

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SECA: SELF-GUIDED MODEL CALIBRATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning models frequently exhibit poor calibration, where predicted confidence scores fail to align with actual accuracy rates, undermining model reliability in safety-critical applications. We propose a novel train-time calibration method named **SECA** (Self-guided Model Calibration), a **hyper-parameter-free** approach designed to improve predictive calibration through dynamic confidence regularisation. SECA constructs adaptive soft targets by fusing batch-averaged model predictions with one-hot ground-truth labels during training, thereby creating a self-adaptive calibration mechanism that adapts target distributions based on the model’s predictive behaviour. This leads to well-calibrated predictions without additional hyper-parameter tuning or significant computational overhead. Our theoretical analysis elucidates SECA’s underlying mechanisms from entropy regularisation, gradient dynamics, and knowledge distillation perspectives. Extensive empirical evaluation demonstrates that SECA consistently achieves superior calibration performance compared to the Cross-Entropy loss and other state-of-the-art calibration methods across diverse architectures (CNN, ViT, BERT) and benchmark datasets in visual recognition and natural language understanding.¹

1 INTRODUCTION

Modern deep neural networks are highly effective in achieving remarkable predictive accuracy across various domains, yet they frequently exhibit poor calibration in their predictions. Poor calibration occurs when a model’s predicted confidence scores do not reliably correspond to its actual accuracy rates, e.g., predicting a class with 90% confidence while being correct only 70% of the time (Guo et al., 2017; Minderer et al., 2021). This miscalibration reduces model trustworthiness and may present severe consequences for decision-making, especially in safety-critical real-world scenarios, such as autonomous driving and medical diagnostics (Esteva et al., 2017; Kuutti et al., 2018). The root cause of miscalibration in deep neural networks is primarily due to the optimisation of standard training objectives, such as the Cross-Entropy loss, which aggressively push models to maximise confidence in correct predictions without ensuring that confidence levels align with actual correctness rates (Guo et al., 2017; Wang et al., 2021). Additionally, large model capacities and high-dimensional parameter spaces enable neural networks to over-fit training data, leading to poorly calibrated predictions even on uncertain or ambiguous cases (Müller et al., 2019).

To address this problem, a variety of approaches have been proposed, broadly categorised into post-hoc calibration and train-time calibration methods. Post-hoc methods such as Temperature Scaling (Guo et al., 2017), Isotonic Regression (Zadrozny & Elkan, 2002), and Dirichlet Calibration (Kull et al., 2019a) calibrate model predictions after training via a hold-out validation set. While effective on in-distribution data, these methods require additional data splits and offer no impact on the model’s intrinsic calibration behaviour during training, limiting their effectiveness under distribution shift where the training and test distributions differ significantly (Ovadia et al., 2019). In contrast, train-time techniques such as Label Smoothing Müller et al. (2019), Focal Loss (Lin et al., 2017) and Dual Focal Loss (Tao et al., 2023) modify the loss function to improve the model’s calibration throughout training. However, these methods typically introduce additional hyper-parameters, e.g., smoothing factor or focusing parameter, that require careful tuning for each dataset or model.

Recent adaptive approaches, such as AdaFocal (Ghosh et al., 2022) and MDCA (Hebbalaguppe et al., 2022), attempt to automatically adjust calibration strength based on prediction dynamics.

¹Source code is available in the [supplementary material](#)

054 OLS (Zhang et al., 2021) leverages correct predictions from each training epoch to form an extra
 055 loss component. While they improve calibration robustness, these methods often involve validation-
 056 based heuristics or auxiliary loss terms, increasing implementation complexity and computational
 057 overhead. Furthermore, the majority of these methods have been evaluated primarily on convolu-
 058 tional neural networks (CNNs), with limited exploration of their applicability to modern architec-
 059 tures such as Vision Transformer (ViT) (Dosovitskiy et al., 2021) or BERT (Devlin et al., 2019).
 060 These limitations call for a more practical and generalisable approach that is effective across archi-
 061 tectures and domains without relying on hyper-parameter tuning or post-training adjustments.

062 To this end, we propose SECA (Self-Guided Model Calibration), an effective self-guided loss func-
 063 tion designed to improve model calibration without introducing extra hyper-parameters. SECA en-
 064 hances the standard Cross-Entropy loss by incorporating a hybrid label component derived directly
 065 from the model’s own batch-level predicted probability distribution. Specifically, instead of using a
 066 fixed one-hot ground-truth vector as the training target, SECA dynamically constructs a hybrid label
 067 that combines the one-hot label with a softened target based on the model’s current prediction. This
 068 probabilistic soft label acts as a self-guided correction signal that promotes well-calibrated learning
 069 by adjusting the certainty of target labels proportionally to the model’s prediction behaviour. As
 070 training progresses, this mechanism allows the model to self-regulate its confidence levels, encour-
 071 aging appropriately calibrated predictions when miscalibration arises, without penalising learning
 072 when the model exhibits genuine uncertainty. The primary contributions of this work are as follows:

- 073 • We introduce SECA for self-guided model calibration, a novel, hyper-parameter-free loss func-
 074 tion that dynamically adjusts target distributions using batch-level averaged predictions. Unlike
 075 conventional calibration techniques, SECA requires no auxiliary loss terms or manual tuning,
 076 significantly simplifying its practical adoption across diverse domains and architectures.
- 077 • We provide a rigorous theoretical analysis along with empirical studies, from entropy regu-
 078 larisation, gradient dynamics, and knowledge distillation perspectives to reveal how SECA
 079 effectively improves neural network calibration by leveraging the collective behaviour of batch
 080 samples, thus promoting well-calibrated training.
- 081 • We empirically validate SECA through extensive experiments across a wide range of bench-
 082 mark datasets, including visual recognition (CIFAR-10/100, ImageNet) and natural language
 083 understanding (DBpedia, 20 Newsgroups), using representative architectures such as ResNet,
 084 ViT, and BERT. Our results demonstrate that SECA consistently improves calibration, achiev-
 085 ing substantial reductions in Static Calibration Error (SCE), Expected Calibration Error (ECE),
 086 and Adaptive ECE (AECE) compared with other SoTA methods.

088 2 RELATED WORK

091 Model calibration, where predicted probabilities should reliably correspond to true correctness like-
 092 lihoods, has long been recognised as a critical issue in machine learning. Before the deep learning
 093 era, calibration was studied in the context of classical models such as logistic regression, support
 094 vector machines, and decision trees (Brier, 1950; Platt et al., 1999b; Niculescu-Mizil & Caruana,
 095 2005; Zadrozny & Elkan, 2001b). Guo et al. (2017) later demonstrated that modern deep learning
 096 architectures such as ResNets and Inception often produce poorly calibrated predictions, particularly
 097 when trained with the standard Cross-Entropy loss. To measure calibration quality, they adopted the
 098 Expected Calibration Error (ECE), which has since become a standard metric in calibration research.
 099 Given the widespread recognition of calibration issues in deep learning, numerous approaches have
 100 been developed to address this problem. Broadly, calibration methods fall into two categories: post-
 hoc calibration and train-time calibration.

101 **Post-Hoc Calibration.** Post-hoc methods calibrate models after training, without modifying the
 102 learned parameters (Naeini et al., 2015; Guo et al., 2017; Kull et al., 2017; 2019b; Wenger et al.,
 103 2020; Ding et al., 2021). For instance, Guo et al. (2017) introduced Temperature Scaling, a simple
 104 yet effective technique that scales logits uniformly using a single temperature parameter, tuned on a
 105 validation set. Other post-hoc methods include histogram binning (Zadrozny & Elkan, 2001a), Platt
 106 scaling (Platt et al., 1999a), Isotonic Regression (Zadrozny & Elkan, 2002) and Dirichlet calibra-
 107 tion (Kull et al., 2019a), which offer varying trade-offs between complexity and flexibility. While
 effective, post-hoc methods do not improve the model’s intrinsic uncertainty or robustness under

108 distribution shift (Minderer et al., 2021; Ovadia et al., 2019). Thus, this study will primarily focus
 109 on train-time calibration techniques.
 110

Train-Time Calibration. In contrast to post-hoc calibration techniques that adjust a model’s outputs
 111 after training, train-time calibration methods aim to directly shape the model’s confidence behaviour
 112 during the training process. These techniques typically modify the loss function or training targets
 113 to encourage well-calibrated predictions and promote better-aligned probabilistic outputs.
 114

115 One of the most widely adopted techniques is label smoothing, which was initially proposed by
 116 Szegedy et al. (2016) and systematically studied for calibration by Müller et al. (2019). Label
 117 smoothing replaces one-hot encoded targets with softened label distributions, which not only acts
 118 as a form of regularisation but also leads to improved calibration, as it encourages the model to
 119 produce well-calibrated probability estimates rather than over-confident predictions. However, the
 120 optimal smoothing factor α requires careful tuning across models and datasets. Another prominent
 121 technique is the focal loss (Lin et al., 2017), which initially aimed to address class imbalance in
 122 object detection. It dynamically down-weights the contribution of well-classified/high-confidence
 123 samples using a focusing parameter γ , thus forcing the model to focus on harder examples. Mukhoti
 124 et al. (2020) later observed that, with appropriate choice of γ , focal loss also yields better calibrated
 125 predictions, particularly in imbalanced and long-tailed scenarios. Building upon this foundation,
 126 several extensions have been developed to enhance focal loss’s calibration capabilities. AdaFocal
 127 (Ghosh et al., 2022) builds upon focal loss by learning a sample group-specific focusing parameter γ
 128 using gradient-based meta-learning, allowing the calibration strength to adapt dynamically based on
 129 the model’s behaviour during training. Whilst it demonstrates improved calibration across various
 130 networks and datasets, the approach necessitates a validation set for meta-updating. Dual Focal Loss
 131 (DFL) (Tao et al., 2023) extends focal loss by simultaneously considering both the confidence of the
 132 correct class and that of the most competitive incorrect class, addressing calibration imbalances
 133 more effectively than standard focal loss through explicit modelling of this relationship. A recent
 134 method, MDCA, introduces a calibration-specific regularisation term that aligns the model’s class-
 135 wise confidence with empirical class-wise accuracy (Hebbalaguppe et al., 2022), helping to control
 136 per-class miscalibration. MDCA shows promising improvements in both Static Calibration Error
 137 (SCE) and Expected Calibration Error (ECE) metrics.
 138

