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ABSTRACT

Structured pruning with knowledge distillation is a potent combination for obtaining small
language models (SLMs) with significantly fewer training tokens and compute resources
compared to training from scratch. In this work, we investigate how this strategy can
be effectively applied in instances where access to the the original pretraining dataset is
restricted. We introduce a new teacher correction phase before distillation which lets the
teacher model adjust to our specific data distribution using a lightweight fine-tuning phase.
We apply this strategy to compress the Mistral NeMo 12B and Llama 3.1 8B models to 8B
and 4B parameters, respectively, using pruning and distillation. We explore two distinct
pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) prun-
ing, and evaluate the results on common benchmarks from the LM Evaluation Harness.
The models are then aligned with NeMo Aligner and further tested for instruction fol-
lowing, role-play, math, coding and function calling capabilities. This approach produces
the state-of-the-art Mistral-NeMo-Compressed-8B (MN-COMPRESSED-8B for brevity)
model from Mistral NeMo 12B, and a compelling 4B model from Llama 3.1 8B.

1 INTRODUCTION

Pretrained model
(Mistral-NeMo-12B, 
LLaMa 3.1 8B etc)

Corrected 
Teacher

Teacher
Correction

(~100B)

Pruning

StudentMinitron model

Pretrained model
(Mistral-NeMo-12B, 
LLaMa 3.1 8B etc)

Corrected 
Teacher

Teacher
Correction

(~100B)

Pruning

StudentCompressed 
model

Figure 1: High-level overview of our proposed
pruning and distillation approach. The total
number of tokens used for each step is indicated
in parentheses.

LLM providers often train an entire family of models
from scratch, each with a different size (number of pa-
rameters, e.g. Llama 3.1 with 8B, 70B, and 405B pa-
rameters (Dubey & et al, 2024)); this is done to aid users
targeting different deployment scales, sizes and compute
budgets. However, training multiple billion-plus param-
eter models from scratch is extremely time-, data- and
resource-intensive. Recent work has demonstrated the
effectiveness of combining weight pruning with knowl-
edge distillation to significantly reduce the cost of train-
ing LLM model families Muralidharan et al. (2024).
Here, only the biggest model in the family is trained from
scratch; other models are obtained by successively prun-
ing the bigger model(s) and then performing knowledge
distillation Hinton et al. (2015) to recover the accuracy of
pruned models. While highly effective, this line of work assumes access to the original pretraining dataset
for the distillation phase. With a growing number of frontier LLMs (including open ones) being trained on
private, proprietary datasets Dubey & et al (2024); Team et al. (2024), this assumption often fails to hold.

In this work, we adapt the original Minitron compression recipe (Muralidharan et al., 2024) along two
directions: (1) we introduce a new teacher correction phase for adapting the teacher (unpruned) model to our
own data distribution, thus removing any need to access the original pretraining dataset, and (2) we introduce
a new and more effective downstream task-based saliency criteria for depth pruning. We successfully apply
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Benchmarks(shots) Gemma2 Minitron Llama-3.1-Compressed Gemma Mistral Llama 3.1 MN-Compressed Mistral NeMo
2B* 4B 4B-Depth 4B-Width 7B 7B 8B 8B 12B-Base 12B-FT

Total Params 2.6B 4.2B 4.5B 4.5B 8.5B 7.3B 8B 8.4B 12.2B 12.2B
Non-Emb. Params 2B 2.6B 3.7B 3.7B 7.7B 7B 7B 7.3B 10.9B 10.9B
Training Tokens 2T 94B 94B 94B 6T 8T 15T 380B - +0.1T

Winogrande(5) 70.9 74.0 72.1 73.5 78 78.5 77.3 80.4 82.2 82.7
Arc challenge(25) 55.4 50.9 52.6 55.6 61 60.3 57.9 64.4 65.1 62.3
MMLU(5) 51.3 58.6 58.7 60.5 64 64.1 65.3 69.5 69.0 70.1
Hellaswag(10) 73.0 75.0 73.2 76.1 82 83.2 81.8 83.0 85.2 85.3
GSM8k(5) 23.9 24.1 16.8 41.2 50 37.0 48.6 58.5 56.4 55.7
Truthfulqa(0) - 42.9 38.2 42.9 45 42.6 45.0 47.6 49.8 48.3
XLSum en(20%) (3) - 29.5 27.2 28.7 17 4.8 30.0 32.0 33.4 31.9
MBPP(0) 29.0 28.2 30.7 32.4 39 38.8 42.3 43.8 42.6 47.9
HumanEval(n=20)(0) 20.1 23.3 - - 32.0 28.7 24.8 36.2 23.8 23.8

