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ABSTRACT

Applications of biomolecular systems span gene writing, drug discovery, and envi-
ronmental remediation. Despite their potential, biodesign remains slow and labor-
intensive, often relying on trial and error. Recent advances in high-throughput
sequencing, automated synthesis, and generative AI offer new opportunities but
remain fragmented. We propose SYNEVO: an AI-driven, closed-loop system in-
tegrating automated protein design, and real-time experimental feedback to iter-
atively optimize biomolecular function. SYNEVO does not use template-based
DNA replication, enabling a constraint-free generation of new genotypes, which
departs from conventional evolution. We aim to validate our platform studying
Zinc Finger proteins, a versatile class of DNA-binding proteins with significant
therapeutic potential. Preliminary results showed that, by iteratively generating
large libraries with autoregressive protein language models and experimentally
testing their phenotypes, we optimized sequence selection. The measured fea-
tures were fed back into the model via Reinforcement Learning to maximize pro-
tein enrichment scores, achieving a progressive improvement of generated pheno-
types. This method, compared with Directed Evolution, shows higher efficiency in
sampling high fitness protein candidates, and broader exploration of the sequence
space. Potentially, by continuously refining its designs with minimal human inter-
vention, this approach will accelerate protein engineering and provide a scalable
solution for engineering new biomolecules with broad use across biotechnology
and synthetic biology.

1 INTRODUCTION

Current biodesign processes are often laborious, time-consuming, and heavily rely on continuous
experimental testing. To increase biomolecular fitness toward a desired goal, multiple characteris-
tics need to be optimized and balanced, such as expressibility, activity and solubility. Historically,
two main approaches have driven protein engineering: rational design and directed evolution. The
first approach is strictly dependent on detailed structural knowledge of a particular family of proteins
(Sievers et al. (2011)), given by the expertise of the designer or preexisting literature. The latter, al-
though has greatly accelerated protein evolution campaigns, is still dependent on methods to perform
an optimal sampling of the vast multidimensional sequence space, often counting on the available
biological diversity (Packer & Liu (2015)), or bootstrapping from a single starting sequence. Neither
method allows for an exhaustive exploration of the protein sequence space and struggles to meet the
growing demand for faster, more efficient, and controllable protein engineering pipelines.

Recent advances in machine learning (ML) applied to biology have fundamentally reshaped the
field, unlocking unprecedented possibilities. Specifically, protein language models (pLMs) have
demonstrated exceptional capabilities across a range of applications, including protein structure
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prediction, design, or prediction of mutational effects Weissenow & Rost (2025). Among them,
autoregressive pLMs, trained to predict the next amino acid, can serve as a powerful tool to generate
protein sequences, sampling from the learned distribution of immense training datasets (Ferruz &
Höcker (2022)). Even though pLMs allow the exploration of a high-quality subspace of the possible
genotypes, optimizing or conditionally generating for specific properties remains a challenge (Ertelt
et al. (2025)). Effectively controlling the sampling of the model from a specific part of the sequence
space, would enable the pLM to preferentially generate sequences from those rare regions that are
often enriched in desired phenotypes. Noticeably, the frequent production of such rare events would
result in a reduction of the exploration-exploitation dilemma.

However, many current ML tools for protein engineering operate as standalone platforms, lack-
ing seamless integration into experimental workflows. This disconnection misses an extraordinary
opportunity to exploit the synergic potential of artificial intelligence (AI) and experimental method-
ologies. In nature, goal-directed behaviors are shaped by rewards and punishments. Just as toddlers
learn physics by tossing objects and observing the effects, Reinforcement Learning (RL) in ML
operates similarly: an agent (model) interacts with its environment, refining decisions based on
feedback. RL has been successfully applied to a wide range of challenges, from mastering 40 clas-
sic Atari games and Go (Schrittwieser et al. (2020)) to fine-tuning Large Language Models (LLMs)
(Gemini et al. (2024)). These successes have established RL as the standard approach when training
AI models (DeepSeek-AI et al. (2025); Ouyang et al. (2022)). However, its application to protein
design remains significantly more complex. Unlike games or language models, where feedback
mechanisms are explicit, proteins follow an intricate evolutionary grammar that remains poorly un-
derstood. As a result, assessing sequence quality directly is highly challenging as current methods,
whether machine learning-based or not, often fail to reliably predict protein fitness. Thus, experi-
mental validation becomes the necessary and primary bottleneck of any current protein engineering
campaign, but provides an excellent direct reward for the generative models to improve upon.

