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Abstract

This paper proposes a hierarchical framework that enables
reasoning across multiple levels of abstraction, from per-
ception to high-level control. The framework relies primar-
ily on Hyperdimensional (HD) computing, a versatile brain-
inspired computing paradigm that can produce composite dis-
tributed representations for efficient classification and can
also facilitate symbolic reasoning. We present this framework
through an example use case corresponding to cognition-
augmented prosthetic grasping, where user intent is proba-
bilistically predicted to aid the user in successfully selecting
and executing the most appropriate gripping mode. Overall,
this paper aims to illustrate how HD computing can consti-
tute a mathematical formalism capable of integrating various
levels of cognition under a common hierarchical framework.

Introduction

Data-driven artificial intelligence (AI) and machine learn-
ing methods have demonstrated great success at perception-
based benchmarks, sparking great interest in their adoption
within various disciplines, including biomedical engineer-
ing, robotics, and edge computing (Park, Took, and Seong
2018; Zhou et al. 2019). Yet, the deployment of Al in prac-
tical scenarios may present heterogeneous requirements that
range from the inclusion of uncertainty-capturing models
of the world to the incorporation of expert knowledge and
symbolic reasoning over it. This calls for mathematical for-
malisms and frameworks that can integrate heterogeneous
algorithms and representations.

Furthermore, human cognition is hierarchical by nature
(Jeon 2014). At the low level, cognition is established by the
integration of massive sensory data from disparate sources.
In contrast, high level cognition involves abstract reasoning
supported by pre-conceived notions of the world’s proper-
ties. This hierarchical scheme ultimately drives human ac-
tion, which, in turn, restarts the sense-reason-act closed-
loops that brains are uniquely endowed with.

This paper posits that Hyperdimensional (HD) computing
(Kanerva 2009), known also as Vector Symbolic Architec-
tures (VSA) (Gayler 2003), can constitute a mathematical
formalism capable of integrating the heterogeneous aspects
of cognition described above. HD computing builds upon
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a carefully designed algebra of vectors, that enables sym-
bolic computations as well as the composite encoding of het-
erogeneous information. Moreover, due to its high-capacity
and distributed nature, HD computing is robust against noise
(Frady, Kleyko, and Sommer 2018) and can be memory ef-
ficient (Zhou, Muller, and Rabaey 2021; Kleyko, Frady, and
Sommer 2021).

The posture above is motivated by the multiple success-
ful implementations of HD computing available in literature;
earlier on in its development focusing primarily on symbolic
reasoning (Plate 1994b; Eliasmith et al. 2012; Rachkovskij
and Slipchenko 2012), and more recently demonstrating
its usefulness for various perception tasks in the fields of
robotics (Neubert, Schubert, and Protzel 2019; Mitrokhin
et al. 2019) and bio-signal processing and classification
(Rahimi et al. 2018). For perception tasks, in particular,
HD computing enables the compact encoding of compos-
ite spatio-temporal and frequency distribution structures by
exploiting the properties of high-dimensional binary and
bipolar vector spaces (Kleyko et al. 2021a). Classification
often takes place by means of a simple nearest-centroid
search, with the class-centroids also represented as high-
dimensional vectors and stored in an associative memory.
Other approaches follow an iterative learning strategy that
improves upon the often sub-optimal nearest-centroid search
mentioned before (Diao et al. 2021).

In this paper, we explore the capabilities of HD comput-
ing as a formalism to integrate classification, probabilistic
inference, and symbolic reasoning within a single computa-
tional framework. We envision that this framework can en-
able reasoning and, eventually, learning across different lev-
els of abstraction by fully describing it in the HD space. The
contributions of this paper can be summarized as follows:

Proposal and illustration of a hierarchical reasoning
framework. Through a synthetic prosthetic grasping exam-
ple, we illustrate how the proposed framework can hierar-
chically represent the different levels of abstraction of the
application: at the lowest (perception) level it relies on bio-
signal classification; at the intermediate level it relies on a
Dynamic Bayesian Network (DBN) to infer user-intent over
time; and at the highest level it relies on symbolic reasoning
for control and feedback.

