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Figure 1: Planning from Pixels with Graph Search. Our method leverages learned latent dynamics to efficiently build and
search a graph representation of the environment. Resulting policies show unrivaled performance across a distribution of
hard combinatorial tasks.

Abstract

The ability to form complex plans based on raw
visual input is a litmus test for current capabilities
of artificial intelligence, as it requires a seamless
combination of visual processing and abstract al-
gorithmic execution, two traditionally separate
areas of computer science. A recent surge of inter-
est in this field brought advances that yield good
performance in tasks ranging from arcade games
to continuous control; these methods however
do not come without significant issues, such as
limited generalization capabilities and difficulties
when dealing with combinatorially hard planning
instances. Our contribution is two-fold: (i) we
present a method that learns to represent its en-
vironment as a latent graph and leverages state
reidentification to reduce the complexity of find-
ing a good policy from exponential to linear (ii)
we introduce a set of lightweight environments
with an underlying discrete combinatorial struc-
ture in which planning is challenging even for
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humans. Moreover, we show that our methods
achieves strong empirical generalization to varia-
tions in the environment, even across highly dis-
advantaged regimes, such as “one-shot” planning,
or in an offline RL paradigm which only provides
low-quality trajectories.

1. Introduction
Decision problems with an underlying combinatorial struc-
ture pose a significant challenge for a learning agent, as they
require both the ability to infer the true low-dimensional
state of the environment and the application of abstract rea-
soning to master it. A traditional approach for common
logic games, given that a simulator or a model of the game
are available, consists in applying a graph search algorithm
to the state diagram, effectively simulating several trajec-
tories to find the optimal one. As long as the state space
of the game grows at a polynomial rate with respect to the
planning horizon, the solver is able to efficiently find the
optimal solution to the problem. Of course, when this is
not the case, heuristics can be introduced at the expense of
optimality of solutions.

Learned world models (Ha and Schmidhuber, 2018; Hafner
et al., 2019) can learn to map complex observations to a
lower-dimensional latent space and retrieve an approximate
simulator of an environment. However, while the continuous
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structure of the latent space is suitable for training reinforce-
ment learning agents (Hafner et al., 2020; Chua et al., 2018)
or applying heuristic search algorithms (Schrittwieser et al.,
2020), it also prevents a straightforward application of sim-
pler graph search techniques that rely on identifying and
marking visited states.

Our work follows naturally from the following insight: a
simple graph search might be sufficient for solving visually
complex environments, as long as a world model is trained to
realize a suitable structure in the latent space. Moreover, the
complexity of the search can be reduced from exponential
to linear by reidentifying visited latent states.

The method we propose is located at the intersection be-
tween classical planning, representation learning and model-
based reinforcement learning. It relies on a novel low-
dimensional world model trained through a combination
of opposing losses without reconstructing observations. We
show how learned latent representations allow a dynamics
model to be trained to high accuracy, and how the dynamics
model can then be used to reconstruct a latent graph rep-
resenting environment states as vertices and transitions as
edges. The resulting latent space structure enables powerful
graph search algorithms to be deployed for planning with
minimal modifications, solving challenging combinatorial
environments from pixels. We name our method PPGS as
it Plans from Pixels through Graph Search.

We design PPGS to be capable of generalizing to unseen
variations of the environment, or equivalently across a dis-
tribution of levels (Cobbe et al., 2020). This is in contrast
with traditional benchmarks (Bellemare et al., 2013), which
require the agent to be trained and tested on the same fixed
environment.

We can describe the main contributions of this paper as
follows: first, we introduce a suite of environments that
highlights a weakness of modern reinforcement learning
approaches, second, we introduce a simple but principled
world model architecture that can accurately learn the la-
tent dynamics of a complex system from high dimensional
observations; third, we show how a planning module can
simultaneously estimate the latent graph for previously un-
seen environments and deploy a breadth first search in the
latent space to retrieve a competitive policy; fourth, we show
how combining our insights leads to unrivaled performance
and generalization on a challenging class of environments.

2. Method
For the purpose of this paper, each environment can be
modeled as a family of fully-observable deterministic
goal-conditioned Markov Decision Processes with discrete
actions, that is the 6-tuples {Si, Ai, Ti, , Gi, Ri, γi}1...n
where Si is the state set, Ai is the action set, Ti is a transi-
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Figure 2: Architecture of the world model. A convolu-
tional encoder extracts latent state representations from ob-
servations, while a forward model and an inverse model
reconstruct latent dynamics by predicting state transitions
and actions that cause them. The notation is introduced in
Sec. 2.1

tion function Ti : Si×Ai → Si, Gi is the goal set andRi is
a reward function Ri : Si ×Gi → R and γi is the discount
factor. In particular, we deal with families of procedurally
generated environments. We refer to each of the n elements
of a family as a level and omit the index i when dealing with
a generic level.

In our work the reward simplifies to an indicator function
for goal achievement R(s, g) = 1s=g with G ⊆ S. Given
a goal distribution p(g), the objective is that of finding a
goal-conditioned policy πg that maximizes the return

Jπ = E
g∼p(g)

[
E

τ∼p(τ |πg)

∑
t

γtR(st, g)

]
(1)

where τ ∼ p(τ |πg) is a trajectory (st, at)
T
t=1 sampled from

the policy.

Our environments of interest should challenge both percep-
tive and reasoning capabilities of an agent. In principle,
they should be solvable through extensive search in hard
combinatorial spaces. In order to master them, an agent
should therefore be able to (i) identify pairs of bisimilar
states (Zhang et al., 2021), (ii) keep track of and reidentify
states it has visited in the past and (iii) produce highly accu-
rate predictions for non-trivial time horizons. These factors
contribute to making such environments very challenging
for existing methods. Our method is designed in light of
these necessities; it has two integral parts, the world model
and the planner, which we now introduce.

