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Abstract

Recent events in business, politics and society001
have shed light on the importance and potential002
dangers of Natural Language processing (NLP)003
in the real world. NLP applications have gained004
unprecedented popularity not just among sci-005
entist and practitioners, but also the general006
public. As we develop new methodologies and007
curate new benchmarks and datasets it is more008
important than ever to consider the implications009
and societal impact of our work. In this paper,010
we characterize the landscape of societal bias011
research within the ACL community and pro-012
vide a quantitative and qualitative survey by013
analyzing an categorized corpus of 348 papers.014
More specifically, we present a definition of015
social bias based on ethical principals and in-016
vestigate (i) types of bias, (ii) languages, and017
(iii) type of paper. We find that there is signifi-018
cantly more work on gender biases and English019
than other languages. Finally, we discuss the020
possible causes behind our findings and provide021
pointers to future opportunities.022

1 Introduction023

Traditionally, the NLP community has focused on024

ethical debates around privacy (Hovy and Spruit,025

2016) ensuring that data is anonymized appropri-026

ately. More recently, there has been increased027

awareness that NLP research has a direct impact028

on peoples’ lives (Mayfield et al., 2019; Bender029

and Friedman, 2018). For example, summarization030

systems can amplify misinformation (Smiley et al.,031

2017), and sentiment analysis (SA) systems can032

assign more negative sentiments/emotions based033

on race and/or gender (Kiritchenko and Moham-034

mad, 2018). While such research used to be more035

academic (Leidner and Plachouras, 2017), these036

concerns are having an increasing impact in indus-037

try (Schnoebelen, 2017; Jin et al., 2021b) with con-038

sequences for users (Prabhumoye et al., 2021). It is039

well known that language data encodes demograph-040

ics and biases (Bender and Friedman, 2018). There041

is a risk that using such data can disclose inappro- 042

priate information about particular individuals, as 043

well as undesirable attitudes towards individuals 044

and groups (Hovy and Spruit, 2016; Eckert and 045

Rickford, 2001) and social hierarchies (Blodgett 046

et al., 2020). There are also concerns that systems 047

based on inappropriate data are likely to repeat such 048

biases, and may even amplify them (Bender and 049

Friedman, 2018). In this paper, we survey 348 pa- 050

pers collected from the ACL anthology that focus 051

on social bias and ethics in NLP research. We make 052

three kinds of contributions, where (i) we present a 053

working definition of social bias from a philosophy 054

perspective, (ii) quantify our findings by annotating 055

our corpus of papers and (iii) provide a discussion 056

and pointers for possible future research directions. 057

Through a quantitative analysis of current trends 058

we attempt to answer the following questions: 059

• What kind of social biases is the ACL commu- 060

nity concerned with? 061

• How many languages is bias studied in? 062

• What types of papers are present? 063

2 Related previous surveys 064

There is a considerable literature on social biases in 065

NLP. Much of this work provides guidelines and/or 066

recommendations. One of the first position papers 067

on the topic outlined the need for ethical consider- 068

ations that go beyond privacy concerns for users, 069

and focus on the social impact of experiments and 070

applications on individuals and (minority) groups 071

Hovy and Spruit (2016). 072

Surveys on social bias emphasize a variety of 073

different aspects, such as embedding representa- 074

tions, data collection and annotation, downstream 075

task performance, metrics and limiting negative 076

impact (Garrido-Muñoz et al., 2021; Mohammad, 077

2022b; Schnoebelen, 2017). Work by Bender and 078

Friedman (2018); Hovy and Prabhumoye (2021) 079

outline the concept of data statements and sources 080
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of bias respectively to aid the research design081

