evaluate the scalability of GENUINE by
analyzing its computational efficiency as the num-

—e— our Method

T --- Linear Time 280 4
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Figure 5: Scalability test on the node number and edge
density

ber of nodes and graph density increase. The re-
sults in Fig. 5a and Fig. 5b highlight GENUINE'’s
ability to handle increasing structural complexity
efficiently.

As shown in Fig. 5a, training time scales near-
linearly with the number of nodes, demonstrating
that GENUINE remains computationally feasi-
ble even for larger graphs. This suggests that the
model can efficiently process uncertainty in large-
scale LLM outputs without excessive overhead. In
Fig. 5b, computational cost decreases as graph den-
sity increases, indicating that denser graphs facili-
tate more efficient uncertainty aggregation. Sparse
graphs (e.g., 10% density) require 1.5 times more
processing time than fully connected graphs (100%
density), emphasizing the trade-off between struc-
ture complexity and efficiency.

These findings confirm that GENUINE scales
effectively with increasing graph complexity, mak-
ing it well-suited for high-dimensional NLP tasks
such as document summarization, multi-turn dia-
logue, and knowledge-intensive reasoning. Its abil-
ity to maintain efficiency while capturing semantic
and structural relationships ensures its adaptability
to real-world LLM evaluation scenarios.

6 Conclusion

This paper introduces dependency-based seman-
tic structures for uncertainty estimation in LLMs.
Our findings prove that incorporating structural in-
formation enhances uncertainty modeling, leading
to more accurate and calibrated estimates. GEN-
UINE outperforms existing uncertainty estimation
methods (AUROC), particularly in long-form text
generation, while also improving calibration met-
rics (ECE, NLL, Brier). Our results show that
semantic graphs derived from dependency parse
trees enhance uncertainty modeling, making them
valuable for evaluating LLMs’ outputs and guid-
ing future improvements in adaptive uncertainty
estimation in dynamic, real-world settings.



7 Ethical Consideration

GENUINE enhances the credibility and reliabil-
ity of LLMs by improving uncertainty estimation,
helping to mitigate the risks of misinformation.
By refining confidence assessment, GENUINE
reduces misinformation and promotes more trust-
worthy Al-generated content.

However, several ethical limitations must be con-
sidered. Uncertainty estimation does not prevent
misinformation but provides a measure of confi-
dence, which still requires human interpretation.
Over-reliance on uncertainty scores could lead to
misjudgments, either overestimating or underesti-
mating the reliability of LLM outputs. Additionally,
GENUINE’s effectiveness depends on dependency
parsing and feature selection, which may introduce
biases if trained on imbalanced datasets. Further-
more, while GENUINE improves model calibra-
tion, uncertainty quantification remains imperfect,
and its reliability may vary across domains, partic-
ularly in high-stakes applications such as health-
care, finance, and law. Addressing these challenges
requires ongoing evaluation, transparency, and re-
sponsible deployment to ensure ethical and fair AL
use.

8 Limitations

GENUINE introduces a graph-based approach for
confidence evaluation in LLMs, but certain limi-
tations remain. GENUINE relies on token logits
and embeddings, which, though widely available
in open-source and commercial LLMs, may limit
its applicability in black-box scenarios where such
information is restricted. Additionally, its perfor-
mance is influenced by generation length and la-
beled data availability, making it sensitive to dataset
variability. Finally, this study focuses on NLP tasks
and datasets, leaving open the exploration of its
effectiveness in multimodal and cross-domain ap-
plications.
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Appendix
A Implementation Details

This section provides an overview of the implemen-
tation details of GENUINE.


https://arxiv.org/abs/2306.10193
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://arxiv.org/abs/2305.13160
https://arxiv.org/abs/2305.13160
https://arxiv.org/abs/2305.13160
https://arxiv.org/abs/2305.13160
https://arxiv.org/abs/2305.13160
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/D19-1324
https://doi.org/10.18653/v1/D19-1324
https://doi.org/10.18653/v1/D19-1324
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826

A.1 Details of Features

This section provides the mathematical defini-
tions of the features used in our uncertainty estima-
tion framework. A detailed breakdown is presented
in Table 2.

Table 2: Features used for the supervised task of uncer-
tainty estimation for LLMs.