Mapping of a probabilistic graphical model to HD
space. We demonstrate how to map the DBN mentioned



above to the HD space. We show that this mapping allows
us to store the conditional probability tables (CPTs) of the
model in superposition, with the potential of reducing mem-
ory footprint, and enabling an end-to-end HD representation
for inference in the proposed framework.

Discussion of the implications and extensions of the
proposed framework. We discuss the implications of the
current framework and detail future work directions.

Notation

Random variables are denoted with upper case letters X,
and their instantiated values with lower case letters x. For
long variable and value names, we capitalize the first letter
to discern them (e.g. T'ask is a variable and task a value).
Instantiations of multiple variables and vectors are denoted
with bold lower case letters x. We distinguish the high-
dimensional vectors (or hypervectors, as introduced in the
following section) that constitute the primitives of HD com-
puting by denoting them with X.

Hyperdimensional computing

Inspired by the understanding that the brain’s computations
rely on massive circuits of neurons and synapses, HD com-
puting operates on pseudo-random high-dimensional vec-
tors through a well defined computational algebra of vec-
tors, different from linear algebra (Kanerva 2009). Pairing
such a representation and algebra with an associative mem-
ory yields a versatile architecture that enables efficient learn-
ing and reasoning (Rachkovskij, Kussul, and Baidyk 2013).

Main properties and components

HD computing can materialize through different models,
each with their own set of properties. See (Kleyko et al.
2021b) for an extensive list. In general, all HD computing
instances rely on the following components and properties
(Neubert, Schubert, and Protzel 2019):

High-dimensional spaces. The primitives of HD com-
puting are vectors with n dimensions commonly larger
than 102, denoted as X = x &€ R™. For the rest of the
paper, we refer to these high-dimensional vectors as hy-
pervectors. Depending on the model, hypervectors can be
real-numbered tensors (Smolensky 1990), real and com-
plex valued vectors (Plate 1994a), binary dense (Kanerva
et al. 1997) or sparse (Rachkovskij 2001) vectors or bipo-
lar vectors (Gayler 1998). In this paper, we use the Multi-
ply Add Permute (MAP) model (Gayler 1998), which re-
lies on the latter bipolar representation. The choice of high-
dimensional spaces is motivated by several of their proper-
ties, as explained throughout the following paragraphs, such
as the near orthogonality of random hypervectors, their ro-
bustness to noise and their huge capacity, even when repre-
sented sparsely (Frady, Kleyko, and Sommer 2018).

Orthogonality and similarity metrics. HD computing
exploits the properties of high-dimensional spaces. In par-
ticular, the hypervectors mentioned above are created ran-
domly by uniformly and independently sampling each di-
mension from the underlying HD space (Neubert, Schubert,

and Protzel 2019). These seed hypervectors are often saved
in an item memory (L.M.), implemented as a code-book or
look-up table. Due to their high dimension, two randomly
generated seed hypervectors are very likely orthogonal. This
results in significant robustness against noise when trying
to recognize them or recover them from the I.M. through
appropriate distance metrics, such as Hamming distance or
cosine similarity (Kleyko et al. 2021b). We refer to the sim-
ilarity between two hypervectors as sim(-, -). Depending on
the metric of choice, similarity is directly (e.g. cosine simi-
larity) or inversely (e.g. Hamming distance) proportional to
it. Moreover, due to their approximate orthogonality, seed
hypervectors stored in the I.M. can be interpreted and de-
ployed as discrete symbols. This elementary property of
high-dimensional spaces constitutes the key of HD com-
puting, and is exploited for the construction of data struc-
tures through specialized operations, and for recovering in-
formation from noisy inputs as well as for symbolic and sub-
symbolic queries through a simple nearest neighbor search,
as detailed in the following paragraphs.

