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ABSTRACT

Deep learning models frequently exhibit poor calibration, where predicted con-
fidence scores fail to align with actual accuracy rates, undermining model reli-
ability in safety-critical applications. We propose a novel train-time calibration
method named SECA (Self-guided Model Calibration), a hyper-parameter-free
approach designed to improve predictive calibration through dynamic confidence
regularisation. SECA constructs adaptive soft targets by fusing batch-averaged
model predictions with one-hot ground-truth labels during training, thereby creat-
ing a self-adaptive calibration mechanism that adapts target distributions based on
the model’s predictive behaviour. This leads to well-calibrated predictions with-
out additional hyper-parameter tuning or significant computational overhead. Our
theoretical analysis elucidates SECA’s underlying mechanisms from entropy reg-
ularisation, gradient dynamics, and knowledge distillation perspectives. Exten-
sive empirical evaluation demonstrates that SECA consistently achieves superior
calibration performance compared to the Cross-Entropy loss and other state-of-
the-art calibration methods across diverse architectures (CNN, ViT, BERT) and
benchmark datasets in visual recognition and natural language understanding.1

1 INTRODUCTION

Modern deep neural networks are highly effective in achieving remarkable predictive accuracy
across various domains, yet they frequently exhibit poor calibration in their predictions. Poor cali-
bration occurs when a model’s predicted confidence scores do not reliably correspond to its actual
accuracy rates, e.g., predicting a class with 90% confidence while being correct only 70% of the
time (Guo et al., 2017; Minderer et al., 2021). This miscalibration reduces model trustworthiness
and may present severe consequences for decision-making, especially in safety-critical real-world
scenarios, such as autonomous driving and medical diagnostics (Esteva et al., 2017; Kuutti et al.,
2018). The root cause of miscalibration in deep neural networks is primarily due to the optimisation
of standard training objectives, such as the Cross-Entropy loss, which aggressively push models to
maximise confidence in correct predictions without ensuring that confidence levels align with ac-
tual correctness rates (Guo et al., 2017; Wang et al., 2021). Additionally, large model capacities
and high-dimensional parameter spaces enable neural networks to over-fit training data, leading to
poorly calibrated predictions even on uncertain or ambiguous cases (Müller et al., 2019).

To address this problem, a variety of approaches have been proposed, broadly categorised into post-
hoc calibration and train-time calibration methods. Post-hoc methods such as Temperature Scaling
(Guo et al., 2017), Isotonic Regression (Zadrozny & Elkan, 2002), and Dirichlet Calibration (Kull
et al., 2019a) calibrate model predictions after training via a hold-out validation set. While effec-
tive on in-distribution data, these methods require additional data splits and offer no impact on the
model’s intrinsic calibration behaviour during training, limiting their effectiveness under distribution
shift where the training and test distributions differ significantly (Ovadia et al., 2019). In contrast,
train-time techniques such as Label Smoothing Müller et al. (2019), Focal Loss (Lin et al., 2017)
and Dual Focal Loss (Tao et al., 2023) modify the loss function to improve the model’s calibration
throughout training. However, these methods typically introduce additional hyper-parameters, e.g.,
smoothing factor or focusing parameter, that require careful tuning for each dataset or model.

Recent adaptive approaches, such as AdaFocal (Ghosh et al., 2022) and MDCA (Hebbalaguppe
et al., 2022), attempt to automatically adjust calibration strength based on prediction dynamics.

1Source code is available in the supplementary material
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OLS (Zhang et al., 2021) leverages correct predictions from each training epoch to form an extra
loss component. While they improve calibration robustness, these methods often involve validation-
based heuristics or auxiliary loss terms, increasing implementation complexity and computational
overhead. Furthermore, the majority of these methods have been evaluated primarily on convolu-
tional neural networks (CNNs), with limited exploration of their applicability to modern architec-
tures such as Vision Transformer (ViT) (Dosovitskiy et al., 2021) or BERT (Devlin et al., 2019).
These limitations call for a more practical and generalisable approach that is effective across archi-
tectures and domains without relying on hyper-parameter tuning or post-training adjustments.

To this end, we propose SECA (Self-Guided Model Calibration), an effective self-guided loss func-
tion designed to improve model calibration without introducing extra hyper-parameters. SECA en-
hances the standard Cross-Entropy loss by incorporating a hybrid label component derived directly
from the model’s own batch-level predicted probability distribution. Specifically, instead of using a
fixed one-hot ground-truth vector as the training target, SECA dynamically constructs a hybrid label
that combines the one-hot label with a softened target based on the model’s current prediction. This
probabilistic soft label acts as a self-guided correction signal that promotes well-calibrated learning
by adjusting the certainty of target labels proportionally to the model’s prediction behaviour. As
training progresses, this mechanism allows the model to self-regulate its confidence levels, encour-
aging appropriately calibrated predictions when miscalibration arises, without penalising learning
when the model exhibits genuine uncertainty. The primary contributions of this work are as follows:

• We introduce SECA for self-guided model calibration, a novel, hyper-parameter-free loss func-
tion that dynamically adjusts target distributions using batch-level averaged predictions. Unlike
conventional calibration techniques, SECA requires no auxiliary loss terms or manual tuning,
significantly simplifying its practical adoption across diverse domains and architectures.

• We provide a rigorous theoretical analysis along with empirical studies, from entropy regu-
larisation, gradient dynamics, and knowledge distillation perspectives to reveal how SECA
effectively improves neural network calibration by leveraging the collective behaviour of batch
samples, thus promoting well-calibrated training.

• We empirically validate SECA through extensive experiments across a wide range of bench-
mark datasets, including visual recognition (CIFAR-10/100, ImageNet) and natural language
understanding (DBpedia, 20 Newsgroups), using representative architectures such as ResNet,
ViT, and BERT. Our results demonstrate that SECA consistently improves calibration, achiev-
ing substantial reductions in Static Calibration Error (SCE), Expected Calibration Error (ECE),
and Adaptive ECE (AECE) compared with other SoTA methods.

2 RELATED WORK

Model calibration, where predicted probabilities should reliably correspond to true correctness like-
lihoods, has long been recognised as a critical issue in machine learning. Before the deep learning
era, calibration was studied in the context of classical models such as logistic regression, support
vector machines, and decision trees (Brier, 1950; Platt et al., 1999b; Niculescu-Mizil & Caruana,
2005; Zadrozny & Elkan, 2001b). Guo et al. (2017) later demonstrated that modern deep learning
architectures such as ResNets and Inception often produce poorly calibrated predictions, particularly
when trained with the standard Cross-Entropy loss. To measure calibration quality, they adopted the
Expected Calibration Error (ECE), which has since become a standard metric in calibration research.
Given the widespread recognition of calibration issues in deep learning, numerous approaches have
been developed to address this problem. Broadly, calibration methods fall into two categories: post-
hoc calibration and train-time calibration.