process. Other research has reviewed how to082

mitigate bias (Chandrabose et al., 2021; Meade083

et al., 2022; Balkir et al., 2022), how to teach084

bias, ethics and privacy to students (Bender et al.,085

2020; Friedrich and Zesch, 2021), evaluate existing086

metrics (Czarnowska et al., 2021; Delobelle et al.,087

2022), handle challenges presented by new laws088

(e.g., GDPR) (Lewis et al., 2017) and apply existing089

principles from ethics and privacy to NLP (De Jong090

et al., 2018; Leidner and Plachouras, 2017; Prabhu-091

moye et al., 2021). Our work follows the precedent092

established by Blodgett et al. (2020), who used key-093

words to select papers from the ACL anthology, and094

then enlarged the sample by following citations to095

other popular venues (eg AAAI, ICML etc.). Sim-096

ilarly, we also align with Field et al. (2021) who097

solely focus on papers published at ACL venues098

but draw on conclusions from NLP papers pub-099

lished elsewhere. Relying on keywords, of course,100

introduces possibilities for false positives and false101

negatives.102

Scope of this survey In this work, we solely fo-103

cus on papers published in the ACL anthology to104

gain a better insight into current trends and popular105

research approaches for social bias. One limitation106

of such an approach is that seminal work published107

at other venues is not reviewed here. In Appendix 7,108

we provide a table that shows each paper reviewed109

in this survey.110

3 Defining Bias111

The dictionary definition of bias is “an inclination112

or prejudice for or against one person or group, es-113

pecially in a way considered to be unfair” (Steven-114

son, 2010). Based on this, defining bias involves115

an interaction among different components: (i) in-116

dividuals or categories that determine a group, (ii)117

attitudes towards this group, and (iii) assessment118

of this attitude in relation to fairness. Bias comes119

into existence when a specific attitude is formed,120

which may or may not be fair. For example, in in-121

vestigating a disease that is more prevalent among122

women, use of gender is a relevant variable and, in123

itself, does not entail a differential attitude. Once a124

differential attitude is formed however, bias comes125

into existence and the attitude may be negative or126

positive. By definition, if a distinctly positive at-127

titude is formed about one variable (e.g., gender),128

it entails a less favorable attitude about the other129

gender categories. This does not mean that all bias130

is necessarily unfair, there are multiple theories and 131

definitions of fairness that are formulated and ana- 132

lyzed in-depth in political philosophy (Lamont and 133

Favor, 2004). The formal principle of equality for- 134

mulated by Aristotle (Ameriks and Clarke, 2000) 135

states that equals must be treated equally, which 136

is often referred to as ‘the fairness ideal’, but it 137

is neither a prevailing definition nor a useful one 138

in practice. Without identifying relevant features, 139

such a definition would not prevent categories such 140

as race or wealth to be used as variables for dif- 141

ferential treatment. However, a fairness approach 142

(Lamont and Favor, 2004) based on equal opportu- 143

nity might require a differential attitude (i.e., bias) 144

towards a certain category in order to ‘level the 145

playing field’. For example, if women are rou- 146

tinely given worse performance reviews and lower 147

pay for successfully completing the same tasks as 148

men, then there is differential treatment. Mean- 149

ing women who are as successful as men cannot 150

have the same opportunities. According to this 151

understanding of fairness, a bias towards women 152

would be fair. It is also worth noting that posi- 153

tive or negative discrimination is distinct from bias. 154

While discrimination is about treatment, bias is 155

about attitude. In other words, bias may lead to 156

discrimination (Mateo and Williams, 2020). In this 157

context, the ethical issue about bias is tied to differ- 158

ential treatment of descriptive categories resulting 159

in unfair outcomes. Identifying and dealing with 160

ethical concerns related to bias, must necessarily 161

involve identifying the descriptive categories and 162

the biases against those categories as well as exam- 163

ining whether the said bias is unfair, according to 164

the relevant definition of fairness. 165

4 Methodology 166

Following the standard practice mentioned above, 167

we searched the ACL anthology1 in September 168

2022 for relevant titles and abstracts using the key- 169

words: ethical, ethics, fairness, fair, bias, social, 170

society, societal, social good. For papers, pub- 171

lished after September 2022 we manually screened 172

all conference proceedings for the same keywords. 173

One limitation of relying on a keyword search alone 174

is that we might miss any work that refers to a bias 175

directly in the title, for example ‘fatphobia detec- 176

tion in online forums’. 177

1https://github.com/shauryr/
ACL-anthology-corpus
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Filtering Strategy A total of 1,437 papers were178