Some automatic systems have been proposed that integrate sequence exploration with experimental
testing to generate a fitness landscape of a desired protein (Rapp et al. (2024)). These self-driving
laboratories, computational agents that interact with experimental setup, are automated in a closed
loop so the system can keep iterating over the sequence space. These systems often are limited on
the sequences they can experimentally explore each new cycle. This may be due to its variability
generation, being combinatorial assembly or mutation, both somewhat depending on the previous
generation. The number of variants tested each round depends on the processability of each system,
making plate-based ones rely on the number of compartmentalized variants that can be tested.

Here, we introduce SYNEVO, a synthetic evolution machine designed to bridge the critical gap
between experimental and ML worlds. SYNEVO is designed to seamlessly integrate generative
models with biological automated hardware to accelerate protein engineering. The system consists
of two key components: (i) an input/output (I/O) module for DNA synthesis, phenotypic selection
and variant reading linked with (ii) an intelligent agent for sequence design and iterative learning
through RL from continuous experimentally aware data provided, which is based on its proposed
designs (fig. 1a). Having established the system, we ought to establish our proof of concept by
designing proteins that bind to target DNA sequences.

In particular, we synthesise an oligo pool library of designed protein variants that are translated and
barcoded into a cell free environment where they undergo several rounds of target binding selection,
whose enrichment can be obtained directly via Next Generation Sequencing (NGS). The resulting
genotype-phenotype pairs are passed as feedback to the generative models using RL, which then
will produce a second, possibly better-performing round of designs for testing. In this framework,
we test several strategies to design the sequences, including deep mutational scanning, homologous
search and generative models, for a total of over 6,000 sequences synthesized and tested in two
rounds.

We further benchmarked the exploratory capabilities of SYNEVO versus DE by simulating ten
rounds for each method and systematically comparing their outputs and performance under fair
conditions. SYNEVO overcomes the limitations of rational design and directed evolution through
the integration of machine learning. By leveraging cutting-edge methodologies from both compu-
tational and experimental biology, SYNEVO enables a “super-Darwinian” evolutionary framework,
accelerating protein engineering and design efforts.
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2 RESULTS

2.1 PROOF OF CONCEPT: in vitro SYNTHETIC EVOLUTION OF ZINC FINGER SCAFFOLDS

To test our workflow we started on-DNA binding proteins, using Zinc Fingers (ZnF) as proof of
concept. ZnF are small protein structural motifs (80-100 aa) stabilized by zinc ions that facilitate
DNA, RNA, or protein binding (Pavletich & Pabo (1991)). They play key roles in gene regulation,
genome editing, and protein-protein interactions, with applications in fields such as synthetic biology
and therapeutic gene editing (Urnov et al. (2010)). Specifically, these proteins are able to establish
electrostatic interactions with the big grooves of the DNA with higher affinity and precision (Elrod-
Erickson & Pabo (1999)). The objective of this first campaign is to diversify the scaffold of one
classic ZnF, Zif268 (WT), while maintaining its specific binding to the WT target DNA.

First we explored the potential of SYNEVO using in vitro results to reinforce the model. We de-
signed an oligo pool library of protein variants that are translated and barcoded into a cell free
environment where they undergo several rounds of selection for binding affinity. Later, we use Next
Generation Sequencing (NGS) to characterize the variants’ abundance in each round and calculate
their enrichment score. This score is later leveraged to refine the generation pLMs with ProtRL, a
framework to implement Direct Preference Optimization (DPO), a RL method, on pLMs, and obtain
a second library hypothesized to have better experimentally characteristics (fig. 1a).

For the protein barcoding technology, the variants are inserted into a CIS display DNA construct,
consisting of library variants fused with DNA replication initiator protein A (RepA) that binds ex-
clusively to its template cDNA (fig. S1) (Odegrip et al. (2004)). This method proved to be efficient
in the selection and enrichment of transcription factors in other works (Qi et al. (2024)). An E.
coli lysate is used for the translation and selection in a pool of the assembled protein library. The
selection of binding protein variants consists in a pulldown assay with the Zif268 DNA target bait.
This CIS display setup allows for the recovery of the cDNA of protein variants directly from its bar-
code after selection, making possible several continuous rounds of enrichment and selection from
the initial library (fig. S2).

For testing the in vitro potential of this approach, we performed one whole cycle of SYNEVO
consisting of two libraries: the first contained AI-generated and natural proteins and the second
contained exclusively proteins generated with ZymCTRL refined with ProtRL and the experimental
outcomes of the first library.