HD computing operations. HD computing relies on three
main operations:

1) Binding o: The binding operation combines two input hy-
pervectors into an output hypervector dissimilar to the in-
put. The MAP model implements binding as an component-
wise product of the input hypervectors. One of the most
common uses of the binding operation is to form associa-
tions between two concepts or variables in a role-filler or
key-value fashion, such as a record describing sensor type
SENSOR = TYPE o EMG. Moreover, each of the original
vectors can be recovered by unbinding it from the original
association. In the MAP model, each vector is its own mul-
tiplicative inverse, such that binding a vector to itself results
in a hypervector of ones (i.e. X o X = 1, with X € R™ and
1 =(1,1,...,1) € R™). This self-inverse property means
that the unbinding operation is the same as binding, allowing
to easily recover the elements of associations. For example,
the type of sensor can be recovered from the SENSOR asso-
ciation by unbinding TYPE from it (i.e. TYPEoSENSOR =
TYPE o TYPE 0c EMG = 1 0 EMG = EMG). Binding is as-
sociative and commutative and distributes over the bundling
operation, explained below.

2) Bundling +: The bundling operation, typically imple-
mented as an component-wise sum of hypervectors, com-
bines or superposes two inputs into an output that is similar
to the two inputs. This property results from the near or-
thogonality of random hypervectors. For example, suppose
we have a database D = {A, B, C} of random hypervectors
and we create the bundle X = A + B. Then, sim(A, X) >>
sim(C, X) and sim(B, X) >> sim(C, X) because A and B
act symmetrically as noise for the recognition of the other
and their noisy versions are more similar to their original
versions than to any other random hypervector.

3) Permutation (also called protect) p: Permuting a vector
produces a dissimilar vector to the original one. This opera-
tion is often used to “protect” ordering that could be lost due
to the associative and distributive rules of binding. Note that
permutations distribute over the previous two operations.



Data structures

Through the components described above, HD computing
offers the possibility of encoding data structures into com-
pound hypervectors (Kleyko et al. 2021a), for example:

1) Key-value pairs: Binding can be used to represent associa-
tions between elements as key-value or variable-value pairs.
For example, in the SENSOR association TYPE is the key
and EMG the value.

2) Sets and histograms: Sets can be represented through hy-
pervector bundling. For example, the set S = {a, b, c} can
be represented as the bundle S = A 4+ B + C. For multi-sets,
such as H = {a,a,b,c,c,c}, a frequency distribution can
be represented through the bundle H = 2A + B 4 3C. The
frequency of a specific hypervector, can be approximately
recovered from a bundle through their dot product, which
we denote as dot(+, -). For example, the frequency of A in H
can be calculated as dot(H, A)/n ~ 2, where n denotes the
hypervectors’ dimension.

3) Sequences: The ordering of the components in a sequence
can be preserved through the permutation operation p. As
such, the sequence Z = (a, b, c) can be represented in HD
space as Z = p*(A) + p (B) 4 p°(C), where p™ (V) denotes
that hypervector V is permuted m times.!

Parsing representations and queries

The data structures above can be combined to create com-
pound representations (Kleyko et al. 2021a). For example,
the record listing the characteristics of a specific prosthetic
device can be specified in terms of its sensors and the lo-
cation (or context) where it is normally used. For exam-
ple, DEV = SENSOR + CONTEXT, where SENSOR =
TYPEsens cEMG and CONTEXT = LOCoHOME. Thanks
to the properties described above, we can, for example,
probe the record to determine the location where the device
is used by unbinding LOC from DEV:

DEV o LOC = (TYPEsgns o EMG + LOC o HOME) o LOC

= TYPEsens o EMG o LOC + LOC o HOME o LOC
= noise + HOME ~ HOME.

Since TYPEsgns © EMG o LOC is dissimilar to any of the
seed hypervectors in I.M., it can be regarded as noise. The
HOME hypervector is then recovered by selecting the neigh-
bor nearest to HOME + noise in the .M. Thus, the probing
query “cleans up” the noise of the compound representation.