139 While train-time calibration methods have proven effective, most of them require manual tuning or
 140 complex adaptation mechanisms to achieve well-calibrated predictions across classes and difficulty
 141 levels. In contrast, our proposed SECA is hyper-parameter-free and automatically adapts per-class
 142 and per-batch based on the model’s own predictive behaviour. It achieves strong calibration per-
 143 formance without the need for auxiliary components or validation-based tuning, offering a practical
 144 and generalisable alternative to existing train-time methods.
 145

3 METHODOLOGY

146 In this section, we first revisit the root cause of the over-confidence issue. Subsequently, we intro-
 147 duce SECA, a novel loss function for self-guided model calibration. Finally, we provide theoretical
 148 analysis regarding the mechanisms of SECA, from entropy regularisation, gradient dynamics, and
 149 knowledge distillation perspectives, respectively.
 150

3.1 PRELIMINARIES

151 In a standard supervised classification setup, let $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ be the training dataset, where
 152 $\mathbf{x}_i \in \mathbb{R}^d$ is the input and $y_i \in \{1, \dots, C\}$ is the corresponding ground-truth class label of C
 153 possible classes. Let $f_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^C$ be a neural network parametrised by θ , producing a logit vector
 154 $\mathbf{z}_i = f_\theta(\mathbf{x}_i) \in \mathbb{R}^C$. The predicted probability vector for the i -th sample is given by the softmax:
 155

$$156 \mathbf{p}_i = \text{softmax}(\mathbf{z}_i) = [p_{i,1}, p_{i,2}, \dots, p_{i,C}]^\top, \quad \text{where} \quad p_{i,c} = \frac{\exp(z_{i,c})}{\sum_{j=1}^C \exp(z_{i,j})}, \quad (1)$$

157 is the probability for class c , given the logits \mathbf{z}_i . The model prediction is calibrated if for all confi-
 158 dence levels $p \in [0, 1]$ Guo et al. (2017), the following holds:
 159

$$160 \mathbb{P}\left(Y = \hat{Y} \mid \max_c P_c = p\right) = p, \quad (2)$$

162 where \hat{Y} denotes the predicted label, $\max_c P_c$ is the model’s maximum confidence, and \mathbb{P} represents
 163 the empirical probability that the model is correct given that it is predicting with confidence p . In
 164 other words, if the model predicts a class with 80% confidence, it should be correct approximately
 165 80% of the time for those predictions. However, modern neural networks often violate this condition,
 166 with miscalibration becoming increasingly severe as predicted confidence increases.

167 **Cross-Entropy.** The Cross-Entropy loss is the most commonly used objective for classification:
 168

$$\mathcal{L}_{\text{CE}} = -\log p_{i,y_i}, \quad (3)$$

170 where p_{i,y_i} is the predicted probability for the correct class y_i . It assumes a one-hot target vector
 171 $\mathbf{q}_i \in \{0, 1\}^C$ with $\sum_{c=1}^C q_{i,c} = 1$, where $q_{i,c} = \mathbb{I}[c = y_i]$ and $\mathbb{I}[\cdot]$ is the indicator function. The
 172 gradient with respect to the correct class logit is $\frac{\partial \mathcal{L}_{\text{CE}}}{\partial z_{i,y_i}} = p_{i,y_i} - 1$, which remains negative even
 173 when p_{i,y_i} approaches 1, continuously driving the logit upwards. This persistent gradient pressure
 174 reinforces already confident predictions and is a primary cause of overconfidence (Guo et al., 2017).
 175

176 **Note on Calibration Scope.** While neural networks can exhibit both over-confidence and under-
 177 confidence, modern deep networks trained with Cross-Entropy loss predominantly suffer from
 178 over-confidence, particularly after convergence (Guo et al., 2017; Minderer et al., 2021). Under-
 179 confidence typically occurs in early training stages or under severe regularisation, but is less prevalent
 180 in standard training regimes. Therefore, we focus on over-confidence as the primary calibration
 181 challenge, noting that our proposed SECA naturally adapts to both scenarios through its batch-aware
 182 mechanism, as we demonstrate in our theoretical analysis (Section 3.3).
 183

3.2 SELF-GUIDED MODEL CALIBRATION VIA SECA

185 To calibrate the model during training, we propose SECA, an intuitive yet effective loss function
 186 that dynamically adjusts the target distribution per-class by leveraging the model’s own batch-level
 187 predictive confidence in a self-guided manner. Unlike label smoothing, which applies a fixed pertur-
 188 bation to the target labels, SECA adaptively constructs soft labels without requiring any additional
 189 hyper-parameters.

190 Given an input sample \mathbf{x}_i , the model outputs logits vector $\mathbf{z}_i = f_\theta(\mathbf{x}_i) \in \mathbb{R}^C$. The predicted
 191 probability distribution \mathbf{p}_i is computed via the *softmax* function (Eq. 1). For class $j \in \{1, \dots, C\}$,
 192 we define the set of batch samples as S , samples belonging to class j as:

$$S_j = \{i \in \{1, \dots, M\} \mid y_i = j\}, \quad (4)$$

195 where M is the batch size and y_i denotes the ground-truth label for sample i .

196 **Batch-Level Class-wise Distribution.** For each class $j \in \{1, \dots, C\}$, we compute the batch-level
 197 average predicted probability distribution μ_j across all samples whose ground-truth label is j :

$$\mu_j = \frac{1}{|S_j|} \sum_{i \in S_j} \mathbf{p}_i, \quad (5)$$

202 where $\mu_j = [\mu_{j,1}, \mu_{j,2}, \dots, \mu_{j,C}]^\top \in \mathbb{R}^C$ is the average probability distribution for class j . Each
 203 element $\mu_{j,c}$ represents the average predicted probability for class c among all samples whose true
 204 label is j . The distribution μ_j captures the model’s collective belief over all classes, conditioned on
 205 samples belonging to class j within the current batch.

206 **Construction of Hybrid Target.** For each sample i , we define the hybrid target $\tilde{\mathbf{q}}_i$ by combining
 207 the one-hot ground-truth label, \mathbf{q}_i , with the batch-averaged prediction for its corresponding class:

$$\tilde{q}_{i,c} = q_{i,c} + \mu_{y_i,c}, \text{ where } q_{i,c} = \begin{cases} 1, & \text{if } c = y_i, \\ 0, & \text{otherwise.} \end{cases} \quad (6)$$

211 The above formulation anchors the soft target at the ground-truth class while adaptively softening it
 212 based on the model’s collective predictive distribution for that class within the batch. Note that, the
 213 hybrid target $\tilde{\mathbf{q}}_i$ is intentionally unnormalised. This preserves the full influence of both the one-hot
 214 label and the class-conditional batch-averaged prediction. Cross-Entropy with unnormalised non-
 215 negative targets is mathematically valid, and the resulting gradient naturally matches the refined
 216 expression in Eq. 12.

216 **Loss Computation.** The SECA loss for a given sample i is then computed as the Cross-Entropy
 217 between the model’s predicted probability distribution \mathbf{p}_i and the constructed hybrid target $\tilde{\mathbf{q}}_i$:
 218

$$219 \quad \mathcal{L}_{\text{SECA}} = - \sum_{c=1}^C \tilde{q}_{i,c} \log p_{i,c}. \quad (7)$$

$$220$$

$$221$$

222 3.3 THEORETICAL ANALYSIS

$$223$$

224 The design of SECA inherently improves model calibration by introducing a self-guided regularisa-
 225 tion mechanism during training. Specifically, SECA encourages the model’s output distribution to
 226 align not only with the ground-truth label but also with the average prediction behaviour of samples
 227 from the same class. In the following parts, we formalise this intuition by showing that the SECA
 228 can be interpreted as a modified Cross-Entropy objective augmented with a KL-divergence-like reg-
 229 ulariser. We further analyse the per-sample gradients induced by this formulation and explain how
 230 they naturally provide bidirectional calibration by moderating excessive confidence while strength-
 231 ening insufficient confidence, thereby leading to well-calibrated outputs throughout training. Addi-
 232 tionally, we provide an interpretation from the knowledge distillation perspective, where batch-level
 233 statistics serve as adaptive teachers for calibration.