Name Definition
Ent H(po(-1%, 91, -, Yj-1))
Max Ent max;cqr ny H(po(-[X,y1,.--,5-1))
Min Ent minje{l,...,n} H(pg('|X, Yts- - yjfl))
1 n
AVg Ent ﬁzjil H(p@('|xa yl?"'ayjfl))
Std Ent Z;L:l(H(pB("va:;;'l?yjfl))_AVg El’]t)2
Prob p@(yj‘x7y17-"7yj—1)
Max Probl max;e1,.. ny Po(¥il%,¥15- -, ¥5-1)
Min Prob mirllje{l,mm} po(y;lx y1, .-, yj-1)
Avg Prob Ezyzlpa(yj\x»ylw--’yjfl)
Std Prob 251 (Pe(y; \X,y1;l-:i1/j— 1)—Avg Prob)”

A.2 Prompt Template

We adopt a few-shot prompting strategy, fol-
lowing the approach of (Liu et al., 2024b). Each
prompt comprises four components: introduction,
examples, question, and answer. The examples are
user-defined question-answer pairs structured iden-
tically to the target task, ensuring consistency in
format. The model receives the formatted template
along with the reference question and is prompted
to generate an appropriate response. This struc-
tured approach helps standardize uncertainty esti-
mation across different tasks.

TriviaQA

Examples: Q: What star sign is Michael

Schwarzenegger born? A: 1950s

Answer the question as following examples.

Caine? A: Pisces. Q: Which George
invented the Kodak roll-film camera? A:
Eastman. Q: ... A:

Q: In which decade was Arnold
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CoQA
Reading the passage and answer given
guestions accordingly. Passage: The

Vatican Apostolic Library, more commonly
called the Vatican Library or simply the
Vat, is the library of the Holy See,
located in Vatican City. Examples:
Q: When was the Vat formally opened? A:
It was formally established in 1475. Q:

oL A L

Q: what was started in 2014? A: a project.
WMT

What is the English translation of the
following sentence? Q: Spectaculaire

saut en wingsuitadu-dessus de Bogota. A:

Spectacular Wingsuit Jump Over Bogota. Q:
. A

Q: Une boite noire dans votre voiture ?

A: A black box in your car?

Finance

Answer the question as following examples.
Examples: Q: For a car, what scams can be
plotted with @% financing vs rebate? A:
he car deal makes money 3 ways. If you
pay in one lump payment. ... Q: ... A:

Q: Where should I be investing my money?
A: Pay off your debt. As you witnessed,
no "investment” % is guaranteed.

Finance

What are the highlights in this paragraph?
Examples: Q: LONDON, England (Reuters) -
Harry Potter star Daniel Radcliffe gains
access to a reported £20 million ($41.1
million) fortune ... A: Harry Potter star
Daniel Radcliffe gets £20M fortune as he

turns 18 Monday . ... Q: ... A:
Q: Editor’s note: In our Behind the Scenes
series, CNN correspondents share ... A:

Mentally ill inmates in Miami are housed
on the "forgotten floor" ...

B Additional Experiments

In this section, we first assess model calibration
performance through ECE, NLL, and Brier score
metrics, shown in Figures 6, 7, and 8, respectively,
comparing GENUINE’s reliability against base-
lines. Then, we present additional experimental
results evaluating GENUINE across three key di-
mensions: (1) the impact of dependency parse



trees on uncertainty estimation (Section B.2), (2)
a parameter analysis to determine the sensitiv-
ity of GENUINE to hyperparameter tuning (Sec-
tion B.3), and (3) the impact of LLM parameters on
GENUINE'’s uncertainty estimation performance
(Section B.4).

B.1 Calibration Performance of GENUINE

Calibration ensures that model confidence aligns
with actual correctness, making uncertainty esti-
mation more reliable and interpretable. We assess
GENUINE and baseline methods using Expected
Calibration Error (ECE), Negative Log-Likelihood
(NLL), and Brier score, as shown in Figures 6, 7,
and 8.

The ECE results (Fig. 6) reveal that while GEN-
UINE outperforms baselines in WMT, Finance,
and CNN datasets, it does not consistently achieve
the lowest calibration error in TriviaQA and CoQA.
This suggests that token-level methods such as
SAR and entropy-based approaches remain compet-
itive in capturing uncertainty effectively for shorter
responses. However, in longer text generation tasks,
where error accumulation can distort confidence es-
timates, GENUINE demonstrates superior calibra-
tion by leveraging dependency structures to refine
uncertainty aggregation.

