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ABSTRACT

Probabilistic supervised learning assumes the groundtruth itself is a distribution
instead of a single label, as in classic settings. Common approaches learn with
a proper composite loss and obtain probability estimates via an invertible link
function. Typical links such as the softmax yield restrictive and problematic un-
certainty certificates. In this paper, we propose to make direct prediction of condi-
tional label distributions from first principles in distributionally robust optimiza-
tion based on an ambiguity set defined by feature moment divergence. We derive
its generalization bounds under mild assumptions. We illustrate how to manipulate
penalties for underestimation and overestimation. Our method can be easily incor-
porated into neural networks for end-to-end representation learning. Experimental
results on datasets with probabilistic labels illustrate the flexibility, effectiveness,
and efficiency of this learning paradigm.

1 INTRODUCTION

The goal of classical supervised learning is point estimation—predicting a single target from the la-
bel domain given features—usually without justifying the confidence. The outcome distribution of
an event can be inherently uncertain and more desirable than point predictions in some scenarios. For
example, weather predictions that express the uncertainty of events such as rain occurring are more
sensible than binary-valued predictions, while a uniform distribution prediction for the outcome of
a fair dice roll is more sensible than speculating an integral value randomly. On one hand, the pre-
dicted distribution quantifies label uncertainty and is thus more informative than a point prediction,
which is widely studied in weakly supervised learning (Yoshida et al., 2021), boosting (Friedman
et al., 2000) and optimal treatment (Leibovici et al., 2000). On the other hand, the ground truth
naturally comes with multiple targets, possibly with different importances. For instance, there can
be multiple emotions in a human face image, there are different gene expression levels over a period
of time in biological experiments, and many annotators might disagree over a highly ambiguous
instance. In the above settings, each predefined label is part of the ground truth as long as it has a
positive probability in the true distribution. Hence, it is natural to use probabilistic labels in both
training and inference when the ground truth is no longer a point. In the literature, the task of pre-
dicting full distributions from features is called probabilistic supervised learning (Gressmann et al.,
2018).

A probabilistic supervised learning task comes with a probabilistic loss functional quantitatively
measuring the utility of the prediction (Bickel, 2007). Williamson et al. (2016) propose a com-
posite multiclass loss that separates properness and convexity. They illuminate the connection be-
tween classification calibration (Tewari & Bartlett, 2007) and properness (Gneiting & Raftery, 2007;
Dawid, 2007), representing Fisher consistency for classification and probability estimation respec-
tively. A proper loss is minimized when predictions match the true underlying probability, which
implies classification calibration, but not vice versa. Among proper losses, the logarithmic loss
(Good, 1952) severely penalizes underestimation of rare outcomes and assessing the “surprise” of
the predictor in an information-theoretic sense, the Brier score—originally proposed for evaluat-
ing weather forecasts (Brier, 1950)—is useful for assessing prediction calibration, and the spherical
scoring rule (Bickel, 2007) is used when a distribution with lower entropy is desired. A single
proper loss is sometimes not sufficient for scenarios that elicit optimistic or pessimistic predictions
for decision making with practical concerns (Elsberry, 2002; Chapman, 2012). For example, under-
estimating disastrous events may provide very low utility, motivating more pessimistic predictions.
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Therefore it is desirable for a proper loss to be flexible in its penalties for deviated predictions that
combine statistical properties of multiple losses.

Deep neural networks typically adopt the softmax function to predict a legal distribution. However,
softmax intentionally renormalizes the logits and therefore assumes that it follows a logistic distri-
bution (Bendale & Boult, 2016). It is poor at calibration, uncertainty quantification and robustness
against overfitting (Joo et al., 2020). The inverse of the canonical link function in Williamson et al.
(2016) can be used to recover probabilities but commonly resembles softmax (Zou et al., 2008).

In this paper, we propose a probabilistic supervised learning method from first principles in dis-
tributionally robust optimization (DRO) for general proper losses that realize desired prediction
properties. Instead of specifying a parametric distribution, it starts with a minimax learning problem
in which the predictor non-parametrically minimizes the the most adverse risk among all distribu-
tions in an ambiguity set defined by empirical feature moments. The ambiguity set represents our
uncertainty about the underlying distribution. By strong duality, we show that the primal DRO prob-
lem is equivalent to a regularized empirical risk minimization (ERM) problem. The regularization
results naturally from the ambiguity set instead of being explicitly imposed. The ERM form also
allows us to derive generalization bounds and make inferences from unseen data. We illustrate a set
of solutions for general proper losses satisfying certain mild conditions and an efficient algorithm
for a weighted sum of two common strictly proper losses. We conduct experiments on real-world
datasets by adapting our method to end-to-end differentiable learning. We defer all technical proofs
to the appendix.

Contributions. Our contributions are summarized as follows. (1) We propose a distributionally
robust probabilistic supervised learning method. (2) We characterize the solutions to the proposed
method and present an efficient algorithm for specific losses. (3) We incorporate our method into
neural networks and perform extensive empirical study on real-world data.

1.1 RELATED WORK

Model assessment of probabilistic models via predictive likelihood has been studied in Bayesian
models (Gelman et al., 2014), probabilistic forecasting (Gneiting & Raftery, 2007), machine learn-
ing (Masnadi-Shirazi & Vasconcelos, 2009), conditional density estimation (Sugiyama et al., 2010),
information theory (Reid & Williamson, 2011) and representation learning (Dubois et al., 2020). A
comprehensive framework for probabilistic supervised learning can be found in Gressmann et al.
(2018).

Techniques developed to explicitly tackle multiclass probabilistic classification include multiclass
logistic regression (Collins et al., 2002), support vector machines (Lyu et al., 2019; Wang et al.,
2019), learning from noisy labels (Zhang et al., 2021), weakly supervised learning (Yoshida et al.,
2021), and neural networks (Papadopoulos, 2013; Gast & Roth, 2018). Multilabel classification,
aimed at predicting multiple classes with equal importance, has been analyzed by Cheng et al.
(2010) and Geng (2016) in a general probabilistic setting. Note that confidence calibration (Guo
et al., 2017) has a different objective from probabilistic supervised learning.

Fisher consistency results have been established for classification losses (Tewari & Bartlett, 2007),
structured losses (Ciliberto et al., 2016; Nowak et al., 2020), proper losses (Williamson et al., 2016)
and Fenchel-Young losses (Blondel et al., 2020).