Proposed hierarchical framework

The proposed hierarchical framework is illustrated in Fig-
ure 1 and corresponds to a cognition-augmented prosthetic
grasping use case.

Use case description

This synthetic use case is intended to augment the EMG-
based gesture recognition application in (Moin et al. 2021)
and (Zhou, Muller, and Rabaey 2021). The goal of these
works was to classify EMG (and accelerometer in the lat-
ter) data into hand-gestures, which can be used by prosthe-
sis users to select the appropriate grip (Figure 3.b shows an

'In practice, permutation commonly consists of cyclic shifts.
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Figure 1: Proposed framework.

example of these mappings). Our proposed use case is mo-
tivated by the observation that prosthesis users often strug-
gle to remember and select appropriate gesture-to-grip map-
pings (Espinosa and Nathan-Roberts 2019). We propose to
augment this application by incorporating user-intent pre-
diction, which can ultimately aid prosthesis users through
grip selection and deployment. Moreover, as described later
on, the higher level specification of user intent can be used
for analogical reasoning towards adaptation to new contexts.

Hierarchical reasoning framework

The proposed framework comprises three layers:

1) Perception layer. The perception layer, highlighted in
blue, maps heterogeneous sensory inputs to higher level de-
scriptive concepts, such as hand-gesture and arm-position.
Therefore, for this layer, we reuse the representations and
models proposed in (Zhou, Muller, and Rabaey 2021). EMG
signals are windowed over 50 millisecond overlapping sec-
tions, and are mapped to spatio-temporal hypervector repre-
sentations. The input “query” hypervectors are then mapped
to specific gestures through a nearest centroid classifier. The
centroids in the model are specified as class-prototype hy-
pervectors, and classification takes place by selecting the
class that maximizes the (cosine) similarity between its pro-
totype and the query vector. Accelerometer data is used
to classify arm-position through a Support Vector Machine
(SVM). In (Zhou, Muller, and Rabaey 2021), position infor-
mation is used to improve gesture classification performance
through dual-stage classification. In this work, the classified
positions and gestures are both fed to the following layer.
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Figure 2: Illustration of mapping a CPT to a hypervector and retrieving a probability from it.

2) Probabilistic reasoning layer. The second layer, high-
lighted in green, builds a high-level probabilistic world
model of the application. In this work, we realize this model
with a DBN that encodes the probabilistic relations among
the tasks performed by the user and the observed hand-
gestures and arm-positions, written as ges and pos, respec-
tively. This DBN makes a first order Markov assumption for
the temporal relations among tasks, gestures and positions.
The probabilistic reasoning layer in our example framework
performs filtering on this DBN. That is, it computes the pos-
terior distribution over the task at time ¢, given all evidence
over ges and pos to date. In practice, the inference algo-
rithm maintains a belief over the task at time ¢ and updates
it at time ¢ + 1 given the evidence over ¢ + 1 and ¢ in a re-
cursive fashion (Russell and Norvig 2002). Specifically, for
all values of T'ask at time ¢ + 1:

Pr(taskiti|geso.t+1, p0so:t+1) = a Pr(gesit1|taski+1, gest)-

Pr(posi+1|taskit1, post) Z Pr(taskis1|Task:)-
tasky

Pr(Task:|geso.t, poso:t),
(D

where the variable T'ask; is marginalized as it remains un-
observed; Pr(Task:|geso.t, poso.¢) is calculated in the pre-
vious iteration with the evidence over ges and pos at time ¢
and ¢ — 1; and « is a normalization constant that ensures that
the posteriors sum to 1.