234 **Entropy Perspective.** Recall the hybrid target $\tilde{\mathbf{q}}_i$ (Eq. 6), we can decompose SECA (Eq. 7) into:

$$235 \quad \mathcal{L}_{\text{SECA}} = \underbrace{-\log p_{i,y_i}}_{\text{standard CE}} + \underbrace{\left(-\sum_{c=1}^C \mu_{y_i,c} \log p_{i,c} \right)}_{\text{KL-like regulariser}}. \quad (8)$$

$$236$$

$$237$$

$$238$$

239 The first term is the standard Cross-Entropy loss, which encourages the model to increase the pre-
 240 dicted probability p_{i,y_i} for the ground-truth class y_i as much as possible. Minimising this term
 241 alone typically drives the network towards poorly calibrated outputs, either over-confident or under-
 242 confident depending on the training dynamics. The second term serves as an adaptive calibration
 243 regulariser that computes the Cross-Entropy between the batch-level averaged class distribution μ_{y_i}
 244 and the model’s own prediction \mathbf{p}_i . This regulariser dynamically adapts the target confidence based
 245 on the collective behaviour of same-class samples, promoting well-calibrated predictions. The term
 246 is equivalent to the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) as below:

$$247 \quad KL(\mu_{y_i} \| \mathbf{p}_i) = - \sum_{c=1}^C \mu_{y_i,c} \log \left(\frac{\mu_{y_i,c}}{p_{i,c}} \right) = -H(\mu_{y_i}) - \sum_{c=1}^C \mu_{y_i,c} \log p_{i,c}, \quad (9)$$

$$248$$

$$249$$

250 where $H(\mu_{y_i})$ denotes the entropy of μ_{y_i} . If we rearrange the formula, we obtain:

$$251 \quad - \sum_{c=1}^C \mu_{y_i,c} \log p_{i,c} = KL(\mu_{y_i} \| \mathbf{p}_i) + H(\mu_{y_i}), \quad (10)$$

$$252$$

$$253$$

254 as $-\sum_{c=1}^C \mu_{y_i,c} \log p_{i,c}$ is the KL-like term in Eq. 8. Thus, the overall loss can be equivalently
 255 written as:

$$256 \quad \mathcal{L}_{\text{SECA}} = -\log p_{i,y_i} + KL(\mu_{y_i} \| \mathbf{p}_i) + H(\mu_{y_i}). \quad (11)$$

$$257$$

258 This decomposition highlights the dual effect of SECA: while the standard Cross-Entropy term pro-
 259 motes correct class prediction, the KL divergence regularisation encourages predictions to align with
 260 the batch-informed distribution μ_{y_i} , which serves as an adaptive calibration signal. Unlike fixed reg-
 261 ularisers (e.g., label smoothing with constant α), μ_{y_i} is adapted based on current model behaviour,
 262 providing entropy-increasing regularisation when predictions are over-confident, and concentrating
 263 guidance when predictions are under-confident or scattered. This adaptive mechanism naturally
 264 leads to well-calibrated predictions without requiring explicit entropy terms or additional hyper-
 265 parameters (empirical study is in Appendix A).

266 **Gradient Perspective.** To understand the impact of SECA on training dynamics, we also examine
 267 the gradients with respect to the model logits. Taking the derivative of per-sample SECA \mathcal{L}_i with
 268 respect to the logit $z_{i,c}$ for class c , we obtain:

$$269 \quad \frac{\partial \mathcal{L}_i}{\partial z_{i,c}} = 2p_{i,c} - (q_{i,c} + \mu_{y_i,c}), \quad (12)$$

270 which follows from the general soft-target cross-entropy derivative $\partial L / \partial z = (\sum_j t_j)p - t$ when
 271 the hybrid target $\tilde{q}_i = q_i + \mu_{y_i}$ is unnormalised and satisfies $\sum_c \tilde{q}_{i,c} = 2$.
 272

273 For the ground-truth class $c = y_i$, the gradient simplifies to:

$$274 \quad \frac{\partial \mathcal{L}_i}{\partial z_{i,c}} = 2p_{i,c} - (1 + \mu_{y_i,c}). \quad (13)$$

277 If the model is already confident, i.e., $p_{i,c}$ is large, the gradient becomes weakly negative. However,
 278 the additional term, $-(1 + \mu_{y_i,c})$ provides a stronger downward correction than in the normalised
 279 case, which remains present even when the model is highly confident. This applies a downward
 280 force on the logit, which naturally counteracts the tendency of Cross-Entropy loss to endlessly push
 281 the logit upward, effectively preventing extreme overconfidence.

282 And for non-target classes where $k \neq y_i$, the gradient is given by:

$$284 \quad \frac{\partial \mathcal{L}_i}{\partial z_{i,k}} = 2p_{i,k} - \mu_{y_i,k}. \quad (14)$$

287 In this case, if the predicted probability $p_{i,k}$ for a non-target class exceeds the batch-averaged value
 288 $\mu_{y_i,k}$, the gradient is positive, thereby pushing the corresponding logits downward and reducing
 289 the misplaced confidence. Conversely, if $p_{i,k}$ is too low compared to $\mu_{y_i,k}$, the gradient becomes
 290 negative, softly encouraging a slight increase in probability for relevant secondary classes.

291 Overall, this gradient structure explicitly encourages the model’s per-sample prediction \mathbf{p}_i to align
 292 with the batch-informed calibration target μ_{y_i} . The factor of 2 amplifies the corrective influence of
 293 the hybrid target, preserving the full effect of both q_i and μ_{y_i} rather than reducing the mechanism
 294 to a normalised label-smoothing variant. The gradients provide bidirectional calibration correc-
 295 tion: reducing excessive confidence when predictions are too sharp, while strengthening confidence
 296 when predictions are too diffuse or misaligned with class-typical patterns. This dynamic adjustment
 297 process operates without requiring external supervision, hyper-parameter tuning, or hand-designed
 298 entropy penalties (empirical study is in Appendix A).

299 **Knowledge Distillation Perspective.** The mechanism underlying SECA can also be viewed as a
 300 form of adaptive self-distillation (Furlanello et al., 2018; Hinton et al., 2015). Specifically, for each
 301 target class y_i , the batch-level average prediction distribution μ_{y_i} serves as an adaptive soft teacher
 302 constructed from the model’s own outputs over samples belonging to class y_i . During training, the
 303 network is encouraged to align each individual prediction \mathbf{p}_i not only with the one-hot target but also
 304 with the class-informed distribution μ_{y_i} , effectively teaching itself appropriate confidence levels
 305 based on the collective prediction behaviour of similar samples. This creates a dynamic calibration
 306 mechanism where the “teacher” signal adapts to the current state of model predictions for each class.

307 As training progresses, this alignment process promotes class-wise calibration consistency. Ideally,
 308 the per-sample output \mathbf{p}_i converges towards the batch-averaged prediction over samples that share
 309 the same label. At convergence, we can expect:

$$310 \quad \mathbf{p}_i = \frac{1}{|S_{y_i}|} \sum_{j \in S_{y_i}} \mathbf{p}_j = \mu_{y_i}, \quad (15)$$

313 where S_{y_i} denotes the set of samples with ground-truth label y_i in the batch. This condition im-
 314 plies that each sample’s predictive distribution becomes consistent with the calibrated predictive
 315 behaviour of its class, leading to well-calibrated outputs that reflect appropriate uncertainty levels
 316 rather than miscalibrated softmax distributions (empirical study is in Appendix A).

317 4 EXPERIMENTS

320 **Network Architectures.** To validate the effectiveness and generality of the proposed SECA, we
 321 conduct comprehensive experiments across diverse network architectures, including CNN, ViT, and
 322 BERT models. All models are trained from scratch under identical training conditions. Our ar-
 323 chitectural choices are designed to provide comprehensive evaluation across both established and
 324 modern paradigms while maintaining computational feasibility. For CIFAR-10/100 experiments

(Krizhevsky et al., 2009), we adopt ResNet32/56 models following the experimental protocol of MDCA (Hebbalaguppe et al., 2022). For large-scale ImageNet evaluation (Deng et al., 2009), we employ ViT-small, which has become increasingly prevalent for large-scale vision tasks. For natural language understanding tasks, DBpedia (Lang, 1995) and 20 Newsgroups (Zhang et al., 2015), we evaluate on both BERT-small and BERT-base architectures to assess scalability across different model sizes within the Transformer family. This architectural diversity spanning traditional CNNs on CIFAR datasets, modern Vision Transformers on ImageNet, and BERT models for NLP tasks, enables comprehensive evaluation across different inductive biases, model types, and task domains.²

Compared Baselines. We compare our method against Cross-Entropy loss, Focal loss (Focal) (Lin et al., 2017), Label Smoothing (LS) (Müller et al., 2019), MMCE (Kumar et al., 2018), DCA (Liang et al., 2020), FLSD (Mukhoti et al., 2020), MDCA (Hebbalaguppe et al., 2022), Brier (Brier, 1950), OLS (Zhang et al., 2021), Dual Focal (Tao et al., 2023), and AdaFocal (Ghosh et al., 2022).

Hyper-Parameters Setups. For method-specific hyper-parameters, e.g. γ and β in MDCA (Hebbalaguppe et al., 2022), we adopt the configurations from original papers based on their best reported results. All methods are trained under the same dataset-model pairs and general training hyper-parameters as shown in Table 4 (Appendix B), ensuring a consistent evaluation environment.

Evaluation Metrics. We evaluate each method via four metrics: Test Error rate (TE), Static Calibration Error (SCE) (Nixon et al., 2019), Expected Calibration Error (ECE) (Guo et al., 2017), and Adaptive ECE (AECE) (Ding et al., 2020). Details about those metrics are in the Appendix C.