Table 1: Accuracy numbers for our MN-COMPRESSED-8B and LLAMA 3.1-COMPRESSED-4B models.
We compare our models to similarly-sized SoTA open models on a variety of common language modeling
benchmarks. All evaluations are conducted by us, except entries marked with * (taken from corresponding
papers).

Benchmarks Phi-2 Gemma2 Qwen2 Minitron Llama-3.1-Compressed LLama 3.1 MN-Compressed
2.7B 2B 1.5B 4B 4B-Depth 4B-Width 8B 8B

MT-Bench (GPT4-Turbo) 5.14 7.44 5.49 6.46 6.16 6.78 7.78 7.86
MMLU (5) 56.8 56.9 55.6 59.3 60.4 61.1 69.4* 70.4
GSM8K (0) 19.9 52.2 27.2 65.1 72.5 75.2 83.8 87.1
GPQA (0) 28.8 25.9 28.1 29.5 23.2 30.1 30.4* 31.5
HumanEval (0) 47.6* 45.1 47.0* 39.6 33.5 36.2 72.6 71.3
MBPP (0) 55.0* 50.4 51.9* 57.4 54.2 56.9 72.8* 72.5
IFEval 44.0 64.5 39.8 75.3 71.0 76.6 80.4* 84.4
BFCLv2 (Live) 38.7 40.2 39.9 53.1 56.3 59.6 44.3 67.6

Table 2: Accuracy numbers for instruction tuned models on a variety of benchmarks. All evaluations are
conducted by us, except entries marked with * (taken from corresponding papers). Best of each section in
bold. For IFEval, we report the average of prompt and instruction across loose and strict evaluations. For
BFCLv2, we report live accuracy only.

our updated compression strategy to two state-of-the-art models: Llama 3.1 8B Dubey & et al (2024) and
Mistral NeMo 12B team (2024), compressing them down to 4B and 8B parameters, respectively. For Llama
3.1 8B, we produce two distinct compressed models: (1) LLAMA 3.1-COMPRESSED-4B-Width (pruning
only the width axes), and (2) LLAMA 3.1-COMPRESSED-4B-Depth (pruning depth only). Figure 1 provides
a high-level overview of our approach.

Tables 1 and 2 provide a summary of our results: our compression strategy yields a state-of-the-art 8B
model (MN-COMPRESSED-8B) which outperforms all similarly-sized models across the board on com-
mon language modeling benchmarks. Our LLAMA 3.1-COMPRESSED-4B models (both depth and width-
pruned variants) also exhibit strong accuracy compared to the teacher Llama 3.1 8B model and the previous-
generation Minitron-4B model Muralidharan et al. (2024); among the two variants, the width-pruned variant
achieves better overall accuracy than the depth-pruned one. In terms of runtime inference performance
measured using TensorRT-LLM, the LLAMA 3.1-COMPRESSED-4B models provide an average speedup of
2.7× and 1.8× for the depth and width pruned variants, respectively, compared to the original Llama 3.1 8B
model.

This paper makes the following key contributions:

1. Introduces a new step before pruning and distillation named teacher correction which helps the
teacher model adapt to a user’s own data distribution.

2. Presents a new and improved depth pruning saliency metric based on downstream task accuracy.
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3. Successfully applies the new pruning recipe to the Llama 3.1 8B and Mistral NeMo 12B models to
produce three state-of-the-art compressed models; the new recipe continues to enjoy the significant
cost and training token reductions demonstrated in earlier pruning+distillation work Muralidharan
et al. (2024).

2 METHODOLOGY

A high-level overview of our approach is illustrated in Figure 1. Here, the teacher model undergoes a
lightweight adjustment phase on the target dataset to be used for distillation - we refer to this step as teacher
correction. Next, pruning is applied to compress the model, following which distillation is used to recover
model accuracy.