returned by the search; 523 papers were retained179

after a manual screening of titles and abstracts. We180

removed duplicates, as well as work not related to181

bias and/or ethics in NLP. Then we downloaded full182

papers, and filtered out papers if: (i) the contribu-183

tion was a talk, demonstration, abstract or keynote,184

(ii) “bias” was used in the machine learning sense,185

or (iii) the paper did not focus on social bias. This186

process produced a collection of 348 papers.187

Categorization process We identify trends in188

our corpus by empirically determining a set of189

five categories, where we fully review each paper190

manually. We make our corpus alongside with its191

corresponding categories and labels publicly avail-192

able2. We focus on four elements for each paper to193

identify trends, where we identify language investi-194

gated, type of bias analyzed and what kind of paper195

is introduced and which NLP area it belong to. For196

the type of paper analysis we utilize the authors197

description of contributions to split the papers in198

the following categories:199

• Method: In this category of papers, the main200

focus of the work is to contribute a new201

method, which includes but is not limited to202

novel ways to measure or mitigate social bias.203

• Analysis Papers in this category, examine ex-204

isting datasets, benchmarks, language models,205

NLP systems or embeddings for bias using206

social science methods, statistics and mixed207

methods approaches. For example, authors208

who have conducted research in this category209

have explicitly stated that they conduct an210

analysis or outline a mixed method approach.211

• Surveys and Position papers: This category212

of papers includes surveys, guides, tutorials,213

reviews and position papers.214

• Dataset, Benchmarks or Resources: Paper215

in this category propose new datasets, bench-216

marks, lexicons, challenge sets and often in-217

clude some preliminary analysis of the new218

data either collected through crowd-sourcing.219

• Datasets, Benchmarks and Methods: This220

is a combination of papers that focus on both221

introducing a new resource (e.g.: dataset or222

benchmark) in addition to a new methodology.223

2Link-added-upon-publication

Year Papers Year Papers
2010-2016 11 2020 68

2017 16 2021 96
2018 10 2022 79
2019 46 2023 22

Totals 83 Totals 265

Table 1: 76,15% of the 348 papers are from 2020-2023.

5 Empirical Findings 224

The 348 papers were published between 2010 and 225

2023. Table 1 shows that there has been consider- 226

able growth in interest in bias research. 227

Type of Paper Based on the criteria outlined 228

above, we have found that the majority of pa- 229

pers introduced are Method papers (57.75%), fol- 230

lowed by Datasets and Benchmarks (20.40%), Sur- 231

veys (15.22%), Analysis (4.31%) and combined 232

Datasets, Benchmarks and Methods (2.29%). We 233

take a closer look the majority category Methods, 234

where we assigned Method papers into different 235

categories based on the contribution of the paper 236

(see Table 2). 237

Methods We distinguish between bias detection 238

and measurement, as detection does not necessarily 239

measure or remove any kind of bias. We found 240

similarly to (Blodgett et al., 2020) that many pa- 241

pers propose a combination of techniques, hence 242

why we have decided to merge such approaches 243

into the category ‘Measurement and Mitigation’. 244

Many works in Debiasing and Mitigation apply or 245

extend methods such as WEAT (Caliskan et al., 246

2017) or HARD DB (Bolukbasi et al., 2016) to 247

a specific benchmark or dataset. One negative 248

side effect of this could be that for example in 249

gender bias Measurement/Mitigation, there is no 250

evidence that HardDB can or should be applied 251

to languages with grammatical gender (Sun et al., 252

2019). There has also been criticism of removing 253

bias (Caliskan et al., 2017), where removing bias 254

(i) only changes how an application or algorithm 255

understands the world but not how it applies the 256

knowledge gained from understanding (‘fairness 257

through blindness’), (ii) could harm meaning and 258

accuracy and (iii) bias can (unintentionally) be in- 259

troduced through other avenues during the design 260

process. Therefore, simply removing bias is not 261

enough (Chandrabose et al., 2021) and developing 262

new methods requires consistent reflection as bias 263

in NLP systems is never fully inescapable (Waseem 264

et al., 2021). Work by (Hovy, 2015; Kiritchenko 265

and Mohammad, 2018) has found that the some 266
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information bias mitigation techniques can be ben-267