We map the DBN to HD space” by using the data struc-
tures discussed in the Hyperdimensional computing Section,
as shown in Figure 2. First, we generate random hypervec-
tor seeds for each value of the T'ask and Ges variables, and
store them in the Value-I.M. Then, we randomly project the
probabilities to HD space through scalar multiplication with
new random hypervectors. Note that we scale the probabili-
ties (by e.g. 10°) such that we only have to store integers.
Then, we bind this real-valued vector with the hypervec-
tor corresponding to the observed value (for example, GES1
in the first row of the CPT). As such, we can create bun-
dles of real-valued hypervectors corresponding to each of

>This mapping method is inspired by (Cheung et al. 2019).

the conditioned variables (e.g. we create a real-valued bun-
dle for the Ges; variable conditioned on T'ask; = task; and
Ges;_1 = gesy, labeled CONDL1 in the figure). We can fur-
ther superimpose these bundles by binding them to their cor-
responding conditioning values, as indicated by the labels
Conditional bundle. Note that, in this example, we apply the
permute operation to the values of Ges;_; to explicitly in-
dicate they were observed at ¢ — 1. Finally, we superimpose
(through bundling) all these conditional probability vectors.
This process of recursive binding and bundling allows us to
store a single hypervector per CPT in the model.

At inference time, probabilities are recovered from the
CPT hypervectors by unbinding them from their condition
(normally observed or marginalized variables) and taking
the normalized dot product with the hypervector correspond-
ing to the value of interest (see histograms in the data struc-
ture section). For example, starting from CP T, in Figure
2, the value of Pr(Ges; = ges1|Task; = tasks, Ges;—1 =
gesy) can be recovered through dot(CPTges, o TASK2 o
p(GES1), GES1)/(1000 - n), where n is hypervector dimen-
sion and 1000 accounts for the scaling factor that facilitated
integer storage during mapping. Inference can then be per-
formed with Equation 1. As illustrated in Figure 2, unbind-
ing the conditional variables hypervectors from the CPT hy-
pervector produces a noisy version of COND2. Similarly,
there can be information loss when recovering the final prob-
abilities through the dot product. Thus, an important future
work direction consists on deriving bounds on the error in-
duced by parameter superposition and storage.

Despite the induced information loss, the motivation be-
hind mapping probabilistic models to hypervectors is two-
fold: 1) The potential improvements in memory efficiency
for large models, since the space complexity of the CPTs re-
mains constant and depends only on the capacity? of the hy-
pervectors (Frady, Kleyko, and Sommer 2018; Kleyko et al.
2018), unlike traditional tabular CPTs, which can have ex-
ponential space complexity.* We leave the precise memory

3Capacity refers to the limit on the number of reliably recover-
able hypervectors from their superposition.

* Although there has been extensive research proposing constant
space algorithms for DBNs (Darwiche 2001).



efficiency analysis for future work, but prior work has found
that storing multiple models in superposition (Cheung et al.
2019) can lead to memory savings. For example, (Zhou,
Muller, and Rabaey 2021) demonstrated parameter mem-
ory savings of one order of magnitude when implementing
dual-stage classification using high-dimensional model su-
perposition. The work in (Zeman, Osipov, and Bosnic 2021)
also exploits superposition to achieve neural network com-
pression rates of up to 100x in multi-task settings, com-
pared to individual neural network deployment. Addition-
ally, specialized HD computing hardware that generates the
seed hypervectors dynamically at run-time (Kleyko, Frady,
and Sommer 2021) have shown potential energy savings of
between 5x and 10x (Menon et al. 2021) compared to a
traditional machine learning implementations. 2) The sec-
ond motivation for this mapping is that encoding the entire
framework with the same primitives can be advantageous, as
it can potentially enable reasoning and, eventually, learning
across all levels of abstraction including the Control Layer
described next. Moreover, a common representation can en-
able hardware re-use and integration across different types
of machine learning workloads, a trend with growing inter-
est in the hardware-algorithm co-optimization community
(Galindez Olascoaga et al. 2019; Shafique et al. 2021).

3) Control layer. The last layer serves as an interface be-
tween the proposed framework and other external compo-
nents of the system. There are several ways in which this
layer can be realized, depending on the needs of the sys-
tem and the application. This versatility is further facilitated
by the used hypervector representation, as discussed through
the two following examples:

- Symbolic reasoning: for example, to transfer knowledge
to unknown contexts and environments through analogical
reasoning. Section Context Knowledge Transfer Using Sym-
bolic Reasoning discusses this idea in detail.