2.1 TEACHER CORRECTION

Distillation is an effective technique to condense knowledge from a more accurate teacher model to improve
a less accurate student model Hinton et al. (2015) Muralidharan et al. (2024). Typically, knowledge is
distilled using the same dataset the teacher model was trained on. In cases where access to the original
training data is restricted, we notice from our experiments that the teacher model provides sub-optimal
guidance if a different dataset is used to distill the knowledge. We hypothesize this is due to the change in
distribution of sub-word tokens across the original dataset the teacher model was trained on vs. the dataset
being distilled on. To this end, we propose a novel teacher correction phase (illustrated in Figure 2), where
we perform a lightweight (∼100B tokens) fine-tuning of the teacher model to adapt to the new distillation
dataset. We demonstrate in Section 5 (Figure 3 in particular) that this procedure significantly improves the
guidance resulting in a more accurate student model. We also explore correcting the teacher in parallel to
distillation, and demonstrate that this performs on par with using guidance from a fully corrected teacher.

2.2 PRUNING

Weight pruning is a powerful and well-known technique for reducing model size. In this paper, we focus
on structured pruning, where blocks (or channels) of nonzero elements are removed at once from model
weights; examples of structured pruning techniques include neuron, attention head, convolutional filter, and
depth pruning Xia et al. (2023); Ashkboos et al. (2023); Men et al. (2024); Kim et al. (2024). In this paper,
we follow the pruning recipe outlined in Minitron Muralidharan et al. (2024): we start the pruning process
by first computing the importance of each layer, neuron, head, and embedding dimension. We then sort these
importance scores to compute a corresponding importance ranking.

Importance Estimation We use a purely activation-based importance estimation strategy that simultane-
ously computes sensitivity information for all the axes we consider (depth, neuron, head, and embedding
channel) using a small calibration dataset and only forward propagation passes. We consider depth pruning
as a special case and do not combine it with compressing other dimensions. We compute the importance of
each head, neuron and embedding channel by examining the activations produced by the multi-head atten-
tion (MHA), multi-layer perceptron (MLP) and LayerNorm layers, respectively. We use a small calibration
dataset (1024 samples) for this purpose.

Layer Importance For depth pruning, we consider two distinct metrics for evaluating layer importance: (1)
LM validation loss/PPL, and (2) accuracy on the downstream task. We do not consider the Block Importance
(BI) metric Men et al. (2024) as it was recently shown to under-perform the validation loss/PPL metric Mu-
ralidharan et al. (2024). For ranking, we simply remove a single or a block of contiguous layers and compute
its effect on each metric; this serves as the “importance” or sensitivity of the layer/layer block. Based on
our empirical analysis (see Section 4; specifically, Figures 7 and 8), we use the Winogrande metric (Sak-
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Figure 2: Overview of distillation: if/when the original training data is unavailable, a lightweight fine-tuning
of the original model on the distillation dataset is recommended, to be used as a teacher. Distillation is then
performed by minimizing KL divergence on the logits of the teacher and the pruned student model.

aguchi et al., 2021) to prune sets of contiguous layers. This pruning strategy evolved from two important
observations: (1) LM validation loss/PPL-based layer importance fails to produce the most accurate pruned
model(s) on downstream tasks, and (2) dropping contiguous layers is better than individual, as also observed
in Gromov et al. (2024).

Model Trimming Following Muralidharan et al. (2024), for a given architecture configuration, we first rank
the elements of each axis according to the computed importance and perform trimming of the corresponding
weight matrices directly. For neuron and head pruning, we trim MLP and MHA layer weights, respectively.
In the case of embedding channels, we trim the embedding dimension of the weight matrices in MLP,
MHA, and LayerNorm layers. The original approach (Muralidharan et al. (2024)) uses Neural Architecture
Search (NAS) to find the best architecture; in this work, we skip this step and instead utilize the network
architecture-related learnings from the original paper.