For the 1st library we used several protein language models (pLMs), including zero-shot (ESM-
IF, ESM3 (Hsu et al. (2022); Hayes et al. (2025)) and fine-tuned (Progen2, ZymCTRL (Nijkamp
et al. (2023); Munsamy et al.) models, to generate 2965 sequences. In contrast, non-AI methods
consisted of a Deep Mutational Scan (DMS) of Zif268 (WT) and a structural homology search using
Foldseek, which yielded 1740 and 477 sequences respectively. For the second library, we generated
sequences at different epochs of the ProtRL alignment of ZymCTRL with the experimental results
of the 1st library (table S1) (Methods). All the sequences present in the library passed a very
stringent filtering process that took in consideration: (1) containing three C2H2 ZnF domains, (2)
conservation of the 12 specificity residues of WT to bind its DNA target (fig. 2b), (3) preservation
of the WT fold (TM-score > 0.5) and (4) positive charged fraction of at least 0.3 (WT) (fig. 1b).

Both libraries cover a broad range of the sequence space, reaching 40% sequence identity, even after
the strict filtering process (fig. 1c). Taking a look at the tendencies throughout the experimental
selection, a tiny fraction of the first library shows a positive enrichment tendency, all of them below
the WT protein Zif268 (Figure 1d). Regarding the second library, even though 4th rounds of selec-
tion were performed, due to technical difficulties, we only could get data from the first two rounds
of selection. Still, we see a higher number of proteins with positive enrichment in respect to the
first library, this time even surpassing WT values (fig. 1d). Nevertheless, considering the ratios of
positively enriched proteins in the first two rounds, we see a 15-fold increase in performance of the
second library compared to the first (fig. 1e). We are currently replicating the experiments to obtain
stronger validation of the observed trend. Overall, these preliminary results point to ProtRL being
able to align pLM with protein engineering campaign goals, also with experimental data.
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Figure 1: (a) General diagram of SYNEVO approach. (b) Parameters used in filtering sequences to
build the two libraries. (c) Distribution of proteins in the sequence space, represented as the sequence
identity of each variant against the WT and the length of aligned residues. (d) Linear regression of
LogCPM counts of variants in each round of selection divided for positive (Log Fold Change > 0)
and negative enrichment (LogFC < 0). Numbers plotted represent the amount of variants that show
the behaviour across the whole library. (e) Ratio of ZymCTRL positive enriched proteins over the
total generated from the model in both libraries.

2.2 In silico SYNTHETIC EVOLUTION

We explored the potential of AlphaFold3 (AF3) (Abramson et al. (2024)) to co-fold macromolecules,
assess interactions, and evolve designs in silico. This approach emerged when we observed a corre-
lation between experimental data of ZnF affinity (Kd value) and the results of AF3 contact probabil-
ities of co-folding of ZnF and target DNA (fig. S3). AF3 predictions generate a contact probability
matrix of dimensions num tokens × num tokens, where each value represents the probability that
two tokens are at least 8 Å from each other. We thus have applied a RL campaign with ProtRL
starting from ZymCTRL, to align the model to the features that are also considered in the filtering.
Again, the ZnF finetuned ZymCTRL (Methods) was used as a starting point for the reinforcement
learning campaign.

Over iterative cycles, we generated 200 sequences, scored them using a complex multi-objective
function, and refined the model using ProtRL. Specifically, the scoring function was taking in con-
sideration the 1) target TM-score when superimposing with WT, 2) WT-like electrostatic charge,
3) preservation of 12 specificity residues, and 4) maximized AF3 contact probabilities between the
ZnF domain and target DNA (Methods). The latter objective was set to maximise the specificity of
the protein to recognize a specific DNA pattern, and was computed subtracting the probabilities of
contact at the expected nucleotides (fig. 2d) with the ones that ZnF should not interact with. Remark-
ably, ProtRL is able to optimize for such complex reward functions, while keeping a low sequence
identity with Zif268, but increasing the values of the other objectives over time. We are planning
to experimentally test these in silico-evolved sequences, marking the next phase of validation and
refinement.

2.3 COMPARISON OF SYNEVO AND SIMULATED DIRECTED EVOLUTION

In an effort to directly compare the presented SYNEVO approach against Directed Evolution (DE),
a simulation of the latter was conducted. In this simulation, we performed 10 iterations of SYNEVO
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Figure 2: (a) Zinc Finger binding to the DNA target. (b) Zinc Finger (ZnF) interaction with target
DNA. (c) Contact probability matrix, where higher probabilities are represented by brighter colors.
(d) Optimization of the multi-objective function over time.

with the same parameters and reward function as in our in silico SYNEVO experiments (In silico
synthetic evolution). While we acknowledge the limitations of the AF3-based scoring function,
its consistent application across both methods allows for a fair comparison of their ability to gen-
erate diverse and high-performing variants. For the simulation of DE, we generated 2000 initial
cDNA copies of the reference protein, Zif268 and applied one mutation at each cDNA, following
the mutation rate of one commercial kit of error-prone PCR and also considering its biases of type of
mutation (Methods). We then translated and evaluated the variants with the same phenotype score
used for SYNEVO and chose the 200 top performers. We then generated 10 copies of each to have
a population of 2000 cDNAs and iterated this process 10 times.