Post-Hoc Calibration. Post-hoc methods calibrate models after training, without modifying the
learned parameters (Naeini et al., 2015; Guo et al., 2017; Kull et al., 2017; 2019b; Wenger et al.,
2020; Ding et al., 2021). For instance, Guo et al. (2017) introduced Temperature Scaling, a simple
yet effective technique that scales logits uniformly using a single temperature parameter, tuned on a
validation set. Other post-hoc methods include histogram binning (Zadrozny & Elkan, 2001a), Platt
scaling (Platt et al., 1999a), Isotonic Regression (Zadrozny & Elkan, 2002) and Dirichlet calibra-
tion (Kull et al., 2019a), which offer varying trade-offs between complexity and flexibility. While
effective, post-hoc methods do not improve the model’s intrinsic uncertainty or robustness under
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distribution shift (Minderer et al., 2021; Ovadia et al., 2019). Thus, this study will primarily focus
on train-time calibration techniques.

Train-Time Calibration. In contrast to post-hoc calibration techniques that adjust a model’s outputs
after training, train-time calibration methods aim to directly shape the model’s confidence behaviour
during the training process. These techniques typically modify the loss function or training targets
to encourage well-calibrated predictions and promote better-aligned probabilistic outputs.

One of the most widely adopted techniques is label smoothing, which was initially proposed by
Szegedy et al. (2016) and systematically studied for calibration by Müller et al. (2019). Label
smoothing replaces one-hot encoded targets with softened label distributions, which not only acts
as a form of regularisation but also leads to improved calibration, as it encourages the model to
produce well-calibrated probability estimates rather than over-confident predictions. However, the
optimal smoothing factor α requires careful tuning across models and datasets. Another prominent
technique is the focal loss (Lin et al., 2017), which initially aimed to address class imbalance in
object detection. It dynamically down-weights the contribution of well-classified/high-confidence
samples using a focusing parameter γ, thus forcing the model to focus on harder examples. Mukhoti
et al. (2020) later observed that, with appropriate choice of γ, focal loss also yields better calibrated
predictions, particularly in imbalanced and long-tailed scenarios. Building upon this foundation,
several extensions have been developed to enhance focal loss’s calibration capabilities. AdaFocal
(Ghosh et al., 2022) builds upon focal loss by learning a sample group-specific focusing parameter γ
using gradient-based meta-learning, allowing the calibration strength to adapt dynamically based on
the model’s behaviour during training. Whilst it demonstrates improved calibration across various
networks and datasets, the approach necessitates a validation set for meta-updating. Dual Focal Loss
(DFL) (Tao et al., 2023) extends focal loss by simultaneously considering both the confidence of the
correct class and that of the most competitive incorrect class, addressing calibration imbalances
more effectively than standard focal loss through explicit modelling of this relationship. A recent
method, MDCA, introduces a calibration-specific regularisation term that aligns the model’s class-
wise confidence with empirical class-wise accuracy (Hebbalaguppe et al., 2022), helping to control
per-class miscalibration. MDCA shows promising improvements in both Static Calibration Error
(SCE) and Expected Calibration Error (ECE) metrics.

While train-time calibration methods have proven effective, most of them require manual tuning or
complex adaptation mechanisms to achieve well-calibrated predictions across classes and difficulty
levels. In contrast, our proposed SECA is hyper-parameter-free and automatically adapts per-class
and per-batch based on the model’s own predictive behaviour. It achieves strong calibration per-
formance without the need for auxiliary components or validation-based tuning, offering a practical
and generalisable alternative to existing train-time methods.

3 METHODOLOGY

In this section, we first revisit the root cause of the over-confidence issue. Subsequently, we intro-
duce SECA, a novel loss function for self-guided model calibration. Finally, we provide theoretical
analysis regarding the mechanisms of SECA, from entropy regularisation, gradient dynamics, and
knowledge distillation perspectives, respectively.

3.1 PRELIMINARIES

In a standard supervised classification setup, let D = {(xi, yi)}Ni=1 be the training dataset, where
xi ∈ Rd is the input and yi ∈ {1, . . . , C} is the corresponding ground-truth class label of C
possible classes. Let fθ : Rd → RC be a neural network parametrised by θ, producing a logit vector
zi = fθ(xi) ∈ RC . The predicted probability vector for the i-th sample is given by the softmax:

pi = softmax(zi) = [pi,1, pi,2, . . . , pi,C ]
⊤
, where pi,c =

exp(zi,c)∑C
j=1 exp(zi,j)

, (1)

is the probability for class c, given the logits zi. The model prediction is calibrated if for all confi-
dence levels p ∈ [0, 1] Guo et al. (2017), the following holds:

P
(
Y = Ŷ | max

c
Pc = p

)
= p, (2)
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where Ŷ denotes the predicted label, maxc Pc is the model’s maximum confidence, and P represents
the empirical probability that the model is correct given that it is predicting with confidence p. In
other words, if the model predicts a class with 80% confidence, it should be correct approximately
80% of the time for those predictions. However, modern neural networks often violate this condition,
with miscalibration becoming increasingly severe as predicted confidence increases.

Cross-Entropy. The Cross-Entropy loss is the most commonly used objective for classification:

LCE = − log pi,yi
, (3)

where pi,yi
is the predicted probability for the correct class yi. It assumes a one-hot target vector

qi ∈ {0, 1}C with
∑C

c=1 qi,c = 1, where qi,c = I[c = yi] and I[·] is the indicator function. The
gradient with respect to the correct class logit is ∂LCE

∂zi,yi
= pi,yi

− 1, which remains negative even
when pi,yi approaches 1, continuously driving the logit upwards. This persistent gradient pressure
reinforces already confident predictions and is a primary cause of overconfidence (Guo et al., 2017).

Note on Calibration Scope. While neural networks can exhibit both over-confidence and under-
confidence, modern deep networks trained with Cross-Entropy loss predominantly suffer from
over-confidence, particularly after convergence (Guo et al., 2017; Minderer et al., 2021). Under-
confidence typically occurs in early training stages or under severe regularisation, but is less preva-
lent in standard training regimes. Therefore, we focus on over-confidence as the primary calibration
challenge, noting that our proposed SECA naturally adapts to both scenarios through its batch-aware
mechanism, as we demonstrate in our theoretical analysis (Section 3.3).

3.2 SELF-GUIDED MODEL CALIBRATION VIA SECA

To calibrate the model during training, we propose SECA, an intuitive yet effective loss function
that dynamically adjusts the target distribution per-class by leveraging the model’s own batch-level
predictive confidence in a self-guided manner. Unlike label smoothing, which applies a fixed pertur-
bation to the target labels, SECA adaptively constructs soft labels without requiring any additional
hyper-parameters.

Given an input sample xi, the model outputs logits vector zi = fθ(xi) ∈ RC . The predicted
probability distribution pi is computed via the softmax function (Eq. 1). For class j ∈ {1, . . . , C},
we define the set of batch samples as S, samples belonging to class j as:

Sj = {i ∈ {1, . . . ,M} | yi = j}, (4)

where M is the batch size and yi denotes the ground-truth label for sample i.

