
Can Large Language Models Analyze Graphs like
Professionals? A Benchmark, Datasets and Models

Xin Li1∗, Weize Chen2∗, Qizhi Chu1, Haopeng Li3, Zhaojun Sun3, Ran Li2, Chen Qian2

Yiwei Wei4, Zhiyuan Liu2,5, Chuan Shi1, Maosong Sun2,5, Cheng Yang1†

1 School of Computer Science, Beijing University of Posts and Telecommunications,
2 Department of Computer Science and Technology, Tsinghua University,

3 School of Artificial Intelligence, Beijing University of Posts and Telecommunications,
4 College of Petroleum Engineering, China University of Petroleum (Beijing) at Karamay,

5 Institute for Artificial Intelligence, Tsinghua University

lixin4sky@bupt.edu.cn, chenwz21@mails.tsinghua.edu.cn, yangcheng@bupt.edu.cn

Abstract

The need to analyze graphs is ubiquitous across various fields, from social net-
works to biological research and recommendation systems. Therefore, enabling
the ability of large language models (LLMs) to process graphs is an important step
toward more advanced general intelligence. However, current LLM benchmarks on
graph analysis require models to directly reason over the prompts describing graph
topology, and are thus limited to small graphs with only a few dozens of nodes. In
contrast, human experts typically write programs based on popular libraries for task
solving, and can thus handle graphs with different scales. To this end, a question
naturally arises: can LLMs analyze graphs like professionals? In this paper, we
introduce ProGraph, a manually crafted benchmark containing 3 categories of
graph tasks. The benchmark expects solutions based on programming instead of
directly reasoning over raw inputs. Our findings reveal that the performance of
current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.
To bridge this gap, we propose LLM4Graph datasets, which include crawled docu-
ments and auto-generated codes based on 6 widely used graph libraries. By aug-
menting closed-source LLMs with document retrieval and fine-tuning open-source
ones on the codes, we show 11-32% absolute improvements in their accuracies. Our
results underscore that the capabilities of LLMs in handling structured data are still
under-explored, and show the effectiveness of LLM4Graph in enhancing LLMs’
proficiency of graph analysis. The benchmark, datasets and enhanced open-source
models are available at https://github.com/BUPT-GAMMA/ProGraph.

1 Introduction

Background. Large language models (LLMs) [6, 52, 3] are parameter-rich neural networks trained
on a vast amount of text data to understand and generate human language. LLMs can not only handle
classical natural language processing tasks like translation, but also benefit task solving in various
domains such as code generation [41], logical reasoning [39], and mathematical calculation [43].

Previous LLM Benchmarks for Graph Analysis. Recently, many researchers have proposed
extending LLMs to scenarios that require graph understanding and analysis [25, 48]. As graph is

∗Equal Contribution.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/BUPT-GAMMA/ProGraph

Table 1: Comparisons among different graph analysis benchmarks for LLMs.

Aspects ProGraph
(this work)

NLGraph
([54])

LLM4DyG
([63])

GraphTMI
([15])

GraphInstruct
([33])

GPT4Graph
([20])

GraphWiz
([9])

Basic Graph Theory ✓ ✓ ✓ ✓ ✓ ✓ ✓
Graph Statistical Learning ✓ ✗ ✗ ✓ ✗ ✓ ✗
Graph Embedding ✓ ✓ ✗ ✗ ✗ ✗ ✗
Access to External APIs ✓ ✗ ✗ ✗ ✗ ✗ ✗
Real-world Context ✓ ✗ ✗ ✗ ✗ ✗ ✗
Scalability up to 106 up to 101 up to 101 up to 102 up to 101 up to 101 up to 101

a very commonly used data structure in real-world services (e.g., social networks [50, 35, 53] and
urban computing [30, 65, 61]), enabling the ability of LLMs to process graphs is an important step
toward more advanced general intelligence. To this end, several benchmarks have been developed to
evaluate such ability. For example, NLGraph [54] and GraphInstruct [33] investigate whether LLMs
can understand and compute basic graph properties, such as counting node degrees or finding the
shortest path for a node pair. GraphTMI [15] and GPT4Graph [20] also consider typical learning
tasks such as node classification. LLM4DyG [63] further extends the tasks to dynamic graphs.

Limitations of Existing Benchmarks. However, from the perspective of practicality, we argue
that previous benchmarks have three major drawbacks. Firstly, the problems in these work require
LLMs to read through the adjacency lists of graphs from prompts before answering specific questions.
Consequently, the graph sizes in their benchmarks are rather small (typically with a few dozens of
nodes), due to the length limitation of LLMs. Being able to compute the shortest path on a small
graph does not mean that the same can be done on a real graph with millions of nodes. Secondly, the
desired solving process in these work requires step-by-step reasoning fully based on LLMs. But even
with the help of Chain-of-Thought (CoT) [57, 14], the reasoning depths of current LLMs are still
shallow [29, 27]. Consequently, LLMs might be able to count triangles one by one in a small graph
with 10 nodes, and will inevitably fail for large graphs. Thirdly, the problem descriptions in these
work are abstract and monotonous in form, lacking context from real-world application scenarios.

Inspirations from Human Experts. Consider the scenario that a human expert is asked to find
the shortest path between two nodes in a million-scale graph, she will probably write a few lines
of Python codes based on NetworkX[23], instead of directly reasoning over the raw inputs. To this
end, a question naturally arises: can LLMs analyze graphs like professionals? Fortunately, most
popular LLMs have shown the ability to write codes and utilize various application programming
inferfaces (APIs), making it possible to analyze graphs via API calling as human experts will do.
Compared with direct reasoning in previous benchmarks, generating a few lines of codes requires
much shallower reasoning depths for LLMs, but can solve more complex problems.

Benchmark. In this paper, we propose ProGraph benchmark to evaluate the capability of LLMs in
leveraging external APIs for graph analysis. The benchmark includes 512 problems with hand-crafted
questions and answers (QA pairs). The problems cover three categories of tasks: basic graph theory,
graph statistical learning, and graph embedding, and can be solved based on six popular Python
libraries. In the questions, graphs can be either described by natural language or stored in files,
and thus can scale to 106 in our benchmark. To improve the diversity of problem descriptions and
align with real-world scenarios, the questions are rephrased in a role-play manner based on GPT-4
turbo [37]. In the answers, we provide reference code, key APIs and execution results. We also
design an automated evaluation process that aligns well with human judgement.

Datasets and Models. To facilitate LLMs to solve these problems via programming, we construct
the LLM4Graph datasets with both document and code data. The document dataset contains API
information crawled from the official documents of the six Python libraries. The code dataset includes
29,260 QA pairs automatically generated by back-instructing [55] GPT-4 turbo. To enable CoT
learning, we further introduce the thought on the document information of relevant APIs to the
answers of the code dataset as prefixes. To demonstrate the value of our datasets, we enhance
closed-source LLMs by extracting relevant information from the document dataset as RAG (retrieval-
augmented generation), and improve open-source ones by instruction tuning over the code dataset.
Besides the datasets, the improved open-source LLMs are also released for future researches.

Key Results. The accuracies of closed-source models (Claude, GPT and Gemini) on ProGraph are
25-36%, and can be improved to 37-46% with RAG using LLM4Graph as the retrieval pool. The
accuracies of open-source models (Llama3 [1] and Deepseek Coder [19]) are only 12-24%, but can be

2

Figure 1: The pipeline of ProGraph benchmark construction.

improved to 45-47% through instruction-tuning on LLM4Graph. These results show that ProGraph is
challenging for current LLMs, and LLM4Graph can significantly enhance their performance.

Contributions. (1) To the best of our knowledge, we are the first work exploring the ability of LLMs
to analyze graphs with external APIs. The utilization of external APIs is practical and powerful in
real-world scenarios. (2) To evaluate such ability, we propose a novel and challenging ProGraph
benchmark with hand-crafted QA pairs covering three categories of tasks, i.e., basic graph theory,
graph statistical learning, and graph embedding. (3) We develop LLM4Graph datasets containing
both crawled document data and auto-generated code data. Experimental results demonstrate that our
datasets can substantially enhance the performance of both closed-source and open-source LLMs.
The improved open-source models are released together with the datasets for future researches.

2 Related Work

LLM for Graphs. Recent efforts leverage the strong generalization ability of LLMs for graph
understanding and analysis. Benchmarks like NLGraph [54] and GraphInstruct [33] evaluate LLMs’
graph reasoning abilities, finding that while LLMs have some capabilities, they are not very strong.
GraphTMI [15] assesses LLMs’ performance on tasks like node classification and link prediction
using different input formats. GPT4Graph [20] evaluates LLMs’ understanding of graph structure
data in various formats, and LLM4DyG [63] studies LLMs in dynamic graphs, introducing techniques
to improve performance. GraphWiz [9] employs two approaches to optimize reasoning paths for
solving basic graph problems. Another approach combines LLMs with graph neural networks (GNNs)
to enhance learning tasks, leveraging text attribute processing or direct graph task handling through
techniques like prompt learning and instruction tuning [25, 17, 10, 58, 48, 24, 49, 62, 7]. However,
these works are often specialized for classification tasks and do not handle complex graph tasks.