The emerging field of DRO has led to learning methods with ambiguity sets defined by feature
moments (Farnia & Tse, 2016; Mazuelas et al., 2020), ϕ-divergence (Duchi & Namkoong, 2019)
and the Wasserstein distance (Shafieezadeh-Abadeh et al., 2019). The moment-based ambiguity set
adopted in this work originates from maximum entropy (Cortes et al., 2015; Mazuelas et al., 2022),
with similar work studying classification (Asif et al., 2015; Fathony et al., 2016) and structured
prediction (Fathony et al., 2018a;b).
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2 PRELIMINARIES

2.1 NOTATIONS

We adopt the following notations by convention. A bold letter x denotes a vector whereas a normal
letter x represents a scalar. xi or (x)i stands for the i-th coordinate of x. We denote random
variables with capitalization (e.g, X orX) and sets with calligraphic capitalization (e.g, X , A). We
denote by [n] the set {1, 2, . . . , n}. |·| means the absolute value of a scalar or the cardinality of a
set, depending on the context. The ℓp norm of a vector is defined as ∥x∥p ≜ (

∑
i |xi|p)1/p. The

indicator function of a subset S of a set X is a mapping IS : X → {0, 1} such that IS(x) = 1 if
x ∈ S and IS(x) = 0 otherwise. I(·) is adopted for events so that I(S) = 1 if event S occurs and
I(S) = 0 otherwise. We write δz as the Dirac point measure at z ∈ Z . A probability simplex of
(d+ 1)-dimensional vectors is represented as ∆d, whose superscript is omitted when the context is
clear. We denote by P(Z) the set of all probability distributions on a set Z .

2.2 PROBABILISTIC LOSS FUNCTIONALS
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Figure 1: The expected value of four loss func-
tions for three classes with QY (1) = 0.6 and
QY (2) = QY (3) = 0.2. PY (2) = PY (3) as PY (1)
varies. Each loss is normalized to cross (1, 0) and
(0.5, 0.5) according to the binary case with a hard
label. Best viewed in color.

A loss function measures the quality of a pre-
diction associated with an event. Scoring rules
are widely adopted to assess probabilistic pre-
dictions, but can be naturally translated to loss
functions by appropriate negation and normal-
ization. To illustrate some examples, we con-
sider a decision problem in which y ∈ Y is
an outcome and PY ∈ P(Y) is a predicted
distribution over Y . We denote by pY ≜
(PY (y))

T
y∈Y a vector of probabilities.

The zero-one loss is defined for determinis-
tic prediction so that a penalty of 1 is in-
curred whenever y′ and y differ: ℓ01(y′, y) ≜
I(y′ ̸= y). It extends to probabilistic predic-
tions as ℓ01(PY , y) ≜ 1 − PY (y)

1. The cost-
sensitive loss for multiclass classification is
similarly defined with a confusion cost matrix
C ∈ R|Y|×|Y|

+ : ℓcs(PY , y) ≜
∑

i∈Y PY (i)Ciy .

The multiclass Brier loss, based on the Brier
score or quadratic scoring rule, measures the mean squared difference between PY and y:
ℓbr(PY , y) ≜

∑
y′(PY (y

′)− I(y′ = y))2.

The logarithmic loss, also called log-likelihood loss, incurs a rapidly increasing penalty as the
predicted probability of the target event approaches zero: Llog(PY , y) ≜ − lnPY (y).

The spherical scoring rule can be interpreted as the spherical projection of the true belief onto the
prediction vector. To use it as a loss function, we define ℓsp(PY , y) ≜ 1− PY (y)/∥pY ∥2.

For ease of exposition, we define L(P,Q) :=
∑

y QY (y)ℓ(PY , y) where ℓ(·, ·) : P(Y)× Y → R+

is a probabilistic loss function as illustrated above. A loss L is called proper if L(Q,Q) ≤ L(P,Q)
for all P,Q, and called strictly proper if Q is the unique minimizer of L(·,Q). Figure 1 provides
a graphical comparison of the above losses for prediction with three classes. We can infer that the
zero-one loss is an improper loss.

2.3 PROBABILISTIC SUPERVISED LEARNING

We study the probabilistic supervised learning task where we are given n training samples
{(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} drawn i.i.d. from a distribution P on the joint space

1In the literature, the zero-one loss is sometimes defined as ℓ01(PY , y) := I(y /∈ argmaxy′ PY (y′)), which
is proper, but discontinuous and not strictly proper.
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X × Y , in which X is a feature space and Y is a univariate finite discrete label space. A proba-
bilistic multiclass loss function L : P(Y)×P(Y)→ R+ is given. The goal of ERM is to learn from
the samples a mapping h : X → P(Y) to minimize the empirical L-risk of h:

h∗ ∈ argmin
h∈H

RL
Pemp(h) := EPemp

X

[
L(h(X),Pemp

Y |X)
]
, (1)

where Pemp
X,Y represents the empirical distribution and H is a hypothesis space. Here we assume

x may be accompanied with a probabilistic label by aggregating instances with the same x(i). In
this way, both learning and inference are accomplished in the general setting subsuming classical
supervised learning.

3 METHOD

We now present our formulation for learning with general multiclass probabilistic losses. We provide
theoretical results of consistency and generalization. We study the solution for general proper losses
in our formulation and develop an efficient algorithm for two typical proper losses.

3.1 FORMULATION

We consider a continuous proper loss L to be optimized under the unknown distribution Ptrue. We
assume that a class-sensitive feature function ϕ : X × Y → Rd that maps a data point to a d-
dimensional feature vector is given. Examples include the multi-vector representation and class-
dependent TF-IDF scores. Choosing a good ϕ is a representation learning problem, but as we will
discuss in Section 3.4, it is not a concern once our method is incorporated into neural networks as
a layer. Intuitively, the elements of the vector ϕ(x, y) can be regarded as scores indicating how
well the label y matches with the feature x. For example, with a linear hypothesis hw(x, y) =
⟨w,ϕ(x, y)⟩, a good parameter vector w∗ should yield

⟨w∗,ϕ(x, y)⟩ > ⟨w∗,ϕ(x, y′)⟩ =⇒ P(x, y) > P(x, y′).