Batch-Level Class-wise Distribution. For each class j ∈ {1, . . . , C}, we compute the batch-level
average predicted probability distribution µj across all samples whose ground-truth label is j:

µj =
1

|Sj |
∑
i∈Sj

pi, (5)

where µj = [µj,1, µj,2, . . . , µj,C ]
⊤ ∈ RC is the average probability distribution for class j. Each

element µj,c represents the average predicted probability for class c among all samples whose true
label is j. The distribution µj captures the model’s collective belief over all classes, conditioned on
samples belonging to class j within the current batch.

Construction of Hybrid Target. For each sample i, we define the hybrid target q̃i by combining
the one-hot ground-truth label, qi, with the batch-averaged prediction for its corresponding class:

q̃i,c = qi,c + µyi,c, where qi,c =

{
1, if c = yi,

0, otherwise.
(6)

The above formulation anchors the soft target at the ground-truth class while adaptively softening it
based on the model’s collective predictive distribution for that class within the batch. Note that, the
hybrid target q̃i is intentionally unnormalised. This preserves the full influence of both the one-hot
label and the class-conditional batch-averaged prediction. Cross-Entropy with unnormalised non-
negative targets is mathematically valid, and the resulting gradient naturally matches the refined
expression in Eq. 12.

4
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Loss Computation. The SECA loss for a given sample i is then computed as the Cross-Entropy
between the model’s predicted probability distribution pi and the constructed hybrid target q̃i:

LSECA = −
C∑

c=1

q̃i,c log pi,c. (7)

3.3 THEORETICAL ANALYSIS

The design of SECA inherently improves model calibration by introducing a self-guided regularisa-
tion mechanism during training. Specifically, SECA encourages the model’s output distribution to
align not only with the ground-truth label but also with the average prediction behaviour of samples
from the same class. In the following parts, we formalise this intuition by showing that the SECA
can be interpreted as a modified Cross-Entropy objective augmented with a KL-divergence-like reg-
ulariser. We further analyse the per-sample gradients induced by this formulation and explain how
they naturally provide bidirectional calibration by moderating excessive confidence while strength-
ening insufficient confidence, thereby leading to well-calibrated outputs throughout training. Addi-
tionally, we provide an interpretation from the knowledge distillation perspective, where batch-level
statistics serve as adaptive teachers for calibration.

Entropy Perspective. Recall the hybrid target q̃i (Eq. 6), we can decompose SECA (Eq. 7) into:

LSECA = − log pi,yi︸ ︷︷ ︸
standard CE

+

(
−

C∑
c=1

µyi,c log pi,c

)
︸ ︷︷ ︸

KL-like regulariser

. (8)

The first term is the standard Cross-Entropy loss, which encourages the model to increase the pre-
dicted probability pi,yi

for the ground-truth class yi as much as possible. Minimising this term
alone typically drives the network towards poorly calibrated outputs, either over-confident or under-
confident depending on the training dynamics. The second term serves as an adaptive calibration
regulariser that computes the Cross-Entropy between the batch-level averaged class distribution µyi

and the model’s own prediction pi. This regulariser dynamically adapts the target confidence based
on the collective behaviour of same-class samples, promoting well-calibrated predictions. The term
is equivalent to the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) as below:

KL(µyi∥pi) = −
C∑

c=1

µyi,c log

(
µyi,c

pi,c

)
= −H(µyi) −

C∑
c=1

µyi,c log pi,c, (9)

where H(µyi
) denotes the entropy of µyi

. If we rearrange the formula, we obtain:

−
C∑

c=1

µyi,c log pi,c = KL(µyi
∥pi) +H(µyi

), (10)

as −
∑C

c=1 µyi,c log pi,c is the KL-like term in Eq. 8. Thus, the overall loss can be equivalently
written as:

LSECA = − log pi,yi +KL(µyi∥pi) +H(µyi). (11)

This decomposition highlights the dual effect of SECA: while the standard Cross-Entropy term pro-
motes correct class prediction, the KL divergence regularisation encourages predictions to align with
the batch-informed distribution µyi

, which serves as an adaptive calibration signal. Unlike fixed reg-
ularisers (e.g., label smoothing with constant α), µyi

is adapted based on current model behaviour,
providing entropy-increasing regularisation when predictions are over-confident, and concentrating
guidance when predictions are under-confident or scattered. This adaptive mechanism naturally
leads to well-calibrated predictions without requiring explicit entropy terms or additional hyper-
parameters (empirical study is in Appendix A).

Gradient Perspective. To understand the impact of SECA on training dynamics, we also examine
the gradients with respect to the model logits. Taking the derivative of per-sample SECA Li with
respect to the logit zi,c for class c, we obtain:

∂Li

∂zi,c
= 2pi,c − (qi,c + µyi,c), (12)

5
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which follows from the general soft-target cross-entropy derivative ∂L/∂z = (
∑

j tj)p − t when
the hybrid target q̃i = qi + µyi is unnormalised and satisfies

∑
c q̃i,c = 2.

For the ground-truth class c = yi, the gradient simplifies to:

∂Li

∂zi,c
= 2pi,c − (1 + µyi,c). (13)

If the model is already confident, i.e., pi,c is large, the gradient becomes weakly negative. However,
the additional term, −(1 + µyi,c) provides a stronger downward correction than in the normalised
case, which remains present even when the model is highly confident. This applies a downward
force on the logit, which naturally counteracts the tendency of Cross-Entropy loss to endlessly push
the logit upward, effectively preventing extreme overconfidence.

And for non-target classes where k ̸= yi, the gradient is given by:

∂Li

∂zi,k
= 2pi,k − µyi,k. (14)

In this case, if the predicted probability pi,k for a non-target class exceeds the batch-averaged value
µyi,k, the gradient is positive, thereby pushing the corresponding logits downward and reducing
the misplaced confidence. Conversely, if pi,k is too low compared to µyi,k, the gradient becomes
negative, softly encouraging a slight increase in probability for relevant secondary classes.

Overall, this gradient structure explicitly encourages the model’s per-sample prediction pi to align
with the batch-informed calibration target µyi

. The factor of 2 amplifies the corrective influence of
the hybrid target, preserving the full effect of both qi and µyi

rather than reducing the mechanism
to a normalised label-smoothing variant. The gradients provide bidirectional calibration correc-
tion: reducing excessive confidence when predictions are too sharp, while strengthening confidence
when predictions are too diffuse or misaligned with class-typical patterns. This dynamic adjustment
process operates without requiring external supervision, hyper-parameter tuning, or hand-designed
entropy penalties (empirical study is in Appendix A).