eficial in improving performance in downstream268

tasks. The methods in the Miscellaneous category269

take a different approach to working on bias. For270

example (Fisher et al., 2020) in including bias sen-271

sitive attributes by defining a whitelist of triples272

for uncontroversial cases. Arguably, one drawback273

here is that it is up to the person whitelisting to274

decide what is not controversial and what is. Simi-275

larly, (Touileb et al., 2021) and (Wang et al., 2017)276

use gender and linguistic bias respectively to im-277

prove classification results. Touileb et al. (2021)278

first show how female critics disproportionately279

give lower ratings to female authors, where remov-280

ing metadata may have the opposite effect in that it281

does not help traditionally underrepresented groups282

in a specific domain. At the same time, many of283

the methods looking at measuring or removing bias284

complicate the data and tasks at hand and can lead285

to the development of systems that are not reliable286

when used in a more complex context (Talat et al.,287

2022b). This also applies to the predominant use288

of intrinsic metrics in bias measurement. These289

metrics may shed more light on how much bias290

exists in a dataset/LM, but does not necessarily291

correlate with performance on downstream tasks292

and therefore does not show the true harm of bias293

(Orgad and Belinkov, 2022). Thus, we may run the294

risk of developing methods for each new dataset or295

benchmark and missing out on crucial information296

that shows how bias affects different downstream297

tasks in different ways. However, documenting and298

measuring bias in a systematic way is crucial to un-299

derstanding what harms can be caused in real life300

situations, so that preventive methods can be de-301

veloped (Dev et al., 2021b). Current approaches in302

mitigation and/or measurement methods are evalu-303

ated on a variety of NLP areas, including Language304

Models (35.74%), Classification (22.85%) , NLG305

(14.76%) and NLI (3.33%). It is unsurprising that306

much attention has been paid to embedding rep-307

resentations that are trained on large amounts of308

text (Kiritchenko and Mohammad, 2018; Mayfield309

et al., 2019; Talat et al., 2022b). This has the bene-310

fit of bias methods being more widely applicable,311

but it also means that there are distinct limitations312

when a method is tied to a specific architecture313

rather than the task/benchmark itself. It means314

bias measures are no longer comparable in relation315

to other benchmarks and bias can be introduced316

at any stage of an NLP system design as it de-317

Type Papers %
Measurement 98 46.66
Debiasing / Mitigation 52 24.76
Combinations of above 32 15.23
Detection 19 9.04
Generation 5 2.38
Miscellaneous 4 1.9
Total 210 100.0

Table 2: Empirical taxonomy of methods.
pends on where and how the final LLM is applied 318