Instead of specifying a parametric form of predictions, we adopt a minimax statistical learning
formulation:

min
PY |X∈P(Y)

max
Q∈A(Pemp)

EQX

[
L
(
PY |X,QY |X

)]
, (2)

where A(Pemp) := {Q : Q ∈ P(X × Y) ∧ Pemp
X = QX ∧ ∥EPemp [ϕ(·, ·)] − EQ [ϕ(·, ·)]∥ ≤ ε}.

The ambiguity set is different from that in Wiesemann et al. (2014) and Farnia & Tse (2016) due to
the inequality and feature mapping respectively. The minimization over the function space H is re-
placed by directly minimizing over P(Y) for each x ∈ X . The probabilistic predictions are chosen
to minimize the worst-case risk evaluated on a set of distributions in an ambiguity set defined by the
empirical distribution Pemp and feature mapping ϕ. The ambiguity set A(Pemp) includes distribu-
tions that share the same marginal on X and are no more than ε away from Pemp in terms of feature
moment divergence. Note that given any feature function ϕ, the ambiguity set is a compact convex
set. Conceptually, we restrict the support of Q on X to be the same as the empirical distribution for
convenience in both algorithm design and theoretical analysis.

Minimizing the worst-case risk by allowing a certain amount of label uncertainty makes this method
inherently robust. It can also be shown to be equivalent to a dual-norm regularized ERM problem:
Proposition 1 ((Li et al., 2022)). The distributionally robust probabilistic supervised learning prob-
lem based on moment divergence in Eq. (2) can be rewritten as

min
θ

EPemp
X

min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPemp
Ỹ |X

ϕ(X, Ỹ )) + ε∥θ∥∗︸ ︷︷ ︸
Ladv(θ,Pemp

Ỹ |X
)

, (3)

where θ ∈ RD is the vector of Lagrangian multipliers and ∥·∥∗ is the dual norm of ∥·∥.

We give a proof sketch here. Both P(Y) and A(P̃) are non-empty closed convex sets. Since we
assume L is continuous and proper, we know that L(·,Q) is quasi-convex for every Q and L(P, ·) is
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concave for every P by definition. Eq. (2) is therefore a quasi-convex-concave problem and strong
duality holds (Sion, 1958). The regularization is obtained via Lagrangian and Fenchel conjugate.

It is well-known that continuous proper losses are quasi-convex, such as the Brier score, the logarith-
mic score, the spherical score, the Winkler’s score, the ranked probability score, etc. However, some
improper (possibly discrete and non-convex) losses can be quasi-convex in the predicted distribution
(e.g., the zero-one loss). In contrast, surrogate classification losses are usually convex in a parameter
space that is easy to work with, for example, the multiclass hinge loss Weston & Watkins (1998),
ℓww(ψ, y) =

∑
y′ ̸=y max{0, 1+ψy′ −ψy}, and the multiclass logistic loss (Nelder & Wedderburn,

1972), ℓlog(ψ, y) = ln (
∑

y′ exp (ψy′))− ψy , where ψ ∈ R|Y| is a vector of class scores.

From a game theoretic point of view, our formulation in Eq. (2) is equivalent to a two-player zero-
sum game in which the predictor player chooses a distribution to minimize the expected game payoff
while the adversary player chooses one to maximize the game value while constrained to satisfy
certain statistical properties of training data (Grünwald et al., 2004). In the dual problem (Eq. (3)),
the Lagrange multipliers parameterize the payoff function for an augmented game and provide a
new payoff function for unseen data to construct predictors.

3.2 STATISTICAL PROPERTIES

It well known that minimizing strictly proper losses leads to Fisher consistent probability estimation
(Williamson et al., 2016). However, minimization of the surrogate risk in Eq. (3) may induce a
sub-optimal classifier because of misalignment between the surrogate loss Ladv and the original
loss L. Fisher consistency provides desirable statistical implications for a surrogate loss such that
minimizing it yields an estimator that also minimizes the original loss.

The adversarial surrogate loss Ladv is endowed with an additional regularization term. It reduces to
a Fenchel-Young loss (Blondel et al., 2020) when the ambiguity radius ε is zero. A conclusion of
consistency can drawn based on Nowak et al. (2020); Blondel et al. (2020) and our assumption that
the groundtruth is probabilistic:
Corollary 2 ((Li et al., 2022)). When ε = 0, Ladv is Fisher consistent with respect to L. Namely,
for any x,

Pθ∗
true

Y |x ∈ argmin
PY |x

L(PY |x,Ptrue
Y |x)

is the Bayes optimal probabilistic prediction made by θ∗true, the solution in Eq. (3) under Ptrue. The
prediction made by θ is Pθ

Y |X ∈ argminP maxQ L
(
PY |X,QY |X

)
+ EQY̌ |X

θ⊺ϕ(X, Y̌ ).

The consistency result guarantees that the learned probabilistic prediction rules yield Bayes opti-
mal risk as ERM with proper losses in the ideal setting with true distributions and all measurable
functions. Also note that the conclusion holds for all quasi-convex losses.

Basic generalization bounds related to true risk for DRO methods can be derived from measure con-
centration. This approach depends on the choice of ambiguity sets and may have a dimensionality
issue. It is also not appropriate for ambiguity sets defined by low-order moments in this paper.
Thus, we take an alternate approach following Farnia & Tse (2016) to prove excess out-of-sample
risk bounds. We assume ε > 0 to ensure boundedness of ∥θ∥∗. We establish the following theorem
by making mild assumptions on boundedness on features and losses:
Theorem 3 ((Li et al., 2022)). Given n samples, a non-negative multiclass probabilistic loss L(·, ·)
such that |L(·, ·)| ≤ K, a feature function ϕ(·, ·) such that ∥ϕ(·, ·)∥ ≤ B and a positive ambiguity
level ε > 0, then, for any 0 < δ ≤ 1, with a probability at least 1 − δ, the following excess true
worst-case risk bound holds:

max
Q∈A(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈A(Ptrue)
RL

Q(θ
∗
true) ≤

4KB

ε
√
n

(
1 +

3

2

√
ln(4/δ)

2

)
, (4)

where θ∗emp and θ∗true are the optimal parameters learned in Eq. (3) under the empirical distribu-
tion Pemp and true distribution Ptrue, respectively. The original risk of θ under Q is RL

Q(θ) :=
EQX,Y ,Pθ

Y |X
L(PY |X,QY |X).
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Theorem 3 improves the results of Asif et al. (2015) and Fathony et al. (2016) that only show quali-
tative bounds. Under positive regularization, this bound explains the rate of uniform convergence of
the true worst-case risk of the estimator θ∗emp learned through the empirical distribution Pemp to the
true worst-case risk of the ideal estimator θ∗true learned under Ptrue. Although the empirical estimator
is obtained based on a finite set of samples, Theorem 3 justifies the roles which the ambiguity set
A(·), the feature function ϕ(·, ·), the loss function L(·, ·) and the ambiguity parameter ε play in
upper bounding the excess out-of-sample worst-case risk. Intuitively, a larger ε will reject more hy-
potheses that are sensitive with larger dual norms, whereas the worst-case risk scales with the range
of loss and feature functions.