2.1. World Model

The world model relies solely on three jointly trained func-
tion approximators: an encoder, a forward model and an
inverse model. Their overall orchestration is depicted in
Fig. 2 and described in the following.
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2.1.1. ENCODER

Mapping highly redundant observations from an environ-
ment to a low-dimensional state space Z has several benefits
(Ha and Schmidhuber, 2018; Hafner et al., 2019). Ideally,
the projection should extract the compressed “true state”
of the environment and ignore irrelevant visual cues, dis-
carding all information that is useless for planning. For this
purpose, our method relies on an encoder hθ, that is a neural
function approximator mapping each observed state s ∈ S
and a low-dimensional representation z ∈ Z (embedding).
While there are many suitable choices for the structure of
the latent space Z, we choose to map observations to points
on an d-dimensional hypersphere taking inspiration from
Liu et al. (2017).

2.1.2. FORWARD MODEL

In order to plan ahead in the environment, it is crucial for
an agent to estimate the transition function T . In fact, if
a mapping to a low-dimensional latent space Z is avail-
able, learning directly the projected transition function
TZ : Z × A → Z can be largely beneficial (Ha and
Schmidhuber, 2018; Hafner et al., 2019). The determin-
istic latent transition function TZ can be learned by a neural
function approximator fφ so that if T (st, at) = st+1, then
fφ(hθ(st), at) := fφ(zt, at) = hθ(st+1). We refer to this
component as forward model. Intuitively, it can be trained
to retrieve the representation of the state of the MDP at time
t + 1 given the representation of the state and the action
taken at the previous time step t.

Due to the Markov property of the environment, an initial
state embedding zt and the action sequence (at, . . . , at+k)
are sufficient to to predict the latent state at time t+ k, as
long as zt successfully captures all relevant information
from the observed state st. The amount of information
to be embedded in zt and to be retained in autoregressive
predictions is, however, in most cases, prohibitive. Take for
example the case of a simple maze: zt would have to encode
not only the position of the agent, but, as the predictive
horizon increases, most of the structure of the maze.

Invariant Structure Recovery To allow the encoder to
only focus on local information, we adopt an hybrid forward
model which can recover the invariant structures in the
environment from previous observations. The function that
the forward model seeks to approximate can then include
an additional input: fφ(zt, at, sc) = zt+1, where sc ∈ S
is a generic observation from the same environment and
level. Through this context input the forward model can
retrieve information that is constant across time steps (e.g.
the location of walls in static mazes). In practice, we can use
randomly sampled observation from the same level during
training and use the latest observation during evaluation.

This choice allows for more accurate and structure-aware
predictions, as we show in the ablations in Suppl. A.

Given a trajectory (st, at)
T
t=1, the forward model can be

trained to minimize some distance measure between state
embeddings (zt+1)1...T−1 = (hθ(st+1))1...T−1 and one-
step predictions (fφ(hθ(st), at, sc))1...T−1. In practice, we
choose to minimize a Monte Carlo estimate of the expected
Euclidean distance over a finite time horizon, a set of tra-
jectories and a set of levels. For a given level l drawn from
the training distribution p(l), we extract K trajectories of
length H from each level with a uniform random policy π
and we minimize

LlFW=
1

H−1

H−1∑
h=1

E
ah∼π

[
‖fφ(zlh,ah,slc)−zlh+1‖22

]
. (2)

where the superscript indicates the level from which the
embeddings are extracted.

2.1.3. INVERSE MODEL AND COLLAPSE PREVENTION

Unfortunately, the loss landscape of Equation 2 presents a
trivial minimum in case the encoder collapses all embed-
dings to a single point in the latent space. As embeddings of
any pair of states could not be distinguished in this case, this
is not a desirable solution. We remark that this is a known
problem in metric learning and image retrieval (Bellet et al.,
2013), for which solutions ranging from siamese networks
(Bromley et al., 1993) to using a triplet loss (Hoffer and
Ailon, 2015) have been proposed.

The context of latent world models offers a natural solution
that isn’t available in the general embedding problem, which
consists in additionally training a probabilistic inverse model
pω(at|zt,zt+1) such that if TZ(zt,at)=zt+1, then pω(at|
zt,zt+1)>pω(ak|zt,zt+1)∀ak 6=at∈A. The inverse model,
parameterized by ω, can be trained to predict the action at
that causes the latent transition between two embeddings
zt,zt+1 by minimizing multi-class cross entropy.

LlCE=
1

H−1

H−1∑
h=1

E
ah∼π

[
−logpω(ah|zlh,zlh+1)

]
. (3)

Intuitively, LCE increases as embeddings collapse, since it
becomes harder for the inverse model to recover the actions
responsible for latent transitions. For this reason, it miti-
gates unwanted local minima. Moreover, it is empirically
observed to enforce a regular structure in the latent space
that eases the training procedure, as argued in Sec. A of
the Appendix. We note that this loss plays a similar role
to the reconstruction loss in Hafner et al. (2019). However,
LCE does not force the encoder network to embed infor-
mation that helps with reconstructing irrelevant parts of the
observation, unlike training methods relying on image re-
construction (Chiappa et al., 2017; Ha and Schmidhuber,
2018; Hafner et al., 2019; 2020; 2021).
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While LCE is sufficient for preventing collapse of the latent
space, a discrete structure needs to be recovered in order
to deploy graph search in the latent space. In particular, it
is still necessary to define a criterion to reidentify nodes
during the search procedure, or to establish whether two em-
beddings (directly encoded from observations or imagined)
represent the same true low-dimensional state.