2.3 RETRAINING WITH DISTILLATION

We use the term retraining to refer to the accuracy recovery process post pruning. In this work, we ex-
plore two retraining strategies: (1) conventional training, leveraging ground truth labels, and (2) knowledge
distillation using supervision from the unpruned model (teacher). Knowledge Distillation (KD) Hinton
et al. (2015) involves transfer of knowledge from a larger or more complex model called the teacher to a
smaller/simpler model called the student. The knowledge transfer is achieved by having the student model
mimic the output and/or the intermediate states of the teacher model. In our case, the uncompressed and
pruned models correspond to the teacher and student, respectively. Following the best practices outlined
in the Minitron work Muralidharan et al. (2024), we use forward KL Divergence loss Kullback & Leibler
(1951) on the teacher and student logits only. This is illustrated in Figure 2.

3 TRAINING DETAILS

3.1 PRE-TRAINING

Llama 3.1 8B (Dubey & et al, 2024) and Mistral NeMo 12B (team, 2024) are pretrained on different pro-
prietary datasets, which we do not have access to. According to the Llama 3.1 tech report Dubey & et al
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(2024), the 8B model is pretrained on 15T tokens. We start with the corresponding Base models that are
openly available on Hugging Face.

Dataset We use a proprietary dataset consisting of high-quality pretraining data (which, to our knowledge,
does not overlap with the ones used to train Llama 3.1 and Mistral NeMo) for all our pruning and distillation
experiments.

3.2 TEACHER CORRECTION

Using the original Mistral NeMo 12B or Llama 3.1 8B models directly as a teacher performs sub-optimally
on our dataset. To counter this, we apply teacher correction, as described in Section 2, to both models with
∼ 100B tokens. Since the goal is to adapt the teacher model to the distillation dataset, we use 120 steps
of warm-up and low learning rates: one-fifth the peak learning rate, identical batch size, minimum learning
rate and decay schedule the original model was trained on. We notice that the correction process has a minor
effect on the teacher model’s accuracy on downstream tasks, with some tasks improving and some degrading
as shown in Table 1. We hypothesize this to be an artifact of the dataset used for fine-tuning. Optimizing
this process further by using fewer than ∼100B tokens, lighter fine-tuning such as LoRA Hu et al. (2021) or
tuning layer normalization Ba et al. (2016) parameters alone would be an interesting topic for future work.

3.3 PRUNING

Our pruning recipe is based on the best practices outlined in the Minitron paper Muralidharan et al. (2024)
and is described in Section 2. Specifically, for width pruning, we (1) use l2-norm and mean as the ag-
gregation functions across the batch and sequence dimensions, respectively, and (2) perform single-shot
pruning, avoiding iterative approaches. For depth pruning, as described in Section 2, we follow the ob-
servations from Gromov et al. Gromov et al. (2024) and drop a continuous subgroup of layers that results
in the least accuracy drop on Winogrande Sakaguchi et al. (2021). In this work, we skip the lightweight
neural architecture search (NAS) phase, and go with a manual architecture configuration for both LLAMA
3.1-COMPRESSED-4B and MN-COMPRESSED-8B. The architectures we come up with are inspired by the
Minitron-4B and Minitron-8B models Muralidharan et al. (2024), and are detailed in Table 3.

3.4 DISTILLATION

As described in Section 2, we opt for logit-only distillation, minimizing the forward KL Divergence Kullback
& Leibler (1951) loss across the teacher and student probabilities, and ignore the LM cross-entropy loss
altogether. Here, the un-pruned and pruned models correspond to the teacher and student, respectively. We

LLaMa-3.1-Compressed-4B MN-Compressed
Width Depth 8B

Total params 4.5B 4.5B 8.4B
Non-Emb params 3.7B 3.5B 7.3B

Hidden size 3072 4096 4096
Vocabulary 128256 128256 131072

MLP hidden dim 9216 14336 11520
Depth 32 16 40

Attention groups 8 8 8
Query heads 32 32 32

Head dimension 128 128 128

Table 3: Architecture details of our compressed
models.