As per the results, it can be appreciated that both methods are able to generate diversity from the
WT protein (fig. 3a), although SYNEVO, whose genotype network is unconstrained, is able to
diverge most from WT values, showing in sequence identity and phenotype (fig. 3a,c). To appreciate
the amount of diversity generated across methods and rounds, we calculated the distance between
proteins in each round to the WT after performing a Multiple Sequence Alignment (Methods). This
calculation allows us to see the trend of both methods, in which SYNEVO is able to accumulate more
diversity in fewer rounds when compared to DE (fig. 3b). To evaluate sequence space exploration,
we visualized the pairwise distances among all generated proteins using Multidimensional Scaling
(MDS). This representation highlights the broader and more uniform coverage of sequence space
achieved by SYNEVO compared to DE, while still yielding the best high-fitness variants (fig. 3d,e).

3 DISCUSSION

Novelty in the biosphere has been driven by imperfect template-based nucleic acid replication, gen-
erating a network of genotypes where each new variant arises as a minor modification of its prede-
cessor. While directed evolution has accelerated this process, existing techniques remain constrained
by this paradigm. SYNEVO conceptually departs from template-based DNA replication, producing
genotypic networks without parent-child relationships and unconstrained genotype distances, en-
abling a broader and more exploratory search space for molecular design. This also is combined
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Figure 3: (a) Sequence identity distribution across rounds of SYNEVO and DE. (b) Accumulated
diversity across rounds of SYNEVO and DE, calculated as the distance between all proteins in a
round against the WT Zif268. (c) AlphaFold3 score of the top 50 best performing variants in all
rounds of SYNEVO and DE. (d) Multidimensional Scaling (MDS) of the matrix of distances when
performing a MSA of all proteins of SYNEVO and DE, colored by method and round of generation.
(e) MDS of the matrix of distances of all proteins of SYNEVO and DE, colored by AlphaFold3
score.

with the potential of RL to learn from negative results, allowing SYNEVO to couple genotype emer-
gence with evolutionary pressure, adjusting the designs at each step.

We envision SYNEVO as an autonomous system that integrates sequence design, testing, learning,
and iterative optimization to align generative pLMs with desired functional features. This paradigm
is built upon two key pillars: (i) a high-throughput experimental platform capable of generating high-
quality genotype-phenotype correlations that can be automated end to end, and (ii) a reinforcement
learning framework that continuously refines model generations based on experimental feedback.
By seamlessly bridging computational design and laboratory validation, SYNEVO unifies dry and
wet lab processes, addressing critical gaps in protein engineering workflows and accelerating the
overall process.