LLM Benchmarks. LLMs perform strongly in text processing, mathematical computation, and code
generation. Text processing benchmarks evaluate capabilities in machine translation, summarization,
and comprehension [2, 34, 60, 32, 16, 26]. Mathematical computation benchmarks assess understand-
ing of numbers and elementary math concepts [12, 51]. Specialized field benchmarks, such as those
in biology, chemistry, and finance, evaluate LLMs’ expertise in specific domains [47, 21, 59]. Code
generation benchmarks like HumanEval and MBPP focus on function-oriented tasks [8, 4], while our
proposed ProGraph considers task-oriented code generation.

Enhancement Techniques for LLMs. There are many techniques to enhance the performance
of LLMs [38, 56]. Among these, two important techniques are Chain-of-Thought (CoT) [57] and
retrieval-augmented generation (RAG) [22]. CoT allows the model to mimic human thinking by
reasoning step-by-step rather than directly providing an answer, significantly enhancing the logical
analysis and reasoning capabilities of LLMs. RAG reduces the LLMs’ hallucinations by allowing
them to access relevant information before generating answers, improving LLMs’ accuracy and
reliability across various tasks.

3

3 Benchmark

To evaluate the ability of LLMs in graph analysis, we introduce the ProGraph benchmark, featuring
512 problems in three categories. These hand-crafted problems include questions and answers with
two difficulty levels. To enhance diversity and realism, we leverage GPT-4 turbo to rephrase the
questions in a role-playing manner, followed by manual verification for correctness. Finally, given the
high consistency of answer judgments between humans and GPT-4o, we employ GPT-4o to automate
the evaluation. We compare the proposed benchmark with previous ones in Table 1, present more
discussions about related work in Appendix 2, and show a benchmark example in Appendix E.

3.1 Tasks

The proposed ProGraph benchmark considers three categories of tasks:

Category 1: Basic Graph Theory. Graph theory primarily studies the fundamental concepts
of graphs, including types, properties, classical algorithms and many other basic operations. For
example, some problems in this category aim to check whether a graph is acyclic, compute the
centrality of nodes, or find the maximum cardinality matching.

Category 2: Graph Statistical Learning. Graph statistical learning utilizes a probabilistic model to
extract useful information from nodes, edges, or the entire topology for various tasks. In this work,
we mainly focus on graph clustering and sampling techniques. For example, detecting communities
in a graph with Louvain algorithm [5], or sampling a subgraph based on random walk.

Category 3: Graph Embedding. Graph embedding technique aims to learn real-valued vectors for
nodes in a graph, where similar nodes are expected to have similar vectors. The learned vectors can
be used as features to enhance the performance of downstream tasks. For example, a typical problem
in this category will require the learned embeddings of DeepWalk algorithm [40] for a given graph.

Table 2: Statistics of ProGraph.
Question Type Answer Difficulty

True/False Calculation Drawing Hybrid Easy Hard

Category 1 32 240 25 15 257 55
Category 2 7 115 7 25 43 111
Category 3 0 30 0 16 0 46

Total 39 385 32 56 300 212

3.2 Human Annotation

To create high-quality problems for benchmarking, we invite human annotators to develop questions
and answers based on the following guidelines, and the annotation manual is in Appendix I.

Python Libraries. In this work, we consider six popular libraries to support the above three task
categories, i.e., NetworkX [23] and igraph [13] for basic graph theory, CDlib [44], graspologic [11]
and Little Ball of Fur [46] for graph statistical learning, and Karate Club [45] for graph embedding.

Question Design. First of all, human annotators need to either manually design or use some random
graph generators to obtain a graph. Then, based on the API documents of the six libraries, the
annotators are asked to design questions with one of the four types: true/false, calculation, drawing,
and hybrid questions. Here hybrid questions are composed of two or more of the first three types.
Here we present a calculation question from the basic graph theory category as an example:

Question
I have a graph with an edge set [(1, 2),
(1, 3), (2, 3), (2, 4), (3, 5), (4, 5)],
can you help me compute node connectivity
for all pairs of nodes and print the node
connectivity for each pair?

Reference Code
** Python Code **
Key APIs
all_pairs_node_connectivity
Execution Results
Node connectivity between 1 and 2 is 2
...

4

Answer Construction. Based on the proposed question, human annotators need to further provide
the code, the number of involved APIs, and the execution result. Based on the number of APIs, we
categorize the problems into two difficulty levels: easy level involves one API, while the hard level
involves multiple APIs. Here’s an example of the collected data for the above question:

3.3 Role-Play Rephrasing

To make questions more realistic, we rephrase them in a role-play manner. First, GPT-4 turbo
generates hundreds of job titles and descriptions. Then, we randomly select a job for a given problem.
Using GPT-4 turbo, we mimic the profession’s characteristics, knowledge, and style to integrate
the question into a real-world context. We manually review the modified questions to ensure they
maintain the same semantics and graph structures as the original ones. A complete example of
rephrasing is in Appendix B, and here we present the rephrased question of the above problem:

Rephrased Question
We’re examining a simplified model of an ecosystem where [...], we’ve mapped out a series
of interactions as follows: [(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)]. [...] Can we analyze our
network to reveal the minimum number of species that would need to be removed to disrupt the
direct connection between any two species in this web? [...]

3.4 Automated Evaluation

Metrics. To evaluate the ability of LLMs to solve these problems, we consider two metrics: pass rate
and accuracy. Pass rate measures the ratio of executable code generated by an LLM, while accuracy
measures the ratio of correct answers from the executable code. Accuracy is always no higher than
the pass rate and is considered the more important metric as it evaluates final performance.

Process. Evaluating diverse answer formats with rule-based matching is challenging, and human
evaluation is too labor-intensive. Thus, we automate evaluation using GPT-4o. First, we extract code
snippets from LLM-generated answers using regular expressions. GPT-4o is then asked to check
the correctness given the execution result. For problems with certain answers, such as true/false or
calculation questions, GPT-4o assigns 1 point if the execution result matches the reference code’s
result, and 0 otherwise. For other problems, like drawing questions, GPT-4o matches key API usage:
if the generated code contains m out of n key APIs, the accuracy point is m/n.

Table 3: Self-Consistency (SC)
and Human-Consistency (HC) of
automated evaluation.

SC (%) HC (%)

Category 1 98.9 97.3
Category 2 98.9 96.4
Category 3 98.6 97.8

Overall 98.9 97.5

Rationale. To validate GPT-based evaluation, we measure its
stability (self-consistency) and alignment with human judgments
(human-consistency). Higher stability means judgment scores
are consistent across multiple evaluations, while higher human
alignment indicates better quality. We use the agreement met-
ric [64] to assess these consistencies. For n evaluations of the
same answer, we take the highest number of evaluations m that
received the same score and divide it by n to get the consistency.
Self-consistency is the agreement among three GPT-4o evalu-
ations, and human-consistency is the agreement between one
GPT-4o evaluation and a manual evaluation. We evaluate all 512
problems with answers from Claude 3 Opus RAG 7, the best-performing closed-source model which
will be introduced in Section 4.2, and present the results in Table 3, showing high self-consistency
and human-consistency.

4 Datasets and Models

To enhance the ability of LLMs to solve graph problems with Python APIs, we construct LLM4Graph
datasets. Based on the LLM4Graph, we enhance both closed-source and open-source models.

4.1 Datasets

Document dataset. The document dataset is crawled from the official documents of the corresponding
Python libraries. These documents can be directly used to enhance closed-source models via RAG.

5

Figure 2: The pipeline of LLM4Graph dataset construction and corresponding model enhancement.
We also use these documents for generating code datasets. Specifically, each API corresponds to
a specific entry of the document dataset, including the description, parameter list, return value list,
code examples, and other contents. An example of API entry is shown in Appendix C.

Code datasets. We construct two code datasets in the form of QA pairs. The questions in both
datasets are the same, but the answers differ. In the simpler dataset, each answer only contains Python
code. Inspired by Chain of Thought (CoT) [57], each answer in the more complex dataset additionally
includes relevant APIs and their documents as prefixes. This modification can facilitate open-source
models to utilize document information more effectively. We name the above code datasets as Code
(QA) and Doc+Code (QA), respectively. Unlike the hand-crafted benchmark, problems in the code
datasets are automatically generated and each contains only one key API.