3.3 ALGORITHM

Since L(·, ·) is a continuous quasiconvex-concave function, a saddle point in Eq. (3) given θ must
have a zero derivative with respect to P and Q:∑

y

QY |x(y)∂ℓ(PY |x, y)/∂PY |x(y
′) + ZPY |x = 0 (5)

ℓ(PY |x, y) + θ
⊺ϕ(x, y) + ZQY |x = 0, (6)

where ZPY |x is the Lagrange multipliers for the simplex constraint
∑

y PY |x(y) = 1, similarly for
ZQY |x . Note that ZQY |x is constant for all y given x. If ℓ is local, e.g., ℓ(PY |x, y) is independent of
PY |x(y

′) for y′ ̸= y and if ℓ(·, y) is monotone in PY |x(y) > 0 (without simplex constraints) with
range R, which is the case for the logarithmic loss, Eq. (6) always has a solution and the system of
equations for all y along with the simplex constraint

∑
y PY |x(y) has a unique solution. With few

assumptions on the boundedness of ℓ and θ⊺ϕ, Eq. (6) is ill-posed. Given P∗
Y |x from Eq. (6), the

solution Q∗
Y |x to Eq. (5) exists iff ∂ℓ(PY |x, 1)/∂PY |x(1) . . . ∂ℓ(PY |x, |Y|)/∂PY |x(1) 1

. . .
∂ℓ(PY |x, 1)/∂PY |x(|Y|) . . . ∂ℓ(PY |x, |Y|)/∂PY |x(|Y|) 1

1 . . . 1 0


is singular. By assuming locality and positiveness, there exists a unique solution Q∗

Y |x. One benefit
of the proposed method is that users only need to focus on solve Eq. (6) and Eq. (5) for proper losses
while Williamson et al. (2016) additionally require a canonical link function for convexity.

Next we show how the system of equations can always be solved with specific losses. We consider
an additive combination of the multiclass Brier loss and the logarithmic loss, both of which are
continuous strictly proper losses. As indicated by Figure 1, these losses differ primarily in how
they penalize the ground truth label’s prediction probability as it goes to zero and one. The Brier
loss exhibits quadratic growth. The logarithmic loss has a vertical asymptote for labels considered
increasingly unlikely to the point of impossibility by the predictor. They have different penalties for
underestimation and overestimation of the desired prediction. A trade-off between the log loss and
the Brier loss thus provides flexibility to control the cost for misalignment between the prediction
and the observation. See appendix for a discussion on including the ranked probability score and
other specific losses.

We employ this kind of loss in our DRO method and present an efficient algorithm that can be
implemented in practice. With only slight loss of generality and for computational consideration,
we assume a fixed positive weight on the log loss. To begin with, the mixture loss is

ℓmix(PY |x, y) = − lnPY |x(y) + β(1− 2PY |x(y) +
∑
y′

P2
Y |x(y

′)),

with derivative

∂ℓmix(PY |x, y)/∂PY |x(y) = −1/PY |x(y)− 2β + 2βPY |x(y).

Scalar β weights the contribution of the Brier loss, to this additive combination, controlling the
sensitivity of the predictor to underestimation. The adversarial surrogate of this mixture loss is
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Fisher consistent as a direct corollary. Methods that solely mix the predictions of classifiers designed
for logarithmic loss minimization and Brier loss optimization, may be appealing for their simplicity,
but are demonstrably sub-optimal. For example, with the logistic loss, logistic regression provides
a natural parametric form for the predictor, that equates loss minimization with data likelihood
maximization.

Although the Brier loss is not local, the additional sum of quadratic terms
∑

y′ P2
Y |x(y

′) is constant
across all y. Therefore Eq. (6) has a closed form expression in terms of the Lambert W function.
Furthermore, the sum over y for all QY |x(y) will cancel out, leaving terms only dependent on the
same y. So Eq. (5) is simplified into an expression of Q in terms of P. Normalizing Q solves ZP,
yielding the following proposition:

Proposition 4. The DRO method for a probabilistic loss based on logarithmic loss, and β Brier
loss has a solution P∗

Y |X for the predictor parameterized by θ defined by the following systems of
equations:

∀x ∈ X ,∃C ∈ R,∀y ∈ Y P∗
Y |x(y) = exp(C + θTϕ(x, y)−W0(2βe

C+θTϕ(x,y))), (7)

where C is a constant dependent on θ and x but independent of y, W (·) is the principal branch of
the Lambert W function. The corresponding adversary Q∗

Y |X is defined as

Q∗
Y |x(y) =

2βP∗2
Y |x(y) + ZPY |xP∗

Y |x(y)

1 + 2βP∗
Y |x(y)

and ZPY |x =
1−∑y 2βP∗2

Y |x(y)/(1 + 2βP̂∗
Y |x(y))∑

y P∗
Y |x(y)/(1 + 2βP̂∗

Y |x(y))
.