We applied SYNEVO to ZnF proteins, aiming to evolve variants with enhanced enrichment scores
throughout multiple rounds of selection and across sequence space. In both in silico and in vitro
experiments, SYNEVO proved to be efficient in the alignment of protein engineering expectatives
with pLMs’ generated sequences. In the case of the in silico experiment, the optimized model
improved the ratio of generation of sequences with desired characteristics over the iterations. As
per the in vitro experiments, we are able to see a clear difference in the enrichment tendencies
of both tested libraries. Most of the AI-generated proteins present in the first library were lost
throughout rounds of selection (table S1) and underperformed in comparison to the WT, while after
just one optimization round with ProtRL, preliminary data suggests that we are able to recover
a higher percentage of proteins with positive enrichment that surpass WT values. Furthermore,
SYNEVO is capable of yielding more genotypes with high-value phenotypes than simulated DE,
while exploring more sequence space. Overall, SYNEVO has demonstrated its high-throughput
capabilities, as it can be highly multiplexed and automatized. In the specific case of ZnF, we figure
we can reach a turnover of 5 phenotypes per second (Methods). Still, we acknowledge that this
data is preliminary and more experimentation is needed to validate this experimental methodology.
Nevertheless, these preliminary results pinpoint SYNEVO as a faster and easier way to travel the
path of protein optimization.
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Põder, Mukarram Tariq, Yanhua Sun, Lucian Ionita, Mojtaba Seyedhosseini, Pouya Tafti, Zhiyu
Liu, Anmol Gulati, Jasmine Liu, Xinyu Ye, Bart Chrzaszcz, Lily Wang, Nikhil Sethi, Tianrun
Li, Ben Brown, Shreya Singh, Wei Fan, Aaron Parisi, Joe Stanton, Vinod Koverkathu, Christo-
pher A. Choquette-Choo, Yunjie Li, TJ Lu, Abe Ittycheriah, Prakash Shroff, Mani Varadarajan,
Sanaz Bahargam, Rob Willoughby, David Gaddy, Guillaume Desjardins, Marco Cornero, Brona
Robenek, Bhavishya Mittal, Ben Albrecht, Ashish Shenoy, Fedor Moiseev, Henrik Jacobsson,
Alireza Ghaffarkhah, Morgane Rivière, Alanna Walton, Clément Crepy, Alicia Parrish, Zongwei
Zhou, Clement Farabet, Carey Radebaugh, Praveen Srinivasan, Claudia van der Salm, Andreas
Fidjeland, Salvatore Scellato, Eri Latorre-Chimoto, Hanna Klimczak-Plucińska, David Bridson,
Dario de Cesare, Tom Hudson, Piermaria Mendolicchio, Lexi Walker, Alex Morris, Matthew
Mauger, Alexey Guseynov, Alison Reid, Seth Odoom, Lucia Loher, Victor Cotruta, Madhavi
Yenugula, Dominik Grewe, Anastasia Petrushkina, Tom Duerig, Antonio Sanchez, Steve Yad-
lowsky, Amy Shen, Amir Globerson, Lynette Webb, Sahil Dua, Dong Li, Surya Bhupatiraju, Dan
Hurt, Haroon Qureshi, Ananth Agarwal, Tomer Shani, Matan Eyal, Anuj Khare, Shreyas Ram-
mohan Belle, Lei Wang, Chetan Tekur, Mihir Sanjay Kale, Jinliang Wei, Ruoxin Sang, Brennan
Saeta, Tyler Liechty, Yi Sun, Yao Zhao, Stephan Lee, Pandu Nayak, Doug Fritz, Manish Reddy
Vuyyuru, John Aslanides, Nidhi Vyas, Martin Wicke, Xiao Ma, Evgenii Eltyshev, Nina Martin,
Hardie Cate, James Manyika, Keyvan Amiri, Yelin Kim, Xi Xiong, Kai Kang, Florian Luisier,
Nilesh Tripuraneni, David Madras, Mandy Guo, Austin Waters, Oliver Wang, Joshua Ainslie,
Jason Baldridge, Han Zhang, Garima Pruthi, Jakob Bauer, Feng Yang, Riham Mansour, Jason
Gelman, Yang Xu, George Polovets, Ji Liu, Honglong Cai, Warren Chen, XiangHai Sheng,
Emily Xue, Sherjil Ozair, Christof Angermueller, Xiaowei Li, Anoop Sinha, Weiren Wang, Julia
Wiesinger, Emmanouil Koukoumidis, Yuan Tian, Anand Iyer, Madhu Gurumurthy, Mark Gold-
enson, Parashar Shah, MK Blake, Hongkun Yu, Anthony Urbanowicz, Jennimaria Palomaki,
Chrisantha Fernando, Ken Durden, Harsh Mehta, Nikola Momchev, Elahe Rahimtoroghi, Maria
Georgaki, Amit Raul, Sebastian Ruder, Morgan Redshaw, Jinhyuk Lee, Denny Zhou, Komal
Jalan, Dinghua Li, Blake Hechtman, Parker Schuh, Milad Nasr, Kieran Milan, Vladimir Miku-
lik, Juliana Franco, Tim Green, Nam Nguyen, Joe Kelley, Aroma Mahendru, Andrea Hu, Joshua
Howland, Ben Vargas, Jeffrey Hui, Kshitij Bansal, Vikram Rao, Rakesh Ghiya, Emma Wang,
Ke Ye, Jean Michel Sarr, Melanie Moranski Preston, Madeleine Elish, Steve Li, Aakash Kaku,
Jigar Gupta, Ice Pasupat, Da-Cheng Juan, Milan Someswar, Tejvi M., Xinyun Chen, Aida Amini,
Alex Fabrikant, Eric Chu, Xuanyi Dong, Amruta Muthal, Senaka Buthpitiya, Sarthak Jauhari, Nan
Hua, Urvashi Khandelwal, Ayal Hitron, Jie Ren, Larissa Rinaldi, Shahar Drath, Avigail Dabush,
Nan-Jiang Jiang, Harshal Godhia, Uli Sachs, Anthony Chen, Yicheng Fan, Hagai Taitelbaum,
Hila Noga, Zhuyun Dai, James Wang, Chen Liang, Jenny Hamer, Chun-Sung Ferng, Chenel
Elkind, Aviel Atias, Paulina Lee, Vı́t Listı́k, Mathias Carlen, Jan van de Kerkhof, Marcin Pikus,
Krunoslav Zaher, Paul Müller, Sasha Zykova, Richard Stefanec, Vitaly Gatsko, Christoph Hirn-
schall, Ashwin Sethi, Xingyu Federico Xu, Chetan Ahuja, Beth Tsai, Anca Stefanoiu, Bo Feng,
Keshav Dhandhania, Manish Katyal, Akshay Gupta, Atharva Parulekar, Divya Pitta, Jing Zhao,
Vivaan Bhatia, Yashodha Bhavnani, Omar Alhadlaq, Xiaolin Li, Peter Danenberg, Dennis Tu,
Alex Pine, Vera Filippova, Abhipso Ghosh, Ben Limonchik, Bhargava Urala, Chaitanya Krishna
Lanka, Derik Clive, Yi Sun, Edward Li, Hao Wu, Kevin Hongtongsak, Ianna Li, Kalind Thakkar,
Kuanysh Omarov, Kushal Majmundar, Michael Alverson, Michael Kucharski, Mohak Patel, Mu-
dit Jain, Maksim Zabelin, Paolo Pelagatti, Rohan Kohli, Saurabh Kumar, Joseph Kim, Swetha
Sankar, Vineet Shah, Lakshmi Ramachandruni, Xiangkai Zeng, Ben Bariach, Laura Weidinger,
Tu Vu, Alek Andreev, Antoine He, Kevin Hui, Sheleem Kashem, Amar Subramanya, Sissie Hsiao,