and to which community (Talat et al., 2022b). An 319

important trade-off to consider is the balance be- 320

tween generalizable and context-sensitive methods 321

to measure bias in downstream tasks. There are 322

also other areas that have done work on bias but 323

are not represented as well in this survey, which 324

include but are not limited to Speech Recognition 325

(Kwako et al., 2022; Savoldi et al., 2022), Multi- 326

Modal NLP (Chen et al., 2020a; Srinivasan and 327

Bisk, 2022a) and Information Extraction (Li et al., 328

2022b; Sun and Peng, 2021). 329

Social biases In Figure 1 we show the types of 330

biases investigated, where we include all social bi- 331

ases that occur more than once (see diagonal of the 332

matri). Furthermore there are a small number of 333

biases that only occur once and are not shown in 334

the table, such as bias transfer hypothesis (Steed 335

et al., 2022) or dialect bias (Tatman, 2017b). Fur- 336

thermore, we included the category multiple so- 337

cial biases, where the paper does not explicitly list 338

or describe the specific type of bias investigated 339

(Ghosh et al., 2021; Ramponi and Tonelli, 2022; 340

Mireshghallah and Berg-Kirkpatrick, 2021; Louk- 341

ina et al., 2019). There also is the intersectional 342

bias category, which shows how different elements 343

of a person’s identity (e.g., gender, race and age) 344

can either be a benefit or disadvantage and lead to 345

compounded discrimination (Crenshaw, 2013). For 346

example, recent work by Lalor et al. (2022) bench- 347

marks a variety of NLP models on different down- 348

stream tasks for its performance on intersectional 349

biases and (Câmara et al., 2022) introduce a frame- 350

work for unisectional and intersectional analysis of 351

sentiment analysis in a multilingual setting. Few 352

works focus on biases other than gender, where 353

(Davidson et al., 2019; Sap et al., 2019; Manzini 354

et al., 2019) look at racial bias and (Hutchinson and 355

Mitchell, 2019; Herold et al., 2022) investigate dis- 356

ability bias. Noticeable is that some biases are not 357

investigated on their own, such as age, religion, sex- 358

uality or profession. We included political/media 359

bias in this analysis, if the paper also looks at social 360

bias. For example, debiasing claims that include 361
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attitudes towards a group (e.g., sexuality). How-362