-Reasoning to actuation (input-output) mapping: the pre-
dicted user intent (i.e. belief in the set of tasks at time
t given evidence) can, for example, be used to fine tune
the output grip selection. One way of doing that in HD
space is by augmenting the functionality of HD computing
implementations of state-automata-based control (Osipov,
Kleyko, and Legalov 2017) or recall of reactive behaviour
(Neubert, Schubert, and Protzel 2017). In the recall tech-
nique, illustrated in Figure 1, a composite hypervector rep-
resentation encodes sensor-action pairs, such that behavior
can be resembled at run-time by extracting (through unbind-
ing) the action corresponding to the current sensor value.
We posit that the posterior distribution from the layer below
could further be used to weight this recall representation, an
interesting direction that we leave for future work.

Experiments
Experimental setup and dataset

We validated our approach with the dataset in (Zhou, Muller,
and Rabaey 2021), which includes measurements from a
64-channel EMG electrode array with an on-board tri-axial
accelerometer, shown in Figure 3.a. We consider 3 hand-
gestures and 4 arm positions, as illustrated in 3.b and 3.c.

'
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% -

c) Position 0 Position 1 Position 4 Position 7

Figure 3: Experimental setup, based on (Zhou, Muller, and
Rabaey 2021; Moin et al. 2021).

In addition, we define 3 tasks based on common activities
of daily living and based on the available gestures/grips and
postures from the aforementioned dataset: brushing hair, ty-
ing shoelace and opening jar. Sequential data over the dif-
ferent tasks is not available in (Zhou, Muller, and Rabaey
2021), therefore, we generate a 10000 sample sequential
dataset by sampling an ideal DBN modeled with expert
knowledge and we use a random 70%, 30% train-test split
over 10 trials to evaluate the performance of the two lowest
layers of the proposed framework.

Task description

The task we evaluated consisted on predicting the most
likely T'ask at time t, given evidence over Ges and Pos
over time. This is done through the filtering algorithm de-
scribed in Equation 1. Note that the evidence variables in
the DBN, Ges and Pos, are the output of the classification
of EMG and accelerometer signals in the perception layer.
In particular, EMG signals are classified as hand-gestures
through an HD computing implementation of a nearest cen-
troid classifier, and accelerometer signals are classified as
arm-positions through an SVM classifier.

Moreover, we evaluate two DBNs with different struc-
tures: the complex model has the same structure as the
model depicted in Figure 1, and the simple model ignores
the time relationships among gestures and positions. That is,
at any time-slice ¢ of the DBN, ges; and pos; only depend
on task;. We evaluate these two model structures to com-
pare how their hypervector CPT implementation degrades in
comparison to the traditional tabular CPT implementation.

Results

Figure 4 shows an example of the posterior distributions
evaluated with the aforementioned DBNs (simple in blue
and complex in red) when using a standard tabular CPT rep-
resentation (cross markers) and when mapping CPTs to hy-
pervectors (circle markers). The real distribution (from the
DBN we sampled to generate the datasets) is shown with a
black dotted line. It is clear that the posterior calculated by
the complex model is closer to the real distribution. How-
ever, note that the hypervector CPT mapping of the com-
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plex model degrades more than the simple model’s. This is
expected due to the limited superposition capacity of the hy-
pervector representation, which is strained more by the com-
plex model due to the additional variable-wise dependencies
among Ges and Pos.

Figure 5 compares prediction accuracy for all models.
Overall, filtering accuracy is preserved throughout the 10
time slices, and the complex model shows superior perfor-
mance than the simple one. Yet, once again, the hypervector
representation of the complex model loses nearly 3% accu-
racy, whereas the hypervector representation of the simple
one does not lead to significant accuracy degradation.