4.1 EXPERIMENTS ON VISUAL RECOGNITION TASKS

Table 1 presents the experimental results on CIFAR-10 and CIFAR-100 using ResNet32 and ResNet56 networks. Our proposed SECA demonstrates strong calibration performance across both datasets, with distinct advantages emerging on each evaluation setting. On CIFAR-10, while some specialised methods such as MDCA achieve lower calibration errors in certain metrics, SECA maintains competitive performance across all measures while being hyperparameter-free. SECA consistently outperforms the Cross-Entropy baseline, demonstrating meaningful calibration improvements without sacrificing predictive accuracy. Notably, SECA achieves the lowest test error rates (7.07% and 6.47% for ResNet32 and ResNet56, respectively) amongst all evaluated methods, indicating that the calibration improvements do not come at the expense of model accuracy.

Methods	CIFAR-10								CIFAR-100							
	ResNet32				ResNet56				ResNet32				ResNet56			
	TE	SCE	ECE	AECE	TE	SCE	ECE	AECE	TE	SCE	ECE	AECE	TE	SCE	ECE	AECE
Focal ($\gamma=3.0$)	7.99	10.0	4.54	4.46	7.59	9.73	4.46	4.41	31.45	2.07	2.26	2.17	28.92	2.01	2.07	1.85
LS ($\alpha=0.1$)	7.42	15.0	6.37	6.28	6.66	13.8	5.49	5.30	29.95	2.28	2.80	2.86	27.21	2.18	2.35	2.51
MMCE ($\beta=4.0$)	8.43	8.47	3.40	3.47	8.18	8.45	3.30	3.34	31.68	2.50	7.53	7.52	29.63	2.36	6.93	6.90
DCA ($\beta=1.0$)	7.53	9.02	4.24	4.22	6.93	7.37	3.34	3.29	30.03	3.15	12.0	12.0	27.48	2.95	11.1	11.1
FLSD ($\gamma=3.0$)	7.90	9.88	4.44	4.41	7.51	10.3	4.75	4.71	32.02	2.10	2.16	2.12	28.95	2.02	2.30	2.28
MDCA ($\gamma, \beta=1.0$)	7.40	5.02	1.84	1.76	7.00	4.29	1.25	1.16	30.96	2.30	5.61	5.61	28.00	2.17	5.24	5.21
Brier	7.72	6.18	2.61	2.59	7.76	5.39	2.15	2.05	33.84	2.30	5.56	5.53	30.97	2.11	4.94	4.88
OLS ($\alpha=0.5$)	7.46	7.27	3.31	3.30	7.34	6.27	2.80	2.75	30.44	2.12	4.51	4.56	27.95	1.88	2.44	2.41
DualFocal ($\gamma=5.0$)	8.01	5.03	1.82	1.79	7.62	5.62	2.61	2.51	31.54	2.17	3.30	3.26	28.21	2.05	1.94	1.96
AdaFocal	7.56	6.49	2.69	2.62	6.79	4.56	1.44	1.37	31.27	2.74	3.42	3.43	27.89	2.54	2.75	2.76
CE (baseline)	7.14	8.47	3.86	3.85	6.85	6.89	3.10	3.09	30.36	2.83	10.0	10.2	27.15	2.59	9.09	9.09
SECA (Ours)	7.07	6.67	2.94	2.84	6.47	5.75	2.41	2.44	29.82	1.89	1.90	1.95	26.97	1.79	1.71	1.74

Table 1: Comparison between our method and other methods regarding calibration metrics: Test Error (%), SCE (%), ECE (%) and AECE (%), for ResNet32/56 on CIFAR10/100 datasets. A lower error is better. Results are averaged values based on five independent trainings.

SECA’s advantages become even more pronounced on the more challenging CIFAR-100 dataset, where it consistently achieves the best results across all metrics. On CIFAR-100, SECA obtains the lowest test error rates (29.82% and 26.97% for ResNet32 and ResNet56, respectively) while simultaneously achieving superior calibration with the lowest SCE (1.89% and 1.79%), ECE (1.90% and 1.71%), and AECE (1.95% and 1.74%) values compared to all baseline methods. The substantial calibration improvements are particularly evident when comparing to the baseline, with ECE reduced from 10.0% to 1.90% on CIFAR-100 ResNet32. Compared to recent strong baselines

²ViT-ImageNet experiments are conducted with eight Nvidia RTX 4090 GPUs, and the other experiments are performed using two RTX A5500 GPUs.

378 including DualFocal and AdaFocal, SECA shows particularly strong performance on this multi-
 379 class scenario where the larger number of classes and finer-grained distinctions make calibration
 380 more challenging. This demonstrates the effectiveness of SECA’s adaptive, class-wise regularisa-
 381 tion mechanism in scenarios with higher class complexity.

382 Table 2 presents the Top-1/5 test errors and calibration metrics for ViT-small on the ImageNet
 383 dataset. SECA demonstrates excellent calibration performance, achieving the best results across all
 384 calibration metrics with SCE (0.53%), ECE (7.47%), and AECE (7.65%), substantially outper-
 385 forming the Cross-Entropy baseline and other calibration-focused methods. Notably, SECA reduces ECE
 386 by 37.3% compared to the Cross-Entropy baseline (from 11.9% to 7.47%) while simultaneou-
 387 sly improving Top-1 accuracy from 25.61% to 23.94%.

Methods	ViT-small on ImageNet					Training Cost
	TE (Top-1)	TE (Top-5)	SCE	ECE	AECE	
Focal ($\gamma=3.0$)	27.17	8.17	0.66	8.12	7.86	40.23 Hours
LS ($\alpha=0.1$)	23.78	7.80	0.68	8.99	8.82	33.85 Hours
MMCE ($\beta=2.0$)	25.61	8.64	0.58	11.8	10.9	40.13 Hours
DCA ($\beta=1.0$)	25.45	8.68	0.55	12.1	11.3	40.32 Hours
FLSD ($\gamma=3.0$)	26.12	8.31	0.66	8.25	8.05	42.85 Hours
MDCA ($\gamma, \beta=1.0$)	25.85	8.49	0.59	9.29	8.61	43.60 Hours
Brier	25.77	9.70	0.59	9.39	8.68	44.27 Hours
OLS ($\alpha=0.5$)	22.84	7.21	0.64	9.05	8.68	37.53 Hours
DualFocal ($\gamma=5.0$)	25.80	8.47	0.65	8.23	7.80	40.69 Hours
AdaFocal	24.74	8.31	0.61	8.31	7.67	41.31 Hours
CE (baseline)	25.61	8.73	0.56	11.9	11.0	30.83 Hours
SECA (Ours)	23.94	8.03	0.53	7.47	7.65	32.08 Hours

399 Table 2: Comparison between our method and other methods regarding calibration metrics: Test
 400 Error (%), SCE (%), ECE (%) and AECE (%), for ViT-small on the ImageNet dataset. A lower
 401 error or training cost is better.

402 While OLS achieves the lowest Top-1 and Top-5 error rates (22.84% and 7.21%, respectively),
 403 SECA strikes an excellent balance between accuracy and calibration, obtaining competitive accu-
 404 racy (23.94% Top-1, 8.03% Top-5) while significantly surpassing OLS in calibration quality (ECE:
 405 7.47% vs 9.05%). Among methods that achieve similar accuracy levels, SECA provides substan-
 406 tially better calibration—for instance, compared to Label Smoothing which achieves 23.78% Top-1
 407 error, SECA reduces ECE from 8.99% to 7.47%.

408 Furthermore, SECA demonstrates excellent computational efficiency with a training cost of 32.08
 409 hours, remaining close to the baseline Cross-Entropy (30.83 hours) while being considerably faster
 410 than more complex methods such as MDCA (43.60 hours). This efficiency advantage, combined
 411 with its hyper-parameter-free nature, makes SECA particularly attractive for large-scale applications
 412 like ImageNet where computational resources are a significant consideration.

413 To further illustrate the calibration improvements, Figure 1 presents reliability diagrams comparing
 414 SECA against several baseline methods on CIFAR-100 with ResNet-56. The diagrams demonstrate
 415 that whilst Cross Entropy exhibits substantial overconfidence (particularly in high-confidence bins),
 416 SECA maintains close alignment between predicted confidence and actual accuracy across all
 417 confidence ranges. More reliability analysis is in Appendix F.

430 Figure 1: Reliability Diagram of Different Methods on CIFAR-100 with ResNet56.
 431

432 4.2 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING TASKS
433

434 Table 3 presents the results on natural language understanding datasets DBpedia and 20 News-
435 groups using BERT-small and BERT-base models. SECA demonstrates strong performance across
436 both datasets, with particularly notable results varying by dataset characteristics. On the DBpedia
437 dataset, SECA achieves excellent overall performance, obtaining the lowest test error rates (1.18%
438 for BERT-small and 1.38% for BERT-base) while maintaining competitive calibration. For ECE
439 and AECE metrics, SECA consistently achieves the best performance across both model sizes (e.g.,
440 ECE of 0.35% vs baseline’s 0.53% for BERT-small). While some methods like Brier Score achieve
441 slightly lower SCE values, SECA provides the best balance between accuracy and calibration with-
442 out requiring hyper-parameter tuning.