12



Published at the GEM workshop, ICLR 2025

Demis Hassabis, Koray Kavukcuoglu, Adam Sadovsky, Quoc Le, Trevor Strohman, Yonghui Wu,
Slav Petrov, Jeffrey Dean, and Oriol Vinyals. Gemini: A family of highly capable multimodal
models, 2024. URL https://arxiv.org/abs/2312.11805.

Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, Rohil Badkundri, Irhum Shafkat,
Jun Gong, Alexander Derry, Raul S Molina, Neil Thomas, Yousuf A Khan, Chetan Mishra, Car-
olyn Kim, Liam J Bartie, Matthew Nemeth, Patrick D Hsu, Tom Sercu, Salvatore Candido, and
Alexander Rives. Simulating 500 million years of evolution with a language model. Science, pp.
eads0018, January 2025.
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A MATERIALS AND METHODS

A.1 PLMS FINETUNING AND LIBRARY DESIGN

Foldseek web server (van Kempen et al. (2024)) was used to search for Zif268 structural homologs,
a dataset of around 4000 proteins that were leveraged to fine tune both ProGen2 (Nijkamp et al.
(2023)) and ZymCTRL (Munsamy et al.). For ProGen2, sequences were generated using the follow-
ing parameters: temperature=0.5, max length=90, top p=0.95. ZymCTRL is a conditional autore-
gressive protein language model (pLM) trained on the known enzyme space, where each sequence
is paired with its corresponding Enzyme Commission (EC) number as a functional label. Due to
ZymCTRL’s architecture, we appended an E.C. number (1.3.3.18, not present in ZymCTRL’s train-
ing dataset) to the fine tuning sequences that later allowed us to prompt and generate sequences
with the following parameters: top k=9, repetition penalty=1.2. Sequences from ESM3 (Hayes
et al. (2025)) were generated using as prompt the first 8 amino acids of Zif268 and the following
parameters: num steps=8, temperature=0.5. For ESM-IF (Hsu et al. (2022)), we used the Zif268’s
experimental structure (PDB:1ZAA) as backbone to generate new sequences using temperatures
ranging from 10−6 to 2.

After all sequences were generated, a filtering process took part, except for the DMS variants. Only
sequences that contained three C2H2 ZnF domains were considered. All the sequences were pair-
wise aligned to Zif268 and those without intact conservation of the 12 residues key for its target
DNA specificity (4 positions in each alpha helix) –as described in Elrod-Erickson & Pabo (1999)–
were discarded. Furthermore, to maintain DNA binding, proteins without positive charged frac-
tion equal or higher than Zif268 were filtered out. The protein libraries were codon optimized and
flanking sequences for assembly were added. Then synthesized as 300bp DNA oligo pools from
Integrated DNA Technologies and Twist Biosciences, for the 1st and 2nd library, respectively.

A.2 EXPERIMENTAL SETUP

A.2.1 DNA PREPARATION

Protocols were carried out independently in a Opentrons Flex (Opentrons, USA) pipetting work-
station with the modules necessary for each step. Oligo pools synthesized containing the library
of variants were PCR amplified following manufacturers instructions and assembled into the ex-
pression vector containing the CIS-Display elements (Qi et al. (2024)) via Golden Gate assembly.
From the assembly product, expression vectors are linearized and amplified using KAPA HiFi Hot-
Start ReadyMix (Roche, Cat. No. KK2602), resulting in a cloning-free library assembly. Template
library is purified using Ampure magnetic beads.