Specifically, we first randomly select an API from the six Python libraries, and then employ GPT-4
turbo to generate example code for the API along with a corresponding question via back instruc-
tion [55]. In the Code (QA) dataset, each answer only contains the Python code in the generated
json. In the Doc+Code (QA) dataset, we design a template to additionally incorporate the API
document information into each answer. This allows a CoT process that first selects the possibly
needed APIs, then provides the corresponding API information, and finally writes code to solve the
problem. Besides, the questions in both code datasets need to undergo the role-play processing in
Section 3.3 for diverse problem descriptions. The prompt for back instruction and an example of the
Doc+Code dataset can be found at Appendix D and F:

Table 4: Statistics of LLM4Graph datasets.
Document Code (QA) Doc+Code (QA)

Category 1 1,115 23,324 23,324
Category 2 253 5,136 5,136
Category 3 45 800 800

Total 1,413 29,260 29,260

4.2 Models

We use the above datasets to improve various LLMs in handling graph analysis tasks. For closed-
source models, we enhance them by retrieving relevant information from the document dataset as
RAG. For open-source models, we fine-tune them using code datasets as instruction tuning.

Closed-source Models. Due to the high difficulty of our ProGraph benchmark, mainstream LLMs
(including Claude, GPT and Gemini) are not particularly strong in directly solving these problems.
Therefore, before closed-source LLMs answer these questions, we retrieve the document information
of top-K relevant APIs based on Llamaindex [31], allowing the models to learn through the context
and enhance their performance. We explore K = 3, 5, 7 to investigate the impact of RAG, and the
models will be given the corresponding suffix as No RAG, RAG 3, RAG 5 or RAG 7.

6

Table 5: Performance (%) of different models on ProGraph.
Basic Graph Theory Graph Statistical Learning Graph Embedding Overall

Model Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy

Claude 3 Haiku 52.9 31.6 23.4 9.7 32.6 2.9 42.2 22.4
Claude 3 Sonnet 57.1 33.2 15.6 4.6 10.9 0.0 40.4 21.6
Claude 3 Opus 69.2 47.3 31.2 15.1 47.8 14.5 55.9 34.7

GPT-3.5 64.1 35.1 24.7 8.4 15.2 1.1 47.9 24.0
GPT-4 turbo 72.4 42.1 39.0 14.8 41.3 12.0 59.6 31.2
GPT-4o 69.9 48.1 48.7 21.4 32.6 5.8 60.2 36.3
Gemini 1.0 Pro 48.7 27.7 9.1 1.7 19.6 3.3 34.2 17.7
Gemini 1.5 Pro 59.6 37.2 21.4 6.6 13.0 1.8 43.9 24.8

Llama 3 36.5 17.3 12.3 3.8 15.2 0.4 27.3 11.7
Deepseek Coder 56.1 33.8 30.5 9.8 30.4 7.6 46.1 24.2

Open-source Models. We use the two code datasets (i.e., Code and Doc+Code) to fine-tune Llama-3-
8B-Instruct [1] and Deepseek-Coder-7B-instruct [19], and consider the following model variants: (1)
Code-only: LLMs are fine-tuned with the Code dataset. (2) Code + RAG 3/5/7: Code-only models
are further equipped with RAG as closed-source ones. (3) Doc+Code: LLMs are fine-tuned with
the Doc+Code dataset, and conduct inference by a corresponding two-step CoT reasoning process.
In the first step, the model generates potential APIs based on the question. In the second step, we
retrieve the API information and then provide the question along with the API information back to the
model. The model then completes the remaining reasoning by writing code to solve the problem. The
third group of models can maximize the use of document information to enhance the performance of
open-source models, and significantly narrow the performance gap with closed-source large models.

5 Experiment

In this section, we present a comprehensive evaluation of our proposed benchmark, ProGraph, and the
accompanying dataset, LLM4Graph. Our experiments assess the performance of both closed-source
and open-source LLMs on graph analysis tasks. We demonstrate the limitations of current LLMs in
handling structured graph data, and showcase the potential improvements achievable through the use
of our datasets via RAG or instruction tuning. More results are shown in Appendix G and H.

5.1 Benchmarking LLMs on ProGraph

We evaluate a variety of mainstream closed-source and open-source LLMs on the ProGraph, including
GPT [36], Claude [3], Gemini [42], Llama 3 [1] and Deepseek Coder [18].

The results, presented in Table 5, indicate that none of the tested LLMs could effectively solve the
problems in ProGraph. While GPT-4 turbo and its variant GPT-4o demonstrate relatively higher
performance with an overall accuracy of 31.2% and 36.3% respectively, they still fall short in
delivering satisfying accuracy across different categories. For instance, GPT-4 turbo achieves an
accuracy of 42.1% in Category 1 but only 14.8% and 12.0% in Categories 2 and 3, respectively.
Similar trends are observed in other models. These results highlight the challenges faced by current
LLMs in addressing structured graph data as human experts. This necessitates the development of
specialized datasets and fine-tuning approaches to bridge this performance gap.

5.2 Enhancing Closed-Source LLMs with Document Dataset

To investigate the potential of enhancing LLMs’ performance on graph analysis tasks, we utilize RAG
techniques to extract relevant API information from the documents in LLM4Graph. This augmented
context is then provided to the LLMs to assist in generating more accurate and effective solutions.

Figure 3 shows the performance gains for four top closed-source LLMs: GPT-4 turbo, GPT-4o,
Claude 3 Opus, and Gemini 1.5 Pro. All models show significant boosts in pass rate and accuracy,
with more than a 5% improvement in accuracy. Gemini 1.5 Pro and Claude 3 Opus achieve over 10%
accuracy improvement with five retrieved APIs. However, performance improvements plateau with
additional API information, which may be attributed to the saturation of relevant information, where

7

No

Fin
e-t

un
e Cod

e
Only Cod

e+

RA
G 3 Cod

e+

RA
G 5 Cod

e+

RA
G 7 Doc+

Cod
e

0

10

20

30

40

50

60

70

Pa
ss

 R
at

e
(%

)

GPT-4o No RAG

GPT4 RAG 5
Model

Llama3
Deepseek Coder

No

Fin
e-t

un
e Cod

e
Only Cod

e+

RA
G 3 Cod

e+

RA
G 5 Cod

e+

RA
G 7 Doc+

Cod
e

0

10

20

30

40

Ac
cu

ra
cy

 (%
)

GPT-4o No RAG

Claude3 Opus RAG 7Model

Llama3
Deepseek Coder

Figure 4: The pass rate (left) and accuracy (right) of open-source models with instruction tuning.

additional API details no longer contribute to further understanding and instead introduce redundancy
or noise. This observation aligns with the findings of previous studies on RAG [28].

0 3 5 7
RAG

45

50

55

60

65

Pa
ss

 R
at

e
(%

)

0 3 5 7
RAG

25

30

35

40

45

Ac
cu

ra
cy

 (%
)

Claude 3 Opus
Gemini 1.5 Pro
GPT-4 turbo
GPT-4o

Figure 3: The pass rate (left) and accuracy (right)
of closed-source models with RAG.

The effectiveness of the LLM4Graph in enhanc-
ing LLM capabilities on graph analysis tasks
is evident from these results. By incorporat-
ing a RAG mechanism with the LLM4Graph,
we demonstrate that it is possible to substan-
tially improve the performance of closed-source
LLMs without the need for extensive fine-tuning
or architectural modifications. This approach
offers a practical and efficient solution for adapt-
ing existing LLMs to handle structured graph
data more effectively.

5.3 Enhancing Open-Source LLMs
with Code Dataset and Doc+Code Dataset

We investigate the potential of enhancing open-source LLMs’ performance on graph analysis tasks
by fine-tuning them using LLM4Graph and augmenting the models with RAG. Experiments are
conducted on a general-purpose model, Llama-3-8B-Instruct [1], and a model specifically designed
for code generation, Deepseek-Coder-7B-Instruct-v1.5 [18]. The results, presented in Figure 4,
demonstrate that our LLM4Graph can significantly improve the performance of different types of
open-source small models. The accuracy of both models, after being fine-tuned merely on the code
data within LLM4Graph, substantially surpasses the best result from closed-source models without
RAG. The Doc+Code setting further enhances the models’ performance, leading to comparable or
even better accuracy than the best result from closed-source model with RAG.

However, augmenting the open-source models fine-tuned on the code with RAG mechanism does
not further improve the performance, and even leads to degraded performance. We hypothesize that
this discrepancy may be attributed to the limited ability of these small models to process long text,
hindering their utilization of the document information. The additional information provided by RAG
may introduce confusion in understanding the problem statement and arriving at the correct solution.
Overall, our proposed Doc+Code setting proves to be an effective means of integrating document
information from LLM4Graph, significantly enhancing the accuracy of open-source models. We
show that LLM4Graph can serve as effective data to enhance the model’s code-generation capabilities
and lead to better utilization of various graph libraries.