(8)

Algorithm 1 Distributionally robust learning for probabilis-
tic supervised learning with a mixture of logistic and Brier
losses

Input: ϕ, Pemp
X,Y , β, learning rate γ

Output: θ∗
Initialize θ to be a random vector
repeat

for all x ∈ X do
C,P∗

Y |X(·|x)← Bisection(x,ϕ,θ, β) by (7)
Compute Q∗

Y |X(·|x) by Eq. (8)
end for
Compute ∂Ladv/∂θ by (9)
θ ← θ − γ∂Ladv/∂θ

until convergence

Now we show how to solve Eq. (7)
with simplex constraints to obtain
P∗
Y |x given θ for any x ∈ X . Let
C = fy(t) = θTϕ(x, y) − ln t −
2βt be a function of t = P∗

Y |x(y).
By definition, f(·) is a monotoni-
cally decreasing function with do-
main R++ and range R. Its in-
verse mapping f−1(·) is monotoni-
cally decreasing with domain R and
range R++. Therefore, let g(C) =∑

y f
−1
y (C) =

∑
y P∗

Y |x(y), accord-
ing to the intermediate value theo-
rem, there exists C∗ ∈ R such that
g(C∗) =

∑
y P∗

Y |x(y) = 1. Because
of their monotonicity, we can find C∗

and P∗
Y |x(·) as a solution to Equation

7 via bisection method. Once P∗
Y |X is obtained, we can find Q∗

Y |X simply by substitution. After
that, the sub-gradient,

∂Ladv/∂θ ≜ EPemp
X
(EQ∗

Y |X
[ϕ(X, Y )]− EPemp

Y |X
[ϕ(X, Y )]) + ∂ε∥θ∥∗/∂θ, (9)

can be leveraged to optimize θ. The above steps are summarized in Algorithm 1.

3.4 DIFFERENTIABLE LEARNING

By taking advantage of deep neural networks, our method will be able to jointly optimize data
representation and the Lagrange multipliers:

min
θ,ϕ

EPemp
X
Ladv(θ,Pemp

Ỹ |X),

enjoying the benefits of end-to-end representation learning without manually looking for a good
feature mapping ϕ. More off-the-shelf mini-batch training tools could be leveraged as well.
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We show how to make use of our DRO method as a loss layer in neural network training. A net-
work for supervised learning typically has a linear classification layer in the end without activation.
Assume the penultimate layer outputs ϕ(x), the last layer will output a |Y|-dimensional vector
ψ(x) = [(θ(1))⊺ϕ(x), . . . , (θ(|Y|))⊺ϕ(x)]. This is essentially equivalent to adopting a multivector
representation to construct ϕ. Specifically, given x ∈ Rd and y ∈ [|Y|], the resulting feature vector
v = ϕ(x, y) ∈ Rd|Y| satisfies vyd−d+i = xi for i ∈ [d] and vj = 0 otherwise. Therefore taking
ψ(x) as the input is sufficient for us to compute P∗

Y |x and Q∗
Y |x. In this way, our method is the loss

layer without learnable parameters, which backpropagates the sub-derivative of loss with respect to
ψ(x) to the linear classification layer:

EPemp
X
(qY |X − pemp

Y |X) ∈ ∂Ladv/∂ψ(x).

Recall q and pemp are the probability vectors for Q and Pemp. The sub-gradient with respect to θ is
added to the classification layer.

4 EXPERIMENTS

In the experiments, we consider as the performance measure the L-risk RL
P (h), also called the

expected generalization loss. The mixture loss ℓmix of the log loss and Brier loss is adopted. The
normalized generalization loss 1

(1+β)R
L
Ptest(h) is estimated based on the test set distribution Ptest

X,Y .

We compare our adversarial learning approach against neural network models with the softmax and
the spherical softmax function as the final normalization layer (Laha et al., 2018). All the baseline
methods are able to make use of probabilistic labels in both training and testing. We adopt a three-
layer neural network for all the methods, who share the same number of parameters. To make a
more fair comparison, we set ε = 0 such that the final classification layer is unregularized. The
baselines compute the target loss Lmix based on their probability outputs applied to the logits.

We implement all the methods using PyTorch (Paszke et al., 2019). We use Adam (Kingma & Ba,
2014) for optimization. The number of hidden units is set to 50. The number of training steps
is set to 500 with a batch size of 64. We set β = 1. Default values are used for unmentioned
hyperparameters.

We conduct experiments on several real-world datasets, including corel5k (Duygulu et al., 2002),
flags (Gonçalves et al., 2013), Stackex chess (Charte et al., 2015), GpositivePseAAC
and GnegativePseAAC (Xu et al., 2016), having statistics reported in Table 1. The ground truth
labels in these dataset are either originally probabilistic or converted to a uniform distribution for
multi-label classification datasets. At the beginning of each run, we randomly choose 80% of the
dataset as the training set and the remaining 20% for evaluation. We further take 20% of the training
set as the validation set to determine the best parameter for final testing.

Table 1: Dataset statistics and normalized generalization losses with 95% confidence intervals on
each dataset. The best results are indicated in bold. † indicates statistical significance with paired
t-test (p < 0.05).

Dataset corel5k GnegativePseAAC flags GpositivePseAAC Stackex chess

n 5000 1392 194 519 1672
|Y| 374 8 7 4 227

Features 499 440 19 440 585

Softmax 2.738± 0.013 0.306± 0.011 1.294± 0.017 0.329± 0.014 2.565± 0.031
Spherical 2.907± 0.010† 0.307± 0.012 1.324± 0.037 0.339± 0.016† 2.700± 0.043†

Ours 2.738± 0.012 0.306± 0.011 1.294± 0.017 0.329± 0.014 2.555± 0.037

We repeat the above process 10 times for each dataset on a laptop with a 2.7 GHz Quad-Core Intel
Core i7 CPU. All the methods take less than 1 minute per run in wall time. The results in Table 1
show that our proposed method either has the best performance or achieves similar performance to
the best method with no statistical significance in most of the adopted datasets.

For sensitivity analysis, we fix a random split of the Stackex chess dataset and vary β with other
settings unchanged. The experiments are repeated 10 times. As shown in Figure 2, the expected loss
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Figure 2: Normalized generalization losses with different coefficients or noise levels. Left: varying
β in [0.1, 10.0]. Right: varying probability of contamination in [0, 0.8]. The X axes of the left
subfigure is in logarithmic scale. Best viewed in color.

of our method on the test set is slightly better than baselines. For better illustration, we cut [0.1, 0.5]
off the x-axis because the softmax and our method are indistinguishable without scaling.

Additionally, we study the robustness of our approach by introducing noise to the training set of the
Stackex chess dataset, repeated 10 times. To this end, for each instance x, with a probability
pnoise, we replace the ground truth by a random distribution from P(Y). We vary pnoise from 0 to
0.8. As seen in Figure 2, our method is slightly better when pnoise < 0.4. All the methods become
vulnerable for large pnoise possibly because of the backbone neural network model.