The NLL results (Fig. 7) further reinforce these
trends. GENUINE consistently achieves lower
NLL across all datasets, indicating that it assigns
more accurate probability distributions to correct
and incorrect responses compared to baselines. The
advantage is particularly pronounced in WMT, Fi-
nance, and CNN datasets, where long-form re-
sponses make token-level uncertainty estimation
less effective. Baselines like A4C and SE, which
rely on self-evaluation or direct entropy measures,
exhibit significantly higher NLL, suggesting that
they struggle to generalize confidence estimates
across diverse text lengths and response structures.

The Brier score results (Fig. 8) show that GEN-
UINE achieves competitive performance across all
datasets, with particularly strong improvements in
WMT, Finance, and CNN datasets, aligning with
its NLL performance. The gap between GEN-
UINE and its grey-box and white-box variants
indicates that hidden layer representations signif-
icantly improve calibration, especially for longer
outputs. However, the higher ECE in TriviaQA
and CoQA suggests that while structural modeling
improves overall uncertainty estimation, it may not
always provide the best confidence calibration for
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shorter text generations, where simpler token-wise
approaches remain effective.

These results highlight that GENUINE excels in
modeling uncertainty for long-form text but is less
dominant in short-response tasks, where entropy-
based methods can still provide competitive cali-
bration. The findings reinforce the need for task-
specific uncertainty estimation strategies, where
dependency-aware modeling is particularly benefi-
cial for applications involving complex text struc-
tures and extended reasoning.

B.2 Graph Structure and Uncertainty
Estimation

Understanding the impact of graph structure on

uncertainty estimation is essential for refining con-
fidence assessment in LLM-generated responses.
This section evaluates the effectiveness of depen-
dency parse trees and analyzes graph structure vari-
ations across datasets and LLMs, using results from
Table 3 and Table 4.
Dependency Parse Trees vs. Next-Token Graphs.
To assess the impact of different graph structures,
we compare the dependency parse tree (DPT)
against the next-token graph (NTG), where edges
only connect adjacent words in a sentence. The
results in Table 3 clearly demonstrate that DPT-
based graphs consistently outperform NTG-based
graphs across all evaluation metrics, reinforcing
the importance of semantic structure in uncertainty
estimation.

For Llama3-8B, DPT achieves an AUROC of
0.894, improving over NTG (0.885), while also
achieving lower ECE (0.246 vs. 0.264), NLL
(0.362 vs. 0.437), and Brier score (0.094 vs. 0.130).
Similar trends hold for Gemma2-9B, where DPT
significantly outperforms NTG with an AUROC
improvement of nearly 6% (0.905 vs. 0.846) and
lower calibration errors. These results confirm
that structural relationships encoded in dependency
graphs improve uncertainty estimation, providing
richer contextual information than simple word ad-
jacency models.

When comparing grey-box vs. white-box fea-
tures, we observe that DPT consistently performs
better than NTG in both settings. For instance,
DPT w/ grey achieves an AUROC of 0.903 for
Llama3-8B, outperforming NTG w/ grey (0.897)
while maintaining better calibration across ECE,
NLL, and Brier scores. The trend holds for white-
box features, where DPT w/ white achieves 0.809
AUROC vs. 0.795 for NTG w/ white, showing
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Figure 6: Comparison of ECE on five datasets, four LLMs, and six baselines. Error bars denote variance over five
runs.
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Figure 7: Comparison of NLL on five datasets, four LLMs, and six baselines. Error bars denote variance over five
runs.
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Figure 8: Comparison of Brier scores on five datasets, four LLMs, and six baselines. Error bars denote variance
over five runs.
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Figure 9: Experimental results on five datasets and six baseline models on Llama2-13B model. Error bars denote
variance over five runs.

Table 3: Comparison of different graph structures for uncertainty estimation on TriviaQA. NTG refers to the
next-token graph utilizing both white-box and grey-box features, while DPT represents the dependency parse tree
graph with the same feature set. NTG w/ grey and DPT w/ grey denote the respective graphs using only grey-box
features, whereas NTG w/ white and DPT w/ white correspond to configurations using only white-box features.
Llama3-8B Gemma2-9B

Graphs

AUROC 1

ECE]

NLL |

Brier |

AUROC 1

ECE ]

NLL ]