Knowledge Distillation Perspective. The mechanism underlying SECA can also be viewed as a
form of adaptive self-distillation (Furlanello et al., 2018; Hinton et al., 2015). Specifically, for each
target class yi, the batch-level average prediction distribution µyi

serves as an adaptive soft teacher
constructed from the model’s own outputs over samples belonging to class yi. During training, the
network is encouraged to align each individual prediction pi not only with the one-hot target but also
with the class-informed distribution µyi , effectively teaching itself appropriate confidence levels
based on the collective prediction behaviour of similar samples. This creates a dynamic calibration
mechanism where the “teacher” signal adapts to the current state of model predictions for each class.

As training progresses, this alignment process promotes class-wise calibration consistency. Ideally,
the per-sample output pi converges towards the batch-averaged prediction over samples that share
the same label. At convergence, we can expect:

pi =
1

|Syi
|
∑
j∈Syi

pj = µyi , (15)

where Syi
denotes the set of samples with ground-truth label yi in the batch. This condition im-

plies that each sample’s predictive distribution becomes consistent with the calibrated predictive
behaviour of its class, leading to well-calibrated outputs that reflect appropriate uncertainty levels
rather than miscalibrated softmax distributions (empirical study is in Appendix A).

4 EXPERIMENTS

Network Architectures. To validate the effectiveness and generality of the proposed SECA, we
conduct comprehensive experiments across diverse network architectures, including CNN, ViT, and
BERT models. All models are trained from scratch under identical training conditions. Our ar-
chitectural choices are designed to provide comprehensive evaluation across both established and
modern paradigms while maintaining computational feasibility. For CIFAR-10/100 experiments

6
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(Krizhevsky et al., 2009), we adopt ResNet32/56 models following the experimental protocol of
MDCA (Hebbalaguppe et al., 2022). For large-scale ImageNet evaluation (Deng et al., 2009), we
employ ViT-small, which has become increasingly prevalent for large-scale vision tasks. For natu-
ral language understanding tasks, DBpedia (Lang, 1995) and 20 Newsgroups (Zhang et al., 2015),
we evaluate on both BERT-small and BERT-base architectures to assess scalability across different
model sizes within the Transformer family. This architectural diversity spanning traditional CNNs
on CIFAR datasets, modern Vision Transformers on ImageNet, and BERT models for NLP tasks,
enables comprehensive evaluation across different inductive biases, model types, and task domains.2

Compared Baselines. We compare our method against Cross-Entropy loss, Focal loss (Focal) (Lin
et al., 2017), Label Smoothing (LS) (Müller et al., 2019), MMCE (Kumar et al., 2018), DCA (Liang
et al., 2020), FLSD (Mukhoti et al., 2020), MDCA (Hebbalaguppe et al., 2022), Brier (Brier, 1950),
OLS (Zhang et al., 2021), Dual Focal (Tao et al., 2023), and AdaFocal (Ghosh et al., 2022).

Hyper-Parameters Setups. For method-specific hyper-parameters, e.g. γ and β in MDCA (Heb-
balaguppe et al., 2022), we adopt the configurations from original papers based on their best re-
ported results. All methods are trained under the same dataset-model pairs and general training
hyper-parameters as shown in Table 4 (Appendix B), ensuring a consistent evaluation environment.

Evaluation Metrics. We evaluate each method via four metrics: Test Error rate (TE), Static Cali-
bration Error (SCE) (Nixon et al., 2019), Expected Calibration Error (ECE) (Guo et al., 2017), and
Adaptive ECE (AECE) (Ding et al., 2020). Details about those metrics are in the Appendix C.

4.1 EXPERIMENTS ON VISUAL RECOGNITION TASKS

Table 1 presents the experimental results on CIFAR-10 and CIFAR-100 using ResNet32 and
ResNet56 networks. Our proposed SECA demonstrates strong calibration performance across both
datasets, with distinct advantages emerging on each evaluation setting. On CIFAR-10, while some
specialised methods such as MDCA achieve lower calibration errors in certain metrics, SECA main-
tains competitive performance across all measures while being hyperparameter-free. SECA consis-
tently outperforms the Cross-Entropy baseline, demonstrating meaningful calibration improvements
without sacrificing predictive accuracy. Notably, SECA achieves the lowest test error rates (7.07%
and 6.47% for ResNet32 and ResNet56, respectively) amongst all evaluated methods, indicating that
the calibration improvements do not come at the expense of model accuracy.

Methods
CIFAR-10 CIFAR-100

ResNet32 ResNet56 ResNet32 ResNet56
TE | SCE | ECE | AECE TE | SCE | ECE | AECE TE | SCE | ECE | AECE TE | SCE | ECE | AECE

Focal (γ=3.0) 7.99 | 10.0 | 4.54 | 4.46 7.59 | 9.73 | 4.46 | 4.41 31.45 | 2.07 | 2.26 | 2.17 28.92 | 2.01 | 2.07 | 1.85
LS (α=0.1) 7.42 | 15.0 | 6.37 | 6.28 6.66 | 13.8 | 5.49 | 5.30 29.95 | 2.28 | 2.80 | 2.86 27.21 | 2.18 | 2.35 | 2.51
MMCE (β=4.0) 8.43 | 8.47 | 3.40 | 3.47 8.18 | 8.45 | 3.30 | 3.34 31.68 | 2.50 | 7.53 | 7.52 29.63 | 2.36 | 6.93 | 6.90
DCA (β=1.0) 7.53 | 9.02 | 4.24 | 4.22 6.93 | 7.37 | 3.34 | 3.29 30.03 | 3.15 | 12.0 | 12.0 27.48 | 2.95 | 11.1 | 11.1
FLSD (γ=3.0) 7.90 | 9.88 | 4.44 | 4.41 7.51 | 10.3 | 4.75 | 4.71 32.02 | 2.10 | 2.16 | 2.12 28.95 | 2.02 | 2.30 | 2.28
MDCA (γ, β=1.0) 7.40 | 5.02 | 1.84 | 1.76 7.00 | 4.29 | 1.25 | 1.16 30.96 | 2.30 | 5.61 | 5.61 28.00 | 2.17 | 5.24 | 5.21
Brier 7.72 | 6.18 | 2.61 | 2.59 7.76 | 5.39 | 2.15 | 2.05 33.84 | 2.30 | 5.56 | 5.53 30.97 | 2.11 | 4.94 | 4.88
OLS (α=0.5) 7.46 | 7.27 | 3.31 | 3.30 7.34 | 6.27 | 2.80 | 2.75 30.44 | 2.12 | 4.51 | 4.56 27.95 | 1.88 | 2.44 | 2.41
DualFocal (γ=5.0) 8.01 | 5.03 | 1.82 | 1.79 7.62 | 5.62 | 2.61 | 2.51 31.54 | 2.17 | 3.30 | 3.26 28.21 | 2.05 | 1.94 | 1.96
AdaFocal 7.56 | 6.49 | 2.69 | 2.62 6.79 | 4.56 | 1.44 | 1.37 31.27 | 2.74 | 3.42 | 3.43 27.89 | 2.54 | 2.75 | 2.76
CE (baseline) 7.14 | 8.47 | 3.86 | 3.85 6.85 | 6.89 | 3.10 | 3.09 30.36 | 2.83 | 10.0 | 10.2 27.15 | 2.59 | 9.09 | 9.09
SECA (Ours) 7.07 | 6.67 | 2.94 | 2.84 6.47 | 5.75 | 2.41 | 2.44 29.82 | 1.89 | 1.90 | 1.95 26.97 | 1.79 | 1.71 | 1.74

Table 1: Comparison between our method and other methods regarding calibration metrics: Test
Error (%), SCE (‰), ECE (%) and AECE (%), for ResNet32/56 on CIFAR10/100 datasets. A lower
error is better. Results are averaged values based on five independent trainings.