ever, this type of work does not explicitly mention363

social biases when attitudes or characteristics of364

the targeted group are only implied. Dayanık and365

Padó (2020) looks media bias on a immigration366

dataset (MARDY) but does not mention implied367

social biases (e.g., nationality or ethnicity). The368

most frequently combined social biases are gender369

and race.The most frequently combined social bi-370

ases are gender and race. In Table 3 we compute371

residuals between observed joints and predictions372

on margin, where highlighted in green are highly373

saturated areas and shades of red show less satu-374

rated areas.375

Languages We show the languages used in each376

type of paper, excluding Surveys and Position pa-377

pers in Figure 2. There are a total of 34 languages,378

however we leave out any languages that only oc-379

cur once in the visualization. There are 11 lan-380

guages not visualized, including Farsi, Urdu, Wolof,381

Bengali, Armenian, Bengali, Inuktitut, Ukrainian,382

Hungarian, Indonesian and Lithuanian. English,383

German, Spanish and Chinese are most commonly384

used either on their own or in combination with385

each other. The majority of all papers focus on a386

single language at a time. Furthermore, the vast ma-387

jority of LLMs are monolingual and do not encode388

the cultural variety that naturally occurs within one389

language, for example non-standard English vari-390

eties (Talat et al., 2022b). Therefore it is important391

to not only document the type of bias investigated,392

but also contextualize bias within a language’s cul-393

tural context, understanding of said bias and doc-394

ument the language itself (Bender Rule (Bender,395

2011)). Based on this collection, bias research is396

heavily biased towards western and Anglo-centric397

notions of bias and very few works focus on non-398

English benchmarks (Talat et al., 2022b; Hovy and399

Spruit, 2016). This proves extremely problematic400

when English benchmarks are automatically trans-401

lated, but many of the biases do not hold true in non-402

Western cultural contexts. For example, gendered403

professions do not necessarily translate across ev-404

ery language or culture (Talat et al., 2022b) and405

many NLP systems trained on written English (e.g.,406

Penn Tree Bank) do not perform well on non-407

standard English (Mayfield et al., 2019). From408

Table 4 we can see the residuals between observed409

joints showing a clear over-saturation (green) for410

specific combinations of languages (e.g: English411

and German or English and Spanish).412

6 Discussion 413

Datasets and Benchmarks Previous work 414

(Hovy and Spruit, 2016; Hovy, 2018; Talat et al., 415

2022b) outlined a number of reasons that may ex- 416

plain why there are so many papers focusing on the 417

same datasets, benchmarks, biases, and languages. 418

In the following section, we highlight some of the 419

elements that may explain why there is an uneven 420

distribution of work and resources. 421

• Experimental setup The majority of of work 422

in bias research has focused on using intrin- 423

sic bias measurements (bias in internal model 424

representations) and little attention has been 425

paid to extrinsic metrics (Orgad and Belinkov, 426

2022; Delobelle et al., 2022). A very real 427

consequence of this is that much work does 428

not appropriately describe, contextualize and 429

identify the potential harms that bias has in 430

real-world scenarios (Blodgett et al., 2020). 431

Also bias is inadvertently introduced in intrin- 432

sic metrics, where lexicons used to measure 433

bias in one dataset produces very different re- 434

sults in another (Antoniak and Mimno, 2021). 435

Similarly, (Goldfarb-Tarrant et al., 2021) have 436

found that there is no correlation between in- 437

trinsic and extrinsic metrics. Another key 438

problem is that often newly proposed datasets 439

are linked to specific metrics, which makes it 440

hard to draw conclusions from individual case 441

studies as many results are not generalizable 442

(Orgad and Belinkov, 2022). Another element 443

impacting metrics is the composition of test 444

data, where (Orgad and Belinkov, 2022) found 445

that test sets often don’t contain balanced ex- 446

amples. However, most metrics are defined 447

over a whole dataset and are therefore sen- 448

sitive to its composition, which may lead to 449

variability in results. Both metric choice and 450

dataset composition can significantly change 451

the results and conclusions drawn from a 452

downstream task or dataset (Akyürek et al., 453

2022a). Therefore, it is important to (i) pro- 454

vide motivation for including / excluding a 455

particular metric and describe how it impacts 456

downstream performance, (ii) compare a met- 457

ric across a variety of datasets and (iii) com- 458

pare many metrics across individual datasets. 459

• Funding There are unintended consequences 460

of research that can be traced to how research 461

projects are funded (e.g., governments or mil- 462
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Table 3: Observed joints: number of papers with combinations of languages (ISO 639). biases

Figure 1: A log-scaled heatmap showing the type and frequency of social biases.

itary interests), where researchers should be463

aware that their work has broader impact and464

can be abused (Hovy and Spruit, 2016).465

• Availability and Overexposure We have466

found that a small number of papers introduce467

new datasets or benchmarks (see 5). Creating468

and curating new datasets as well as bench- 469

marks are often a time-consuming, expensive 470

and long process, where it is oftentimes eas- 471

ier to utilize existing resources to try out new 472

methods (Hovy, 2018). Similarly there is the 473

phenomenon of topic overexposure, where 474

there are waves of seemingly ’popular’ re- 475
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Table 4: Residuals between observed joints and predictions based on margins.

Figure 2: A log-scaled heatmap showing the different languages (ISO-639-1) and their frequency of occurrence.

search topics that eventually go out of fashion.476

This is based on availability heuristic, if peo-477

ple recall a certain event or have knowledge478

about certain things then it must be important479

(Hovy and Spruit, 2016).480

Bias We have found a limited focus on specific481

social biases, where possible causes are rooted in482

(i) the data that encodes bias by default (Chandra-483

bose et al., 2021), where already available data484

determines what kind of bias we focus on, (ii) ma- 485

chine learning breakthroughs in NLP has enabled 486

‘streetlamp science’ and we focus on tasks that can 487

be solved (Hovy, 2018) and (iii) lack of awareness. 488

This has the consequence that difficult tasks are 489

not being tackled and bias remains present in NLP 490

tools. Therefore it is key to raise awareness (Baeza- 491

Yates, 2018), understand and measure what kind 492

of bias has influence on NLP models and work to- 493

wards developing solutions that are equitable. Here, 494
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we (i) showcase challenges in three frequently re-495