A straightforward way to enforce this is by introducing a
margin ε, representing a desirable minimum distance be-
tween embeddings of non-bisimilar states (Zhang et al.,
2021). A third and final loss term can then be introduced to
encourage margins in the latent space:

Llmargin=
1

H−1

H−1∑
h=1

max
(
0,1−

‖zlh+1−zlh)‖22
ε2

)
. (4)

We then propose to reidentify two embeddings as represent-
ing the same true state if their Euclidean distance is less
than ε

2 .

Adopting a latent margin effectively constrains the number
of margin-separated states that can be represented on an
hyperspherical latent space. However, this quantity is lower-
bounded by the kissing number (Wikipedia contributors,
2021), that is the number of non-overlapping unit-spheres
that can be tightly packed around one d dimensional sphere.
The kissing number grows exponentially with the dimen-
sionality d. Thus, the capacity of our d-dimensional unit
sphere latent space (d=16 in our case with margin ε=0.1)
is not overly restricted.

The world model can be trained jointly and end-to-end by
simply minimizing the expected value of a linear combina-
tion of the three loss functions over a training level distribu-
tion p(l):

L= E
l∼p(l)

[
αLlFW+βLlCE+Llmargin

]
. (5)

To summarize, the three components are respectively en-
couraging accurate dynamics predictions, regularizing latent
representations and enforcing a discrete structure for state
reidentification.

2.2. Planning Regimes

A deterministic environment can be represented as a directed
graph G whose vertices V represent states s∈S and whose
edges E encode state transitions. An edge from a vertex
representing a state s∈S to a vertex representing a state s′∈
S is present if and only if T (s,a)=s′ for some action a∈A,
where T is the state transition function of the environment.
This edge can then be labelled by action a. Our planning

module relies on reconstructing the latent graph, which is a
projection of graph G to the latent state Z.

In this section we describe how a latent graph can be build
from the predictions of the world model and efficiently
searched to recover a plan, as illustrated in Fig. 3. This
method can be used as a one-shot planner, which only needs
access to a visual goal and the initial observation from a
level. When iterated and augmented with online error cor-
rection, this procedure results in a powerful approach, which
we refer to as full planner, or simply as PPGS.

One-shot Planner Breadth First Search (BFS) is a graph
search algorithm that relies on a LIFO queue and on mark-
ing visited states to find an optimal path O(V+E) steps. Its
simplicity makes it an ideal candidate for solving combina-
torial games by exploring their latent graph. If the number
of reachable states in the environment grows polynomially,
the size of the graph to search will increase at a modest rate
and the method can be applied efficiently.

We propose to execute a BFS-like algorithm on the latent
graph, which is recovered by autoregressively simulating
all transitions from visited states. As depicted in Fig. 3, at
each step, the new set of leaves L is retrieved by feeding the
leaves from the previous iteration through the forward model
fφ. The efficiency of the search process can be improved
as shown in Fig. 4, by exploiting the margin ε enforced
by equation 4 to reidentify states and identify loops in the
latent graph. We now provide a simplified description of the
planning method in Algorithm 1, while details can be found
in Suppl. C.2.

Algorithm 1 Simplified one-shot PPGS
Input: Initial observed state s1, visual goal g

1: z1,zg=hθ(s1),hθ(g) . project to latent space Z
2: L,V={z1} . sets of leaves and visited vertices
3: for TMAX steps do
4: L={fφ(z,a,s1):∃z∈L,a∈A} . grow graph
5: if z∗∈L can be reidentified with zg then
6: return action sequence from z1 to z∗

7: end if
8: L=L\V . reidentify and discard visited vertices

(details in Suppl. C.2)
9: V=V ∪L . update visited vertices

10: end for

Full Planner The one-shot variant of PPGS largely re-
lies on highly accurate autoregressive predictions, which a
learned model cannot usually guarantee. We mitigate this
issue by adopting a model predictive control-like approach
(Garcia et al., 1989). PPGS recovers an initial guess on the
best policy (ai)1,...,n simply by applying one-shot PPGS as
described in the previous paragraph and in Algorithm 2. It
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...
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Figure 3: Overview of latent-space planning. One-shot planning is possible by (i) embedding the current observation and
goal to the latent space and (ii) iteratively growing a latent graph until a vertex is reidentified with the goal.
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Figure 4: Number of leaf vertices when planning in Proc-
genMaze, averaged over 100 levels, with 90% confidence
intervals.

then applies the policy step by step and projects new obser-
vations to the latent space. When new observations do not
match with the latent trajectory, the policy is recomputed
by applying one-shot PPGS from the latest observation.
This happens when the autoregressive prediction of the cur-
rent embedding (conditioned on the action sequence since
the last planning iteration) can not be reidentified with the
embedding of the current observation. Moreover, the al-
gorithm stores all observed latent transitions in a lookup
table and, when replanning, it only trusts the forward model
on previously unseen observation/action pairs. A detailed
description can be found in Suppl. C.2.

3. Environments
In order to benchmark both perception and abstract rea-
soning, we empirically show the feasibility of our method
on three challenging procedurally generated environments.
These include the Maze environment from the procgen suite
(Cobbe et al., 2020), as well as DigitJump and IceSlider,
two combinatorially hard environments which stress the
reasoning capabilities of a learning agent, or even of an
human player. The last two environments are available as

supplementary materials (Anonymous, 2021). We invite the
interested reader to test them out in an interactive way on
the website to directly experience their complexity. More
details on their implementation are included in Suppl. D.