SECA’s advantages become even more pronounced on the more challenging CIFAR-100 dataset,
where it consistently achieves the best results across all metrics. On CIFAR-100, SECA obtains
the lowest test error rates (29.82% and 26.97% for ResNet32 and ResNet56, respectively) while si-
multaneously achieving superior calibration with the lowest SCE (1.89‰ and 1.79‰), ECE (1.90%
and 1.71%), and AECE (1.95% and 1.74%) values compared to all baseline methods. The sub-
stantial calibration improvements are particularly evident when comparing to the baseline, with
ECE reduced from 10.0% to 1.90% on CIFAR-100 ResNet32. Compared to recent strong baselines

2ViT-ImageNet experiments are conducted with eight Nvidia RTX 4090 GPUs, and the other experiments
are performed using two RTX A5500 GPUs.
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including DualFocal and AdaFocal, SECA shows particularly strong performance on this multi-
class scenario where the larger number of classes and finer-grained distinctions make calibration
more challenging. This demonstrates the effectiveness of SECA’s adaptive, class-wise regularisa-
tion mechanism in scenarios with higher class complexity.

Table 2 presents the Top-1/-5 test errors and calibration metrics for ViT-small on the ImageNet
dataset. SECA demonstrates excellent calibration performance, achieving the best results across all
calibration metrics with SCE (0.53‰), ECE (7.47%), and AECE (7.65%), substantially outperform-
ing the Cross-Entropy baseline and other calibration-focused methods. Notably, SECA reduces ECE
by 37.3% compared to the Cross-Entropy baseline (from 11.9% to 7.47%) while simultaneously im-
proving Top-1 accuracy from 25.61% to 23.94%.

Methods ViT-small on ImageNet Training
CostTE (Top-1) TE (Top-5) SCE ECE AECE

Focal (γ=3.0) 27.17 8.17 0.66 8.12 7.86 40.23 Hours
LS (α=0.1) 23.78 7.80 0.68 8.99 8.82 33.85 Hours
MMCE (β=2.0) 25.61 8.64 0.58 11.8 10.9 40.13 Hours
DCA (β=1.0) 25.45 8.68 0.55 12.1 11.3 40.32 Hours
FLSD (γ=3.0) 26.12 8.31 0.66 8.25 8.05 42.85 Hours
MDCA (γ, β=1.0) 25.85 8.49 0.59 9.29 8.61 43.60 Hours
Brier 25.77 9.70 0.59 9.39 8.68 44.27 Hours
OLS (α=0.5) 22.84 7.21 0.64 9.05 8.68 37.53 Hours
DualFocal (γ=5.0) 25.80 8.47 0.65 8.23 7.80 40.69 Hours
AdaFocal 24.74 8.31 0.61 8.31 7.67 41.31 Hours
CE (baseline) 25.61 8.73 0.56 11.9 11.0 30.83 Hours
SECA (Ours) 23.94 8.03 0.53 7.47 7.65 32.08 Hours

Table 2: Comparison between our method and other methods regarding calibration metrics: Test
Error (%), SCE (‰), ECE (%) and AECE (%), for ViT-small on the ImageNet dataset. A lower
error or training cost is better.

While OLS achieves the lowest Top-1 and Top-5 error rates (22.84% and 7.21%, respectively),
SECA strikes an excellent balance between accuracy and calibration, obtaining competitive accu-
racy (23.94% Top-1, 8.03% Top-5) while significantly surpassing OLS in calibration quality (ECE:
7.47% vs 9.05%). Among methods that achieve similar accuracy levels, SECA provides substan-
tially better calibration—for instance, compared to Label Smoothing which achieves 23.78% Top-1
error, SECA reduces ECE from 8.99% to 7.47%.

Furthermore, SECA demonstrates excellent computational efficiency with a training cost of 32.08
hours, remaining close to the baseline Cross-Entropy (30.83 hours) while being considerably faster
than more complex methods such as MDCA (43.60 hours). This efficiency advantage, combined
with its hyper-parameter-free nature, makes SECA particularly attractive for large-scale applications
like ImageNet where computational resources are a significant consideration.

To further illustrate the calibration improvements, Figure 1 presents reliability diagrams comparing
SECA against several baseline methods on CIFAR-100 with ResNet-56. The diagrams demonstrate
that whilst Cross Entropy exhibits substantial overconfidence (particularly in high-confidence bins),
SECA maintains close alignment between predicted confidence and actual accuracy across all con-
fidence ranges. More reliability analysis is in Appendix F.

Figure 1: Reliability Diagram of Different Methods on CIFAR-100 with ResNet56.
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4.2 EXPERIMENTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

Table 3 presents the results on natural language understanding datasets DBpedia and 20 News-
groups using BERT-small and BERT-base models. SECA demonstrates strong performance across
both datasets, with particularly notable results varying by dataset characteristics. On the DBpedia
dataset, SECA achieves excellent overall performance, obtaining the lowest test error rates (1.18%
for BERT-small and 1.38% for BERT-base) while maintaining competitive calibration. For ECE
and AECE metrics, SECA consistently achieves the best performance across both model sizes (e.g.,
ECE of 0.35% vs baseline’s 0.53% for BERT-small). While some methods like Brier Score achieve
slightly lower SCE values, SECA provides the best balance between accuracy and calibration with-
out requiring hyper-parameter tuning.

Methods
DBpedia 20 Newsgroups

BERT-small BERT-base BERT-small BERT-base
TE | SCE | ECE | AECE TE | SCE | ECE | AECE TE | SCE | ECE | AECE TE | SCE | ECE | AECE