6 Analysis

In this section, we present a comprehensive analysis of the performance of different models on the
ProGraph. By grouping the benchmark based on categories, question types, and answer difficulty, we
aim to provide a granular exploration of the strengths and limitations of these models in handling
graph analysis tasks. We also present the types of compilation errors made by different models.

8

Gemini 1.5 Pro

RAG 5 GPT-4 turbo

RAG 5 GPT-4o

RAG 7

Claude 3 Opus

RAG 7 Llama 3

Doc+Code

Deepseek Coder

Doc+Code

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Categories
Basic Graph Theory
Graph Statistical Learning

Graph Embedding

(a) Task Category

Gemini 1.5 Pro

RAG 5 GPT-4 turbo

RAG 5 GPT-4o

RAG 7

Claude 3 Opus

RAG 7 Llama 3

Doc+Code

Deepseek Coder

Doc+Code

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Question Types
True/False
Calculation

Drawing
Hybrid

(b) Question Type

Gemini 1.5 Pro

RAG 5 GPT-4 turbo

RAG 5 GPT-4o

RAG 7

Claude 3 Opus

RAG 7 Llama 3

Doc+Code

Deepseek Coder

Doc+Code

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Answer Difficulty
Easy
Hard

(c) Answer Difficulty

Figure 5: The performance of six best-performing models on different groupings of ProGraph.

6.1 Performance Analysis on Different Benchmark Groupings

To gain a deeper understanding of the capabilities of LLMs and fine-tuned smaller models presented
in Section 5.3, we analyze their performances on ProGraph from three different perspectives: task
category, question type and answer difficulty.

Task Category. We analyze the model performance based on different categories in the ProGraph, as
shown in Figure 5a. Mainstream LLMs and fine-tuned smaller models exhibit similar performance on
graph theory and graph statistical learning tasks. However, a significant disparity is observed in their
performance on graph embedding tasks, where fine-tuned smaller models substantially outperform
RAG-enhanced large models. This observation suggests that not all graph analysis tasks can be easily
handled by closed-source LLMs without further fine-tuning. More complex and challenging tasks
still require fine-tuning for effective learning.

Question Type. We further examine the model performance based on different question types, i.e.,
true/false, calculation, drawing, and hybrid. In Figure 5b, we plot the performance of different models
on these question types separately. Mainstream LLMs excel in true/false and drawing types but
struggle with calculation and hybrid ones. Fine-tuned smaller models demonstrate improvements
across various question types, especially on the complex hybrid type, indicating the effectiveness of
our proposed enhancement strategies.

Answer Difficulty. Lastly, we divide the ProGraph into two levels of difficulty: easy (involving only
one API) and hard (involving multiple APIs). As shown in Figure 5c, mainstream closed-source large
models perform well on easy-level problems, with accuracies generally approaching or exceeding 50%.
However, their performance significantly deteriorates on hard-level ones, with the highest accuracy
reaching only 32.5%. This observation suggests that mainstream LLMs have limitations when the
number of required APIs increases. In contrast, our fine-tuned models demonstrate significantly
higher accuracy on hard-level problems, approaching or exceeding 40%, yielding approximately an
improvement of 8% compared to the best closed-source LLM. Note that LLM4Graph only contains
data involving one API. Still, the models fine-tuned on LLM4Graph show strong generalizability on
problems requiring multiple APIs.

6.2 Compilation Error Analysis

To gain insights into the types of compilation errors made by different models, we conduct an
error analysis on the best-performing closed-source models (GPT-4 turbo RAG 5 and Claude 3
Opus RAG 7) and fine-tuned open-source small models (DeepSeek Coder Doc+Code and Llama 3
Doc+Code). As shown in Figure 6, we categorize the errors into ten distinct types to identify patterns
and differences in the error distributions among these models.

Our analysis reveals that closed-source models exhibit a low similarity in their error cases, suggesting
that they possess varying coding capabilities. For instance, GPT-4 turbo often makes SyntaxError, but
rarely ImportError, which is contrary to Claude 3 Opus. The fine-tuned open-source small models
exhibit a high similarity in their error distributions, with AttributeError being the most dominant.

The error analysis also highlights some common challenges faced by all models, such as AttributeError
and TypeError, suggesting that models may have difficulty in memorizing and understanding the
attribute of class objects from various python libraries, and the type of returned results from different
functions. Interestingly, the fine-tuned models have a notably lower percentage of SyntaxError

9

compared to the closed-source models, indicating that further fine-tuning on the LLM4Graph helps
the models learn better code syntax and structure.

15.1%

16.4%
4.4%

12.6%

13.8%

16.4%
10.1%

5.0%

GPT-4 turbo RAG 5

28.5%17.7%

15.6%

8.6%
9.1%

10.8%

3.8%

Claude 3 Opus RAG 7

34.5%

21.3%

12.1%
6.9%5.2%

8.6%

5.2%

5.7%

DeepSeek Coder Doc+Code

35.2%

22.9%

12.3%
8.4%3.9%

8.9%

5.6%

Llama 3 Doc+Code

Error Types
AttributeError
TypeError
ImportError
APIError
NotFoundError
KeyValueError
SyntaxError
NameError
IndentationError
IndexError
NotImplementedError
AssertionError

Figure 6: Compilation error statistics for four best-performing models.

7 Conclusion

In this paper, we introduce ProGraph, a novel and challenging benchmark for evaluating LLMs
in graph analysis using external APIs. Current LLMs achieve only 36% accuracy, revealing their
limitations. To bridge this gap, we further construct LLM4Graph, a dataset with crawled documents
and auto-generated codes based on popular graph libraries. The datasets can help improve the
accuracy of both closed-source and open-source LLMs by 11-32% through RAG and instruction
tuning. Our work highlights the potential of enhancing LLMs with our LLM4Graph, offering valuable
resources for advancing LLM capabilities in structured data analysis. Discussions about limitations
and boarder impacts can be found in Appendix A.

8 Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.62192784,
62236004), the National Key R&D Program of China (No.2022ZD0116312), Young Elite Sci-
entists Sponsorship Program (No.2023QNRC001) by CAST, and Tsinghua University Initiative
Scientific Research Program.

References
[1] AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/

blob/main/MODEL_CARD.md.

[2] Chantal Amrhein, Nikita Moghe, and Liane Guillou. ACES: Translation accuracy challenge
sets for evaluating machine translation metrics. In Seventh Conference on Machine Translation
(WMT22), Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics.

[3] Anthropic. Announcing the claude 3 family, 2024. URL https://www.anthropic.com/
news/claude-3-family.

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[5] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008:P10008, 2008.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

[7] Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model, 2023.

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[9] Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. Graphwiz: An instruction-following language
model for graph computational problems. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’24, page 353–364, New York, NY, USA,
2024. Association for Computing Machinery.

[10] Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and
Jiliang Tang. Label-free node classification on graphs with large language models (LLMs). In
The Twelfth International Conference on Learning Representations, 2024.

[11] Jaewon Chung, Benjamin D. Pedigo, Eric W. Bridgeford, Bijan K. Varjavand, Hayden S. Helm,
and Joshua T. Vogelstein. Graspy: Graph statistics in python. Journal of Machine Learning
Research, 20(158):1–7, 2019.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[13] Gábor Csárdi and Tamás Nepusz. The igraph software package for complex network research.
2006.

[14] Chengwei Dai, Kun Li, Wei Zhou, and Songlin Hu. Beyond imitation: Learning key reasoning
steps from dual chain-of-thoughts in reasoning distillation, 2024.

[15] Debarati Das, Ishaan Gupta, Jaideep Srivastava, and Dongyeop Kang. Which modality should i
use – text, motif, or image? : Understanding graphs with large language models, 2024.

[16] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gard-
ner. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs.
In North American Chapter of the Association for Computational Linguistics, 2019.

[17] Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian
He. Simteg: A frustratingly simple approach improves textual graph learning, 2023.

[18] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming - the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

[19] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y.K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024.

[20] Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. Gpt4graph: Can large
language models understand graph structured data ? an empirical evaluation and benchmarking,
2023.

[21] Taicheng Guo, Kehan Guo, Bozhao Nan, Zhengwen Liang, Zhichun Guo, N. Chawla, O. Wiest,
and Xiangliang Zhang. What can large language models do in chemistry? a comprehensive
benchmark on eight tasks. In Neural Information Processing Systems, 2023.

11

[22] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: retrieval-
augmented language model pre-training. In Proceedings of the 37th International Conference
on Machine Learning, ICML’20. JMLR.org, 2020.

