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Abstract. In probabilistic neural network verification, a well-chosen
representation of input uncertainty ensures that theoretical analyses ac-
curately reflect real input perturbations. A recent approach based on
probability boxes (p-boxes) [9] is introduced in [10] and unifies set-based
and probabilistic information on the inputs. The method allows for ob-
taining guaranteed probabilistic bounds for property satisfaction on feed-
forward ReLU networks. However, it suffers from conservatism due to
employing set-based propagation methods.
In this work we investigate how to sample from p-boxes without loss
of information. Based on that, we develop a sampling-based approach
for propagating p-boxes through feedforward ReLU networks. We prove
that with dense enough coverings of the input p-boxes, the propagated
samples accurately represent the output uncertainty and provide error
bounds. Additionally, we show how to create coverings for arbitrary
p-boxes with various distributions. On the ACAS Xu benchmark we
demonstrate that our approach is applicable in practice, both as a stan-
dalone verifier and as a way to partially assess the conservatism of the
set-based approach of [10].

Keywords: Probability boxes · Neural network verification.

1 Introduction

Neural networks have been proven to be powerful tools in a wide range of appli-
cations, from image recognition to autonomous systems, making their reliability
and correctness critical. Neural network verification focuses on ensuring safety
of trained neural networks. Specifically, verification can consist of assessing the
robustness of neural networks when faced with input uncertainties or adversarial
attacks. The task of verifying a neural network can be approached deterministi-
cally or probabilistically. In the classical, deterministic approach, the goal is to
determine if a safety property holds for a bounded input uncertainty or provide
deterministic bounds for property violation (i.e. how much of a perturbation
is guaranteed to not violate the property, or conversely). Examples of such ap-
proaches include the CROWN [28], FROWN [14], and CNN-Cert [4] frameworks.
Approaches such as DeepZ [21], DeepPoly [22] and Verinet [12] propagate ab-
stractions representing input uncertainty to verify if given properties hold.
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On the other hand, probabilistic verification assumes random uncertainty at
input, for example generated by random noise applied to the input, and aims to
provide statistical estimates on output given the input uncertainty. Much less
work has been done in this domain, but examples include [24,29] using it to as-
sess network robustness and [2,1,27,18,13] probabilistically certifying correctness
under adversarial attacks. Some works, including the PROVEN [25] framework
also provide guaranteed statistical estimates, that is statements of form "the
probability of X occurring is guaranteed to be between a and b". Probabilis-
tic methods for networks with ReLU activations have also been developed in
[17], [19] [7]. A notable family of methods that facilitate estimating statistics of
outputs is covariance propagation, with examples in [26] and [16].

The works mentioned above operate either in a set-based or probabilistic
input setting. However, as mentioned in [10], this does not accurately reflect
reality, as sometimes an input can be represented with more than one proba-
bilistic model, or a probabilistic model might have uncertain parameters. With
those considerations, a recent approach introduced in [10] uses inputs described
by imprecise probabilities [23,3] which unify both set-based and probabilistic in-
puts. This approach allows for taking into account both epistemic and aleatoric
uncertainty on inputs. One realisation of imprecise probabilities is the concept of
a probability box (p-box) [9] - a set of cumulative distribution functions (CDF),
bounded by a lower and an upper boundary CDF. Representing input uncer-
tainty with a p-box permits the input value to come from any of these distribu-
tions.

Propagating p-boxes has been extensively studied in the context of differen-
tial equations - for example for ODEs, as in [6] and PDEs, as in [11]. Moreover,
P-boxes can be transformed into Dempster-Shafer Interval structures (DSI) [9],
their discrete over-approximations, and algorithms for arithmetic operations on
DSI allow for propagating DSI through neural networks, as done in [10] for feed-
forward ReLU networks. However, this approach suffers from conservativeness,
and the resulting DSI might be much less tight than in reality. To alleviate
that, [10] introduces a new abstraction, Zonotopic Dempster-Schafer structures
(DSZ), which generalise DSI and produce much tighter results when propagating
through neural networks. The authors of [10] use their propagation algorithms
for DSI and DSZ to provide guaranteed probabilistic bounds on the outputs
of the neural network satisfying a safety property. While both the probabilistic
bounds and resulting DSI/DSZ are robust, their quality, i.e. how tight they are
with respect to reality, is difficult to fully assess.

In this work we develop and prove the validity of a systematic approach for
propagating p-boxes through neural networks. Our method is based on sampling
from dense-enough coverings of input p-boxes, passing the samples through the
network and constructing output p-boxes or verifying safety properties. Depen-
dent on parameters of our methods and the Lipschitz constant of the underlying
neural network, we also provide accuracy bounds for our results. Our method is
applicable also without knowledge of the Lipschitz constant or when the Lips-
chitz constant is large, but in these cases it lacks the accuracy bounds on the
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results. In the case of neural networks with inputs represented by parametric
p-boxes, a particular class of p-boxes where the distributions they contain are
explicitly parameterised, we are able to implement and demonstrate our ap-
proach on the ACAS Xu benchmark. We compare these results to the output
p-box estimates produced by the DSZ propagation algorithm from [10], although
the latter is not restricted to the parametric case.