Proves used as bait for the pulldown assay of proteins are prepared using isothermal amplification
(Ba et al. (2022)) of a binding site containing oligo with a biotinylated primer ordered from Inte-
grated DNA Technologies (IDT). Resulting in two different proves, one with three ZnF268 binding
sites “GCGTGGGCG” and one with random bases to assess for unspecific off-target binding (ta-
ble S3).

A.2.2 VARIANT ENRICHMENT AND SELECTION

Based on the CIS-Display DNA-protein pulldown Protocol (Qi, Bennett, and Isalan 2024), in vitro
expression reactions were prepared for each DNA bait. 3-4µg of library DNA template was mixed
into E. coli S30 extract system for linear templates (Promega) following the manufacturer’s instruc-
tions supplemented with ZnCl2 (50µM final concentration) to a total reaction volume of 50µL. The
in vitro TnT (transcription and translation) reaction was incubated at 37°C and cooled at 4°C to stop
the reaction. The synthesized protein library was diluted 1:10 and blocked before adding 25pM of
target bait and control bait respectively. After 1 hour incubation with gentle shaking to increase the
interactions, proves were pulled down using Dynabeads™ M-280 Streptavidin (Invitrogen) mag-
netic beads. The beads were washed 8-12 times to remove non-binding proteins, and remaining
proteins were eluted in nuclease free water. Different incubation times, bait amounts and washing
conditions were optimized to increase the enrichment of binding variants. To prepare the input tem-
plate DNA for the next round, recovered sequences from selected variants were PCR amplified from
the eluate using KAPA HiFi HotStart ReadyMix (Figure S3).
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Sequencing libraries were prepared amplifying the 300bp ZnF coding sequence from the selected
barcodes contained in the target and control eluates (fig. S3). KAPA HiFi HotStart ReadyMix to add
illumina adaptors.

A.3 SEQUENCING DATA ANALYSIS AND ENRICHMENT CALCULATION

The first variant library was sequenced using a NextSeq 2000 (pair-end, 300 cycles) kit at the CRG-
Genomics facility. Given the lower number of variants, the second library was sequenced using a
Miseq V3 (paired-end, 300 cycles) at UPF-Genomics facility. Both times accomplishing a coverage
of 100x at least. Quality control of the raw reads was performed with FastQC (v0.11.9) (Andrews
et al. (2012)). Pair-end reads were merged with PEAR (v0.9.6) (Zhang et al. (2013)) and then
trimmed with Cutadapt (v3.7) (Martin (2011)). Variant calling was performed using the function
vcountPDict() from Biostrings R package (v2.70.3) (Hervé Pagès (2024)), without allowing for any
mismatch. Variant counts were then used to calculate enrichment scores for each protein throughout
all rounds with limma (v3.58.1) (Ritchie et al. (2015)) and edgeR (4.0.16) (Chen et al. (2025))
R packages. Technical replicate counts were added and low count proteins were filtered out with
the function filterByExpr(). For normalisation, the library sizes were taken into account and, after
converting the raw counts to Counts Per Million (CPM), they were log-transformed. The log(CPM)
counts were fitted into a linear model and for each protein we extracted the slope (LogFC), which
if it was higher than 0, it was considered positive enrichment and if it was lower than 0, negative
enrichment.

A.4 ZINC FINGER SYNEVO THROUGHPUT

The approximate rate of DNA input (genotype) to DNA output (phenotype) is ∼5 phenotypes/second
in the current approach. Given a set of DNA instructions library (∼500,000 sequences), this can be
protein barcoded and phenotyped in an automatable experimental pipeline of about 8 hours, followed
by barcode sequencing overnight.

A.5 DIRECT PREFERENCE OPTIMIZATION

We have applied the weighted and ranked form of DPO as previously described in (Stocco et al.
(2024)).

A.6 In vitro DPO OPTIMIZATION OF ZYMCTRL

For ZymCTRL’s alignment with experimental data, we decided to refine it with ProtRL for 20 epochs
with the hyperparameters stated in table S2. Four different DPO models were trained combining the
use of two ProtRL implementations (ranked and weighted) and two different enrichment scores. The
sequences were paired with the slope extracted from the counts analysis and an additional measure
was tested, the difference between the abundance in the last and the first round (∆log(CPM)),
dubbed dynamic range. For each model, we generated sequences at epochs 5, 10, 15 and 20. The
training and generation took place over the course of two days in 2 H100 GPUs. Once generated,
the sequences were filtered following the same criteria as the 1st library (Methods).