[23] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.
URL http://conference.scipy.org/proceedings/SciPy2008/paper_2/.

[24] Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model from
natural language, 2024.

[25] Xuanwen Huang, Kaiqiao Han, Dezheng Bao, Quanjin Tao, Zhisheng Zhang, Yang Yang, and
Qi Zhu. Prompt-based node feature extractor for few-shot learning on text-attributed graphs,
2023.

[26] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

[27] Ting En Lam, Yuhan Chen, Elston Tan, Eric Peh, Ruirui Chen, Paritosh Parmar, and Basura
Fernando. Causalchaos! dataset for comprehensive causal action question answering over
longer causal chains grounded in dynamic visual scenes, 2024.

[28] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian
Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP
tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html.

[29] Jiachun Li, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Towards faithful chain-of-
thought: Large language models are bridging reasoners, 2024.

[30] Zhonghang Li, Lianghao Xia, Jiabin Tang, Yong Xu, Lei Shi, Long Xia, Dawei Yin, and Chao
Huang. Urbangpt: Spatio-temporal large language models, 2024.

[31] Jerry Liu. LlamaIndex, 11 2022. URL https://github.com/jerryjliu/llama_index.

[32] Zheheng Luo, Qianqian Xie, and Sophia Ananiadou. Factual consistency evaluation of sum-
marisation in the era of large language models, 2024.

[33] Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, and Xing Xie.
Graphinstruct: Empowering large language models with graph understanding and reasoning
capability, 2024.

[34] Nikita Moghe, Arnisa Fazla, Chantal Amrhein, Tom Kocmi, Mark Steedman, Alexandra Birch,
Rico Sennrich, and Liane Guillou. Machine translation meta evaluation through translation
accuracy challenge sets, 2024.

[35] Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. Information network or social
network? the structure of the twitter follow graph. In Proceedings of the 23rd International
Conference on World Wide Web, WWW ’14 Companion, page 493–498. Association for
Computing Machinery, 2014. ISBN 9781450327459.

[36] OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[37] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, and ... Gpt-4 technical
report, 2024.

12

http://conference.scipy.org/proceedings/SciPy2008/paper_2/
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://github.com/jerryjliu/llama_index

[38] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback, 2022.

[39] Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor,
Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 3806–3824, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.248. URL https://aclanthology.org/
2023.findings-emnlp.248.

[40] Bryan Perozzi, Rami Al-Rfou, and Steven S. Skiena. Deepwalk: online learning of social
representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014.

[41] Chen Qian, Xin Cong, Wei Liu, Cheng Yang, Weize Chen, Yusheng Su, Yufan Dang, Jiahao
Li, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Communicative agents for software
development. arXiv preprint arXiv:2307.07924, 2023.

[42] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu,
James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin
Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal,
Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren
Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. arXiv preprint arXiv:2403.05530, 2024.

[43] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste
Mouret, Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large
language models. Nature, 625:468 – 475, 2023.

[44] Giulio Rossetti, Letizia Milli, and Rémy Cazabet. Cdlib: a python library to extract, compare
and evaluate communities from complex networks. Applied Network Science, 4, 2019.

[45] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented Open-
source Python Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th
ACM International Conference on Information and Knowledge Management (CIKM ’20), page
3125–3132. ACM, 2020.

[46] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Little Ball of Fur: A Python Library for
Graph Sampling. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM ’20), page 3133–3140. ACM, 2020.

[47] Varuni Sarwal, Viorel Munteanu, Timur Suhodolschi, Dumitru Ciorba, Eleazar Eskin, Wei
Wang, and Serghei Mangul. Biollmbench: A comprehensive benchmarking of large language
models in bioinformatics. bioRxiv, 2023.

[48] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models, 2024.

[49] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. Higpt:
Heterogeneous graph language model, 2024.

[50] Lei Tang and Huan Liu. Graph mining applications to social network analysis. Managing and
mining graph data, pages 487–513, 2010.

13

https://aclanthology.org/2023.findings-emnlp.248
https://aclanthology.org/2023.findings-emnlp.248

[51] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language
model for science, 2022.

[52] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson,
and ... Gemini: A family of highly capable multimodal models, 2024.

[53] Fernanda B Viégas and Judith Donath. Social network visualization: Can we go beyond the
graph. In Workshop on social networks, CSCW, volume 4, pages 6–10, 2004.

[54] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia
Tsvetkov. Can language models solve graph problems in natural language? In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 30840–30861. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
622afc4edf2824a1b6aaf5afe153fa93-Paper-Conference.pdf.

[55] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions. In Annual Meeting of the Association for Computational Linguistics, 2022.

[56] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions, 2023.

[57] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran
Associates, Inc., 2022.

[58] Lianghao Xia, Ben Kao, and Chao Huang. Opengraph: Towards open graph foundation models,
2024.

[59] Qianqian Xie, Weiguang Han, Zhengyu Chen, Ruoyu Xiang, Xiao Zhang, Yueru He, Mengxi
Xiao, Dong Li, Yongfu Dai, Duanyu Feng, Yijing Xu, Haoqiang Kang, Ziyan Kuang, Chenhan
Yuan, Kailai Yang, Zheheng Luo, Tianlin Zhang, Zhiwei Liu, Guojun Xiong, Zhiyang Deng,
Yuechen Jiang, Zhiyuan Yao, Haohang Li, Yangyang Yu, Gang Hu, Jiajia Huang, Xiao-Yang Liu,
Alejandro Lopez-Lira, Benyou Wang, Yanzhao Lai, Hao Wang, Min Peng, Sophia Ananiadou,
and Jimin Huang. The finben: An holistic financial benchmark for large language models, 2024.

[60] Liang Xu, Anqi Li, Lei Zhu, Hang Xue, Changtai Zhu, Kangkang Zhao, Haonan He, Xuanwei
Zhang, Qiyue Kang, and Zhenzhong Lan. Superclue: A comprehensive chinese large language
model benchmark, 2023.

[61] Yibo Yan, Haomin Wen, Siru Zhong, Wei Chen, Haodong Chen, Qingsong Wen, Roger
Zimmermann, and Yuxuan Liang. Urbanclip: Learning text-enhanced urban region profiling
with contrastive language-image pretraining from the web, 2024.

[62] Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu, Hong Liu,
Cheng Yang, and Chuan Shi. Graphtranslator: Aligning graph model to large language model
for open-ended tasks. In Proceedings of the ACM on Web Conference 2024, WWW ’24,
page 1003–1014, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400701719.

[63] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg:
Can large language models solve spatial-temporal problems on dynamic graphs?, 2024.

[64] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and

14

https://proceedings.neurips.cc/paper_files/paper/2023/file/622afc4edf2824a1b6aaf5afe153fa93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/622afc4edf2824a1b6aaf5afe153fa93-Paper-Conference.pdf

Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neu-
ral Information Processing Systems, volume 36, pages 46595–46623. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf.

[65] Xingchen Zou, Yibo Yan, Xixuan Hao, Yuehong Hu, Haomin Wen, Erdong Liu, Junbo Zhang,
Yong Li, Tianrui Li, Yu Zheng, and Yuxuan Liang. Deep learning for cross-domain data fusion
in urban computing: Taxonomy, advances, and outlook, 2024.

15

https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf

A Limitation and Boarder Impact

Limitation. Due to the version iterations of GPT, the results based on automated evaluation might
show slight differences compared to those presented in this paper. The proposed ProGraph benchmark
contains 512 hand-crafted problems, which can only reflect a core subset of graph analysis tasks.
Note that our dataset includes nearly 30,000 auto-generated instances. Thus, in future work, we can
expand the benchmark by manually selecting high-quality cases from the dataset. Admittedly, the
benchmark still presents certain differences from real-world scenarios, e.g., we did not consider a
multi-turn task-solving process.

Boarder Impact. The inherent complexity of graph data in real-world scenarios demands professional
coding capabilities, making it a compelling testbed for evaluating the structured data handling abilities
of LLMs. We believe this work can shed light on further researches toward more powerful general
intelligence with structured data understanding.

16

B Role-play Rephrasing Example

Original Question
I have a graph with an edge set [(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)], can you help me
compute node connectivity for all pairs of nodes and print the node connectivity for each pair?
Role-Play Rephrasing Prompt
The above question is too abstract. Please role-play based on the following professional
information, mimic their everyday language and tone, and give a background from real life
(more than 4 sentences). Restate the problem, ensuring that the semantics remain unchanged.
Notes: If the original question has a file, you must give the file name in your new question.
Professional Information
Ecologist: Studies the relationships between organisms and their environments, including
ecosystems, habitats, and biodiversity.
Rephrased Question
Imagine we’re examining a simplified model of an ecosystem where the nodes represent different
species, and the edges indicate direct ecological interactions between them, such as predator-prey
or symbiotic relationships. For our current study, we’ve mapped out a series of interactions as
follows: [(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)].
To fully understand the resilience of our ecosystem, we need to determine the species connectiv-
ity, which reflects how each pair of species is interconnected through these interactions. Can we
analyze our network to reveal the minimum number of species that would need to be removed to
disrupt the direct connection between any two species in this web? I’d like to have a measurable
indication of node connectivity for each unique pair of species within our ecosystem based on
the interactions detailed above. This will provide us with valuable insights into the robustness of
their relationships and, by extension, the stability of our ecosystem.