ProcGenMaze The ProcgenMaze environment consists
of a family of procedurally generated 2D mazes. The agent
starts in the bottom left corner of the grid and needs to
reach a position marked by a piece of cheese. For each
level, an unique shortest solution exists, and its length is
usually distributed roughly between 1 and 40 steps. This
environment presents significant intra-level variability, with
different sizes, textures, and maze structures. While retriev-
ing the optimal solution in this environment is already a
non-trivial task, its dynamics are uniform and actions only
cause local changes in the observations. Moreover, Proc-
genMaze is a forgiving environments in which errors can
always be recovered from. We use these insights to choose
the additional environments.

IceSlider IceSlider is in principle similar to ProcgenMaze,
since it also consists of procedurally generated mazes. How-
ever, each action propels the agent in a direction until an
obstacle (a rock or the borders of the environments) is met.
We generate solvable but unforgiving levels that feature irre-
versible transitions, that, once taken, prevent the agent from
ever reaching the goal.

DigitJump DigitJump features a distribution of randomly
generated levels which consist of a 2D 8x8 grid of hand-
written digits from 1 to 6. The agent needs to go from the
top left corner to the bottom right corner. The 4 directional
actions are available, but each of them causes the agent to
move in that directions by the number of steps expressed
by the digit on the starting cell. Therefore, a single action
can easily transport the player across the board. This makes
navigating the environment very challenging, despite the
reduced cardinality of the state space. Moreover, the game
presents many cells in which the agent can get irreversibly
stuck.
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ProcgenMaze DigitJump IceSlider

Figure 5: Environments. Initial observations and one-shot PPGS’s solution (arrows) of a random level of each of the three
environments. ProcgenMaze is from (Cobbe et al., 2020). DigitJump and IceSlider are proposed by us and can be accessed
at (Anonymous, 2021).

4. Related Work
World Models and Reinforcement Learning The idea
of learning to model an environment has been widely ex-
plored in recent years. Work by Oh et al. (2015) and Chiappa
et al. (2017) has argued that modern machine learning ar-
chitectures are capable of learning to model the dynamics
of a generic environment reasonably well for non-trivial
time horizons. The seminal work by Ha and Schmidhu-
ber (2018) built upon this by learning a world model in a
low-dimensional latent space instead of conditioning pre-
dictions on observations. They achieved this by training a
VAE on reconstructing observations and a recurrent network
for sampling latent trajectories conditioned on an action
sequence. Moreover, they showed how sample efficiency
could be addressed by recovering a simple controller acting
directly on latent representations through an evolutionary
approach.

This initial idea was iteratively improved along two main
directions. On one hand, some subsequent works focused on
learning objectives and suggested to jointly train encoding
and dynamics components. Hafner et al. (2019) introduced
a multi-step variational inference objective to encourage
latent representations to be predictive of the future and prop-
agate information through both deterministic and stochastic
paths. On the other hand, authors proposed to learn to act in
the latent space by using zero-order methods (Hafner et al.,
2019) such as CEM (Rubinstein, 1997) or policy gradient
techniques (Hafner et al., 2020; 2021). These improvements
gradually led to strong model-based RL agents capable of
achieving very competitive performance in continuous con-
trol tasks (Hafner et al., 2020) and on the Atari Learning
Environment (Bellemare et al., 2013; Chen et al., 2020;
Hafner et al., 2021).

Relying on image reconstruction can however lead to vul-
nerability to visual noise: to overcome this limitation Okada

and Taniguchi (2020) and Zhang et al. (2021) forgo the
decoder network, while the latter proposes to rely on the
notion of bisimilarity to learn meaningful representations.
Similarly, Gelada et al. (2019) only learn to predict rewards
and action-conditional state distributions, but only study this
task as an additional loss to model-free reinforcement learn-
ing methods. Another relevant approach is that of (Zhang
et al., 2020), who propose to learn a discrete graph repre-
sentation of the environment, but their final goal is that of
recovering a series of subgoals for model-free RL.

A strong example of how world models can be coupled with
classical planners is given by MuZero (Schrittwieser et al.,
2020). MuZero trains a recurrent world model to guide a
Monte Carlo tree search by encouraging hidden states to be
predictive of future states and a sparse reward signal. While
we adopt a similar framework, we focus on recovering a
discrete structure in the latent space in order to reidentify
states and lower the complexity of the search procedure.
Moreover, we do not rely on reward signals, but only focus
on learning the dynamics of the environment.

Neuro-algorithmic Planning In recent years, several
other authors have explored the intersection between rep-
resentation learning and classical algorithms. This is the
case, for instance, of Kuo et al. (2018); Kumar et al. (2019);
Ichter and Pavone (2019) who rely on sequence models or
VAEs to propose trajectories for sampling-based planners.
Within planning research, Yonetani et al. (2020) introduce a
differentiable version of the A* search algorithm that can
learn suitable representations from images with supervision.
The most relevant line of work to us is perhaps the one
that attempts to learn representations that are suitable as
an input for classical solvers. Within this area, Asai and
Fukunaga (2018); Asai and Muise (2020) show how sym-
bolic representations can be extracted from complex tasks
in an end-to-end fashion and directly fed into off-the-shelf
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solvers. More recently, Vlastelica et al. (2021) frames MDPs
as shortest-path problems and trains a convolutional neural
network to retrieve the weights of a fixed graph structure.
The extracted graph representation can be solved with a
combinatorial solver and trained end-to-end by leveraging
the blackbox differentiation method (Pogančić et al., 2020).

Visual Goals A further direction of relevant research is
that of planning to achieve multiple goals (Nair et al., 2018).
While the most common approaches involve learning a goal-
conditioned policy with experience relabeling (Andrychow-
icz et al., 2017), the recently proposed GLAMOR (Paster
et al., 2021) relies on learning inverse dynamics and re-
trieves policies through a recurrent network. By doing so,
it can achieve visual goals without explicitly modeling a
reward function, an approach that is sensibly closer to ours
and can serve as a relevant comparison.