445 446 447 448 449 450 451 452 453 454	Methods	DBpedia								20 Newsgroups							
		BERT-small				BERT-base				BERT-small				BERT-base			
		TE	SCE	ECE	AECE	TE	SCE	ECE	AECE	TE	SCE	ECE	AECE	TE	SCE	ECE	AECE
Focal ($\gamma=3.0$)	1.48	10.9	7.57	7.56		1.43	11.8	8.10	8.08	33.85	11.4	7.70	7.88	38.06	18.7	5.34	5.15
LS ($\alpha=0.1$)	1.28	12.3	8.37	8.36		1.41	13.3	8.91	8.90	31.51	10.3	5.81	5.83	35.31	13.4	9.23	10.2
MMCE ($\beta=4.0$)	1.71	7.72	5.33	5.33		2.07	8.61	6.26	6.26	32.71	10.3	4.66	4.71	35.31	16.0	12.1	12.1
DCA ($\beta=1.0$)	1.33	0.94	0.55	0.56		1.42	1.28	0.72	0.71	31.96	15.3	12.9	12.9	35.41	20.9	18.1	18.1
FLSD ($\gamma=3.0$)	1.48	11.0	7.61	7.61		1.40	12.0	8.33	8.32	33.61	11.4	7.65	7.71	34.59	13.5	5.60	5.49
MDCA ($\gamma, \beta=1.0$)	1.35	1.77	1.09	1.07		1.35	1.60	0.80	0.76	33.18	13.2	9.24	9.31	33.24	14.7	11.1	11.0
Brier	1.35	0.85	0.38	0.43		1.47	1.16	0.66	0.68	31.43	11.4	6.86	7.03	32.39	16.3	13.4	13.4
OLS ($\alpha=0.5$)	1.29	6.74	4.45	4.39		1.42	5.33	3.42	3.27	30.37	12.4	9.98	9.89	32.60	14.0	8.43	8.17
DualFocal ($\gamma=5.0$)	1.48	9.78	6.70	6.70		1.48	16.9	11.7	11.7	39.03	10.8	6.00	5.88	42.02	12.9	7.44	7.43
AdaFocal	1.37	1.97	1.24	1.20		1.43	2.42	1.29	1.26	39.29	11.3	5.97	5.95	41.54	19.1	15.3	15.2
CE (baseline)	1.32	0.95	0.53	0.54		1.39	1.17	0.70	0.71	32.39	12.8	9.36	9.23	32.73	20.0	17.8	17.8
SECA (Ours)	1.18	0.97	0.35	0.38		1.38	1.20	0.63	0.66	31.38	8.89	3.53	3.89	32.73	13.3	5.33	5.06

455
456 Table 3: Comparison between our method and other methods regarding calibration metrics: Test Er-
457 rror (%), SCE (%), ECE (%) and AECE (%), for BERT-small/base on DBpedia and 20 Newsgroups
458 datasets. A lower error is better. Results are averaged values based on five independent runs.

459
460 On the more challenging 20 Newsgroups dataset, SECA excels particularly in calibration metrics,
461 achieving the lowest SCE (8.89% for BERT-small), ECE (3.53% and 5.33% for BERT-small and
462 BERT-base, respectively), BERT-base, respectively), demonstrating substantial improvements over
463 Cross-Entropy (e.g., reducing ECE from 9.36% to 3.53% on BERT-small, a 62% improvement).

464 4.3 DISCUSSION
465

466 The experimental results across computer vision and natural language understanding tasks demon-
467 strate that SECA effectively generalises across different modalities and architectures, providing ro-
468 bust calibration enhancement without requiring domain-specific tuning. Notably, SECA shows con-
469 sistent improvements across datasets with varying numbers of classes, from dense class scenarios
470 like CIFAR-10 (10 classes) and DBpedia (14 classes) to sparser class distributions like CIFAR-100
471 (100 classes) and ImageNet (1000 classes), indicating that its effectiveness stems from adaptive
472 batch-level regularisation rather than dependence on specific class density conditions. This com-
473 prehensive evaluation validates SECA as an effective calibration method that consistently outper-
474 forms Cross-Entropy baselines across CNN, ViT, and BERT architectures. While some specialised
475 methods may achieve better performance on specific metrics or datasets, SECA distinguishes itself
476 through its hyper-parameter-free design, computational efficiency, and robust performance across
477 diverse tasks. These characteristics, combined with its consistent calibration improvements and
478 competitive accuracy, establish SECA as a practical alternative to conventional loss functions.

479 We provide comprehensive analyses in the appendix to further validate SECA’s effectiveness and
480 robustness. Specifically, we conducted ablation studies to investigate the impacts of varying batch
481 sizes (Appendix D), demonstrate SECA’s compatibility with post-hoc calibration techniques through
482 integration with temperature scaling (Appendix E), present detailed reliability diagrams with 25-
483 bin calibration analysis across all experimental configurations (Appendix F), and evaluate SECA’s
484 robustness via out-of-distribution detection experiments on CIFAR-10-C and SVHN (Appendix G).

486

5 CONCLUSION

488 We introduced SECA for self-guided model calibration, a novel train-time calibration method speci-
 489 cally designed to improve the reliability and trustworthiness of deep neural networks without extra
 490 hyper-parameters. SECA dynamically adjusts target distributions by leveraging batch-level aver-
 491 aged predictions, thereby encouraging well-calibrated probabilistic outputs through a self-guided
 492 regularisation mechanism. Extensive experiments demonstrated the effectiveness and versatility of
 493 SECA across diverse network architectures including CNNs, Vision Transformers, and BERT mod-
 494 ells, as well as various tasks spanning visual recognition and natural language understanding. SECA
 495 consistently improves model calibration on the majority of evaluated datasets and architectures,
 496 achieving substantially lower SCE, ECE, and Adaptive ECE compared to established baselines,
 497 without additional hyper-parameter tuning or significant computational overhead. Given its simplic-
 498 ity, hyper-parameter-free nature, computational efficiency, and broad applicability, SECA serves as
 499 a practical alternative to the Cross-Entropy loss for training well-calibrated neural networks.

500

REFERENCES

- 502 Glenn W Brier. Verification of forecasts expressed in terms of probability. *Monthly weather review*,
 503 78(1):1–3, 1950.
- 504 Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
 505 on effective number of samples. In *Proceedings of the IEEE/CVF conference on computer vision*
 506 and *pattern recognition*, pp. 9268–9277, 2019.
- 508 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 509 hierarchical image database. In *2009 IEEE Computer Society Conference on Computer Vision*
 510 and *Pattern Recognition (CVPR 2009)*, 20-25 June 2009, Miami, Florida, USA, pp. 248–255.
 511 IEEE Computer Society, 2009.
- 512 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 513 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 514 *the North American chapter of the association for computational linguistics: human language*
 515 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
- 516 Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu Shi. Revisiting the evaluation of uncertainty
 517 estimation and its application to explore model complexity-uncertainty trade-off. In *Proceedings*
 518 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 4–5,
 519 2020.
- 521 Zhipeng Ding, Xu Han, Peirong Liu, and Marc Niethammer. Local temperature scaling for proba-
 522 bility calibration. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 523 pp. 6889–6899, 2021.
- 524 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 525 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 526 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 527 scale. In *International Conference on Learning Representations*, 2021.
- 528 Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and
 529 Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
 530 *nature*, 542(7639):115–118, 2017.
- 532 Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
 533 Born again neural networks. In *International conference on machine learning*, pp. 1607–1616.
 534 PMLR, 2018.
- 535 Arindam Ghosh, Thomas Schaff, and Matthew Gormley. Ada focal: Calibration-aware adaptive
 536 focal loss. *Advances in Neural Information Processing Systems*, 35:1583–1595, 2022.
- 538 Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number
 539 recognition from street view imagery using deep convolutional neural networks. *arXiv preprint*
arXiv:1312.6082, 2013.

- 540 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 541 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.
 542
- 543 Ramya Hebbalaguppe, Jatin Prakash, Neelabh Madan, and Chetan Arora. A stitch in time saves
 544 nine: A train-time regularizing loss for improved neural network calibration. In *Proceedings of*
 545 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16081–16090, 2022.
- 546 Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
 547 corruptions and surface variations. *arXiv preprint arXiv:1807.01697*, 2018.
 548
- 549 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv*
 550 *preprint arXiv:1503.02531*, 2015.
 551
- 552 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 553 2009.
 554
- 555 Meelis Kull, Telmo Silva Filho, and Peter Flach. Beta calibration: a well-founded and easily im-
 556 plemented improvement on logistic calibration for binary classifiers. In *Artificial intelligence and*
 557 *statistics*, pp. 623–631. PMLR, 2017.
 558
- 559 Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter
 560 Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with
 561 dirichlet calibration. *Advances in neural information processing systems*, 32, 2019a.
 562
- 563 Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter
 564 Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with
 565 dirichlet calibration. *Advances in neural information processing systems*, 32, 2019b.
 566
- 567 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathe-
 568 matical statistics*, 22(1):79–86, 1951.
 569
- 570 Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable calibration measures for neural networks
 571 from kernel mean embeddings. In *International Conference on Machine Learning*, pp. 2805–
 572 2814. PMLR, 2018.
 573
- 574 Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Francis Mccullough, and
 575 Alexandros Mouzakitis. A survey of the state-of-the-art localization techniques and their poten-
 576 tials for autonomous vehicle applications. *IEEE Internet of Things Journal*, 5(2):829–846, 2018.
 577
- 578 Ken Lang. Newsweeder: Learning to filter netnews. In *Machine learning proceedings 1995*, pp.
 579 331–339. Elsevier, 1995.
 580
- 581 Gongbo Liang, Yu Zhang, Xiaoqin Wang, and Nathan Jacobs. Improved trainable calibration method
 582 for neural networks on medical imaging classification. *arXiv preprint arXiv:2009.04057*, 2020.
 583
- 584 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 585 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 586 2980–2988, 2017.
 587
- 588 Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
 589 Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. *Advances*
 590 *in neural information processing systems*, 34:15682–15694, 2021.
 591
- 592 Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokana-
 593 nia. Calibrating deep neural networks using focal loss. *Advances in neural information processing*
 594 *systems*, 33:15288–15299, 2020.
 595
- 596 Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? *Ad-*
 597 *vances in neural information processing systems*, 32, 2019.
 598
- 599 Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
 600 *bilities using bayesian binning*. In *Proceedings of the AAAI conference on artificial intelligence*,
 601 volume 29, 2015.