Llama-3.1- MN-Compressed
Compressed-4B 8B

Peak learning rate 1e-4 1e-4
Min learning rate 1e-5 4.5e-7

Warm-up steps 40 steps 60 steps
LR decay schedule Cosine Cosine

Global batch size 1152 768
Context length 8192 8192

Total tokens 94B 380B

Table 4: Hyperparameters used during distillation-
based retraining.
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use the hyperparameters listed in Table 4 during distillation. We use 32 NVIDIA DGX H100 nodes for our
training jobs.
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Figure 3: Training convergence plot for the MN-
COMPRESSED-8B student model. We compare su-
pervision from the original teacher and the corrected
teacher.
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Figure 4: Training convergence plot for the MN-
COMPRESSED-8B student model. We compare (1)
pruning and distilling the corrected teacher with (2)
pruning the original (uncorrected) teacher and dis-
tilling from a continuously corrected teacher. We
notice that teacher correction can be performed in
parallel with distillation.

3.5 INSTRUCTION TUNING

To evaluate the instruction-following capabilities of our distilled models, we perform alignment using
NeMo-Aligner Shen et al. (2024). We follow the same recipe for all our models by first applying math
and code supervised fine-tuning (SFT) followed by instruction SFT and then two rounds of Reward-aware
Preference Optimization (RPO) Nvidia et al. (2024).

4 ANALYSIS

We perform a series of ablation studies to better understand the effects of distillation, teacher correction, and
our new depth-pruning saliency metric. We report our findings in this section.

Teacher Correction We first compare the effects of teacher correction on the MN-COMPRESSED-8B
model in Figure 3; here, we notice the clear benefits of performing teacher correction w.r.t. distilling di-
rectly from an uncorrected teacher. Next, we compare two approaches for teacher correction: (1) pruning
and distilling the corrected teacher, and (2) pruning the original (uncorrected) teacher and distilling from a
continuously corrected teacher. The results in Figure 4 suggest that teacher correction can be performed in
parallel with distillation to recover accuracy of the pruned student model.

Pruning and Distillation Figure 5 demonstrates the orthogonal benefits of pruning and distillation over
random initialization and conventional fine-tuning, respectively. We compare (1) random weight initial-
ization and distillation, (2) random pruning and distillation, where weights are pruned randomly ignoring
the importance scores, (3) our proposed pruning with typical cross entropy based LM loss training and (4)
our proposed pruning with distillation-based retraining. We notice that pruning results in a significantly
better starting point compared to random initialization, and distillation-based training outperforms conven-
tional training methods. Overall, our approach requires significantly fewer training tokens (up to 40×; 380B
instead of 15T tokens) to produce the state-of-the-art MN-COMPRESSED-8B model.
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Width vs. Depth Pruning Figure 6 shows the training curve of LLAMA 3.1-COMPRESSED-4B pruned
for width vs. depth. We notice that width pruning results in a lower initial loss and consistently outperforms
the depth-pruned model, despite both variants having the same number of parameters.
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Figure 5: Training convergence plot for the MN-
COMPRESSED-8B model. We compare (a) random
initialization with distillation, (b) randomly pruned
weights with distillation, (c) pruning with standard
LM loss, and (d) our pipeline with pruning and dis-
tillation. This plot shows the benefits of pruning
and distillation over random initialization and con-
ventional finetuning, respectively.
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Figure 6: Convergence plots for the width-pruned
and depth-pruned versions of Llama 3.1 8B to 4B
compressed models. Width pruning consistently out-
performs depth pruning for a given parameter budget.

Depth Pruning Metrics By examining how LM validation loss increases as contiguous blocks of layers
are removed (Figure 7), we observe that the layers at the beginning and end are the most important. The
figure indicates that removing non-contiguous layers can result in even better LM validation loss (the dashed
line). However, we notice this observation does not necessarily hold when evaluating downstream task
performance: specifically, Figure 8 shows that dropping 16 layers selected based on per-layer importance
( Men et al. (2024); Siddiqui et al. (2024)) yields a random Winogrande accuracy of 0.5, while removing
layers 16 to 31 continuously ( Gromov et al. (2024)) results in an accuracy of 0.595. The gap holds during
distillation-based retraining and we opt for the latter approach in this work.