Additionally, we demonstrate ways of constructing coverings of parametric
and non-parametric p-boxes and prove error bounds for our method - that is,
we show that any output which our method did not account for is sufficiently
close to an output that our method produced. However, we chose not to report
on sampling non-parametric p-boxes as, for now, the methods with guarantees
we presented are of exponential complexity in the size of the p-boxes.

1.1 Notation

Throughout the paper, we adhere to the following notations:

– X,Y, etc. denote multi-dimensional random variables, while X,Y , etc. de-
note one-dimensional random variables. Samples corresponding to these vari-
ables are denoted as x and x, respectively.

– For each random variable X, FX denotes its cumulative distribution function
(CDF), given by FX(x) = P(X ≤ x).

2 Problem Statement

We consider a ReLU feedforward neural network f with n independent inputs
and m outputs. Values fed to f belong to probabilistic input sets:

Definition 1 (Probabilistic input set). For two cumulative distribution func-
tions F and F , a probabilistic input set is X = {X : F (x) ≤ FX(x) ≤ F (x),∀x}.
A value belongs to a probabilistic input set if it is a sample from one of the dis-
tributions within it.

As the inputs to f are independent, considering one n-dimensional proba-
bilistic input set X is equivalent to considering n marginal input sets X1, . . .Xn.

Probabilistic output sets A probabilistic output set is defined as Y = {Y :=
f(X)|X ∈ X}, and can also be expressed in terms of some boundary CDFs F and
F . Marginal output sets Yi for i ∈ [m] are defined as Yi = {Y[i] := f(X)[i]|X ∈
X}. Given Y, it is possible to derive Y1, . . .Ym. However, since the outputs of f
are not guaranteed to be independent, knowing Y1 . . .Ym alone is not sufficient
to characterise Y.

We solve the following problems:

P1 Find approximate marginal output sets Ŷ1, . . . Ŷm, such that for a given
ε > 0, and i ∈ [m], for any Y ∈ Yi there exists Ŷ ∈ Ŷi s.t. ||FY − FŶ ||1 ≤ ε,
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P2 Approximate the probability bounds of an output vector y satisfying a linear
safety property Ay ≤ v.

The work of [10] solves variants of these problems using DSZ propagation - it
finds an approximate output set Ŷ, guaranteed to contain Y. Similarly, it finds
guaranteed probabilistic bounds of an output vector y satisfying a linear safety
property.

Our contributions include a sampling-based method for solving these prob-
lems, which can be used either as a standalone verifier or to assess the conser-
vativeness of the bounds derived by [10].

3 Preliminaries

Probabilistic input sets are represented by probability boxes.

Definition 2 (P-box [9]). Let 2 cumulative distribution functions F , F satisfy
F (x) ≤ F (x) for every x ∈ R. The probability box:

X = [F , F ] :=
{
F ≤ F ≤ F

}
is the set of CDFs bounded below by F and above by F . A random variable X
belongs to X (written X ∈ X ) if and only if FX ∈ X .

Expressing uncertainty A p-box encodes a measurement that exhibits both
aleatoric and epistemic uncertainty. The span of the p-box reflects epistemic un-
certainty, while the shape of each admissible F represents aleatoric uncertainty.

Definition 3 (Parametric p-box). Let {Fθ}θ∈Θ be a distribution family with
Θ0 being the set of admissible parameters. Then X = {Fθ | θ ∈ Θ0} is a para-
metric p-box; for instance N

(
µ ∈ [0, 1], σ = 1

)
bounds every Gaussian with mean

in [0, 1] and unit variance.

A parametric p-box corresponds to a measurement with a parametrised epistemic
uncertainty - for example, when the mean of the data is known to belong to an
interval [a, b], but the actual value is unknown.

3.1 Sampling from p-boxes

We present a method for sampling values from p-boxes that allows for construct-
ing p-boxes from data. For a p-box X :

1. Distribution selection - A distribution X ∈ X is chosen,
2. Sampling from the distribution - s samples are drawn from X,
3. Propagation - For each sample x, f(x) is calculated and the empirical

distribution of f(X) ∈ f(X ) is calculated.
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Repeating the process with different distribution selections X1, X2, . . . yields
outputs f(X1), f(X2), . . . which can approximate the shape of f(X ).

It is desirable to pick distributions X1, X2, . . . Xi that approximate X well in
order to lose as little information conveyed by X as possible. This is formalised
by the concept of covering:

Definition 4 (Covering). Let X be a p-box and ε a positive real number. A
subset X̂ ⊆ X is an ε-covering of X if for any X ∈ X there exists X̂ ∈ X̂ such
that ||FX − FX̂ ||1 ≤ ε.