Focal (γ=3.0) 1.48 | 10.9 | 7.57 | 7.56 1.43 | 11.8 | 8.10 | 8.08 33.85 | 11.4 | 7.70 | 7.88 38.06 | 18.7 | 5.34 | 5.15
LS (α=0.1) 1.28 | 12.3 | 8.37 | 8.36 1.41 | 13.3 | 8.91 | 8.90 31.51 | 10.3 | 5.81 | 5.83 35.31 | 13.4 | 9.23 | 10.2
MMCE (β=4.0) 1.71 | 7.72 | 5.33 | 5.33 2.07 | 8.61 | 6.26 | 6.26 32.71 | 10.3 | 4.66 | 4.71 35.31 | 16.0 | 12.1 | 12.1
DCA (β=1.0) 1.33 | 0.94 | 0.55 | 0.56 1.42 | 1.28 | 0.72 | 0.71 31.96 | 15.3 | 12.9 | 12.9 35.41 | 20.9 | 18.1 | 18.1
FLSD (γ=3.0) 1.48 | 11.0 | 7.61 | 7.61 1.40 | 12.0 | 8.33 | 8.32 33.61 | 11.4 | 7.65 | 7.71 34.59 | 13.5 | 5.60 | 5.49
MDCA (γ, β=1.0) 1.35 | 1.77 | 1.09 | 1.07 1.35 | 1.60 | 0.80 | 0.76 33.18 | 13.2 | 9.24 | 9.31 33.24 | 14.7 | 11.1 | 11.0
Brier 1.35 | 0.85 | 0.38 | 0.43 1.47 | 1.16 | 0.66 | 0.68 31.43 | 11.4 | 6.86 | 7.03 32.39 | 16.3 | 13.4 | 13.4
OLS (α=0.5) 1.29 | 6.74 | 4.45 | 4.39 1.42 | 5.33 | 3.42 | 3.27 30.37 | 12.4 | 9.98 | 9.89 32.60 | 14.0 | 8.43 | 8.17
DualFocal (γ=5.0) 1.48 | 9.78 | 6.70 | 6.70 1.48 | 16.9 | 11.7 | 11.7 39.03 | 10.8 | 6.00 | 5.88 42.02 | 12.9 | 7.44 | 7.43
AdaFocal 1.37 | 1.97 | 1.24 | 1.20 1.43 | 2.42 | 1.29 | 1.26 39.29 | 11.3 | 5.97 | 5.95 41.54 | 19.1 | 15.3 | 15.2
CE (baseline) 1.32 | 0.95 | 0.53 | 0.54 1.39 | 1.17 | 0.70 | 0.71 32.39 | 12.8 | 9.36 | 9.23 32.73 | 20.0 | 17.8 | 17.8
SECA (Ours) 1.18 | 0.97 | 0.35 | 0.38 1.38 | 1.20 | 0.63 | 0.66 31.38 | 8.89 | 3.53 | 3.89 32.73 | 13.3 | 5.33 | 5.06

Table 3: Comparison between our method and other methods regarding calibration metrics: Test Er-
ror (%), SCE (‰), ECE (%) and AECE (%), for BERT-small/base on DBpedia and 20 Newsgroups
datasets. A lower error is better. Results are averaged values based on five independent runs.

On the more challenging 20 Newsgroups dataset, SECA excels particularly in calibration metrics,
achieving the lowest SCE (8.89‰ for BERT-small), ECE (3.53% and 5.33% for BERT-small and
BERT-base, respectively), BERT-base, respectively), demonstrating substantial improvements over
Cross-Entropy (e.g., reducing ECE from 9.36% to 3.53% on BERT-small, a 62% improvement).

4.3 DISCUSSION

The experimental results across computer vision and natural language understanding tasks demon-
strate that SECA effectively generalises across different modalities and architectures, providing ro-
bust calibration enhancement without requiring domain-specific tuning. Notably, SECA shows con-
sistent improvements across datasets with varying numbers of classes, from dense class scenarios
like CIFAR-10 (10 classes) and DBpedia (14 classes) to sparser class distributions like CIFAR-100
(100 classes) and ImageNet (1000 classes), indicating that its effectiveness stems from adaptive
batch-level regularisation rather than dependence on specific class density conditions. This com-
prehensive evaluation validates SECA as an effective calibration method that consistently outper-
forms Cross-Entropy baselines across CNN, ViT, and BERT architectures. While some specialised
methods may achieve better performance on specific metrics or datasets, SECA distinguishes itself
through its hyper-parameter-free design, computational efficiency, and robust performance across
diverse tasks. These characteristics, combined with its consistent calibration improvements and
competitive accuracy, establish SECA as a practical alternative to conventional loss functions.

We provide comprehensive analyses in the appendix to further validate SECA’s effectiveness and
robustness. Specifically, we conducted ablation studies to investigate the impacts of varying batch
sizes (Appendix D), demonstrate SECA’s compatibility with post-hoc calibration techniques through
integration with temperature scaling (Appendix E), present detailed reliability diagrams with 25-
bin calibration analysis across all experimental configurations (Appendix F), and evaluate SECA’s
robustness via out-of-distribution detection experiments on CIFAR-10-C and SVHN (Appendix G).
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5 CONCLUSION

We introduced SECA for self-guided model calibration, a novel train-time calibration method specif-
ically designed to improve the reliability and trustworthiness of deep neural networks without extra
hyper-parameters. SECA dynamically adjusts target distributions by leveraging batch-level aver-
aged predictions, thereby encouraging well-calibrated probabilistic outputs through a self-guided
regularisation mechanism. Extensive experiments demonstrated the effectiveness and versatility of
SECA across diverse network architectures including CNNs, Vision Transformers, and BERT mod-
els, as well as various tasks spanning visual recognition and natural language understanding. SECA
consistently improves model calibration on the majority of evaluated datasets and architectures,
achieving substantially lower SCE, ECE, and Adaptive ECE compared to established baselines,
without additional hyper-parameter tuning or significant computational overhead. Given its simplic-
ity, hyper-parameter-free nature, computational efficiency, and broad applicability, SECA serves as
a practical alternative to the Cross-Entropy loss for training well-calibrated neural networks.
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A EMPIRICAL STUDIES FOR THEORETICAL ANALYSIS

To complement the theoretical analysis discussed in Section 3.3, we provide a set of empirical
studies that follow the same training settings as discussed in Section 4. These studies offer di-
rect evidence for the core mechanisms underpinning SECA’s calibration improvements, specifically
from the perspectives of entropy regularisation, gradient dynamics, and knowledge distillation. We
compare SECA with both the standard Cross-Entropy loss and Label Smoothing over the course
of training, directly addressing the distinctions between SECA’s adaptive calibration approach and
Label Smoothing’s fixed softening strategy. Three key per-sample metrics are tracked through-
out training. Average Entropy is calculated from each sample’s predicted probability distribution
and measures the model’s prediction calibration. Lower entropy indicates sharper predictions, while
higher entropy suggests better-calibrated, less over-confident outputs. Average KL Divergence is
computed between each sample’s predicted probability and the average prediction of other samples
in the batch that belong to the same class. It measures how well individual predictions align with the
collective calibration signal of their class. Average Cosine Similarity measures how closely each
sample’s prediction aligns directionally with the corresponding batch-level average. It reflects the
effectiveness of batch-level calibration regularisation in promoting well-calibrated outputs.

Figure 2: Comparison between SECA, Cross-Entropy, and Label Smoothing on CIFAR-10 dataset
and ResNet models, with respect to three metrics: Average Entropy, Average KL Divergence, and
Average Cosine Similarity.