5. Experiments
The purpose of the experimental section is to empirically ver-
ify the following claims: (i) PPGS is able to solve challeng-
ing environments with an underlying combinatorial structure
and (ii) PPGS is able to generalize to unseen variations of
the environments, even when trained on few levels. We aim
to demonstrate that forming complex plans in these simple-
looking environments is beyond the reach of the best suited
state-of-the-art methods. Our approach, on the other hand,
achieves non-trivial performance. With this in mind, we
did not insist on perfect fairness of all comparisons, as the
different methods have different type of access to the data
and the environment. However, the largest disadvantage is
arguably given to our own method.

While visual goals could be drawn from a distribution p(g),
we evaluate a single goal for each test level matching the
environment solution (or the only state that would give a
positive reward in a sparse reinforcement working frame-
work). This represents a very challenging task with respect
to common visual goal achievement benchmarks (Paster
et al., 2021), while also allowing comparisons with reward-
based approaches such as PPO (Schulman et al., 2017). We
mainly evaluate the success rate, which is computed as the
proportion of solved levels in a set of 100 unseen levels. A
level is considered to be solved when the agent achieves the
visual goal (or receives a non-zero reward) within 256 steps.

Choice of Baselines Our method learns to achieve visual
goals by planning with a world model learned on a distri-
bution of levels. To the best of our knowledge, no other
method in the literature shares these exact settings. For this
reason, we select three diverse and strong baselines and
we make our best efforts for a fair comparison within our
computational limits.
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Figure 6: Success rates across the three environments. One-
shot planning is competitive with the full method on shorter
time horizons.

PPO (Schulman et al., 2017) is a strong and scalable policy
optimization method that has been applied in procedurally
generated environments (Cobbe et al., 2020). While PPGS
requires a visual goal to be given, PPO relies on a (sparse)
reward signal specializing on a unique goal per level. Dream-
erV2 (Hafner et al., 2021) is a model-based RL approach
that also relies on a reward signal, while GLAMOR (Paster
et al., 2021) is more aligned with PPGS as it is also designed
to reach visual goals in absence of a reward.

While we restrict PPGS to only access an offline dataset of
low-quality random trajectories, all baselines are allowed
to collect data on policy for a much larger number of envi-
ronment steps. More considerations on these baselines and
on the fairness of our comparison can be found in Suppl. B.
Furthermore, we also consider a non-learning naive search
algorithm (GS ON IMAGES) thoroughly described in C.3.

A comprehensive ablation study of PPGS can be found in
Section A of the Appendix.

5.1. Comparison of Success Rates

Our first claim is supported by Figure 6. PPGS outperform
its baselines across the three environments. The gap with
baselines is smaller in ProcgenMaze, a forgiving environ-
ment for which accurate plans are not necessary. On the
other hand, ProcgenMaze involves long-horizon planning,
which can be seen as a limitation to one-shot PPGS. As
the combinatorial nature of the environment becomes more
important, the gap with all baselines increases drastically.

PPO performs fairly well with simple dynamics and long-
term planning, but struggles more when combinatorial rea-
soning is necessary. GLAMOR and DreamerV2 struggle
across the three environments, as they likely fail to gener-
alize across a distribution of levels. The fact that GS ON
IMAGES manages to rival other baselines is a testament to
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Figure 7: Solution rates of PPGS and PPO as a function of the cardinality of the set of training levels.

the harshness of the environments.

5.2. Analysis of Generalization

The inductive biases represented by the planning algorithm
and our training procedure ensure good generalization from
a minimal number of training levels. In Fig. 7, we compare
solution rates between PPGS and PPO as the number of
levels available for training increases. Our method generally
outperforms its baselines across all environments. In Proc-
genMaze, PPGS achieves better success rates than PPO
after only seeing two orders of magnitude less level, e.g.
10 levels instead of 1000. Note that PPGS uses only 400k
samples from a random policy whereas PPO uses 50M
on-policy samples. Due to the harshness of the remain-
ing environments, PPO struggles to find a good policy and
its solution rate on unseen levels improves slowly as the
number of training levels increases. In IceSlider, PPGS
is well above PPO for any size of the training set and a
outperforms GS ON IMAGES when only having access to
2 training levels. While having a comparable performance
to PPO on small training sets in DigitJump, our method
severely outperforms it once approximately 200 levels are
available. On the other hand, PPO’s ability to generalize
plateaus. These results show that PPGS quickly learns to
extract meaningful representations that generalize well to
unseen scenarios.

6. Discussion
Hard search from pixels is largely unexplored and unsolved,
yet fundamental for future AI. In this paper we presented
how powerful graph planners can be combined with learned
perception modules to solve challenging environment with a
hidden combinatorial nature. In particular, our training pro-
cedure and planning algorithm achieve this by (i) leveraging
state reidentification to reduce planning complexity and (ii)
overcoming the limitation posed by information-dense ob-
servations through an hybrid forward model. We validated
our proposed method, PPGS, across three challenging en-
vironments in which we found state-of-the-art method to
struggle. We believe that our results represent a sensible
argument in support of the integration of learning-based
approaches and classical solvers.
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Supplementary Material for:
Planning from Pixels in Environments

with Combinatorially Hard Search
Spaces

A. Ablation Study
PPGS relies on crucial architectural choices that we now
set out to motivate. We do so by performing an ablation
study and questioning each of the choices individually to
show its contribution to the final performance.

World Model We evaluate the impact of different choices
on the world model by retraining it from scratch and report-
ing the success rate of the full planner in Table 1. We also
compute two latent metrics, which are commonly used to
benchmark latent predictions (Kipf et al., 2020), see below.