Overall, there is a clear trade-off between hypervector
capacity (driven by its representation type and dimension),
model complexity, and memory efficiency, which we leave
for future work. An interesting direction would be to system-
atically quantify the superposition capacity of hypervectors
when used to represent graphical probabilistic models such
as the DBN studied in this work.

Context Knowledge Transfer Using Analogical
Reasoning

The Control Layer can allow us to deduce generalizable out-
comes that can be carried from one context to another. This

is especially important because learning is typically per-
formed based on sporadic samples that are attributed to a
limited number of contexts. Some samples may exhibit com-
mon features with respect to learnt tasks among different
contexts, whereas other samples lead to different task defi-
nitions depending on the context. The question is: how can
we optimize our learning method such that it can systemat-
ically transfer task definitions between contexts so that our
system can adapt to unknown settings in new contexts? This
section presents some examples of how the symbolic and,
more specifically, analogical reasoning capabilities of HD
computing can be exploited for the transfer of knowledge
across context in the prosthetic use case.

For example, suppose that the DBN in Figure 1 was
trained through the interactions of a prosthetic arm with ob-
jects in a kitchen, and that the DBN’s current task prediction
(i.e. T'ask;) is opening jar. We can create a composite hy-
pervector that describes this situation, defined in terms of
the current context (location), and task (activity):

Hi = LOC o KIT + ACT 0 OJ,

where LOC o KIT denotes that the location in “situation 1”
is the kitchen and ACT o OJ denotes that the current activity
is opening jar.

Because our DBN was trained solely with data from a
kitchen context, it may be unable to generalize towards the
correct prediction of activities in a new context, such as
a “front-door” location. Instead of seeking to gather more
training data and re-train the DBN, we can explicitly encode
our expert knowledge about all the different scenarios in the
Control Layer, such that the framework can automatically
exploit this information at run-time.

For example, we know that opening a door in the “front-
door” context requires a twisting motion similar to the one
used to open a jar in the kitchen context. Thus, we can en-
code the “front-door” twisting situation as the hypervector:

Hy, = LOCo FDR + ACT 0 OD,

where LOC o FDR denotes that “situation 2” takes place at a
front-door location and ACT o OD denotes that the twisting
activity in this situation is opening the door.

Then, we can instruct our framework to reason analogi-
cally through substitution about the two situations, with a
query similar to “What is the Dollar of Mexico?” (Kanerva
2010). Specifically, in our case, we wish the Control Layer
to answer the question, “what is the analogous of opening a
jar when the user is in a front-door environment?”.

First, hypervectors corresponding to the two situations
must be bound, such that the values occupying the same keys
are bound (i.e. kitchen is to front-door as open-jar is to open-
door):

HioHy = LOCoKIT o LOCo FDR + LOC o KIT o ACT 0o OD
+ACTo0OJoLOCoFDR+ACT o 0OJoACT o OD
= KIT o FDR + OJ o OD + noise
~ KIT o FDR + OJ o OD.

Then, the desired analogical query can simply be answered
by probing the bound structure above with the open-jar (OJ)



hypervector:

HioH; 0 OJ=KIToFDRoOJ+0Jo0ODoOlJ
= noise + OD ~ OD.

Our framework is thus capable of concluding that the anal-
ogous to opening jar in a new “front door” environment is
opening a door. Note that no training data from the new
front-door environment nor re-tuning of the DBN were re-
quired to reach to this conclusion. This is useful when expert
knowledge is available and training data is costly.

These symbolic reasoning mechanisms could further be
used to provide feedback to the probabilistic model for con-
tinual learning and adaptation, an interesting direction for
future work.

Related work

This work presents a hybrid framework comprising different
types of reasoning and computational paradigms. As such,
the body of related work is vast and spans multiple fields.
For brevity, we focus mostly on related neurosymbolic com-
puting strategies and existing hybrid HD computing/VSA
solutions, but we are aware of many other relevant works,
which we would like to further discuss in future and ex-
tended versions of this paper.