Brier |

NTG
DPT

0.885+0.048
0.894+0.032

0.264+0.040
0.24620.007

0.437+0.133
0.362+0.005

0.130+0.062
0.094+0.002

0.846+0.088
0.905+0.041

0.312+0.082
0.248+0.009

0.442+0.122
0.356+0.004

0.131+0.056
0.092+0.002

NTG w/ grey
DPT w/ grey

0.897+0.039
0.903+0.025

0.245+0.007
0.244+0.008

0.363+0.007
0.360+0.003

0.095+0.003
0.094+0.002

0.914+0.041
0.922+0.021

0.251+0.006
0.245+0.005

0.354+0.006
0.352+0.006

0.091+0.003
0.090+0.003

NTG w/ white
DPT w/ white

0.795%0.049
0.809+0.044

0.249+0.010
0.246+0.009

0.364+0.007
0.362+0.007

0.095+0.003
0.094+0.003

0.960+0.019
0.970+0.010

0.261+0.009
0.261+0.006

0.357+0.006
0.353+0.003

0.092+0.003
0.090+0.001

0.955
0.950
50.945
20.940
o
00.935
0.930
0.925
0.920

Figure 10: Parameter analysis test on number of pooling
layers and remaining nodes ratio for each pooling layer

Table 4: Graph Statistics. Here # Node denotes the
average node number and Density denotes the average

edge density.
Datasets Llama3-8B . Llama2-7B .
#Node | Density | # Node | Density
TriviaQA 3.86 0.56 3.77 0.58
CoQA 5.60 0.47 5.59 0.50
WMT 24.01 0.11 21.75 0.13
Finance 46.46 0.05 21.70 0.15
CNN 61.21 0.04 87.98 0.11
Datasets GemmaZ—9B. Gemma-7B ‘
#Node | Density | # Node | Density
TriviaQA 3.83 0.56 3.84 0.56
CoQA 5.28 0.47 5.19 0.48
WMT 23.65 0.12 27.14 0.10
Finance 43.61 0.05 42.92 0.06
CNN 175.33 0.01 162.96 0.01

that dependency parsing enhances uncertainty mod-
eling even when using only hidden-layer embed-
dings.

These findings suggest that semantic-aware un-
certainty estimation is essential, especially for

longer text sequences where sequential token de-
pendencies alone fail to capture structural nuances.
By modeling hierarchical relations, DPT-based un-
certainty estimation improves both reliability and
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calibration, making it particularly useful for struc-
tured prediction tasks.

Graph Variations Across Datasets and LLMs.
Beyond structural differences, graph complexity
varies significantly across datasets and LLM archi-
tectures, as shown in Table 4. We observe several
key trends.

First, dataset complexity impacts graph structure.
TriviaQA produces the shortest outputs, leading to
small graphs with an average of 3.8 nodes, while
CNN generates significantly longer responses, re-
sulting in much larger graphs (61.2 nodes for
Llama3-8B, 175.3 for Gemma2-9B). This confirms
that longer text generations create more intricate de-
pendency structures, further reinforcing why graph-
based uncertainty estimation is particularly benefi-
cial for longer responses.

Second, LLM architectures influence graph
statistics. While Llama models tend to produce
slightly longer responses than Gemma models in
shorter datasets like TriviaQA and CoQA, this
trend reverses in long-form datasets such as CNN,
where Gemma models generate significantly longer
outputs than Llama models (e.g., 175.3 nodes vs.
61.2 nodes in CNN for Gemma2-9B and Llama3-
8B, respectively). This suggests that some LLM
families prioritize brevity while others favor more
detailed responses, impacting uncertainty estima-
tion requirements.

Lastly, graph density plays a role in structural
complexity. Datasets with shorter outputs (Triv-
1aQA, CoQA) tend to have higher edge density,
while longer outputs (CNN, Finance) exhibit lower
density, indicating that dependency structures be-
come more sparse as response length increases.
This suggests that uncertainty estimation models
should be designed to handle both dense, local de-
pendencies and sparse, long-range relationships
effectively.

Impact on Uncertainty Estimation Performance:
The trends in graph statistics correlate directly with
AUROC improvements in Figure 4, showing that
graph-based uncertainty estimation is particularly
beneficial for longer text. The WMT dataset, for
example, shows substantial AUROC gains when us-
ing graph structures, emphasizing that graph-based
methods provide the most value in tasks requiring
extended reasoning and structured generation.

Overall, these findings confirm that dependency
parsing enhances uncertainty estimation by provid-
ing hierarchical token relationships, making it par-
ticularly valuable for long-form generation, struc-
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tured prediction, and document-level tasks. The
graph structure directly influences uncertainty esti-
mation effectiveness, reinforcing the need for adap-
tive modeling strategies based on dataset and model
characteristics.