A.7 In silico DPO OPTIMIZATION OF ZYMCTRL

The fine-tuned (FT) ZymCTRL model was used as a reference and iteratively updated through the
reinforcement learning (RL) campaign. Contact probabilities were determined by folding the pro-
tein sequence with the DNA strand ”AGCGTGGGCGT” using AlphaFold3 (AF3) (Abramson et al.
(2024)). The contact probability score was computed as the difference between the contact prob-
abilities of the target nucleotides and those of off-target nucleotides, ensuring a specificity-driven
selection metric. Each sequence was assigned a weight based on a composite scoring function,
incorporating: 1) Contact probability – computed as described above, 1) TM-score – determined
using Foldseek and using WT as template (PDB:1ZAA), 3) Inverse of sequence identity (sequence
dissimilarity) was computed with MMseqs2 (Steinegger & Söding (2017)) using WT sequence as
template, to promote diversity in sequence generation, 4) Key residue ratio, calculated by aligning
generated sequences with the WT sequence and computing the fraction of conserved key residues,

16



Published at the GEM workshop, ICLR 2025

5) Length penalty, computed as a Gaussian function of the ratio between WT length and generated
sequence length, and 6) a Gaussian function of sequence alignment length obtained with Foldseek.
Finally we also considered the 7) gaussian of the ratio of the sequence fractional charge, defined
as the sum of charged residues divided by sequence length, and the WT fractional charge (0.3).
Training was conducted on a GPU H100 for each task, ranging from a few GPU hours to one day of
training to reach the 30 iterations for DPO. The hyperparameters for DPO are stated in table S2.

A.8 SIMULATION OF DIRECTED EVOLUTION

The mutation rate acquired for the experiment and the biases for the type of mutations to apply were
obtained from the Mutazyme II DNA polymerase enzyme, from the Agilent GeneMorph II Random
Mutagenesis Kit. As the mutation rate is 3-16 mutations per Kb (per PCR), a mutation rate of 9,5
per 1 Kb was approximated, meaning 1 mutation in each protein of nearly 90 amino acids.

To perform Multiple Sequence Alignments, Clustal Omega (v1.2.4) (Sievers & Higgins (2014)) was
used with default parameters. Distance matrices were calculated using the function dist.alignment()
from seqinr R package (v.4.2-36) (Charif & Lobry (2007)). Multidimensional Scaling representa-
tions were built with scikit-learn (v1.6.1) (Pedregosa et al. (2011)) MDS implementation.

B SUPPLEMENTARY DATA
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Synthesized 
oligo pool library

Assemble into 
CIS-display construct

in vitro synthesis and 
CIS-coupling with cDNA

Wash away 
poor-affinity binders

Magnetic selection with 
target bait DNA

Additional 
enrichment 

cycles

Variant recovery via 
PCR

Sequencing and variant 
calling

Figure S1: CIS-display protocol diagram as showcased in Qi et al. (2024). Created in https:
//BioRender.com.

Round 1
Target                 Control 

Round 3
Target    Control 

Library Sequencing Amplicons
R1T   R1C   R2T   R2C   R3T   R3C   R4T   R4C   R0

a)

b)

Figure S2: (a) PCR products from amplification under the same conditions of pulldown eluates from
round 1 and 3 of the first library. (b) Barcode recovery amplification product of every sample for
library preparation (RnT - sample pulldown with Zif268 target, RnC - control).
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Figure S3: Correlation between AF3 contact probabilities and affinity measures for 6 published
Zif268 variants (Elrod-Erickson & Pabo (1999))

Design
method

Library 
variants

Recovery at
4th round

ZymCTRL 574 51%

ESM3 1 441 20%

ProGen2 274 29%

ESM-IF 676 53%

DMS 1 740 99%

Foldseek 477 96%

Total 5 184 62%

Trained
epochs

Library 
variants

Recovery at 
2nd round

Epoch 5 190 69%

Epoch 10 249 68%

Epoch 15 1 100%

Epoch 20 509 66%

Total 949 67%

a) b)

Table S1: (a) Number of variants of the first library divided by method of generation and percentage
of recovery at the last experimental round. (b) Number of variants of the second library divided by
epoch of generation and percentage of recovery at the last experimental round.
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Hyperparameters (DPO)

β 0.01

Seed number 1998

Learning rate 1×10-7

Batch size 5

epochs 5

Train/Test split 0.2

Adams (0.9, 0.98)

ε 1× 10-8

Adam decay 0.1

Table S2: Hyperparemeters used for the training of ProtRL unless otherwise specified in the text.

Oligo Sequence

Target DNA bait oligo NNNNNNGCGTGGGCGNNNNNNCGCCCACGCNNNN
NNGCGTGGGCGNNNNNNTCACAGTCAGTCCACACG
TC

Control DNA bait oligo NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNTCACAGTCAGTCCACACGT
C

Biotinylated amplification 
primer

Biotin-GACGTGTGGACTGACTGTGA

Table S3: Sequences of DNA bait probes ordered to IDT. ZnF268 target sequence underlined.
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