As illustrated in Fig. 2 (top left and bottom left), on the CIFAR-10 dataset, both ResNet-32 and
ResNet-56 models trained with SECA consistently exhibit higher average entropy than those trained
with Cross-Entropy or Label Smoothing. This indicates that SECA promotes better-calibrated pre-
dictions by encouraging appropriate confidence levels, while avoiding the potential calibration in-
consistencies observed with Label Smoothing in certain training phases. In addition, Fig. 2 (top
centre and bottom centre) shows that the KL divergence between individual predictions and their
corresponding batch-level class averages remains markedly lower under SECA compared to both
baselines, particularly during the early and mid-training phases. This behaviour suggests that SECA
effectively maintains prediction calibration by aligning individual outputs with class-informed ex-
pectations, thereby achieving better calibration than standard Cross-Entropy while providing more
consistent regularisation than the fixed smoothing approach of Label Smoothing. Finally, as shown
in Fig. 2 (top right and bottom right), the cosine similarity between per-sample predictions and their
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corresponding batch-level averages is consistently higher under SECA than both Cross-Entropy and
Label Smoothing, reinforcing the interpretation of SECA as operating through adaptive, class-aware
calibration rather than uniform confidence adjustment.

Figure 3: Comparison between SECA, Cross-Entropy, and Label Smoothing on the CIFAR-100
dataset and ResNet models, with respect to three metrics: Average Entropy, Average KL Divergence,
and Average Cosine Similarity.

On the more complex CIFAR-100 dataset, the empirical advantages of SECA over both Cross-
Entropy and Label Smoothing become even more pronounced. As shown in Fig. 3 (top left and
bottom left), models trained with SECA demonstrate a noticeably larger average entropy compared
to both baselines, which is particularly crucial given the challenge of achieving well-calibrated pre-
dictions across a larger number of classes. This enhanced entropy demonstrates SECA’s effective-
ness in promoting appropriate calibration across multi-class scenarios where Label Smoothing’s
uniform approach may prove insufficient. Notably, Fig. 3 (top centre and bottom centre) shows
that the KL divergence under SECA remains substantially lower across all epochs compared to both
Cross-Entropy and Label Smoothing, suggesting that SECA maintains superior class-consistent cal-
ibration and reduces the prediction instability observed with alternative approaches. Additionally,
as illustrated in Fig. 3 (top right and bottom right), cosine similarity remains consistently higher un-
der SECA than both baselines, confirming that SECA’s adaptive mechanism enables predictions to
converge more effectively toward well-calibrated batch-level expectations, outperforming the fixed
regularisation strategies of Label Smoothing.

Similar calibration advantages are observed in the natural language understanding tasks (Fig. 4
and Fig. 5). The empirical analysis across four datasets and multiple architectures confirms that
SECA consistently exhibits superior calibration behaviour compared to both Cross-Entropy and La-
bel Smoothing, validating its theoretical foundations (as discussed in Section 3.3). The observed
increase in average entropy supports SECA’s role as an adaptive calibration regulariser that dynam-
ically adjusts prediction confidence based on batch-level class information. The substantial reduc-
tion in KL divergence demonstrates SECA’s effectiveness in promoting well-calibrated gradients
and maintaining appropriate prediction confidence across diverse tasks. Additionally, the higher co-
sine similarity between predictions and batch-level averages confirms SECA’s adaptive calibration
mechanism, whereby individual predictions are dynamically aligned with the calibrated consensus
of their class peers, surpassing the static approach of Label Smoothing.
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Figure 4: Comparison between SECA, Cross-Entropy, and Label Smoothing on DBpedia dataset
and BERT models, with respect to three metrics: Average Entropy, Average KL Divergence, and
Average Cosine Similarity.

Figure 5: Comparison between SECA, Cross-Entropy, and Label Smoothing on 20 Newsgroups
dataset and BERT models, with respect to three metrics: Average Entropy, Average KL Divergence,
and Average Cosine Similarity.
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B GENERAL TRAINING HYPER-PARAMETERS

Table 4 presents the experimental configuration for each dataset–model pairing employed in our
SECA evaluation. These hyper-parameters are held constant across all comparison methods to en-
sure fair evaluation of calibration performance.

Dataset Model #Classes LR LR Scheduler Batch Size Epochs
CIFAR-10 ResNet32 10 0.1 MultiStep 128 160
CIFAR-10 ResNet56 10 0.1 MultiStep 128 160
CIFAR-100 ResNet32 100 0.1 MultiStep 128 200
CIFAR-100 ResNet56 100 0.1 MultiStep 128 200
ImageNet ViT-small 1000 5e-4 Cosine+Warmup (0.02) 1024 300
DBpedia BERT-small 14 3e-5 Linear+Warmup (0.1) 256 5
DBpedia BERT-base 14 2e-5 Linear+Warmup (0.1) 128 5

20 Newsgroups BERT-small 20 3e-5 Linear+Warmup (0.1) 256 20
20 Newsgroups BERT-base 20 2e-5 Linear+Warmup (0.1) 128 20

Table 4: Dataset–model pairs and their corresponding hyper-parameter setups, including learning
rate, scheduler type, batch size, and number of training epochs.

C EVALUATION METRICS

To quantify calibration, we use several standard metrics in this study:

Expected Calibration Error (ECE) Guo et al. (2017) measures the average discrepancy between
confidence and accuracy across bins of predictions grouped by confidence, defined as follows:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| , (16)

where n is the total number of samples, M is the number of confidence bins, Bm is the set of
indices of samples whose predicted confidence falls into m-th bin. Accordingly, acc(Bm) is the
average accuracy in bin m, conf(Bm) is the average predicted confidence in bin m.

Static Calibration Error (SCE) Nixon et al. (2019) computes the calibration error per-class in-
dependently and averaged error across all classes. This making the calibration for each class is
considered equally, avoiding domination by majority classes, defined as follows:

SCE =
1

C

C∑
c=1

M∑
m=1

|Bm,c|
nc

|acc(Bm,c)− conf(Bm,c)| , (17)

where C denotes the number of classes, nc is the number of samples belonging to class c, Bm,c is
the set of samples of class c whose confidence falls into bin m. acc(Bm,c) and conf(Bm,c) are the
average accuracy and confidence for class c in bin m, respectively.

Adaptive ECE (AECE) Ding et al. (2020) improves upon ECE by adjusting bin sizes based on the
density of confidence scores, ensuring each bin contains approximately the same number of samples.
This reduces bias from uneven sample distribution across confidence ranges.

AECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| , (18)

Specifically, SCE evaluates calibration error independently for each class and averages these values,
ensuring class-level calibration fairness. ECE measures the overall alignment between predicted
confidence and empirical accuracy, providing a global assessment of calibration quality. AECE
adaptively adjusts bin sizes based on the confidence distribution, making it robust to unevenly dis-
tributed confidence scores.
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D ABLATION STUDIES ON THE IMPACTS OF BATCH SIZE

As shown in Fig. 6, SECA demonstrates substantial improvements in calibration metrics (SCE,
ECE, and AECE) compared to the Cross-Entropy baseline across all tested batch sizes. Notably, the
calibration benefits of SECA become increasingly pronounced with larger batch sizes, underscoring
the efficacy of leveraging richer batch-level distributional statistics for adaptive target construction.