- 594 Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learn-
 595 ing. In *Proceedings of the 22nd international conference on Machine learning*, pp. 625–632,
 596 2005.
- 597 Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran. Measur-
 598 ing calibration in deep learning. In *CVPR workshops*, volume 2, 2019.
- 600 Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
 601 Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
 602 evaluating predictive uncertainty under dataset shift. *Advances in neural information processing*
 603 *systems*, 32, 2019.
- 604 John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
 605 likelihood methods. *Advances in large margin classifiers*, 10(3):61–74, 1999a.
- 606 John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
 607 likelihood methods. *Advances in large margin classifiers*, 10(3):61–74, 1999b.
- 608 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 609 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*
 610 *computer vision and pattern recognition*, pp. 2818–2826, 2016.
- 611 Linwei Tao, Minjing Dong, and Chang Xu. Dual focal loss for calibration. In *International Confer-
 612 ence on Machine Learning*, pp. 33833–33849. PMLR, 2023.
- 613 Deng-Bao Wang, Lei Feng, and Min-Ling Zhang. Rethinking calibration of deep neural networks:
 614 Do not be afraid of overconfidence. *Advances in Neural Information Processing Systems*, 34:
 615 11809–11820, 2021.
- 616 Jonathan Wenger, Hedvig Kjellström, and Rudolph Triebel. Non-parametric calibration for classifi-
 617 cation. In *International Conference on Artificial Intelligence and Statistics*, pp. 178–190. PMLR,
 618 2020.
- 619 Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
 620 and naive bayesian classifiers. In *Icml*, volume 1, 2001a.
- 621 Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
 622 and naive bayesian classifiers. In *Icml*, volume 1, 2001b.
- 623 Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass proba-
 624 bility estimates. In *Proceedings of the eighth ACM SIGKDD international conference on Knowl-
 625 edge discovery and data mining*, pp. 694–699, 2002.
- 626 Chang-Bin Zhang, Peng-Tao Jiang, Qibin Hou, Yunchao Wei, Qi Han, Zhen Li, and Ming-Ming
 627 Cheng. Delving deep into label smoothing. *IEEE Transactions on Image Processing*, 30:5984–
 628 5996, 2021.
- 629 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
 630 sification. *Advances in neural information processing systems*, 28, 2015.
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 A EMPIRICAL STUDIES FOR THEORETICAL ANALYSIS 649

650 To complement the theoretical analysis discussed in Section 3.3, we provide a set of empirical
651 studies that follow the same training settings as discussed in Section 4. These studies offer di-
652 rect evidence for the core mechanisms underpinning SECA’s calibration improvements, specifically
653 from the perspectives of entropy regularisation, gradient dynamics, and knowledge distillation. We
654 compare SECA with both the standard Cross-Entropy loss and Label Smoothing over the course
655 of training, directly addressing the distinctions between SECA’s adaptive calibration approach and
656 Label Smoothing’s fixed softening strategy. **Three key per-sample metrics** are tracked through-
657 out training. **Average Entropy** is calculated from each sample’s predicted probability distribution
658 and measures the model’s prediction calibration. Lower entropy indicates sharper predictions, while
659 higher entropy suggests better-calibrated, less over-confident outputs. **Average KL Divergence** is
660 computed between each sample’s predicted probability and the average prediction of other samples
661 in the batch that belong to the same class. It measures how well individual predictions align with the
662 collective calibration signal of their class. **Average Cosine Similarity** measures how closely each
663 sample’s prediction aligns directionally with the corresponding batch-level average. It reflects the
664 effectiveness of batch-level calibration regularisation in promoting well-calibrated outputs.

688 Figure 2: Comparison between SECA, Cross-Entropy, and Label Smoothing on CIFAR-10 dataset
689 and ResNet models, with respect to three metrics: Average Entropy, Average KL Divergence, and
690 Average Cosine Similarity.

691 As illustrated in Fig. 2 (top left and bottom left), on the CIFAR-10 dataset, both ResNet-32 and
692 ResNet-56 models trained with SECA consistently exhibit higher average entropy than those trained
693 with Cross-Entropy or Label Smoothing. This indicates that SECA promotes better-calibrated pre-
694 dictions by encouraging appropriate confidence levels, while avoiding the potential calibration in-
695 consistencies observed with Label Smoothing in certain training phases. In addition, Fig. 2 (top
696 centre and bottom centre) shows that the KL divergence between individual predictions and their
697 corresponding batch-level class averages remains markedly lower under SECA compared to both
698 baselines, particularly during the early and mid-training phases. This behaviour suggests that SECA
699 effectively maintains prediction calibration by aligning individual outputs with class-informed ex-
700 pectations, thereby achieving better calibration than standard Cross-Entropy while providing more
701 consistent regularisation than the fixed smoothing approach of Label Smoothing. Finally, as shown
in Fig. 2 (top right and bottom right), the cosine similarity between per-sample predictions and their

corresponding batch-level averages is consistently higher under SECA than both Cross-Entropy and Label Smoothing, reinforcing the interpretation of SECA as operating through adaptive, class-aware calibration rather than uniform confidence adjustment.

Figure 3: Comparison between SECA, Cross-Entropy, and Label Smoothing on the CIFAR-100 dataset and ResNet models, with respect to three metrics: Average Entropy, Average KL Divergence, and Average Cosine Similarity.

On the more complex CIFAR-100 dataset, the empirical advantages of SECA over both Cross-Entropy and Label Smoothing become even more pronounced. As shown in Fig. 3 (top left and bottom left), models trained with SECA demonstrate a noticeably larger average entropy compared to both baselines, which is particularly crucial given the challenge of achieving well-calibrated predictions across a larger number of classes. This enhanced entropy demonstrates SECA’s effectiveness in promoting appropriate calibration across multi-class scenarios where Label Smoothing’s uniform approach may prove insufficient. Notably, Fig. 3 (top centre and bottom centre) shows that the KL divergence under SECA remains substantially lower across all epochs compared to both Cross-Entropy and Label Smoothing, suggesting that SECA maintains superior class-consistent calibration and reduces the prediction instability observed with alternative approaches. Additionally, as illustrated in Fig. 3 (top right and bottom right), cosine similarity remains consistently higher under SECA than both baselines, confirming that SECA’s adaptive mechanism enables predictions to converge more effectively toward well-calibrated batch-level expectations, outperforming the fixed regularisation strategies of Label Smoothing.

Similar calibration advantages are observed in the natural language understanding tasks (Fig. 4 and Fig. 5). The empirical analysis across four datasets and multiple architectures confirms that SECA consistently exhibits superior calibration behaviour compared to both Cross-Entropy and Label Smoothing, validating its theoretical foundations (as discussed in Section 3.3). The observed increase in average entropy supports SECA’s role as an adaptive calibration regulariser that dynamically adjusts prediction confidence based on batch-level class information. The substantial reduction in KL divergence demonstrates SECA’s effectiveness in promoting well-calibrated gradients and maintaining appropriate prediction confidence across diverse tasks. Additionally, the higher cosine similarity between predictions and batch-level averages confirms SECA’s adaptive calibration mechanism, whereby individual predictions are dynamically aligned with the calibrated consensus of their class peers, surpassing the static approach of Label Smoothing.

810 B GENERAL TRAINING HYPER-PARAMETERS

812 Table 4 presents the experimental configuration for each dataset–model pairing employed in our
 813 SECA evaluation. These hyper-parameters are held constant across all comparison methods to en-
 814 sure fair evaluation of calibration performance.

816 Dataset	817 Model	818 #Classes	819 LR	820 LR Scheduler	821 Batch Size	822 Epochs
CIFAR-10	ResNet32	10	0.1	MultiStep	128	160
CIFAR-10	ResNet56	10	0.1	MultiStep	128	160
CIFAR-100	ResNet32	100	0.1	MultiStep	128	200
CIFAR-100	ResNet56	100	0.1	MultiStep	128	200
ImageNet	ViT-small	1000	5e-4	Cosine+Warmup (0.02)	1024	300
DBpedia	BERT-small	14	3e-5	Linear+Warmup (0.1)	256	5
DBpedia	BERT-base	14	2e-5	Linear+Warmup (0.1)	128	5
20 Newsgroups	BERT-small	20	3e-5	Linear+Warmup (0.1)	256	20
20 Newsgroups	BERT-base	20	2e-5	Linear+Warmup (0.1)	128	20

825 Table 4: Dataset–model pairs and their corresponding hyper-parameter setups, including learning
 826 rate, scheduler type, batch size, and number of training epochs.