5 EVALUATION

Benchmarks following Touvron et al. (2023), we evaluate our compressed base and aligned models on
a series of downstream tasks, namely MMLU Hendrycks et al. (2021), HumanEval Chen et al. (2021b) for
Python code generation, MBPP Austin et al. (2021) and GSM8K Cobbe et al. (2021). We also evaluate the
base models on several question-answering datasets for common-sense reasoning: Arc-C Clark et al. (2018),
HellaSwag Zellers et al. (2019), TruthfulQA Lin et al. (2022), WinoGrande Sakaguchi et al. (2021), and XL-
Sum English Hasan et al. (2021) for summarization. The instruction tuned models are further evaluated for
question-answering, function calling, instruction following and multiturn conversations on GPQA Rein et al.
(2023), BFCL Yan et al. (2024), IFEval Zhou et al. (2023) and MT-Bench (GPT4-Turbo) Wang et al. (2024),
respectively. Note that this MT-Bench is a corrected version of the original MT-Bench Zheng et al. (2023).

For base models, accuracy is reported with the following evaluations settings: 5-shot on MMLU, 5-shot on
Winogrande, 25-shot on ARC-Challenge, 10-shot on HellaSwag, 0-shot on 20% of XL-Sum and average
pass@1 scores for HumanEval and MBPP. For pass@1 scores we use a temperature of 0.2 and nucleus
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Figure 7: LM loss value on validation set after re-
moving 1, 2, 8 or 16 contiguous layers from Llama
3.1 8B. The purple line at layer no. 16 indicates the
LM loss if we dropped the first 16 layers. Layer no.
17 indicates the LM loss if we leave the first layer
intact and drop layers 2 to 17. The dashed line cor-
responds to LM loss value when removing 16 non-
contiguous layers least increasing the loss.
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Figure 8: Accuracy on the Winogrande task when
removing 16 contiguous layers from Llama 3.1 8B.
Layer no. 17 indicates the accuracy if we leave the
first layer intact and drop layers 2 to 17. The dashed
line corresponds to the accuracy when removing 16
non-contiguous layers that increasing the loss by the
least amount.

sampling Holtzman et al. (2019) with top-p = 0.95. For aligned models we use 0 shot and greedy sampling
if applicable.

5.1 BASE MODELS

Base model evaluation results are shown in Table 1. Compared to similarly-sized models, MN-
COMPRESSED-8B demonstrates superior accuracy across the board, outperforming the recent Llama 3.1
8B model using 40× fewer training tokens (380B vs. 15T). Similarly, the LLAMA 3.1-COMPRESSED-4B
models perform favorably compared to the teacher Llama 3.1 8B model using 150× fewer training tokens
(94B vs. 15T); our pruned Llama models also outperform the Minitron 4B model Muralidharan et al. (2024).
We note from Table 1 that the width-pruned variant outperforms the depth-pruned one. These results clearly
demonstrate the advantages of our methodology: state-of-the-art accuracy coupled with an order of magni-
tude improvement in training efficiency.

5.2 INSTRUCT MODELS

The accuracy of the instruction-tuned model variants are shown in Table 2. Our aligned models outperform
similarly sized variants on most evaluated benchmarks with the exception of HumanEval Chen et al. (2021a)
and MBPP Austin et al. (2021). Additionally, LLAMA 3.1-COMPRESSED-4B lags behind Gemma2 on MT-
Bench Zheng et al. (2023). Nevertheless, our aligned models are consistently better on MMLU Hendrycks
et al. (2021), GSM8K Cobbe et al. (2021), GPQA Rein et al. (2023), IFEval Zhou et al. (2023) and BF-
CLv2 Yan et al. (2024). This demonstrates the strong capabilities of our model.

5.3 RUNTIME PERFORMANCE ANALYSIS

To evaluate runtime performance, we optimize the Llama 3.1 8B and LLAMA 3.1-COMPRESSED-4B vari-
ants with NVIDIA TensorRT-LLM, an open-source toolkit for optimized LLM inference.
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Figure 9: TensorRT-LLM FP8 throughput comparison for the LLAMA 3.1-COMPRESSED-4B models with
the Llama 3.1 8B model w.r.t. increasing input and output sequence lengths.

Figure 9 shows the throughput in requests per second for the various models in FP8 precision obtained on
a single H100 80 GB GPU. Different use cases are represented by increasing input sequence length/output
sequence length (ISL/OSL) combinations, at a batch size of 32 and 64 for the 8B-12B models and the 4B
models respectively. The smaller memory footprint of the 4B model allows for larger batches. We notice
that LLAMA 3.1-COMPRESSED-4B (Depth) is fastest, achieving an average throughput improvement of
2.7× over Llama 3.1 8B; the width-pruned variant achieves an average throughput improvement of 1.8×
over Llama 3.1 8B. Compared to BF16, we notice that FP8 delivers a performance boost of 1.4×.