5 DISCUSSION AND CONCLUSION

We proposed a moment-based distributionally robust learning framework for probabilistic super-
vised learning under mild assumptions, showed its equivalence to dual-norm regularization for a
surrogate loss, presented its out-of-sample guarantees, developed efficient algorithms for typical
continuous proper losses, incorporated the proposed method into differentiable learning and con-
ducted experiments on several real-world datasets. We aimed to shed light on this more general
supervised learning setting (Gressmann et al., 2018) and provide a more expressive way of quanti-
fying prediction uncertainty. A drawback of the proposed method is that solving the saddle-point
problem can be difficult for some complicated losses while neural networks equipped with a soft-
max layer makes use of automatic differentiation to avoid facing this issue. Interesting directions for
future investigation include generalizing the learning framework to conditional density estimation
and considering ambiguity sets defined by higher-order moments.
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A TECHNICAL PROOFS

Proposition 1. The distributionally robust probabilistic supervised learning problem based on mo-
ment divergence in Eq. (2) can be rewritten as

min
θ

EPemp
X

min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPemp
Ỹ |X

ϕ(X, Ỹ )) + ε∥θ∥∗︸ ︷︷ ︸
Ladv(θ,Pemp

Ỹ |X
)

,

where θ ∈ RD is the vector of Lagrangian multipliers and ∥·∥∗ is the dual norm of ∥·∥.
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Proof. Recall the primal problem

min
PY |X∈P(Y)

max
Q∈A(Pemp)

EQX

[
L
(
PY |X,QY |X

)]
,

where A(Pemp) := {Q : Q ∈ P(X × Y) ∧ Pemp
X = QX ∧ ∥EPemp [ϕ(·, ·)]− EQ [ϕ(·, ·)]∥ ≤ ε}.

Note the feature function ϕ(·) is fixed and given. The constraint sets P(Y) andA(Pemp) are convex.
The objective function L(P,Q) is quasi-convex in P by (Williamson et al., 2016) and concave in Q
because it is affine in Q. Therefore strong duality holds by Sion’s minimax theorem (Sion, 1958):

max
Q∈A(Pemp)

min
PY |X∈P(Y)

EQX

[
L
(
PY |X,QY |X

)]
.

Let C(u) := {u : ∥u− EPempϕ(·)∥ ≤ ε}. Rewrite the problem with this constraint:

sup
Q,u

min
P

EPemp
X

[
L
(
PY |X,QY |X

)]
− IC(u)

s.t. u = EPemp
X QY̌ |X

ϕ(X, Y̌ ),

where IC(·) is the indicator function with IC(x) = 0 if x ∈ C and +∞ otherwise. The simplex
constraints of P and Q are omitted.

The dual problem by relaxing the equality constraint is

sup
Q,u

min
θ

min
P

EPemp
X

[
L
(
PY |X,QY |X

)]
− IC(u) + θ⊺EPemp

X QY̌ |X
ϕ(X, Y̌ )− θ⊺u,

where θ is the vector of Lagrange multipliers.

GivenX = x, optimization of QY̌ |x and PŶ |x can be done independently. Again by strong duality,
we can rearrange the terms:

min
θ

EPemp
X

min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺EQY̌ |X

ϕ(X, Y̌ ) + sup
u
−IC(u)− θ⊺u.

The associated dual norm ∥·∥∗ of the norm ∥·∥ is defined as

∥z∥∗ := sup{z⊺x : ∥x∥ ≤ 1},
based on which we are able to simplify the optimization over u as

sup
u
−IC(u)− θ⊺u = sup

u∈C
−θ⊺u = sup

e:∥e∥≤1

−θ⊺(EPempϕ(·)− εe) = −θ⊺EPempϕ(·) + ε∥θ∥∗.

Plugging it back to the dual problem, we have

min
θ

EPemp
X

min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPemp
Ỹ |X

ϕ(X, Ỹ )) + ε∥θ∥∗.

Corollary 2. When ε = 0, Ladv is Fisher consistent with respect to L. Namely, for any x,

Pθ∗
true

Y |x ∈ argmin
PY |x

L(PY |x,Ptrue
Y |x)

is the Bayes optimal probabilistic prediction made by θ∗true, the solution in Eq. (3) under Ptrue.

Proof. Our setting differs from Nowak et al. (2020) in the fact that we use a distribution as the
ground truth. By defining y∗(µ) as the gold standard probabilistic prediction and Y as the set of all
possible probabilistic predictions in Proposition C.2 in Nowak et al. (2020), we have

Pθ∗
true

Ŷ |x
∈ Conv(argmin

PŶ |x

L(PY |x,Ptrue
Y |x)).

BecauseL is assumed continuous proper, any convex combination of minimizers is also a minimizer.
Therefore,

Pθ∗
true

Ŷ |x
∈ argmin

PŶ |x

L(PY |x,Ptrue
Y |x).
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Theorem 3. Given n samples, a non-negative multiclass probabilistic loss L(·, ·) such that
|L(·, ·)| ≤ K, a feature function ϕ(·, ·) such that ∥ϕ(·, ·)∥ ≤ B and a positive ambiguity level
ε > 0, then, for any 0 < δ ≤ 1, with a probability at least 1 − δ, the following excess true worst-
case risk bound holds:

max
Q∈A(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈A(Ptrue)
RL

Q(θ
∗
true) ≤

4KB

ε
√
n

(
1 +

3

2

√
ln(4/δ)

2

)
,

where θ∗emp and θ∗true are the optimal parameters learned in Eq. (3) under the empirical distribu-
tion Pemp and true distribution Ptrue, respectively. The original risk of θ under Q is RL

Q(θ) :=

EQX,Y ,Pθ
Y |X

L(PY |X,QY |X) with prediction Pθ
Y |X ∈ argminP maxQ L

(
PY |X,QY |X

)
+

EQY̌ |X
θ⊺ϕ(X, Y̌ ).

Proof. Define the adversarial surrogate risk of θ with respect to P̃ as

RS
P̃ (θ) := EP̃X

min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EP̃Ỹ |X
ϕ(X, Ỹ )) + ε∥θ∥∗.

Let θ∗true ∈ argminθ R
S
Ptrue(θ) and θ∗emp ∈ argminθ R

S
Pemp(θ) be the optimal parameters learned with

Ptrue
X,Y and Pemp

X,Y respectively.