Given a covering X̂ of X we can rerun the sampling process, each time choosing
a different distribution from X̂ to sample from distributions representing the
overall shape of the input.

3.2 General sampling-based p-box propagation

Sampling from multivariate probabilistic input set is similar. We are interested
specifically in finite coverings - Algorithm 1 defines a procedure that can be
used to solve problems P1 and P2 given finite coverings of the input p-boxes
X̂1, . . . X̂n. The correctness of algorithm 1 and the ε constant of the coverings
that it creates are specified in the next section.

Algorithm 1: Sampling-based p-box propagation
1 Input: finite coverings of the input p-boxes, X̂1, . . . X̂n

2 Output: finite coverings of the output p-boxes Ŷ1 . . . Ŷm

3 foreach X := (X1, . . . Xn) s.t. X1 ∈ X̂1, . . . Xn ∈ X̂n do
4 for j ← 1 to s do
5 Draw xi,j ∼ Xi

6 yi,j ← f(xi,j);

7 Ŷi ← Empirical Distribution(yi,1, . . .yi,s)

8 Calculate the marginals of Ŷi, i.e. Ŷ 1
i , . . . Ŷ

m
i

9 for j ← 1 to m do
10 Ŷj ← Ŷ j

i

11 return {Ŷ1, . . . Ŷm}

Complexity Algorithm 1 propagates
∏n

i=1 |X̂i| distributions through the net-
work. When propagating a single distribution, s inputs vectors are passed for-
ward and m marginal distributions are built from the outputs. We assume that
passing forward an input vector takes constant time, thus the cost associated
to sample propagation is O(s). Building a single marginal output distribution
takes O(s log s), as it requires sorting all samples with respect to one of the
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coordinates. As m distributions need to be built, and each time the sorting is
done over a different coordinate, building m marginal output distributions takes
O(ms log s). Overall, propagating a single distributions costs O(ms log s), so the
complexity of Algorithm 1 is O(ms log sEn), where E = supi∈[n] |X̂i|.

4 Main theoretical result

We show that for Lipschitz continuous neural networks, Algorithm 1 yields sets
of distributions Ŷ1, . . . Ŷm which form coverings of the marginal output sets
Y1, . . .Ym and we quantify the precision of these coverings.

Theorem 1. Given a neural network f with n independent inputs, m outputs,
an || · ||1-norm Lipschitz constant of at most L and ε-coverings for each input,
Algorithm 1 produces a nLε-covering of each marginal output set.

Below we introduce Wasserstein distance which allows for passing random
variables through Lipschitz continuous functions:

Definition 5 (Wasserstein Distance). Wasserstein-k distance for k ∈ N be-
tween two random variables P and Q is defined as:

Wk(P,Q) = inf
γ∈Π(P,Q)

(E(x,y)∼γ [d(x,y)
k])

1
k

where d is a distance and Π is the set of all couplings between P and Q. For
one-dimensional distributions P and Q it holds that:

W1(P,Q) = ||FP − FQ||1

We state properties of the Wasserstein distance relevant to our problem, with
proofs given in the appendix.

Lemma 1 (Subadditivity of Wasserstein distance). For 2 n-dimensional
random vectors X := (X1, X2, . . . Xn) and Y := (Y1, Y2, . . . Yn) equipped with the
|| · ||1 norm it holds that:

W1(X,Y) ≤ W1(X1, Y1) +W1


X2

...
Xn

 ,

Y2

...
Yn




Lemma 2 (Projection of Wasserstein distance). .For 2 n-dimensional ran-
dom vectors X = (X1, X2 . . . Xn) and Y = (Y1, Y2 . . . Yn) equipped with the || · ||1
norm it holds that:

W1(X1, Y1) ≤ W1(X,Y)
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Lemma 3 (Passing Wasserstein-1 distance through Lipschitz functions).
For a Lipschitz function f with a || · ||1-norm Lipschitz constant of at most L
and 2 random vectors X and Y it holds that:

W1(f(X), f(Y)) ≤ LW1(X,Y)

We prove our main result, Theorem 1:

Proof. Let X1,X2 . . .Xn denote the input p-boxes and X̂1, X̂2 . . . X̂n their ε-
coverings. Consider n random variables X1, . . . Xn with their CDFs F1, . . . Fn in
the respective input p-boxes. By definition of a covering, there exist X̂1, X̂2 . . . X̂n

with CDFs F̂1 ∈ X̂1, F̂2 ∈ X̂2 . . . F̂n ∈ X̂n, such that for each i ∈ [n], ||Fi−F̂i||1 ≤
ε.