6 INSIGHTS

In this section, we summarize some interesting and surprising observations based on our evaluation.

General

1. Teacher correction is crucial for distillation to work optimally on a new, unseen dataset. Fine-
tuning the teacher with the dataset used for distillation in this manner yields over a 6% reduction
in LM validation loss. Teacher correction doesn’t affect the optimality of pruning and can even be
performed in parallel with distillation.

2. In line with the Minitron paper’s observations, we require a order of magnitude fewer tokens (380B
vs 15T) to achieve state-of-the-art accuracy post pruning with distillation.

3. For width pruning, we achieve stronger accuracy by retaining attention heads and pruning the other
dimensions (MLP intermediate dimension, embedding channels).

Mistral NeMo 12B to MN-COMPRESSED-8B

1. Our compressed model outperforms the teacher on two benchmarks, GSM8k and HumanEval after
pruning and distillation: GSM8k increases from 55.7% to 58.5% and HumanEval increases from
23.8% to 36.2%. This improvement is likely influenced by the dataset. However, retraining is
performed using the distillation loss alone.

Llama 3.1 8B to LLAMA 3.1-COMPRESSED-4B

9
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1. Width pruning delivers better accuracy with MMLU at 60.5%, while depth pruning yields 58.7%,
for Llama 3.1 compression.

2. Reasoning ability for base variants appears to be impacted significantly for the depth pruned ver-
sion, with GSM8K accuracy at 16.8% compared to 41.24% for the width pruned version. However,
the gap reduces with instruct tuning.

3. Depth pruning boosts throughput, achieving 2.7× speedup over Llama-3.1 8B, while width pruning
provides 1.7× speedup.

4. For depth pruning, we observe that dropping contiguous layers from the model is more effective
than using non-contiguous, importance-based pruning.

7 RELATED WORK

Structured pruning is a well-studied area, with a recent crop of papers specifically focusing on LLM com-
pression. We can broadly classify these works into ones that target depth (layers) (Men et al., 2024; Yang
et al., 2024; Kim et al., 2024) and ones that reduce width (hidden dimension, attention heads, MLP interme-
diate size, etc.) (Xia et al., 2023; Dery et al., 2024; Ashkboos et al., 2023; Ma et al., 2023); a small subset
targets both axes Muralidharan et al. (2024); Xia et al. (2023). Among recent papers, we choose to adopt
and extend the Minitron work Muralidharan et al. (2024) for several key reasons: first, to the best of our
knowledge, it provides the first systematic pruning recipe that targets both width and depth axes using a
low-cost importance estimation criteria (based on forward-propagation passes only); many other approaches
(eg: gradient-based ones) are significantly costlier in terms of training compute and thus less practical for
LLMs. Secondly, it achieves state-of-the-art performance compared to other similar compression methods
on modern LLMs.

Teacher correction appears to be a novel area of exploration. Recent work focuses on adapting the teacher
to (1) address the capacity gap with respect to the student, where the teacher is fine-tuned based on knowl-
edge distillation constraints Huang et al. (2022), and (2) address batch-norm statistics when using out-
of-distribution data (different downstream tasks) for distillation with convolution based models on image
tasks Szatkowski et al. (2023). To the best of our knowledge, ours is the first work specifically targeted at
LLMs that adapts the teacher to provide optimal guidance on a dataset not identical to the original dataset
the teacher model was initially trained on.

8 CONCLUSIONS

This paper has presented a novel strategy for applying pruning and distillation to models when access to
the original pretraining dataset is restricted. Teacher correction, which performs lightweight finetuning of
the teacher model on the target dataset significantly improves accuracy in this setting. This paper has also
presented a novel saliency metric for layers that improves depth-pruning accuracy over existing approaches.
Using this new pruning recipe, we produce a state-of-the-art 8B model (MN-COMPRESSED-8B) from Mis-
tral NeMo 12B and a set of compelling 4B models (LLAMA 3.1-COMPRESSED-4B) from Llama 3.1 8B.
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