Given x, define the decoded prediction by θ as

Pθ
Y |x ∈ argmin

P
max
Q

L
(
PY |X,QY |X

)
+ θ⊺EQY̌ |X

ϕ(X, Y̌ ).

Let the original risk of loss L under some distribution Q be

RL
Q(θ) := EQX

L
(
Pθ
Y |X,QY |X

)
.

According to Proposition 1, for any fixed P, we have similarly

max
Q∈A(Pemp)

EQX
L
(
Pθ
Y |X,QY |X

)
≜ min

θ
EPemp

X
max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPemp
Ỹ |X

ϕ(X, Ỹ )) + ε∥θ∥∗.

We start by looking at the worst-case risk of θ∗true and θ∗emp.

max
Q∈A(Ptrue)

RL
Q(θ

∗
emp)

=min
θ

EPtrue
X

max
Q

L
(
Pθ∗

emp

Y |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∥∗

≤EPtrue
X

max
Q

L
(
Pθ∗

emp

Y |X,QY |X

)
+ θ∗emp · (EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∗emp∥∗,

where the last inequality holds because θ∗emp is not necessarily a minimizer. Similarly for θ∗true,

max
Q∈A(Ptrue)

RL
Q(θ

∗
true) ≤ EPtrue

X
max
Q

L
(
Pθ∗

true
Y |X,QY |X

)
+ θ∗true · (EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∗true∥∗.

On the other hand,

EPtrue
X

max
Q

L
(
Pθ∗

true
Y |X,QY |X

)
+ θ∗true · (EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∗true∥∗

=min
θ

EPtrue
X

min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∥∗

=min
P

min
θ

EPtrue
X

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∥∗

≤min
θ

EPtrue
X

max
Q

L
(
Pθ∗

true
Y |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∥∗

= max
Q∈A(Ptrue)

RL
Q(θ

∗
true),
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where the first equality holds according to the definition of θ∗true. The above two inequalities imply
the equality:

max
Q∈A(Ptrue)

RL
Q(θ

∗
true) = EPtrue

X
max
Q

L
(
Pθ∗

true
Y |X,QY |X

)
+ θ∗true · (EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∗true∥∗.

Therefore,

max
Q∈A(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈A(Ptrue)
RL

Q(θ
∗
true)

≤(EPtrue
X

max
Q

L
(
Pθ∗

true
Y |X,QY |X

)
+ θ∗emp · (EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∗emp∥∗)

− (EPtrue
X

max
Q

L
(
Pθ∗

true
Y |X,QY |X

)
+ θ∗true · (EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) + ε∥θ∗true∥∗).
(10)

The main idea is thus to use uniform convergence bound. Firstly, by substituting Q = Ptrue, note
that

min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EPtrue
Y |X

ϕ(X, Y )) ≥ min
P
L
(
PY |X,Ptrue

Y |X

)
≥ 0.

We can get an upper bound of the norm of any optimal solution θ∗true or θ∗emp as follows:

0 + ε∥θ∗true∥∗ ≤ RS
Ptrue(θ∗true) ≤ RS

Ptrue(0) ≤ EPtrue
X
L
(
PY |X,QY |X

)
≤ K =⇒ ∥θ∗true∥∗ ≤

K

ε
.

Let ψ(X, Y ) := θ⊺ϕ(X, Y ) and ψx := (ψ(x, Y ))Y ∈Y . Define

f(θ, P̃) := EP̃X
min
P

max
Q

L
(
PY |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EP̃Ỹ |X
ϕ(X, Ỹ ))

≜ EP̃X
max
Q

L
(
Pθ
Y |X,QY |X

)
+ θ⊺(EQY̌ |X

ϕ(X, Y̌ )− EP̃Ỹ |X
ϕ(X, Ỹ ))

≜ EP̃X
max
Q

L
(
Pθ
Y |X,QY |X

)
+ (EQY̌ |X

ψ(X, Y̌ )− EP̃Ỹ |X
ψ(X, Ỹ ))

≜ g(ψ, P̃).

Let qx ∈ ∆ be the probability vector of QY̌ |x and eY be the standard basis vector with Y -th entry
equal to 1. We have that for any (x, Y ),

∂

∂ψx
g(ψ, δ(x,Y )) ⊆ Conv({qx − eY : qx ∈ ∆}) =⇒ ∥ ∂

∂ψx
g(ψ, δ(x,Y ))∥1 ≤ max

qx∈∆
∥qx − eY ∥1 ≤ 2,

where δ(x,Y ) is the Dirac point measure. g(ψ, P̃) is therefore 2-Lipschitz with respect to the ℓ1
norm. As per the assumption, ∥ϕ(·, ·)∥ ≤ B. This further implies that

f(θ1, δ(x1,Y1))− f(θ2, δ(x2,Y2)) ≤
4KB

ε
∀θ1,θ2,x1,x2, Y1, Y2 s.t. ∥θi∥∗ ≤

K

ε
∀i = 1, 2.

We then follow the proof of Theorem 3 in Farnia & Tse (2016). According to Theorem 26.12 in
Shalev-Shwartz & Ben-David (2014), by uniform convergence, for any δ ∈ (0, 2], with a probability
at least 1− δ

2 ,

f(θ∗emp,Ptrue)− f(θ∗emp,Pemp) ≤ 4KB

ε
√
n

(
1 +

√
ln(4/δ)

2

)
.

According to the definition of θ∗true, the following inequality holds:

f(θ∗emp,Pemp) + ε∥θ∗emp∥∗ − f(θ∗true,Pemp)− ε∥θ∗true∥∗ ≤ 0.
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Since θ∗true do not depend on samples, according to the Hoeffding’s inequality, with a probability
1− δ/2,

f(θ∗true,Pemp)− f(θ∗true,Ptrue) ≤ 2KB

ε
√
n

√
ln(4/δ)

2
.

Applying the union bound to the above three inequations, with a probability 1− δ, we have

f(θ∗emp,Ptrue) + ε∥θ∗emp∥∗ − f(θ∗true,Ptrue)− ε∥θ∗true∥∗ ≤
4KB

ε
√
n

(
1 +

3

2

√
ln(4/δ)

2

)
.

As stated by Inequation (10), we conclude with the following excess risk bound:

max
Q∈A(Ptrue)

RL
Q(θ

∗
emp)− max

Q∈A(Ptrue)
RL

Q(θ
∗
true) ≤

4KB

ε
√
n

(
1 +

3

2

√
ln(4/δ)

2

)
.