828 C EVALUATION METRICS

830 To quantify calibration, we use several standard metrics in this study:

832 **Expected Calibration Error (ECE)** Guo et al. (2017) measures the average discrepancy between
 833 confidence and accuracy across bins of predictions grouped by confidence, defined as follows:

$$835 \quad \text{ECE} = \sum_{m=1}^M \frac{|B_m|}{n} |\text{acc}(B_m) - \text{conf}(B_m)|, \quad (16)$$

838 where n is the total number of samples, M is the number of confidence bins, B_m is the set of
 839 indices of samples whose predicted confidence falls into m -th bin. Accordingly, $\text{acc}(B_m)$ is the
 840 average accuracy in bin m , $\text{conf}(B_m)$ is the average predicted confidence in bin m .

841 **Static Calibration Error (SCE)** Nixon et al. (2019) computes the calibration error per-class in-
 842 dependently and averaged error across all classes. This making the calibration for each class is
 843 considered equally, avoiding domination by majority classes, defined as follows:

$$846 \quad \text{SCE} = \frac{1}{C} \sum_{c=1}^C \sum_{m=1}^M \frac{|B_{m,c}|}{n_c} |\text{acc}(B_{m,c}) - \text{conf}(B_{m,c})|, \quad (17)$$

849 where C denotes the number of classes, n_c is the number of samples belonging to class c , $B_{m,c}$ is
 850 the set of samples of class c whose confidence falls into bin m . $\text{acc}(B_{m,c})$ and $\text{conf}(B_{m,c})$ are the
 851 average accuracy and confidence for class c in bin m , respectively.

852 **Adaptive ECE (AECE)** Ding et al. (2020) improves upon ECE by adjusting bin sizes based on the
 853 density of confidence scores, ensuring each bin contains approximately the same number of samples.
 854 This reduces bias from uneven sample distribution across confidence ranges.

$$856 \quad \text{AECE} = \sum_{m=1}^M \frac{|B_m|}{n} |\text{acc}(B_m) - \text{conf}(B_m)|, \quad (18)$$

859 Specifically, SCE evaluates calibration error independently for each class and averages these values,
 860 ensuring class-level calibration fairness. ECE measures the overall alignment between predicted
 861 confidence and empirical accuracy, providing a global assessment of calibration quality. AECE
 862 adaptively adjusts bin sizes based on the confidence distribution, making it robust to unevenly dis-
 863 tributed confidence scores.

864 D ABLATION STUDIES ON THE IMPACTS OF BATCH SIZE
865

866 As shown in Fig. 6, SECA demonstrates substantial improvements in calibration metrics (SCE,
867 ECE, and AECE) compared to the Cross-Entropy baseline across all tested batch sizes. Notably, the
868 calibration benefits of SECA become increasingly pronounced with larger batch sizes, underscoring
869 the efficacy of leveraging richer batch-level distributional statistics for adaptive target construction.
870

871 SECA vs. Cross-Entropy on CIFAR-100 dataset with ResNet-32

879 SECA vs. Cross-Entropy on CIFAR-100 dataset with ResNet-56

888 Figure 6: Comparison between SECA and baseline Cross-Entropy loss on the CIFAR-100 dataset
889 and ResNet models, with respect to varying batch sizes from 8 to 128.
890

891 As shown in Fig. 7, SECA consistently outperformed Cross-Entropy across all tested batch sizes,
892 as well as achieving lower SCE, ECE, and AECE values. Notably, as batch size increases, both
893 SECA and Cross-Entropy yield lower test error rates, but SECA typically maintains its calibration
894 advantage, indicating its stable performance over the standard Cross-Entropy loss.
895

896 SECA vs. Cross-Entropy on CIFAR-10 dataset with ResNet-32

904 SECA vs. Cross-Entropy on CIFAR-10 dataset with ResNet-56

913 Figure 7: Comparison between SECA and baseline Cross-Entropy loss on CIFAR-10 dataset and
914 ResNet models, with respect to varying batch sizes from 8 to 128.
915

916 For the DBpedia dataset (shown in Fig. 8), SECA shown consistent superiority over the Cross-
917 Entropy for both BERT-small and BERT-base architectures across all batch sizes. Particularly for

918 larger batch sizes, SECA not only maintained lower calibration errors but also exhibited improved
 919 robustness, suggesting its efficacy on Transformer networks and natural language tasks.
 920

925 **Figure 8:** Comparison between SECA and baseline Cross-Entropy loss on DBpedia dataset and
 926 BERT models, with respect to varying batch sizes from 16 to 256.

927 As illustrated in Fig. 9, the results on the 20 Newsgroups dataset further support above observations.
 928 SECA consistently achieved superior calibration performance across different batch sizes. The cal-
 929 ibration gap between SECA and Cross-Entropy widened with increasing batch sizes, demonstrating
 930 the robustness and effectiveness of its adaptive batch-level softening in textual scenarios.

935 **Figure 9:** Comparison between SECA and baseline Cross-Entropy loss on 20 Newsgroups dataset
 936 and BERT models, with respect to varying batch sizes from 16 to 256.

937 Overall, these ablation studies show that although SECA naturally inherits a degree of batch-size
 938 dependence due to its use of batch-level class-wise statistics, it remains consistently superior to
 939 Cross-Entropy across all tested batch sizes and across all datasets and architectures. The modest
 940 fluctuations observed in certain configurations, such as larger batch sizes on CIFAR-10, do not
 941 change its overall advantage. Importantly, SECA does not require tuning of the batch size to obtain

strong results, all main experiments employ standard batch sizes commonly used in prior work, under which SECA remains stable and effective. We acknowledge that extreme batch sizes may affect calibration strength, and we view this as an inherent limitation shared by batch-dependent calibration methods. In practice, SECA provides reliable behaviour under typical training setups.

E INTEGRATION WITH POST-HOC CALIBRATION

Methods	CIFAR-10				CIFAR-100			
	ResNet32		ResNet56		ResNet32		ResNet56	
	Pre T	Post T	Pre T	Post T	Pre T	Post T	Pre T	Post T
Focal ($\gamma=3.0$)	4.54	2.91 (0.8)	4.46	2.01 (0.8)	2.26	1.92 (1.1)	2.07	2.07 (1.0)
LS ($\alpha=0.1$)	6.37	2.07 (0.8)	5.49	1.70 (0.8)	2.80	2.80 (0.9)	2.35	2.35 (1.0)
MMCE ($\beta=4.0$)	3.40	3.04 (0.6)	3.30	2.24 (0.6)	7.53	1.97 (1.2)	6.93	1.34 (1.2)
DCA ($\beta=1.0$)	4.24	2.95 (1.8)	3.34	2.39 (1.8)	12.0	1.20 (1.6)	11.1	2.22 (1.7)
FLSD ($\gamma=3.0$)	4.44	1.70 (0.9)	4.75	1.70 (0.8)	2.16	3.62 (1.1)	2.30	2.77 (1.1)
MDCA ($\gamma, \beta=1.0$)	1.84	0.82 (1.2)	1.25	0.45 (1.2)	5.61	1.94 (1.2)	5.24	1.86 (1.3)
Brier	2.61	1.27 (1.2)	2.15	1.03 (1.2)	5.56	2.07 (1.2)	4.94	1.98 (1.2)
OLS ($\alpha=0.5$)	3.31	2.73 (1.4)	2.80	1.69 (1.3)	4.51	1.64 (1.2)	2.44	1.31 (1.2)
DualFocal ($\gamma=5.0$)	1.82	0.60 (0.9)	2.61	0.54 (0.8)	3.30	1.81 (1.1)	1.94	1.56 (1.1)
AdaFocal	2.69	0.90 (1.2)	1.44	0.51 (1.1)	3.42	2.09 (1.3)	2.75	1.83 (1.3)
CE (baseline)	3.86	2.28 (1.9)	3.10	1.75 (1.6)	10.0	2.85 (1.6)	9.09	2.52 (1.3)
SECA (Ours)	2.94	2.53 (1.3)	2.41	1.50 (1.2)	1.90	1.10 (1.1)	1.71	1.25(1.2)

Table 5: Expected Calibration Error (%) before and after Temperature Scaling on CIFAR-10 and CIFAR-100 datasets. Numbers in parentheses indicate the optimal temperature values learned during calibration. Lower ECE values indicate better calibration performance. Temperature values ≈ 1.0 suggest innately well-calibrated models.

As shown in the Table 5, the integration of temperature scaling with various calibration methods provides critical insights into the intrinsic calibration properties of different approaches. Our proposed SECA method demonstrates superior performance in the post-hoc calibration setting, achieving the lowest ECE values on CIFAR-100 for both ResNet32 (1.10%) and ResNet56 (1.25%) architectures. Notably, SECA consistently requires minimal temperature adjustment ($T \approx 1.1\text{--}1.3$), indicating that it produces inherently well-calibrated predictions that require minimal post-hoc correction.

The effectiveness of temperature scaling varies significantly across methods and datasets. While most approaches benefit from temperature scaling, the magnitude of improvement differs substantially. The Cross-Entropy baseline exhibits the largest temperature adjustments ($T \approx 1.3\text{--}1.9$), reflecting significant initial over-confidence that is effectively mitigated through scaling, resulting in ECE reductions of up to 74% on CIFAR-100. In contrast, methods such as DualFocal and SECA require more modest temperature adjustments, suggesting better initial calibration properties.

Several methods demonstrate exceptional synergy with temperature scaling. DualFocal achieves the best post-TS performance on CIFAR-10 ResNet32 (0.60% ECE), while MDCA attains remarkable calibration on CIFAR-10 ResNet56 (0.45% ECE). However, some methods show diminishing returns or inconsistent improvements. Label Smoothing exhibits minimal post-TS improvement on CIFAR-100, with ECE remaining unchanged at 2.35% for ResNet56, potentially indicating over-regularisation that limits the effectiveness of subsequent temperature scaling.