We estimate the Wasserstein-1 distance between X := (X1, X2, . . . Xn) and
X̂ := (X̂1, X̂2, . . . X̂n). Applying Lemma 1 n times with the fact that in one
dimension, the Wasserstein distance is equivalent to the || · ||1 distance between
CDFs we can write:

W1(X, X̂) ≤
n∑

i=1

W1(Xi, X̂i) ≤ nε

Using the fact that f is Lipschitz and Lemma 2 we have:

W1(f(X), f(X̂)) ≤ LW1(X, X̂)

We write (Y1, . . . Ym) = Y = f(X) and (Ŷ1, . . . Ŷm) = Ŷ = f(X̂). Applying
Lemma 3 for each i ∈ [m] we obtain:

W1(Yi, Ŷi) ≤ W1(Y, Ŷ)

The whole approximation gives us:

W1(Yi, Ŷi) ≤ nLε

Since Yi and Ŷi are one-dimensional, the Wasserstein-1 distance is the || · ||1
distance between the CDFs. This shows that Ŷi forms a nLε-covering of Yi. ⊓⊔

5 Practical considerations

This section explains how we implement a solution utilising Algorithm 1.

5.1 Bounding the Lipschitz constant of f

Calculating the exact Lipschitz constant of a neural network is NP-hard [20].
We use the LipSDP software introduced in [8] which estimates the upper bound
of the Lipschitz constant for f . The Lipschitz constant returned by LipSDP is
in || · ||2 norm and we find the bound for the Lipschitz constant in || · ||1 using
the inequality between power means.
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5.2 Inaccuracy of empirical CDFs

We briefly describe how output CDFs are approximated with ECDFs and provide
an accuracy bound when the input distributions have bounded supports.

Definition 6 (Empirical cumulative distribution function). Let X be a
random variable and let x(1), . . . , x(s) ∼ X be s i.i.d. samples. The empirical
CDF (ECDF) of X based on these samples is:

F̂X,s(t) :=
1

s

s∑
k=1

1
{
x(k) ≤ t

}
, t ∈ R,

In Algorithm 1, instead of first constructing the F̂Y,s and then considering its
marginals, we construct the empirical marginal distributions FYi,s straight away
from the samples.

Error bound The strong law of large numbers implies that as the number of
samples approaches infinity, the empirical distribution of a variable almost surely
approaches the true value of the distribution. Due to Glivenko-Cantelli theorem,
the convergence is uniform. The Dworetzky-Kiefer-Wolfowitz inequality allows
us to estimate the error between an ECDF and a CDF given the number of
samples:

Theorem 2 (Dworetzky-Kiefer-Wolfowitz inequality). For an empirical
distribution function from n samples FX,n and a CDF FX , it holds for any ε > 0
that:

P
(
sup
x∈R

|FX,n(x)− FX(x)| ≥ ε

)
≤ Ce−2nε2

where C is a constant ([15] proves that the inequality holds for C = 2).

Incorporating DKW into the result of Theorem 1 If all input p-boxes
have bounded support, the following result holds:

Theorem 3. Consider a neural network f with n independent inputs, m out-
puts, an || · ||1-norm Lipschitz constant of at most L, and ε-coverings for each
input. Given that the marginal output sets have bounded support, for each i ∈ [m]

denoted by [ai, bi], then with a probability of at least 1− 2e−2sε′2 for any ε′ > 0,
Algorithm 1 produces nLε+ (bi − ai)ε

′ coverings of each marginal output set.

The case of unbounded support If some of the input p-boxes have un-
bounded support, the above does not hold. However, DKW can be used to derive
additional guarantees in || · ||∞.

6 Constructing coverings of p-boxes

To perform Algorithm 1, finite ε-coverings of each input p-box are required. We
present two approaches to constructing coverings:
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Step-function coverings. As step functions are dense in L1(R), it is possible
to use them to construct coverings of p-boxes. To generate a covering of X
consisting of staircase functions, we overlay a grid with rectangles of size x× y
onto X , and enumerate all staircase functions which turn only at the points of
the grid and are entirely contained within X . This approach may not produce
a covering if the bounding distributions of X have heavy tails - however, in
appendix B we show that posing a restriction on the tails is sufficient for this
procedure to generate a covering with ε := x+ y.

Coverings for parametric p-boxes. When a p-box is defined by a parameter
range within a known distribution family, in order to construct a covering it
usually suffices to consider a set of distributions from this family with varied
parameters. For example, consider the parametric p-box:

X =
{
N(µ, σ2)

∣∣µ ∈ [µ1, µ2]
}

with fixed σ. Choosing n+1 distributions with equidistant means µi = µ1 + i∆
with ∆ = (µ2−µ1)/n yields a covering {N(µi, σ

2)} that forms a (∆/2)-covering.
This strategy was used in our experiments, where it provides a tight and scalable
approximation of the full p-box.