Proposition 4. The DRO method for a probabilistic loss based on logarithmic loss, and β Brier
loss has a solution P∗

Y |X for the predictor parameterized by θ defined by the following systems of
equations:

∀x ∈ X ,∃C ∈ R,∀y ∈ Y P∗
Y |x(y) = exp(C + θTϕ(x, y)−W0(2βe

C+θTϕ(x,y))),

where C is a constant dependent on θ and x but independent of y, W (·) is the principal branch of
the Lambert W function. The corresponding adversary Q∗

Y |X is defined as

Q∗
Y |x(y) =

2βP∗2
Y |x(y) + ZPY |xP∗

Y |x(y)

1 + 2βP∗
Y |x(y)

and ZPY |x =
1−∑y 2βP∗2

Y |x(y)/(1 + 2βP̂∗
Y |x(y))∑

y P∗
Y |x(y)/(1 + 2βP̂∗

Y |x(y))
.

Proof. Recall the saddle-point optimality condition:∑
y

QY (y)∂ℓ(PY , y)/∂PY (y
′) + ZPY

= 0

ℓ(PY , y) + θ
⊺ϕ(x, y) + ZQY

= 0.

Dependence on x is omitted when context is clear. Substituting ℓmix yields:

QY (y)(−
1

PY (y)
− 2β) + 2βPY (y) + ZPY

= 0

− lnPY (y) + β(1− 2PY (y) +
∑
y′

P2
Y (y

′)) + θ⊺ϕ(x, y) + ZQY
= 0.

Note that C := β + β
∑

y′ P2
Y (y

′) + ZQY
is constant across all y’s given θ, x. Thus for fixed θ, x,

we have for some C∗
θ,x,

C∗
θ,x + θ · ϕ(x, y) = lnPY (y) + 2βPY (y) ∀y ∈ Y,

which is equivalent to

2βPY (y)e
2βPY (y) = 2βeθ·ϕ(x,y)+C∗

θ,x .

By the definition of the Lambert W function,

2βPY (y) =W (2βeθ·ϕ(x,y)+C∗
θ,x).

Since 2βeθ·ϕ(x,y)+C∗
θ,x ≥ 0, the principal branch W0 of the Lamber W function is always applica-

ble. Also by the formula e−W (x) = W (x)
x , we have

PY (y) = exp(C∗
θ,x + θTϕ(x, y)−W0(2βe

C∗
θ,x+θTϕ(x,y))) ∀y.
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Let P∗
Y (for a given θ) be a solution to this set of equations that also satisfies

∑
y P∗

Y (y) = 1. By
Eq. (5), the optimal Q satisfies

Q∗
Y (y) =

2βP∗
Y (y) + ZPY

1
P∗
Y (y) + 2β

=
2βP∗2

Y (y) + ZPY
P∗
Y (y)

1 + 2βP∗
Y (y)

.

ZPY
must be chosen to properly normalize Q∗

Y (y):∑
y

Q∗
Y (y) = ZPY

∑
y

1
1

P∗
Y (y) + α+ 2β

+
∑
y

2βP∗
Y (y)

1
P∗
Y (y) + α+ 2β

= 1

=⇒ Z∗
PY

=

1−∑y
2βP∗

Y (y)
1

P∗
Y

(y)
+α+2β∑

y
1

1
P∗
Y

(y)
+α+2β

=
1−∑y

2βP∗2
Y (y)

1+(α+2β)P∗
Y (y)∑

y
P∗
Y (y)

1+(α+2β)P∗
Y (y)

.

Both Z∗
PY

and Q∗
Y (y) are positive because P∗

Y ∈ P(Y) is a solution.

B MORE LOSSES

The discrete ranked probability vector assumes an ordering relationship in Y , i.e., Y :=
{1, 2, . . . , |Y|}. The score can be written as

ℓrp(PY , y) :=

|Y|∑
i=1

[

i∑
j=1

PY (j)− I(i ≥ y)]2.

The mixture loss of the log loss, Brier loss and ranked probability loss can be written as

ℓmix(PY , y) = − lnPY (y) + β(1− 2PY (y) +
∑
y′

P2
Y (y

′)) + α

|Y|∑
i=1

[

i∑
j=1

PY (j)− I(i ≥ y)]2.

Substituting the loss into Eq. (6) yields

QY (y)(−
1

PY (y)
− 2β) + 2βPY (y) + 2α

|Y|∑
i=y

i∑
j=1

PY (j) + ZPY
− 2α(|Y| − y + 1−

|Y|∑
i=y+1

(i− y)QY (i)) = 0

(11)

− lnPY (y) + β(1− 2PY (y) +
∑
y′

P2
Y (y

′)) + θ⊺ϕ(x, y) + ZQY

+ α(|Y| − y + 1 +

|Y|∑
i=1

[

i∑
j=1

PY (j)]
2 − 2

|Y|∑
i=1

i∑
j=1

PY (j) + 2

y−1∑
i=1

i∑
j=1

PY (j)) = 0. (12)

Notice that
∑|Y|

i=1[
∑i

j=1 PY (j)]
2−2∑|Y|

i=1

∑i
j=1 PY (j) is constant across all y. By absorbing them

into constant C, we also observe that the equation for y only depends on PY (y
′) for y′ < y in the

term
∑y−1

i=1

∑i
j=1 PY (j). Therefore, P∗

Y (y) can be found in increasing order of y from 1 to |Y|.
Given P∗

Y , consider Eq. (11) in matrix form:
−1/PY (1)− 2β 2α 4α . . . 2(|Y| − 1)α 1

0 −1/PY (2)− 2β 2α . . . 2(|Y| − 2)α 1
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1/PY (|Y|)− 2β 1
1 1 1 . . . 1 0




QY (1)
QY (2)
. . .

QY (|Y|)
ZPY

 =


C1

C2

. . .
C|Y|
1.


This is not an unreduced Hessenberg matrix. However, notice that as ZPY

increases, QY (|Y|) also
increases by the penultimate equation. This in turn increases QY (|Y|−1) according to the third from
last equation. Therefore, the solution Q∗

Y without the simplex constraint increases monotonically
as ZPY

increases. We can use bisection method again to find the Q∗
Y that also satisfies the simplex

constraint.
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