CIFAR-100 results consistently demonstrate larger absolute improvements from temperature scaling compared to CIFAR-10, reflecting the increased calibration challenges associated with fine-grained classification tasks. Despite this increased complexity, SECA maintains robust performance across both datasets, demonstrating its effectiveness in diverse classification scenarios. The learned temperature values serve as diagnostic indicators of initial model calibration, with values substantially greater than 1.0 indicating over-confidence requiring correction, while values approaching 1.0 suggest well-calibrated base models.

1026 F RELIABILITY ANALYSIS

1028 The reliability diagrams presented in Figures 10, 11, 12, and 13 provide a comprehensive visual
 1029 assessment of model calibration across different calibration methods using 25 confidence bins. Each
 1030 subplot depicts the alignment between expected confidence (red bars) and actual accuracy (purple
 1031 bars), with the diagonal dashed line representing perfect calibration. The analysis reveals several
 1032 key insights regarding the calibration behaviour of various methods.

1041 Figure 10: Reliability diagrams on CIFAR-10 with ResNet-32.

1042 **CIFAR-10 Results.** On CIFAR-10 with ResNet-32 (Figure 10), SECA demonstrates superior
 1043 calibration performance across the confidence spectrum. While baseline methods such as Cross Entropy
 1044 exhibit substantial over-confidence, particularly in the high-confidence bins (0.8–1.0) where the
 1045 majority of predictions concentrate, SECA maintains close alignment between predicted confidence
 1046 and actual accuracy.

1064 Figure 11: Reliability diagrams on CIFAR-10 with ResNet-56.

1065 The trend continues with ResNet-56 (Figure 11). The reliability diagrams reveal that traditional
 1066 calibration methods such as Focal Loss and MMCE struggle to maintain consistent calibration across
 1067 all confidence bins, often exhibiting erratic behaviour in mid-range confidence intervals (0.4–0.8).
 1068 In contrast, SECA maintains smooth and consistent calibration behaviour, with minimal deviation
 1069 from the perfect calibration line across all 25 bins.

1070 **CIFAR-100 Results.** The superiority of SECA becomes even more pronounced on the challenging
 1071 CIFAR-100 dataset, which presents increased complexity due to its larger number of classes and

Figure 12: Reliability diagrams on CIFAR-100 with ResNet-32.

reduced samples per class. On ResNet-32 (Figure 12), SECA achieves remarkable calibration with an ECE of 1.90%, while Cross Entropy exhibits severe over-confidence with an ECE of 10.0%—a five-fold improvement. The reliability diagrams clearly illustrate this disparity, Cross Entropy shows substantial gaps between expected confidence and actual accuracy across multiple bins, while SECA maintains near-perfect alignment.

Figure 13: Reliability diagrams on CIFAR-100 with ResNet-56.

Similarly, with ResNet-56 (Figure 13), SECA sustains excellent calibration performance (ECE: 1.71%) compared to Cross Entropy (ECE: 9.09%). The fine-grained 25-bin analysis reveals that SECA’s calibration improvements are not merely concentrated in specific confidence ranges but are consistently maintained across the entire confidence spectrum. This uniform improvement is particularly evident in the medium-confidence bins (0.3–0.8), where many competing methods exhibit significant calibration errors.

1134 **G ROBUSTNESS ON DATASET SHIFT**
1135

1136 We evaluate the robustness of our proposed SECA method against dataset shift by conducting out-
1137 of-distribution (OoD) detection experiments. Following established protocols (Mukhoti et al., 2020;
1138 Tao et al., 2023), we train models on CIFAR-10 as the in-distribution dataset and evaluate OoD
1139 detection performance using CIFAR-10-C (corrupted images) (Hendrycks & Dietterich, 2018) and
1140 SVHN (Street View House Numbers) (Goodfellow et al., 2013) as out-of-distribution datasets. The
1141 AUROC metric is employed to measure detection performance, with higher values indicating better
1142 separation between in-distribution and out-of-distribution samples.

1143 We conduct experiments on two ResNet architectures (ResNet32 and ResNet56) and compare SECA
1144 against ten state-of-the-art calibration methods (similar to Section 4.1). For each method, we report
1145 AUROC scores both before (Pre-T) and after (Post-T) temperature scaling to assess the impact of
1146 post-hoc calibration on OoD detection capabilities.

Methods	CIFAR-10-C				SVHN			
	ResNet32		ResNet56		ResNet32		ResNet56	
	Pre T	Post T	Pre T	Post T	Pre T	Post T	Pre T	Post T
Focal ($\gamma=3.0$)	81.36	80.48	88.54	87.61	86.60	86.09	89.18	88.01
LS ($\alpha=0.1$)	66.19	66.86	88.54	87.61	60.83	62.99	89.18	87.61
MMCE ($\beta=4.0$)	86.34	85.59	85.81	85.13	97.13	85.59	95.50	95.01
DCA ($\beta=1.0$)	83.91	84.84	83.06	83.66	90.83	91.49	90.47	91.30
FLSD ($\gamma=3.0$)	80.08	79.82	88.16	87.62	85.31	85.10	87.37	87.18
MDCA ($\gamma, \beta=1.0$)	83.55	83.62	86.49	86.78	87.83	87.97	83.84	84.34
Brier	78.19	78.36	83.54	83.74	90.46	90.70	89.91	90.20
OLS ($\alpha=0.5$)	80.21	80.42	83.47	83.58	87.45	87.90	90.24	90.51
DualFocal ($\gamma=5.0$)	78.76	78.63	88.34	87.84	90.41	90.27	89.45	89.05
AdaFocal	87.47	87.63	89.72	89.90	86.70	86.67	88.39	88.51
CE (baseline)	81.15	81.23	88.64	89.00	86.14	85.56	92.22	92.80
SECA (Ours)	83.28	83.34	88.69	88.64	89.46	89.29	93.06	93.13

1161 Table 6: Robustness evaluation on dataset shift. AUROC (%) for ResNet-32/56 models trained on
1162 CIFAR-10 (in-distribution) and evaluated on CIFAR-10-C (Gaussian noise, severity 5) and SVHN
1163 (out-of-distribution). Pre T/Post T indicate results before/after temperature scaling.

1164 As shown in Table 6, SECA demonstrates exceptional OoD detection capabilities across both eval-
1165 uation scenarios. On the SVHN dataset, SECA achieves the highest AUROC scores among all
1166 methods, reaching 93.06% with ResNet56 and 89.46% with ResNet32. For CIFAR-10-C detec-
1167 tion, SECA consistently ranks among the top-performing methods, achieving 88.69% (ResNet56)
1168 and 83.28% (ResNet32), representing substantial improvements of +2.13% and +3.32% over the
1169 Cross-Entropy baseline, respectively.

1170 As a critical advantage of SECA lies in its remarkable stability when temperature scaling is ap-
1171 plied. While some calibration methods exhibit significant degradation, SECA maintains virtually
1172 unchanged performance. The method exhibits minimal variations of $\pm 0.17\%$ or less across all ex-
1173 perimental conditions, demonstrating that calibration improvements come without sacrificing OoD
1174 detection capabilities.

1175 In terms of cross-architecture performance, SECA demonstrates robust performance across different
1176 network architectures. Unlike some methods that show inconsistent behaviour between ResNet32
1177 and ResNet56, SECA maintains strong and consistent performance improvements across both ar-
1178 chitectures, indicating good generalisation properties.

1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **H IMBALANCE DATASET**
1189

1191 Methods	1192 Imbalance CIFAR-100		
	1193 IF-10	1194 IF-50	1195 IF-100
Focal ($\gamma=3.0$)	3.83	5.78	6.56
LS ($\alpha=0.1$)	3.53	5.89	6.92
MMCE ($\beta=4.0$)	5.40	5.36	6.19
DCA ($\beta=1.0$)	5.10	7.63	8.48
FLSD ($\gamma=3.0$)	3.74	5.89	6.80
MDCA ($\gamma, \beta=1.0$)	4.27	6.51	7.00
Brier	6.06	9.22	9.67
OLS ($\alpha=0.5$)	3.55	5.72	6.61
DualFocal ($\gamma=5.0$)	3.57	5.56	6.43
AdaFocal	4.15	6.43	7.38
CE (baseline)	4.47	7.15	8.25
SECA (Ours)	3.45	5.46	6.42

1204
1205 **Table 7: Calibration performance (SCE (%)) on imbalanced CIFAR-100 under varying imbalance**
1206 **factors (IF-10/50/100) as suggested by Cui et al. (2019). SECA consistently achieves the best or**
1207 **second-best SCE across all imbalance levels, demonstrating its robustness in long-tailed settings**
1208 **without requiring imbalance-specific tuning.**

1209 Table 7 reports SCE performance on imbalanced CIFAR-100 with imbalance factors of 10, 50, and
1210 100. SECA exhibits consistently strong calibration behaviour across all imbalance levels. It achieves
1211 the lowest SCE under IF-10, and remains highly competitive under IF-50 and IF-100. Importantly,
1212 **SECA requires no adjustment or imbalance-specific hyper-parameters**, yet maintains calibra-
1213 tion quality even when minority classes become severely underrepresented. In contrast, several
1214 existing methods (e.g., DCA, AdaFocal) deteriorate notably as imbalance increases. These results
1215 support our claim that SECA’s batch-conditional hybrid targets naturally extend to long-tailed data
1216 and remain effective even when per-class sample frequency is highly uneven.