In particular, given a planning horizon K, we first collect
a random trajectory (st,at)t=1...L of length L=20 and ex-
tract latent embeddings {zt}t=1,...L through the encoder
hθ. We then autoregressively estimate the embedding zK+1

using only the first embedding z1 and the action sequence
(at)t=1...K , obtaining a prediction ẑK+1.

We repeat this process for N trajectories, obtaining N se-
quences of latent embeddings (znt )

n=1...N
t=1...L and N predic-

tions {ẑnK+1}n=1...N . We compute rank(ẑnK+1) as the
lowest k such that ẑnK+1 is in the k-nearest neighbors of
znK+1 considering all other embeddings {znt }t=1,...L. We
can finally compute H@K= 1

N

∑N
n=11rank(ẑnK+1)=1 and

MMR@K= 1
N

∑N
n=1

1
rank(ẑnK+1)

.

We found that training an inverse model is crucial for learn-
ing good representations. Even if the uninformative loss
Lmargin introduced in Equation 4 already helps with avoid-
ing the collapse in the latent space, we were not successful
in training the forward model to high predictive accuracy
unless the inverse model was jointly trained, despite further
hyperparameter tuning. We can hypothesize that the inverse
model enforces a regular structure in the latent space, which
is in turn helpful for training the rest of the world model.

On the other hand, we find that the contribution of an hy-
brid forward model is more environment-dependent. We
ablate this by introducing a forward model that only takes
the state embedding zt and an action at as input to predict
the next embedding zt+1, without having access to a con-
textual observation sc. In this case, the forward model can
be implemented as a layer-normalized MLP with 3 layers of
256 neurons. When adopting this fully latent forward model,
predictive accuracy drops sensibly. While success rate also
drops sharply in DigitJump, this is not the case for Procgen-
Maze. We believe that this can be motivated by the fact that

https://en.wikipedia.org/w/index.php?title=Kissing_number&oldid=1020394961
https://en.wikipedia.org/w/index.php?title=Kissing_number&oldid=1020394961
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Table 1: Ablations. We evaluate the success rate on two environments when removing important components of our world
model and planner. For the world model modifications, we also report metrics for predictive accuracy explained in the text.
All results are averaged over 3 seeds.

ProcgenMaze / DigitJump

Success % H@1 H@10 MMR@1 MMR@10

Our method 0.91/1.00 1.00/1.00 0.92/0.99 1.00/1.00 0.94/1.00

without inverse model 0.38/0.23 1.00/1.00 0.77/0.23 1.00/1.00 0.81/0.33
with fully latent forward model 0.80/0.34 0.98/1.00 0.73/0.53 0.98/1.00 0.81/0.63

without lookup table 0.39/0.92 - - - -
one-shot, with reidentification 0.43/0.76 - - - -
one-shot, without reidentification 0.27/0.31 - - - -

several levels of ProcgenMaze could be solved in few steps,
only knowing the local structure of the maze with respect to
the starting position of the agent. In DigitJump, on the other
hand, the agent can easily move across the environment and
needs global information to plan accurately.

Planner Evaluating the planning algorithm does not re-
quire retraining the world model. We first show the im-
portance of the lookup table. Without correcting the world
model’s inaccuracies, the planner is not able to recover from
incorrect trajectories. As a result, the success rate is compa-
rable to that of one-shot planning. Finally, we empirically
validate the importance of state reidentification: when dis-
abled, the BFS procedure is forced to randomly discard new
vertices due to the exponential increase in the size of the
graph. Because of this, promising trajectories cannot be
expanded and the planner is only effective on simple levels
which only require short-term planning.

Failure Cases We now present a visual rendition of failure
cases for one-shot PPGS in Fig. 8, together with the correct
policy retrieved by the full planner.

B. Choice of Baselines and Fairness
After introducing the fundamental reasons behind our choice
of baselines in Sec. 5, we present our reasoning and experi-
mental setup with respect to each of the methods.

PPO PPO (Schulman et al., 2017) is a strong model-free
RL algorithm. Unlike PPGS, PPO requires a reward signal
instead of visual goals. We grant PPO an advantageous
setting by allowing on-policy data collection for 50M en-
vironment steps, which is in stark contrast to the offline
dataset of 400k random transitions that PPGS is trained
on. We use the implementation and hyperparameters pre-
sented by Cobbe et al. (2020) for the Procgen suite, due to

its similarity to the rest of the environments. While PPGS is
tuned on ProcgenMaze and keeps its hyperparameters fixed
across environments, we favor PPO by tuning the number
of timesteps per rollout according to the environment to
account for the possibility of getting stuck in a funnel state.

GLAMOR GLAMOR (Paster et al., 2021) learns in-
verse dynamics to achieve visual goals in Atari games. Sim-
ilarly to PPGS, GLAMOR does not require a reward signal
but needs to receive a visual goal. The only difference with
PPGS in terms of settings is that we allow GLAMOR to col-
lect data on-policy and for more interactions (2M). At eval-
uation time we deploy a strictly more forgiving scheme for
GLAMOR, which is described in the original paper (Paster
et al., 2021). As GLAMOR is designed to approximately
reach its goals, we also accept trajectories that terminate
near the actual goal as viable solutions. Hyperparameters
for GLAMOR were tuned by the original authors in Atari,
which is a visually comparable setting.

DreamerV2 DreamerV2 (Hafner et al., 2021) is a model-
based RL approach reaching state-of-the-art performance
in discrete games and continuous control domains. We use
the original implementation for Atari environments. Due to
its large computational requirements, we are only able to
run DreamerV2 for a reduced number of steps, totaling 4M.
We remark that while this is not enough for performance on
Atari to converge, it is shown by the original authors to be
sufficient for solving a significant number of games.