These constructions offer a trade-off between generality and efficiency: step-
function coverings are applicable for arbitrary p-boxes with some restrictions on
the tails but are poorly scalable due to combinatorial explosion - we were unable
to generate step-function coverings with a precision high enough to be used in
our experiments. Parametric coverings are easy to generate and scale well with
precision, but they convey less information. In our experiments we only consider
parametric p-boxes and parametric coverings due to the scalability advantage.

7 Property verification

In this section we show how to estimate the probability of safety property sat-
isfaction. We bound the probability of an output y satisfying a safety property
P : Ay < v for some matrix A and a vector v.

Guaranteed probabilistic bounds Given a probabilistic output set Y, the
guaranteed probabilistic bounds for P are defined as an interval [lb, ub] where:

lb = inf
Y∈Y

(P(Ay < v|y ∼ Y))

ub = sup
Y∈Y

(P(Ay < v|y ∼ Y))

Estimating probabilistic bounds By running Algorithm 1, we obtain sets
of samples from output vectors Y1,Y2, . . . . For a single random vector Y, the
probability of it satisfying P is estimated by:

P(Ay < v|y ∼ Y) ∼ number of samples from Y that satisfy P

s
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Aggregating these estimates for the output vectors Y1,Y2, . . . we obtain ap-
proximate probability bounds for satisfying P .

We obtain only approximate probability bounds because of the following:

1. Approximation error of empirical distributions. Determining the proba-
bility of Y satisfying P is equivalent to estimating the CDF of AY at v.
Effectively, we calculate the ECDF of AY at v, and the approximation error
of the ECDF can be estimated with Multivariate DKW inequality:

Theorem 4. For a m-dimensional empirical distribution function from s
samples Fs,X and a true CDF FX, it holds for any ε > 0 that:

P( sup
θ∈Rm

|Fs,X(θ)− FX(θ))| > ε) ≤ m(s+ 1)e−2sε2

2. Not considering a covering of the whole output space in || · ||∞ If we had
a set of vectors Ŷ which formed a covering of Y in || · ||∞, then for an
output vector Y there would exist Ŷ ∈ Ŷ such that ||FŶ − FY||∞ < ε.
Specifically, this would allow us to explicitly derive the maximal difference
between P(Ay < v|y ∼ Y) and P(Aŷ < v|y ∼ Ŷ). However, since the
vectors output by Algorithm 1 are not guaranteed to form a covering of Y
in || · ||∞, it is possible that there exists an output vector Y, for which the
probability of satisfying P lies outside of the property satisfaction bounds
that we derived.

Due to the points above, the property satisfaction bounds that we provide in
the experiments section are estimates and not guaranteed probabilistic bounds.

8 Experiments

Toy example We consider a neural network f :

x1

x2

h1

h2

h3

y1

y2

Input Layer

ReLU

Output Layer

with weights given by W1 =

 1.0 −1.0

1.0 1.0

−1.0 2.0

 , b1 =

0.0

0.0

0.0

 , W2 =

[
1.0 −1.0 1.0

1.0 −1.0 2.0

]
,

b2 =

[
0.0

0.0

]
. Both inputs are parametric p-boxes of Gaussians with uncertain
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mean: N(µ ∈ [0, 1], σ = 1). We generate 0.005-coverings for each input. The
Lipschitz constant is bounded from above by 7.07. Running Algorithm 1 with
s = 1000 samples we obtain 0.07-coverings of the marginal output sets. Figure
shows how these coverings compare to the p-boxes obtained with the first method
from [10], DSI propagation. However, the software from [10] treats all p-boxes
non-parametrically, which can cause some of the discrepancy between the results.

As Gaussian distributions have unbounded supports, Theorem 3 is inappli-
cable here. However, DKW inequality implies that with a probability of at least
0.9, each empirical distribution is at most 0.001 away from the true distribution
in terms of || · ||∞.

Fig. 1. Output coverings produced by Algorithm 1 (colorful), compared with output
p-boxes produced by DSI propagation (grey). The left figure shows the results for the
first dimension of the output, the right one those for the second dimension.

8.1 ACAS Xu

We reproduce the property verification for the ACAS Xu example done in [10].
ACAS Xu is a set of 46 networks, each with 5 inputs and 5 outputs. As the
complexity of Algorithm 1 is exponential with respect to the input size, n = 5
limits the covering precision that we can achieve in this experiment. The ACAS
Xu networks’ Lipschitz constant (L) estimates obtained by LipSPD are of order
104. This prevents us from providing an accurate theoretical guarantee on our
results - the accuracy of the output coverings depend on the value of L and
the accuracy of the input coverings, both of which are limited. Therefore, there
can exist output distributions far away in terms of the || · ||1 distance from
any output distribution obtained by algorithm 1. However, LipSPD calculates
L without taking into account input constraints, and the points which force L
to be large can be very few. This lets us hypothesise that choosing a method of
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approximating L that incorporates the local input constraints can yield a lower
value of L. Thus, we conduct the experiment regardless of the lack of theoretical
guarantee on the results.