C Document Dataset Example

Section ID triadic_census
Description
Determines the triadic census of a directed graph. The triadic census is a count of how many ...
Field List
Parameters: G : digraph; nodelist : list
Returns: census : dict
Raises: ValueError
Rubrics
Notes: This algorithm has complexity O(m) where m is the number of edges in the graph ...
References: [1]Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census algorithm ...
Examples:

G=nx.DiGraph([(1,2),(2,3),(3,1),(3,4),(4,1),(4,2)])
...

D Prompt for GPT Back-Instruction

Back Instruction Prompt
Given an API doc, you need to respond like this: you should give me an example of Python
code to show how to use it, and give me a question that describes the data that code uses, and
the problem that code solves. Now I will give you an API document and you need to complete
my request.
** A complete API documentation entry **
Generate a JSON object like this: {API: , example Python code: , question: , }

17

E ProGraph Benchmark Example

Table 6: Benchmark Example
Conponent Example
Annotated Question Given a graph with edge set [(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (5, 6), (5,

7), (6, 7)], can you Color a graph using largest_first coloring strategy of
greedy graph coloring?
Notes: You need to print the result like this.
for node, color in coloring.items():

print(f"Node {node}: Color {color}")

Rephrased Question As a Project Coordinator, you’re tasked with the organization of a net-
work of collaborative tasks, each represented by connections between
different points, or ’nodes,’ in a particular sequence. This sequence is
comprised of pairs indicating task interdependencies: [(1, 2), (1, 3), (2,
4), (3, 4), (4, 5), (5, 6), (5, 7), (6, 7)]. The challenge lies in assigning
’colors,’ or categories, to these tasks in a manner that adjacent tasks
(those directly connected) are not categorized the same this ensures a
clear division of responsibilities and resources.
Your goal is to utilize the "largest_first" strategy within the greedy color-
ing algorithm for optimal organization. This strategic approach selects
nodes based on their descending degree, that is, beginning with the node
with the most connections. By categorizing in this method, you’re likely
to minimize the total number of categories used.
Upon completion of this process, we need to visualize our task cate-
gorization. Could you please format the output as a sequence of print
statements in Python, displaying the nodes alongside their assigned cate-
gories? The output should follow this structure for clarity:
for node, color in coloring.items():

print(f"Node {node}: Color {color}")
This simplification will effectively translate the abstract graph coloring
problem into a practical scenario suitable for organizing our network of
tasks.

Answer Node 4: Color 0 Node 5: Color 1 Node 1: Color 0 Node 2: Color 1 Node
3: Color 1 Node 6: Color 0 Node 7: Color 2

Reference Code
import networkx as nx
from networkx.algorithms.coloring import greedy_color
Create a sample graph
G = nx.Graph()
edges = [(1, 2), (1, 3), (2, 4), (3, 4),
(4, 5), (5, 6), (5, 7), (6, 7)]
G.add_edges_from(edges)
Apply the largest first coloring strategy
coloring = greedy_color(G, strategy="largest_first")
for node, color in coloring.items():

print(f"Node {node}: Color {color}")

Key APIs greedy_color

18

F Doc+Code Dataset Example

Question
Given the karate club graph provided by NetworkX, how do we find its communities using the
greedy modularity maximization method and then print out the sorted list of nodes for each
community?
Answer
To solve the given question, we can leverage greedy_modularity_communities function.
It is a function that "Find communities in G using greedy modularity maximization. This
function uses Clauset-Newman-Moore greedy modularity maximization [2] to find the
community partition with the largest modularity. Greedy modularity maximization begins with
each node in its own community and repeatedly joins the pair of communities that lead to
the largest modularity until no further increase in modularity is possible (a maximum). Two
keyword arguments adjust the stopping condition. cutoff is a lower limit on the number of
communities so you can stop the process before reaching a maximum (used to save computation
time). best_n is an upper limit on the number of communities so you can make the process
continue until at most n communities remain even if the maximum modularity occurs for more.
To obtain exactly n communities, set both cutoff and best_n to n. This function maximizes
the generalized modularity, where resolution is the resolution parameter, often expressed as
(gamma). See modularity() .".

The function accepts parameters:
"Parameters:": {

"G : NetworkX graph": "",
"weight : string or None, optional (default=None)": "The name of an edge attribute

that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.",

"resolution : float, optional (default=1)": "If resolution is less than 1, modularity
favors larger communities. Greater than 1 favors smaller communities.",

"cutoff : int, optional (default=1)": "A minimum number of communities below
which the merging process stops. The process stops at this number of communities even if
modularity is not maximized. The goal is to let the user stop the process early. The process
stops before the cutoff if it finds a maximum of modularity.",

"best_n : int or None, optional (default=None)": "A maximum number of
communities above which the merging process will not stop. This forces community merging to
continue after modularity starts to decrease untilbest_ncommunities remain. If None, force it to
continue beyond a maximum."}

The function returns: "Returns:": {
"communities: list": "A list of frozensets of nodes, one for each community. Sorted

by length with largest communities first." }
The function’s path is "networkx.community.greedy_modularity_communities".

By using the info above, we can write a Python code to solve this problem.
Here is the Python code.
import networkx as nx
Create a graph
G = nx.karate_club_graph()
Find communities in the graph
communities = nx.community.greedy_modularity_communities(G,
weight=’weight’, resolution=1, cutoff=1, best_n=None)
Print the sorted list of nodes in each community
for community in communities:

print(sorted(community))

19

G Experimental Results of All Models

Table 7: Performance (%) of closed-source models regarding different task categories.
Model Graph Theory Graph Statistical Learning Graph Embedding Overall

Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy

Claude 3 Haiku

No RAG 52.9 31.6 23.4 9.7 32.6 2.9 42.2 22.4
RAG 3 68.9 47.7 22.1 11.4 23.9 1.1 50.8 32.6
RAG 5 63.5 44.4 29.9 16.4 15.2 2.5 49.0 32.2
RAG 7 65.4 51.0 25.3 15.2 17.4 6.5 49.0 36.2

Claude 3 Sonnet

No RAG 57.1 33.2 15.6 4.6 10.9 0.0 40.4 21.6
RAG 3 63.5 45.8 13.6 7.6 19.6 5.8 44.5 30.7
RAG 5 63.5 45.5 16.2 9.7 21.7 4.7 45.9 31.1
RAG 7 66.4 50.0 25.3 12.3 21.7 4.3 50.0 34.6

Claude 3 Opus

No RAG 69.2 47.3 31.2 15.1 47.8 14.5 55.7 34.7
RAG 3 74.4 59.4 39.6 28.3 21.7 0.0 59.2 44.7
RAG 5 73.4 56.4 39.6 28.8 41.3 20.7 60.4 44.9
RAG 7 75.6 59.8 42.9 28.6 32.6 13.0 61.9 46.2

GPT-3.5

No RAG 64.1 35.1 24.7 8.4 15.2 1.1 47.9 24.0
RAG 3 67.0 44.3 32.5 12.0 41.3 5.1 54.3 31.1
RAG 5 64.4 45.2 33.1 16.2 43.5 5.4 53.1 32.9
RAG 7 64.7 45.8 33.8 15.9 37.0 3.3 52.9 33.0

GPT-4 turbo

No RAG 72.4 42.1 39.0 14.8 41.3 12.0 59.6 31.2
RAG 3 74.7 48.5 40.3 21.4 17.4 2.2 59.2 36.2
RAG 5 75.6 50.0 56.5 29.7 50.0 2.9 67.6 39.6
RAG 7 74.7 51.3 46.8 23.8 52.2 7.6 64.3 39.1

GPT-4o

No RAG 69.9 48.1 48.7 21.4 32.6 5.8 60.2 36.3
RAG 3 73.7 55.5 51.3 24.7 47.8 9.8 64.7 42.1
RAG 5 74.7 54.8 55.2 27.8 56.5 9.1 67.2 42.6
RAG 7 76.9 57.4 48.1 24.3 54.4 4.0 66.2 42.7