Neurosymbolic approaches. Several state-of-the-art ap-
proaches in complex event processing have attempted to
leverage expert knowledge by diving the problem into low-
level perception and high-level reasoning, and enabling neu-
ral networks to learn the former from data and emulate the
latter from user defined rules (Xing et al. 2020). Yet, these
approaches can lack expressivity at the symbolic level and
can suffer from explainability issues. Other approaches have
addressed these limitations by still leveraging neural net-
works to process sub-symbolic (e.g. sensor) data, but relying
on (probabilistic) logic languages to inject expert knowledge
on higher level information, such as the rules of complex
events (Vilamala et al. 2021; Apriceno, Passerini, and Ser-
afini 2021).

Related HD computing/VSA approaches. Recent works
explore how VSAs and Holographic Reduced Representa-
tions can be used to propose novel neural network architec-
tures capable of inferring heterogeneous knowledge, such as
pattern recognition together with spatial information (Weiss,
Cheung, and Olshausen 2016; Yilmaz 2015). Analogical
reasoning has been one of the tools used for such hybrid
applications. For a detailed overview of HD computing ap-
plications, we refer the reader to (Kleyko et al. 2021c).

Aspects of our framework that differ from the work
highlighted above. The framework we propose is concep-
tually modular and we believe it has the potential of lever-
aging suitable machine learning and Al strategies at each
layer. Thus, a potential future work direction would be to
re-implement the perception and probabilistic reasoning lay-
ers through the approaches highlighted above. An important
difference with end-to-end hybrid and neurosymbolic imple-
mentations is the role of symbolic reasoning at the Control
Layer in our framework. Unlike the techniques mentioned

above, which exploit logical statements to improve the per-
formance on the task of interest’, we plan to use symbolic
reasoning to interface with elements outside the framework
(actuation control), and to provide feedback to lower levels
towards dynamic and context dependent adaptive and con-
tinual learning. This is further discussed in the following
section.

Discussion
Implications of the proposed framework

- Note that the framework we proposed assumes that each
layer is trained, learned or stated (i.e. symbolic knowl-
edge) independently through the most appropriate tech-
nique. The believe that the HD-computing-enabled inte-
gration discussed in this work can be best exploited at
inference-time or run-time.

- The proposed probabilistic model within our framework is
rather simple since it was trained with synthetic data sam-
pled from an ideal model constructed with expert knowl-
edge. As such, we were able to store it in superposition with-
out significant performance degradation. For real life appli-
cations, it will be necessary to perform more complete anal-
yses on the capacity of the models and related trade-offs.

- Overall, the considered use case benefits from the three
layers in the proposed framework. This opens the door for
further investigation into the adaptation of this hierarchical
framework for different use cases, which may benefit from
a different configuration of our framework in terms of, the
classifier in the perception layer, the probabilistic model and
inference algorithm in the middle layer, or the type of sym-
bolic reasoning or actuation control for the top layer.

Future work

- An interesting direction would be to explore the use of
tractable probabilistic models, such as Probabilistic Circuits
(Choi, Vergari, and den Broeck 2020) for the probabilistic
inference layer. This would involve evaluating whether such
a model could be mapped to the HD space, similar to the
DBN example discussed herewith.

- Beyond analogical reasoning, this framework can benefit
from other forms of symbolic and logical reasoning and the
various state-of-the-art techniques that enable its efficient
execution.

- As mentioned in the Analogical Reasoning section, we be-
lieve the control layer could coordinate a process of active
learning. Thus we need to review whether existing strategies
in the fields of transfer learning, meta learning or reinforce-
ment learning could be appropriate for this, or whether a
different technique may be required.

- Another future work direction would be to derive bounds
on the error propagation caused by the hypervector represen-
tations, and especially when storing complex probabilistic
models with high-dimensional superposition.

- Finally, an important future work direction consists on
comparing the performance of the proposed framework with
other hybrid strategies, such as neurosymbolic computing.

3 Although, as mentioned, we believe these strategies could also
be leveraged by our framework.
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