The exponential complexity of Algorithm 1 forces us to represent input uncer-
tainty with parametric p-boxes, as the covering sizes of non-parametric p-boxes
are too large.

Setting Inputs to each ACAS Xu network are parametrised by 2 vectors, ub
and lb. Initially, each scalar input is a Gaussian with mean µi = (ub[i] + lb[i])/2
and standard deviation σi = (ub[i]−µi)/3. Uncertainty is added by representing
each input as a Gaussian parametric p-box defined by N(µ ∈ [µi−0.001·r[i], µi+
0.001 · r[i]], σ = σi) with r[i] = ub[i] − lb[i]. We generate 0.00005-coverings for
each input. We remark that despite having the same precision, these coverings
are of drastically different sizes - respectively, for each input, 3, 21, 21, 2, 2. This
gives us an approximate cost of running Algorithm 1 with s = 1000 samples at
3 × 21 × 21 × 2 × 2 × 1000 × C = 5292000C = 5 × 106C, where C is the cost
of passing a single sample through the network. For speeding-up, Algorithm 1
can be parallelised as subsequent iterations of the main loop are independent of
each other.

We verify a safety property considered by [10] - P2 : y1 > y2 ∧ y1 > y3 ∧ y1 >
y4 ∧ y1 > y5 on a number of networks in ACAS Xu. We also recreate this
experiment with input p-boxes of the same shape with the software from [10]
and compare the results in Table 1.

A single run of Algorithm 1 with 12 threads on an ACAS Xu network on an
Apple M3 Pro chip terminates in under one minute. DSZ propagation terminates
in around one minute as well.

Table 1. Probability bounds for the ACAS Xu example.

Prop Net
DSZ propagation from [10] Empirical property verification

Experiment A Experiment B

P P

2 1-6 [0, 0.03] [0, 0.001]
2 2-2 [0, 0.09] [0.022, 0.054]
2 2-9 [0, 0.09] [0, 0.007]
2 3-1 [0.010, 0.102] [0.029, 0.066]
2 3-6 [0.013, 0.141] [0.018, 0.058]
2 3-7 [0, 0.176] [0, 0.014]
2 4-1 [0, 0.071] [0, 0.010]
2 4-7 [0.006, 0.136] [0.028, 0.062]
2 5-3 [0, 0.051] [0, 0.001]
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Results In each case, the probabilistic bounds obtained via B are tighter than
in A. In certain cases, the difference is larger than one order of magnitude.
However, this is not only due to the conservatism of A, as discussed in the next
paragraph.

Differences between the experiments Table 2 shows the differences between
the setting of experiments A and B. The first difference can be resolved by setting
a high discretization factor in A and propagating more samples in B, however
we were neither able to quantify nor to alleviate the rest.

# A B
1 Precision depends on the input dis-

cretization
Precision depends on the number of sam-
ples propagated

2 Considers non-parametric p-boxes Considers parametric p-boxes (potential
loss of information)

3 The probabilistic bounds can be too
broad due to conservativeness

The probabilistic bounds can be too
tight, as extremal distributions might not
have been sampled.

Table 2. Comparison between experiments A and B.

9 Future work

We highlight below the important directions for future work:

1. Lipschitz constant approximation. As shown in the ACAS Xu example,
the Lipschitz constant estimate provided by LipSDP can be large enough to
prevent us from guaranteeing the correctness of the results with Theorem 1.
Future work should explore different methods for estimating the Lipschitz
constant that incorporate the input constraints.

2. Relaxations to the theory. The assumption that the inputs to f are inde-
pendent rarely holds in reality and lifting it is an important next step.

3. Parametric vs non-parametric P-boxes. The approach in [10] could be mod-
ified to handle the restriction to parametric p-boxes, as an alternative to
designing tractable non-parametric coverings.

4. || · ||∞ instead of || · ||1. Reproducing Theorem 1 with the infinity norm
would allow for integrating DKW into the main result without assumptions
on the support. Moreover, in the context of property verification, obtaining a
covering of the whole output space in || · ||∞ would allow for providing prop-
erty satisfaction probabilities with guaranteed error bounds, as explained in
section 7.
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5. Coverings using Gaussian mixture distributions. As shown in [5], Gaussian
mixtures can approximate arbitrary probability densities - for any PDF f ∈
L2(R) and ε > 0, there exists a Gaussian mixture f̂ such that:

||f̂ − f ||2 ≤ ε

A promising direction for future extensions is extending this to obtain a
result for approximating arbitrary CDFs with CDFs of Gaussian mixtures,
and based on it find a method for constructing coverings with Gaussian
mixtures.