B.3 Parameter Sensitivity

Understanding the impact of hyperparameters
on GENUINE’s performance is essential for op-
timizing uncertainty estimation while ensuring ef-
ficiency. We evaluate two key parameters: the
number of pooling layers (ranging from 1 to 4) and
the remaining node ratio at each pooling step. The
results, shown in Fig. 10, reveal important trends
that highlight GENUINE’s robustness and adapt-
ability.

The results indicate that AUROC remains high
with fewer pooling layers, suggesting that a deep
hierarchy is not necessary for effective uncertainty
estimation. As the number of pooling layers in-
creases, performance fluctuates, indicating that ex-
cessive pooling may lead to loss of critical struc-
tural information, reducing the model’s ability to
capture meaningful uncertainty signals. This trend
suggests that GENUINE achieves optimal results
with a moderate number of pooling layers, avoiding
unnecessary complexity while maintaining strong
predictive performance.

Additionally, the remaining node ratio plays a
crucial role in uncertainty estimation. The model
may struggle with redundant information when too
many nodes are retained, leading to slightly lower
AUROC. However, when the number of retained
nodes is optimized, performance improves, rein-
forcing the idea that removing less informative
nodes enhances uncertainty representation. Inter-
estingly, when the remaining ratio is lower, but the
number of pooling layers is set appropriately, AU-
ROC reaches peak performance, highlighting the
benefits of structured feature reduction in refining
uncertainty quantification.

Overall, these findings demonstrate that GEN-
UINE is robust to hyperparameter choices, requir-
ing minimal tuning to achieve strong performance.
The ability to maintain high AUROC across a range
of configurations suggests that GENUINE can be
easily applied to various tasks and LL.Ms without
extensive parameter optimization, making it highly
adaptable for real-world deployment.

B.4 Impact of LLM Parameters

Understanding how LLM architecture and scale
affect uncertainty estimation is crucial for assessing



the generalizability of GENUINE. We compare
the performance of Llama2-13B (Fig. 9) against
Llama3-8B and Llama2-7B, analyzing its effec-
tiveness across AUROC, calibration metrics (ECE,
NLL, and Brier scores), and overall robustness.
Uncertainty Estimation Across LLM Variants.
Llama2-13B achieves strong AUROC performance
across all datasets, often matching or surpassing
Llama3-8B and Llama2-7B. The improvements are
particularly evident in WMT, Finance, and CNN
datasets, where Llama2-13B consistently outper-
forms its smaller counterparts. This suggests that
larger models benefit from enhanced representa-
tion learning, leading to more stable and accurate
uncertainty estimation in complex, long-form text
generation tasks. However, in TriviaQA and CoQA,
the AUROC gains are marginal, indicating that the
advantages of increased model size are less pro-
nounced for shorter responses.

Calibration Trends: ECE, NLL, and Brier Score
Analysis. One notable observation is that GEN-
UINE outperforms baselines in ECE for TriviaQA
and CoQA on Llama2-13B, whereas this trend is
not observed in Llama3-8B and Llama2-7B. This
suggests that larger models may allow GENUINE
to better align confidence scores with correctness
probabilities in short-response tasks, where previ-
ous versions struggled to outperform entropy-based
baselines. The ECE results (Fig. 6) further con-
firm that in WMT, Finance, and CNN, Llama2-13B
achieves lower calibration errors, highlighting its
ability to generate better-aligned confidence esti-
mates for longer outputs.

The NLL and Brier score results (Figures 7 and
8) reinforce these findings. Llama2-13B consis-
tently achieves lower NLL and Brier scores across
datasets, particularly in WMT, Finance, and CNN,
where uncertainty estimation benefits from struc-
tured confidence propagation. This suggests that
larger models improve AUROC and provide better-
calibrated uncertainty estimates, making them well-
suited for tasks requiring complex reasoning and
structured text.

The results indicate that larger models signifi-
cantly enhance both uncertainty estimation and con-
fidence calibration, particularly in short-response
tasks like TriviaQA and CoQA, where GENUINE
surpasses entropy-based baselines in ECE for the
first time. This suggests that model size can in-
fluence calibration effectiveness differently across
datasets, with larger architectures improving both
long-form uncertainty quantification and short-text
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confidence alignment. Future research should ex-
plore adaptive calibration strategies tailored to dif-
ferent response lengths, ensuring that LLMs remain
reliable across diverse NLP applications.

Overall, these findings reinforce that GENUINE
scales effectively across different LLM architec-
tures, maintaining robust uncertainty estimation
and calibration performance while highlighting ar-
eas where model size influences uncertainty quan-
tification.
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