All cited codebases that we use are publicly available under
a MIT license.

C. Further Implementation Details
In this section we report relevant implementation choices
for PPGS. In any case, we refer to our code (Anonymous,
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Figure 8: Failure cases. On the first row, a level from each environment that one-shot PPGS fails to solve (the white arrows
represent the policy). On the second row, the policies corrected by a full planner, which is able to solve all levels. A white
circle is drawn when PPGS recomputes its policy.

2021) for precise details.

C.1. World Model

Encoder. The encoding function hθ is learned by a con-
volutional neural network. The output of the convolutional
backbone of a ResNet-18 (He et al., 2015) is fed through
a single fully connected layer with d units, where d=16 is
the size of the latent space Z. The output of the network is
normalized to unit L2 norm.

Forward Model. From an architectural perspective, our
hybrid forward model transforms the state embedding zt
through a deconvolutional network and concatenates it to
the RGB observation sc and a batchwise one-hot tensor
representing the action. The result is processed through a
second ResNet-18 to predict the next embedding. We found
it to be irrelevant whether to train the network to predict a
state representation zt+1 or a latent offset zt+1−zt: for our
experiments we choose the former.

Similarly to Hafner et al. (2020) we find that, in practice,
explicitly encouraging representations to be predictive for
longer horizons (for instance through a multi-step loss) does
not appear to be helpful. For this reason, we only train for

one-step predictions, as noted in Equation 2.

Inverse Model. To enforce a simpler structure in the la-
tent space, we implement the inverse model pω as a low-
capacity one-layer MLP with ReLU activations, 32 neurons
and layer normalization (Ba et al., 2016).

Hyperparameters Hyperparameters are fixed in all ex-
periments unless explicitly mentioned. More importantly,
we deploy the same set of hyperparameters across all three
environments, after tuning them on ProcgenMaze via grid
search. The latent margin ε is set to 0.1 and the dimension-
ality of the latent space d is set to 16. The world model we
propose is optimized using Adam (Kingma and Ba, 2014)
with learning rate λ=0.001 for all components and param-
eters ε=0.00001,β1=0.9,β2=0.999. All components are
trained for 40 epochs with a batch size of 128. The losses
are combined as in Equation 5 with weights α=10,β=1,
although our architecture shows robustness to this choice.
Training the world model takes approximately 20 hours on
a single NVIDIA ampere GPU.
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C.2. Planner

In this subsection, we present both planners (one-shot and
full) more in detail.

One-shot Planner Algorithm 2 offers a more thorough
description of the one-shot planner introduced in Algorithm
1. Given a visual goal g and an initial observed state s,
maximizing discounted rewards corresponds to recovering
the shortest action sequence (ai)1,...,n such that sn=g.

For this purpose, Algorithm 2 efficiently builds and searches
the latent graph. It has access to an initial high-dimensional
state s and a visual goal g; it keeps track of a list of visited
vertices V and of a set of leaf vertices L. For each visited
latent embedding, the algorithm stores the action sequence
leading to it in a dictionary D. A key part of the algorithm
is represented by the filter function. The filter func-
tion receives as input the new set of leaves L′, from which
vertices reidentifiable with visited states have already been
discarded. The function removes elements of L′ until no
pair of states is too close. This is done by building a sec-
ondary graph with the elements of L′ as vertices and edges
between all pairs of vertices at less than ε

2 distance. A set
of non-conflicting elements can then be recovered by ap-
proximately solving a minimum vertex cover problem. If
the state space of the environment grows exponentially with
the planning horizon, or if the world model fails to reiden-
tify bisimilar states, L′ can still reach impractically large
sizes. For this reason, after resolving conflicts, if its cardi-
nality is larger than a cutoff C=256, |Lt+1|−C elements
are uniformly sampled and removed.

Full Planner The full planner used by PPGS introduces
the possibility of online replanning in an MPC approach. It
autoregressively computes a latent trajectory T conditioned
on the action sequence P retrieved by one-shot planning. At
each step, the current observation is projected to the latent
space to check if it can be reidentified with the predicted
embedding in T . When this is not possible, the action
sequence P is recomputed. Moreover, the planner gradually
fills a latent transition buffer B. Forward predictions are
then computed according to f̂θ(z,a,s), which returns z′ if
(z,z′,a)∈B, otherwise it queries the learned forward model
fθ. As a side note, when replanning while using the full
planner, the planning horizon Tmax is set to 10 steps. We
report the method in full in Algorithm 3.

C.3. GS ON IMAGES

Our baselines include a graph search algorithm in observa-
tion space that does not involve any learned component. We
refer to this algorithm as GS ON IMAGES and it can be seen
as a measure of how hard an environment is when relying on
reconstructing the state diagram to solve it. GS ON IMAGES

assumes solely on the deterministic nature of the environ-
ment. Given a starting state s, a goal state g and the action
set A, GS ON IMAGES plans as shown in Algorithm 4. It re-
lies on a dictionary Aleft which stores, for each visited state,
the set of actions that have not been attempted yet, and on a
graph representation of the environment G=(V,E), where
V is the set of visited states and E contains the observed
transitions between states and labeled by an action.

C.4. Data Collection

As our method solely relies on accurately modeling the dy-
namics of the environment, the only requirement for training
data is sufficient coverage of the state space. In most cases,
this is satisfied by collecting trajectories offline according
to a uniformly random policy. The ability to leverage a
fixed dataset of trajectories draws PPGS closer to off-policy
methods or even batch reinforcement learning approaches.