6. Reducing the complexity of Algorithm 1. For a probability box delimited
by F and F , distributions close to F and F carry more information on the
shape of the p-box. In our case, being able to predict which input vectors X
after propagation produce vectors f(X) which are close to the boundaries of
the output sets would let us reduce the number of vectors that we propagate.
Namely, we would only need to propagate these vectors, as the others would
not provide additional information. For a random variable, checking whether
after propagation it generates an extremal distribution can be heuristically
approximated by its expected value - namely, distributions with lower mean
tend to be closer to F , and conversely. To give an example, in our setting,
given that the input vectors are parametric, finding an input vector that is
likely to produce an extremal distribution on the first output of f is done
by solving:

argmin
X=(Xi∼Fθi

), (Y1,...Ym):=Y∼f(X)

E(Y1)

for the parameters θ1, . . . θn. Given a polynomial approximation P of f this
can be rewritten as:

argmin
X=(Xi∼Fθi

), (Y1,...Ym):=Y∼P (X)

E(Y1)

If the distributions that we are considering are Gaussian mixtures and P
is of order 1, this is reduced to a linear programming problem. However,
for polynomials of higher order and for different distributions, this is a non-
trivial problem.

10 Conclusions

To the best of our knowledge, this work is the first study to analyse how to
sample from p-box representations and build a verification algorithm around it.
Moreover, it provides methods for generating coverings of p-boxes to be used
in Algorithm 1. However, due to its exponential complexity, Algorithm 1 has
certain limitations - considering neural networks with non-parametric p-boxes
as inputs is currently completely intractable, as is running the algorithm on
neural networks with larger input dimensions. With the propositions listed in
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the future work section, we hope to adapt it to more general input settings,
derive guaranteed bounds for property satisfaction and lower the complexity to
allow treating larger neural networks.
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A Proofs of theorems

Proof (of lemma 1). We write:

W1(X,Y) = inf
γ∈Π

E d



x1

x2

...
xn

 ,


y1
y2
...
yn




Consider the optimal couplings between X1 and Y1 and between (X2, . . . Xn) and
(Y2, . . . Yn): γ1 and γ2. Then γ = γ1γ2 is a coupling between all the variables
and we have:

Eγ d



x1

x2

...
xn

 ,


y1
y2
...
yn




= Eγ

d(x1, y1) + d


x2

...
xn

 ,

y2
...
yn





= Eγ1
d(x1, y1) + Eγ2

d


x2

...
xn

 ,

y2
...
yn




As γ is some coupling, not necessarily optimal, we have:

W1(X,Y) ≤ W1(X1, Y1) +W1


X2

...
Xn

 ,

X2

...
Xn



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⊓⊔

Proof (of lemma 2). Observe that for a given coupling γ we have:

Eγ d



x1

x2

...
xn

 ,


y1
y2
...
yn




= Eγ

d(x1, y1) + d


x2

...
xn

 ,

y2
...
yn





= Eγd(x1, y1) + Eγd


x2

...
xn

 ,

y2
...
yn




Therefore:

Eγ d



x1

x2

...
xn

 ,


y1
y2
...
yn


 ≥ Eγd(x1, y1)

Taking the infinum over all couplings between (X1, Y1) and (X2, . . . Xn), (Y2, . . . Yn)
we get the desired result. It is important to remark that all couplings γ cover all
the possible couplings between X1 and Y1. This is not difficult, as for any such
coupling γ1, a coupling γ2 between (X2, . . . Xn) and (Y2 . . . Yn) (independent of
γ1) can be considered and then γ = γ1γ2 is a valid coupling between (X1, Y1)
and (X2, . . . Xn), (Y2, . . . Yn). ⊓⊔

Proof (of lemma 3). Fwor a coupling γ between X and Y and x,y ∼ γ we have:

||f(x)− f(y)|| ≤ L||x− y||

Therefore:
Ex,y∼γ ||f(x)− f(y)|| ≤ LEx,y∼γ ||x− y||

Since this holds for any coupling, we can take the infinum and obtain:

W1(f(X), f(Y)) ≤ LW1(X,Y)

⊓⊔

Proof (of theorem 3). Theorem 1 yields a covering result on true CDFs - i.e.
for a single output with the constrained probabilistic output set on this output
having a compact support [a, b], any output CDF F is at most nLε away in terms
of || · ||1 from an output CDF F̂ belonging to the propagated input covering.
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When propagating empirically, instead of F̂ we have an empirical distribution
F̂s estimating F̂ . By Hölder’s inequality, on the interval [a, b] it holds that:

||F̂s − F̂ ||1 ≤ (b− a)||F̂n − F̂ ||∞

By DKW, for any ε′ ≥ 0 it holds that:

P
(
||F̂s − F̂ ||1 ≥ (b− a)ε′

)
≤ 2e−2sε′2

Therefore, with a probability of at least 1− 2e−2sε′2 , it holds that:

||F̂s − F ||1 ≤ ε+ (b− a)ε′

Deriving this on each output dimension gives us the desired result. ⊓⊔

B Precision of covering a p-box with staircase functions
on a grid

We present the method of generating a covering of a p-box with staircase func-
tions on a grid and quantify its precision. Consider a p-box X bounded by F
and F , such that for some xl ∈ R

∫ xl

−∞ F (t)dt is close to 0 and for some xr ∈ R,∫∞
xr

(1 − F (t))dt is close to 0. Let G be a grid of points in R2, with rectangles
of size x × y for some x, y ∈ R - that is, G = {(a, b)|∃n,m ∈ Z : a = mx, b =
ny, xl ≤ a ≤ xr, 0 ≤ b ≤ 1}. We show that the set X̂ of staircase functions that
turn only on points belonging to G and are entirely contained within X is a
covering of X .