searched social biases that have been identified496

through this survey and (ii) point out opportunities497

for the future with the aim to raise awareness.498

• Gender bias There is a strong emphasis on499

a binary understanding of gender (Schnoebe-500

len, 2017; Orgad and Belinkov, 2022) and501

most task have been reduced to a mascu-502

line/feminine dichotomy (Savoldi et al., 2021).503

Initially, this may be perceived as useful to en-504

able research, however it does not capture the505

reality of the society and world we live in to-506

day. For example, in the USA alone over 1.4507

million people identify as transgender (Larson,508

2017) and 1.2 million identify as non-binary509

(Williams Institute, 2021). At the same time,510

there is not only a common misconception that511

gender and sex are the same (Larson, 2017),512

but also that sexuality is somehow indicative513

of either gender or sex. Sexuality refers to a514

person’s attraction to a sex or gender, but is not515

a marker of gender/sex itself (Baum and West-516

heimer, 2015). Therefore, one can not use sex517

or gender as a predictor or precursor to assum-518

ing a person’s sexuality. Talat et al. (2022b)519

argue that characteristics like sexuality are520

usually not observable, which can lead to a521

reliance on hegemonic stereotypes and unnat-522

ural language in bias evaluation benchmarks.523

This leaves plenty of opportunity to start con-524

versations around developing new datasets,525

benchmarks and methods that are more inclu-526

sive and reflect the world we live in (Savoldi527

et al., 2021; Orgad and Belinkov, 2022).528

• Race bias Related work by (Field et al., 2021)529

provides an excellent overview of the state of530

the art of race bias research in NLP. In their531

survey they identify that there are very few532

datasets and benchmarks and that oftentimes533

a narrow view of race and racial identity are534

perpetuated. Additionally, researchers often535

doesn’t explicitly state if they are focusing536

on racial bias through downstream tasks such537

as abusive language detection. Subsequently,538

currently deployed hate speech or toxicity539

classifiers mislabel language predominantly540

used in the African American community as541

toxic or hate speech when it is not (Dixon542

et al., 2018; Xia et al., 2020).543

Finally, this survey mentions a number of social544

biases that have been mentioned such as religious, 545

age and disability with few papers in Figure 1. It 546

is outside of the scope of this work to address 547

each social bias individually, but we would like 548

to point out that there is a lack of relevant bench- 549

marks, datasets and surveys to make substantial 550

progress in these areas and understand the unique 551

challenges each community faces (individually and 552

at an intersectional-level). Most importantly, we 553

would like to emphasize that this type of future 554

work needs to be deeply grounded in interdisci- 555

plinary research and led by diverse teams that con- 556

nect and engage with relevant communities. 557

Interdisciplinary research The relationship be- 558

tween language and social hierarchies is far more 559

complex than what current techniques can capture. 560

Therefore new methods need to be grounded in 561

relevant literature outside of NLP (Blodgett et al., 562

2020), because social bias is a complex issue (Sun 563

et al., 2019). Whilst NLP researchers may be 564

committed to using ethical approaches, they may 565

not necessarily have the required ethical and le- 566

gal knowledge to do so (Santy et al., 2021). This 567

makes it incredibly important to foster collabora- 568

tion between disciplines to ensure that historical 569

inequalities and biases are taken into consideration 570

when building new algorithms or systems (Caliskan 571

et al., 2017). 572

Diversity Given the real-life impact of NLP sys- 573

tems and research on people, there is not just a 574

need for diversity in experts working on such sys- 575

tems (Caliskan et al., 2017), but also a need for 576

practitioners and researchers to engage with the 577

affected communities and stakeholders (Blodgett 578

et al., 2020; Fortuna et al., 2021). Therefore, we 579

need to recognize the implicit bias of the people 580

working on different NLP systems and sense-check 581

at different stages how this bias may be reflected in 582

collected data, new benchmarks or models (Savoldi 583

et al., 2021; Hovy and Spruit, 2016). We also need 584

to acknowledge the lack of diversity in teams work- 585

ing on NLP (Schluter, 2018; Savoldi et al., 2021) 586

and work towards more inclusive teams that repre- 587

sent a wide variety of backgrounds and lived experi- 588

ences (Field et al., 2021). Otherwise, NLP systems 589

continue to represent majorities and we risk the 590

further oppression of already disadvantaged com- 591

munities (Talat et al., 2022b; Schnoebelen, 2017). 592
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Limitations and Ethics Statement593

In this paper, we surveyed a collection of papers594

and identified continued challenges in social bias595

research. We have created this collection based on596

a keyword search and outlined how this may not597

fully reflect all literature on social bias existing in598

the ACL anthology or other venues. We only used599

open-access papers in this collection and no human600

participants were involved in this work. Tradition-601

ally, social biases have been investigated in fields602

such as social sciences, law, or psychology which603

we have not discussed here. Furthermore, we do604

not give an analysis of algorithmic or dataset biases605

(e.g., machine learning, data mining or otherwise)606

or provided an in-depth review of technical con-607

tributions in computational social biases. We are608

also limited by the resource of the reviewed papers,609

where substantial contributions to the field have610

been made outside of ACL venues. Finally, we611

would like to point out that opportunities and rec-612

ommendations for future bias research as proposed613

in section 6 should be considered from a euro- and/614

or anglo-centric perspective. There may be a vari-615

ation depending on the social context, country or616

culture that works on a specific bias problem.617
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