Gemini 1.0 Pro

No RAG 48.7 27.7 9.1 1.7 19.6 3.3 34.2 17.7
RAG 3 61.5 47.4 16.2 7.5 15.2 2.2 43.8 31.3
RAG 5 62.2 44.4 15.6 6.8 13.0 0.0 43.8 29.1
RAG 7 64.4 45.3 15.6 5.8 19.6 0.0 45.7 29.4

Gemini 1.5 Pro

No RAG 59.6 37.2 21.4 6.6 13.0 1.8 44.0 24.8
RAG 3 70.2 52.0 24.7 12.0 30.4 13.8 52.9 36.6
RAG 5 71.2 51.3 29.2 16.7 19.6 11.2 53.9 37.3
RAG 7 70.5 51.9 23.4 15.3 21.7 7.3 52.0 36.9

Table 8: Performance (%) of open-source models regarding different task categories.
Model Graph Theory Graph Statistical Learning Graph Embedding Overall

Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy

Llama 3

No Fine-tune 36.5 17.3 12.3 3.8 15.2 0.4 27.3 11.7
Code Only 61.2 46.7 49.4 36.6 63.0 47.5 57.8 43.8

Code+RAG 3 51.6 30.1 47.4 30.9 63.0 44.2 51.4 31.6
Code+RAG 5 47.8 25.2 44.8 28.9 56.5 40.2 47.7 27.6
Code+RAG 7 47.1 25.1 46.8 30.6 60.9 36.2 48.2 27.7

Doc+Code 69.6 53.2 42.9 23.2 80.4 62.0 62.5 44.9

Deepseek Coder

No Fine-tune 56.1 33.8 30.5 9.9 30.4 7.6 46.1 24.2
Code Only 62.5 46.9 47.4 33.4 65.2 49.6 58.2 43.1

Code+RAG 3 59.0 35.9 46.8 28.8 43.5 29.4 53.9 33.2
Code+RAG 5 52.9 32.0 43.5 32.3 30.4 24.3 48.1 31.4
Code+RAG 7 51.6 33.6 49.4 31.4 21.7 15.9 48.2 31.4

Doc+Code 71.2 54.1 46.1 29.8 67.4 52.5 63.3 46.6

20

Table 9: Performance (%) of closed-source models regarding different question types.
Model True/False Drawing Calculation Hybrid

Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy

Claude 3 Haiku

No RAG 71.8 53.4 43.4 20.2 34.4 27.1 41.1 13.5
RAG 3 71.8 52.6 52.5 30.9 53.1 46.9 41.1 22.3
RAG 5 66.7 48.7 51.2 31.4 43.8 37.5 37.5 23.4
RAG 7 64.1 56.4 49.4 34.9 44.6 24.1 53.1 48.4

Claude 3 Sonnet

No RAG 56.4 38.5 43.9 21.6 21.9 15.1 28.6 13.7
RAG 3 79.5 68.4 45.7 28.2 34.4 31.3 30.4 21.4
RAG 5 66.7 53.8 46.0 29.6 40.63 35.4 39.3 22.4
RAG 7 71.8 51.3 52.2 33.8 41.1 23.2 43.8 43.8

Claude 3 Opus

No RAG 79.5 66.7 57.1 33.0 37.5 28.1 50.0 27.5
RAG 3 79.5 71.0 61.6 44.9 43.8 40.1 48.2 27.5
RAG 5 76.9 66.7 62.9 45.0 40.6 37.0 55.4 33.4
RAG 7 74.4 59.0 65.2 46.9 50.0 48.4 48.2 29.7

GPT-3.5

No RAG 66.7 38.5 51.4 23.4 43.8 30.2 32.1 14.4
RAG 3 74.4 56.4 55.6 29.8 43.8 35.4 51.8 19.8
RAG 5 69.2 61.5 55.6 31.5 40.6 31.3 44.6 23.2
RAG 7 56.4 41.0 56.1 32.5 50.0 47.9 51.8 21.9

GPT-4 turbo

No RAG 76.9 51.3 62.3 31.3 43.8 29.7 44.6 17.0
RAG 3 76.9 55.1 60.3 33.7 62.5 52.1 48.2 31.1
RAG 5 79.5 69.2 69.4 37.9 62.5 56.3 60.7 21.4
RAG 7 71.8 59.0 66.5 38.3 65.6 53.1 57.1 22.4

GPT-4o

No RAG 71.8 53.9 61.3 34.7 56.3 44.3 62.5 30.7
RAG 3 79.5 65.8 65.2 39.4 56.3 54.7 69.6 37.4
RAG 5 69.2 56.4 68.6 40.6 59.4 54.7 69.6 39.9
RAG 7 74.4 60.7 68.1 41.3 56.3 54.7 62.5 32.7

Gemini 1.0 Pro

No RAG 43.6 30.8 37.4 17.3 31.3 23.4 23.2 7.7
RAG 3 61.5 56.4 47.8 30.0 43.8 38.5 28.6 18.8
RAG 5 64.1 51.3 46.5 27.8 37.5 33.9 28.6 19.6
RAG 7 66.7 53.9 48.1 28.2 40.6 34.4 34.0 17.3

Gemini 1.5 Pro

No RAG 61.5 48.7 46.8 23.8 28.1 25.0 33.9 15.2
RAG 3 71.8 62.4 55.6 35.2 46.9 39.1 50.0 26.2
RAG 5 76.9 57.7 57.4 36.0 46.9 40.6 39.3 30.1
RAG 7 74.4 61.5 55.1 37.3 40.6 28.7 41.1 21.4

Table 10: Performance (%) of open-source models regarding different question types.
Model True/False Drawing Calculation Hybrid

Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy Pass Rate Accuracy

Llama 3

No Fine-tune 43.6 33.3 28.3 10.0 15.6 12.5 26.8 8.3
Code Only 82.1 71.8 59.2 42.0 34.4 31.3 60.7 43.6

Code+RAG 3 84.6 44.0 56.9 29.0 50.0 37.5 66.1 37.2
Code+RAG 5 66.7 36.8 53.5 25.4 37.5 28.1 60.7 36.3
Code+RAG 7 66.7 37.2 50.9 24.4 50.0 35.9 64.3 39.3

Doc+Code 82.1 73.1 64.4 43.7 40.6 31.8 67.9 41.3

Deepseek Coder

No Fine-tune 66.7 41.5 47.8 22.1 53.1 39.4 46.4 18.2
Code Only 71.8 61.5 60.0 41.1 50.0 45.3 62.5 42.1

Code+RAG 3 71.8 48.3 57.7 32.2 53.1 45.3 44.6 22.8
Code+RAG 5 71.8 53.9 50.7 29.3 40.6 34.4 39.3 28.6
Code+RAG 7 74.4 54.7 50.4 28.7 37.5 34.4 48.2 31.4

Doc+Code 79.5 68.0 66.2 46.0 37.5 34.4 66.1 42.3

21

Table 11: Performance (%) of closed-source models regarding different answer difficulties.
Model Easy Hard

Pass Rate Accuracy Pass Rate Accuracy

Claude 3 Haiku

No RAG 55.7 31.1 29.3 10.2
RAG 3 65.3 42.8 34.9 18.2
RAG 5 62.7 42.0 33.0 18.4
RAG 7 64.3 48.0 30.2 19.5

Claude 3 Sonnet

No RAG 56.0 30.5 21.7 9.0
RAG 3 58.7 40.4 27.8 17.0
RAG 5 61.0 42.1 25.9 15.4
RAG 7 65.7 46.0 32.6 18.4

Claude 3 Opus

No RAG 68.0 44.6 41.0 20.6
RAG 3 71.0 54.7 45.3 30.5
RAG 5 71.7 53.7 47.6 32.5
RAG 7 73.3 55.8 48.6 32.3

GPT-3.5

No RAG 62.3 32.2 32.6 12.4
RAG 3 66.7 42.4 40.6 15.0
RAG 5 64.3 44.3 40.6 16.8
RAG 7 66.7 44.2 39.2 17.1

GPT-4 turbo

No RAG 73.3 39.9 42.0 18.8
RAG 3 71.3 43.6 44.8 25.7
RAG 5 76.0 48.8 58.5 26.6
RAG 7 73.3 48.6 55.2 25.6

GPT-4o

No RAG 66.0 43.6 56.1 26.0
RAG 3 70.7 52.4 59.9 27.6
RAG 5 71.0 51.3 64.2 30.2
RAG 7 72.7 54.0 59.4 26.6

Gemini 1.0 Pro

No RAG 47.3 25.1 19.8 7.2
RAG 3 61.3 44.1 25.5 13.3
RAG 5 59.7 41.0 25.0 12.2
RAG 7 62.3 41.9 26.4 11.6

Gemini 1.5 Pro

No RAG 57.0 33.1 28.8 13.1
RAG 3 67.3 45.7 39.2 23.7
RAG 5 69.0 47.1 38.2 23.4
RAG 7 67.0 47.5 35.9 21.9

Table 12: Performance (%) of open-source models regarding different answer difficulties.
Model Easy Hard