In practice, unless specified otherwise, we collect 20 trajec-
tories of 20 steps from a set of n=1000 training levels, for
a total of 400k environment steps. One exception is made
for ProcgenMaze, for which we also set a random starting
position at each episode, since uncorrelated exploration is
not sufficient to cover significant parts of the state.

D. Environments
In this section, we present a few remarks on the environ-
ments chosen. For ProcgenMaze, we choose what is re-
ported as the easy distribution in Cobbe et al. (2020). This
corresponds to grids of size n×n, with 3≤n≤15; each cell
of the grid is either a piece of wall or a corridor. In IceSlider,
the agent always starts in the top row and needs to descend
to a goal on the bottom row. It is not sufficient to slide over
the goal, but the agent needs to come to a full stop on the
correct square. In DigitJump, the handwritten digits are the
same across training and test levels. Their frequency and
position does of course change.

All environments return observations as 64x64 RGB images.
ProcgenMaze and IceSlider are rendered in a similar style to
ATARI games, while the DigitJump is a grid of MNIST (Le-
Cun et al., 1998) digits that highlights the cell at which the
agent is positioned. The action space in all cases is restricted
to four cardinal actions (UP, DOWN, LEFT, RIGHT) and a
no-op action, for a total of 5 actions.

Examples of expert trajectories are shown in Fig. 9. For
more information on the environments, we refer the reader
to the supplementary material (Anonymous, 2021).

E. Numerical Results
We finally include the full numerical results from Fig. 6 and
Fig. 7 in Table 2.
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ProcgenMaze

DigitJump

IceSlider

Figure 9: Expert trajectories for a level extracted from each of the environments.
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Algorithm 2 One-shot PPGS
Input: s,g
Output: action sequence (ai)1,...,n

1: z,zg=hθ(s),hθ(g) . project to latent space
2: V=L={z}
3: D={z:[]}
4: while for TMAX steps do
5: L′=∅
6: for z∈L do . grow the latent graph
7: for a∈A do
8: z′=fφ(z,a,s)
9: if minv∈V ‖z′−v‖2> ε

2 then . skip if already visited
10: L′=L′∪{z′}
11: D[z′]=D[z]+[a]
12: end if
13: end for
14: end for
15: L=filter(L′) . select the largest group of elements such that no pair is too close
16: z?=argminz∈L‖z−zg‖2
17: if ‖z?−zg‖2≤ ε2 then . if z? can be reidentified with the goal
18: return D[z?]
19: end if
20: V=V ∪L . add leaves to visited set
21: end while

Algorithm 3 PPGS (full planner)
Input: s,g

1: z=hθ(s)
2: B=∅ . set of observed latent transitions
3: P=one_shot_PPGS(s,g) . retrieve initial policy
4: T=[z]
5: for a in P do:
6: T=T+[f̂φ(T [−1],a,s)] . autoregressively predict latent trajectory T
7: end for
8: T.pop(0) . discard first embedding
9: while s6=g do

10: a=P.pop(0) . take first action and remove it from the action list
11: take action a and reach state s′

12: z′=hθ(s
′)

13: B=B∪{(z,z′,a)}
14: zpred=T.pop(0) . retrieve predicted embedding
15: if ‖zpred−z′‖2> ε

2 or A = [] then . if the latent trajectories does not match predictions
16: A=one_shot_PPGS(s′,g) . replan
17: T=[z]
18: for a in P do:
19: T=T+[f̂φ(T [−1],a,s)] . autoregressively predict latent trajectory T
20: end for
21: T.pop(0) . discard first embedding
22: end if
23: s=s′

24: z=z′

25: end while
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Algorithm 4 GS ON IMAGES

Input: s,g
1: Aleft={s:A}
2: V={s}
3: E=∅
4: while s6=g do
5: if Aleft[s]=∅ then
6: if ∃s′∈V such that Aleft[s

′] 6=∅ and s′ is reachable from s then
7: find and apply action sequence to reach closest s′∈V
8: s=s′

9: else
10: return
11: end if
12: else
13: a∼U(Aleft[s]) . uniformly sample among remaining actions
14: Aleft[s]=Aleft[s]\{a}
15: take action a and reach state s′

16: if s′ /∈V then
17: V=V ∪{s′}
18: Aleft[s]=A
19: end if
20: E=E∪(s,s′,a)
21: end if
22: end while

Table 2: Generalization results. This table presents the numerical results used to produce Fig. 6 and Fig. 7. All metrics are
averaged over 3 random seeds.

ProcgenMaze - Success % on unseen levels when training on n levels

n=1 2 5 10 20 50 100 200 500 1000

PPGS 0.320 0.447 0.530 0.607 0.703 0.743 0.770 0.783 0.843 0.897
PPO 0.115 0.113 0.139 0.168 0.203 0.321 0.417 0.455 0.577 0.667
DreamerV2 - - - - - - - - - 0.153
GLAMOR - - - - - - - - - 0.100

IceSlider - Success % on unseen levels when training on n levels

n=1 2 5 10 20 50 100 200 500 1000

PPGS 0.223 0.273 0.296 0.260 0.347 0.450 0.550 0.573 0.873 0.970
PPO 0.004 0.000 0.032 0.115 0.179 0.260 0.274 0.298 0.421 0.564
DreamerV2 - - - - - - - - - 0.007
GLAMOR - - - - - - - - - 0.010

DigitJump - Success % on unseen levels when training on n levels

n=1 2 5 10 20 50 100 200 500 1000

PPGS 0.160 0.170 0.157 0.157 0.220 0.247 0.193 0.250 0.790 0.990
PPO 0.107 0.137 0.109 0.161 0.291 0.331 0.405 0.502 0.441 0.475
DreamerV2 - - - - - - - - - 0.193
GLAMOR - - - - - - - - - 0.133
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