The assumption on the tails of F and F allows us to disregard everything
outside of [xl, xr] - all the functions in X̂ are identically zero before xl and
identically one after xr. Therefore, given X ∈ X and X̂ ∈ X̂ , the distance
between FX and FX̂ on (−∞, xl) ∪ (xr,∞) is at most

∫ xl

−∞ F (t)dt +
∫∞
xr

(1 −
F (t))dt.

We prove an auxilliary statement:

Theorem 5. The set of all staircase functions that turn only on points belonging
to G is a ε-covering of the set of all CDFs defined on [xl, xr], and ε = O(x+ y).

Proof. Consider an arbitrary CDF F defined on [xl, xr]. For simplicity, we denote
a0 := xl, a1 := xl + x, . . . am := xl + mx. We approximate it with a staircase
function F1 defined as:

F1(t) =

{
F (ai), if t ∈ [ai, ai+1) for each i ∈ 0, . . .m− 1

F (am) if t = am

Since F is an increasing functions, we can bound the || · ||1 difference between F
and F1 on each interval [ai, ai+1] - namely, for each i ∈ 0, . . .m− 1:∫ ai+1

ai

|F1(t)− F (t)|dt ≤
∫ ai+1

ai

|F (ai)− F (ai+1)|dt = x(F (ai+1)− F (ai))
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Summing those differences up, we get:∫ am

a0

|F1(t)− F (t)|dt ≤ x

m−1∑
i=0

F (ai+1)− F (ai) ≤ x

Now, we approximate F1 with a staircase function F2 going only on the grid.
Define a function round(t), that rounds a value in [0, 1] to the closest mutliple
of y, rounding down if it is halfway between 2 values. Then, F2 is defined as:

F2(t) = round(F1(t))

By definition of the round function, we have that for any t ∈ [xl, xr], |F2(t) −
F1(t)| ≤ y

2 . Therefore:

||F2 − F1||1 ≤ y(xr − xl)

2

And:

||F2 − F ||1 ≤ ||F2 − F1||1 + ||F1 − F ||1 ≤ x+
y(xr − xl)

2
= O(x+ y)

⊓⊔

We generalise this result to hold with the additional restriction of staying
within X :

Theorem 6. Given the setting and notations of theorem 5, consider F ∈ X .
Then, if X̂ is non-empty, there exists a grid staircase F3 ∈ X such that ||F3 −
F2||1 ≤ (xr − xl)y and

Proof. Assume that X̂ is non-empty. We consider all the intervals Ii := [ai, ai+1)
for i ∈ 0, . . .m− 1. On each interval Ii one of three things can happen:

1. F2 is entirely within X ,
2. certain values of F2 are above corresponding values of F , which implies that

F2(ai) > F (ai),
3. certain values of F2 are below corresponding values of F , which implies that

lima→ai+1
F2(a) < F (ai+1).

Note that if situations 2 and 3 occur at the same time, it means that X̂ is empty,
as all grid points with the y-coordinate equal to F2(ai) are outside of X .

We consider a staircase function F3 constructed the following way - on each
interval Ii:

1. If situation 1 occurs, F3 is identically equal to F2 on this interval,
2. if situation 2 occurs F3 is F2 shifted down by y on this interval,
3. if situation 3 occurs, F3 is F2 shifted up by y on this interval.
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It remains to show that F3 is still increasing, and contained within X . There
are multiple ways of this happening: for example, at some interval Ii, F3 is F2

shifted up, and on the next interval F3 is F2 shifted down. However, all of those
situations reduce to X̂ being empty. To show that F3 is within X we remark that
shifting F2 up or down on an interval Ii, we switch from approximating F from
above or from below. If we shift, that means that one of these approximations is
outside of the X on Ii. Therefore, if the shift results in the other approximation
also being outside of X on Ii, then X admits no grid staircases inside it, so X̂ is
empty.

By construction of F3, on each interval Ii the difference between F3 and F2

in terms of || · ||1 is at most xy. Summing this up, we obtain the desired result:

||F3 − F2||1 ≤ (xr − xl)y

⊓⊔

Combining the results of Theorems 5 and 6 we obtain that for any F ∈ X there
exists a grid staircase function F3 ∈ X such that ||F − F3||1 = O(x+ y).
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