Pass Rate Accuracy Pass Rate Accuracy

Llama 3

No Fine-tune 36.3 16.2 17.5 5.4
Code Only 64.3 47.7 52.8 38.1

Code+RAG 3 61.7 29.6 56.6 34.5
Code+RAG 5 56.7 25.0 50.9 31.4
Code+RAG 7 56.0 26.0 50.0 30.2

Doc+Code 67.7 49.1 60.4 39.0

Deepseek Coder

No Fine-tune 58.3 31.8 36.8 13.6
Code Only 64.7 46.1 54.7 38.7

Code+RAG 3 60.0 34.7 52.8 31.1
Code+RAG 5 55.0 31.5 43.9 31.2
Code+RAG 7 54.7 32.9 46.2 29.2

Doc+Code 69.7 50.6 59.4 40.8

22

H Experimental Results of Best-performing Models

Claude 3 Opus
No RAG

Claude 3 Opus
RAG 3

Claude 3 Opus
RAG 5

Claude 3 Opus
RAG 7

0

10

20

30

40

50

60

70

80
Ac

cu
ra

cy
 (%

)
Categories

Basic Graph Theory
Graph Statistical Learning
Graph Embedding

GPT-4o
No RAG

GPT-4o
RAG 3

GPT-4o
RAG 5

GPT-4o
RAG 7

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Categories
Basic Graph Theory
Graph Statistical Learning
Graph Embedding

Figure 7: Accuracy of closed-source models regarding different task categories.

Claude 3 Opus
No RAG

Claude 3 Opus
RAG 3

Claude 3 Opus
RAG 5

Claude 3 Opus
RAG 7

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Question Types
True/False
Calculation
Drawing
Hybrid

GPT-4o
No RAG

GPT-4o
RAG 3

GPT-4o
RAG 5

GPT-4o
RAG 7

20

30

40

50

60

70

80

90
Ac

cu
ra

cy
 (%

)
Question Types

True/False
Calculation
Drawing
Hybrid

Figure 8: Accuracy of closed-source models regarding different question types.

Claude 3 Opus
No RAG

Claude 3 Opus
RAG 3

Claude 3 Opus
RAG 5

Claude 3 Opus
RAG 7

20

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

Answer Difficulty
Easy
Hard

GPT-4o
No RAG

GPT-4o
RAG 3

GPT-4o
RAG 5

GPT-4o
RAG 7

20

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

Answer Difficulty
Easy
Hard

Figure 9: Accuracy of closed-source models regarding different answer difficulties.

23

Deepseek Coder
No fine-tune

Deepseek Coder
Code Only

Deepseek Coder
Code+RAG 3

Deepseek Coder
Code+RAG 5

Deepseek Coder
Code+RAG 7

Deepseek Coder
Doc+Code

0

10

20

30

40

50

60
Ac

cu
ra

cy
 (%

)
Categories

Basic Graph Theory
Graph Statistical Learning
Graph Embedding

Llama 3
No fine-tune

Llama 3
Code Only

Llama 3
Code+RAG 3

Llama 3
Code+RAG 5

Llama 3
Code+RAG 7

Llama 3
Doc+Code

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Categories
Basic Graph Theory
Graph Statistical Learning
Graph Embedding

Figure 10: Accuracy of open-source models regarding different task categories.

Deepseek Coder
No fine-tune

Deepseek Coder
Code Only

Deepseek Coder
Code+RAG 3

Deepseek Coder
Code+RAG 5

Deepseek Coder
Code+RAG 7

Deepseek Coder
Doc+Code

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Question Types
True/False
Calculation
Drawing
Hybrid

Llama 3
No fine-tune

Llama 3
Code Only

Llama 3
Code+RAG 3

Llama 3
Code+RAG 5

Llama 3
Code+RAG 7

Llama 3
Doc+Code

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

Question Types
True/False
Calculation
Drawing
Hybrid

Figure 11: Accuracy of open-source models regarding different question types.

Deepseek Coder
No fine-tune

Deepseek Coder
Code Only

Deepseek Coder
Code+RAG 3

Deepseek Coder
Code+RAG 5

Deepseek Coder
Code+RAG 7

Deepseek Coder
Doc+Code

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Answer Difficulty
Easy
Hard

Llama 3
No fine-tune

Llama 3
Code Only

Llama 3
Code+RAG 3

Llama 3
Code+RAG 5

Llama 3
Code+RAG 7

Llama 3
Doc+Code

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Answer Difficulty
Easy
Hard

Figure 12: Accuracy of open-source models regarding different answer difficulties.

24

I Annotation Manual for ProGraph Benchmark

Annotation This manual provides detailed guidelines for annotating a benchmark dataset by creating
and documenting tasks related to graph-related Python packages such as NetworkX and graph. Each
annotator will document a function, propose a question, create a graph, and provide a reference code
with execution results.

1. Objective
• To create a high-quality benchmark dataset for evaluating the performance of graph-

related functions in Python packages.
• To document function usage, practical questions, graph creation, corresponding results,

and key APIs.
2. Annotation Tools

• Graph Libraries: NetworkX, igraph, CDlib, graspologic, Karate Club, Little Ball of
Fur

• Code Editor: Any Python IDE (e.g., PyCharm, VS Code, Jupyter Notebook)
• Documentation Resources: Official documentation for the 6 Python libraries.

3. Data Types
• Function Documentation: Description and usage of a specific function.
• Graph: Manually crafted or randomly generated graphs.
• Code: Python code snippets for graph creation and function execution.
• Results: Output from executing the provided code.
• Key APIs: APIs that are crucial and indispensable for solving a problem.

4. Annotation Guidelines
• Function Documentation:

– Select an API from the provided graph-related packages.
– Document the API name, parameters, return type, and a brief description.

• Proposing a Question:
– Formulate a clear, practical question that the API can solve.
– Ensure the question is specific and relevant to the API’s capabilities.

• Creating a Graph:
– Manual Crafting: Draw a graph that fits the proposed question.
– Random Generation: Use code to generate a random graph appropriate for the

function.
– Graph Description: Provide a brief description of the graph structure.

• Reference Code:
– Write Python code to create the graph.
– Include the API call with appropriate parameters.
– Ensure the code is well-commented and readable.

• Execution Result:
– Execute the code and record the output.
– Provide a detailed explanation of the result.

5. Annotation Process
• Step-by-Step Procedure:

(a) API Selection: Choose an API from the provided documentation.
(b) Question Formulation: Develop a practical question for the API.
(c) Graph Creation: Create a graph manually or using code.
(d) Code Writing: Write reference code to demonstrate the API.
(e) Result Recording: Execute the code and document the output.
(f) Review and Submission: Review the annotation for accuracy and clarity, then

submit.
• Examples:

25

– Provide examples for each step to guide annotators.
6. Quality Control

• Review Process:
– Conduct peer reviews of annotations to ensure consistency and accuracy.
– Provide feedback and request revisions if necessary.

• Consistency Checks:
– Ensure all annotations follow the same structure and guidelines.
– Verify the correctness of code and results.

7. Common Issues
• Ambiguity in Questions: Ensure questions are specific and clear.
• Errors in Code: Double-check code for syntax and logical errors.
• Inconsistent Results: Verify that results match the expected output.

8. Annotation Tips
• Be precise and consistent in the document.
• Use the provided examples as references.
• Clarify any doubts with the project coordinator.

9. Frequently Asked Questions (FAQs)
• Q: What if I encounter an error in the API execution?
• A: Check the document and debug the code. If the error persists, seek help from the

coordinator.
• Q: How detailed should the graph description be?
• A: Provide enough detail to understand the graph structure and its relevance to the API.

26

	Introduction
	Related Work
	Benchmark
	Tasks
	Human Annotation
	Role-Play Rephrasing
	Automated Evaluation

	Datasets and Models
	Datasets
	Models

	Experiment
	Benchmarking LLMs on ProGraph
	Enhancing Closed-Source LLMs with Document Dataset
	Enhancing Open-Source LLMs with Code Dataset and Doc+Code Dataset

	Analysis
	Performance Analysis on Different Benchmark Groupings
	Compilation Error Analysis

	Conclusion
	Acknowledgements
	Limitation and Boarder Impact
	Role-play Rephrasing Example
	Document Dataset Example
	Prompt for GPT Back-Instruction
	ProGraph Benchmark Example
	Doc+Code Dataset Example
	Experimental Results of All Models
	Experimental Results of Best-performing Models
	Annotation Manual for ProGraph Benchmark