SOM vs. Cross-Entropy on CIFAR-100 dataset with ResNet-32

SOM vs. Cross-Entropy on CIFAR-100 dataset with ResNet-56

SECA vs. Cross-Entropy on CIFAR-100 dataset with ResNet-32

SECA vs. Cross-Entropy on CIFAR-100 dataset with ResNet-56

SECA SECASECASECA

SECA SECA SECA SECA

Figure 6: Comparison between SECA and baseline Cross-Entropy loss on the CIFAR-100 dataset
and ResNet models, with respect to varying batch sizes from 8 to 128.

As shown in Fig. 7, SECA consistently outperformed Cross-Entropy across all tested batch sizes,
as well as achieving lower SCE, ECE, and AECE values. Notably, as batch size increases, both
SECA and Cross-Entropy yield lower test error rates, but SECA typically maintains its calibration
advantage, indicating its stable performance over the standard Cross-Entropy loss.

SOM vs. Cross-Entropy on CIFAR-10 dataset with ResNet-32

SOM vs. Cross-Entropy on CIFAR-10 dataset with ResNet-56

SECA vs. Cross-Entropy on CIFAR-10 dataset with ResNet-32

SECA vs. Cross-Entropy on CIFAR-10 dataset with ResNet-56
SECA SECASECASECA

SECA SECA SECASECA

Figure 7: Comparison between SECA and baseline Cross-Entropy loss on CIFAR-10 dataset and
ResNet models, with respect to varying batch sizes from 8 to 128.

For the DBpedia dataset (shown in Fig. 8), SECA shown consistent superiority over the Cross-
Entropy for both BERT-small and BERT-base architectures across all batch sizes. Particularly for
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larger batch sizes, SECA not only maintained lower calibration errors but also exhibited improved
robustness, suggesting its efficacy on Transformer networks and natural language tasks.

SOM vs. Cross-Entropy on DBpedia dataset with BERT-small

SOM vs. Cross-Entropy on DBpedia dataset with BERT-base

SECA vs. Cross-Entropy on DBpedia dataset with BERT-small

SECA vs. Cross-Entropy on DBpedia dataset with BERT-base
SECA SECA SECASECA

SECA SECA SECA SECA

Figure 8: Comparison between SECA and baseline Cross-Entropy loss on DBpedia dataset and
BERT models, with respect to varying batch sizes from 16 to 256.

As illustrated in Fig. 9, the results on the 20 Newsgroups dataset further support above observations.
SECA consistently achieved superior calibration performance across different batch sizes. The cal-
ibration gap between SECA and Cross-Entropy widened with increasing batch sizes, demonstrating
the robustness and effectiveness of its adaptive batch-level softening in textual scenarios.

SOM vs. Cross-Entropy on 20 Newsgroups dataset with BERT-small

SOM vs. Cross-Entropy on 20 Newsgroups dataset with BERT-base

SECA vs. Cross-Entropy on 20 Newgroups dataset with BERT-small

SECA vs. Cross-Entropy on 20 Newgroups dataset with BERT-base

SECA SECA SECA SECA

SECASECASECASECA

Figure 9: Comparison between SECA and baseline Cross-Entropy loss on 20 Newsgroups dataset
and BERT models, with respect to varying batch sizes from 16 to 256.

Overall, these ablation studies show that although SECA naturally inherits a degree of batch-size
dependence due to its use of batch-level class-wise statistics, it remains consistently superior to
Cross-Entropy across all tested batch sizes and across all datasets and architectures. The modest
fluctuations observed in certain configurations, such as larger batch sizes on CIFAR-10, do not
change its overall advantage. Importantly, SECA does not require tuning of the batch size to obtain
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strong results, all main experiments employ standard batch sizes commonly used in prior work,
under which SECA remains stable and effective. We acknowledge that extreme batch sizes may
affect calibration strength, and we view this as an inherent limitation shared by batch-dependent
calibration methods. In practice, SECA provides reliable behaviour under typical training setups.

E INTEGRATION WITH POST-HOC CALIBRATION

Methods
CIFAR-10 CIFAR-100

ResNet32 ResNet56 ResNet32 ResNet56
Pre T Post T Pre T Post T Pre T Post T Pre T Post T

Focal (γ=3.0) 4.54 2.91 (0.8) 4.46 2.01 (0.8) 2.26 1.92 (1.1) 2.07 2.07 (1.0)
LS (α=0.1) 6.37 2.07 (0.8) 5.49 1.70 (0.8) 2.80 2.80 (0.9) 2.35 2.35 (1.0)
MMCE (β=4.0) 3.40 3.04 (0.6) 3.30 2.24 (0.6) 7.53 1.97 (1.2) 6.93 1.34 (1.2)
DCA (β=1.0) 4.24 2.95 (1.8) 3.34 2.39 (1.8) 12.0 1.20 (1.6) 11.1 2.22 (1.7)
FLSD (γ=3.0) 4.44 1.70 (0.9) 4.75 1.70 (0.8) 2.16 3.62 (1.1) 2.30 2.77 (1.1)
MDCA (γ, β=1.0) 1.84 0.82 (1.2) 1.25 0.45 (1.2) 5.61 1.94 (1.2) 5.24 1.86 (1.3)
Brier 2.61 1.27 (1.2) 2.15 1.03 (1.2) 5.56 2.07 (1.2) 4.94 1.98 (1.2)
OLS (α=0.5) 3.31 2.73 (1.4) 2.80 1.69 (1.3) 4.51 1.64 (1.2) 2.44 1.31 (1.2)
DualFocal (γ=5.0) 1.82 0.60 (0.9) 2.61 0.54 (0.8) 3.30 1.81 (1.1) 1.94 1.56 (1.1)
AdaFocal 2.69 0.90 (1.2) 1.44 0.51 (1.1) 3.42 2.09 (1.3) 2.75 1.83 (1.3)
CE (baseline) 3.86 2.28 (1.9) 3.10 1.75 (1.6) 10.0 2.85 (1.6) 9.09 2.52 (1.3)
SECA (Ours) 2.94 2.53 (1.3) 2.41 1.50 (1.2) 1.90 1.10 (1.1) 1.71 1.25(1.2)

Table 5: Expected Calibration Error (%) before and after Temperature Scaling on CIFAR-10 and
CIFAR-100 datasets. Numbers in parentheses indicate the optimal temperature values learned during
calibration. Lower ECE values indicate better calibration performance. Temperature values ≈ 1.0
suggest innately well-calibrated models.

As shown in the Table 5, the integration of temperature scaling with various calibration methods pro-
vides critical insights into the intrinsic calibration properties of different approaches. Our proposed
SECA method demonstrates superior performance in the post-hoc calibration setting, achieving the
lowest ECE values on CIFAR-100 for both ResNet32 (1.10%) and ResNet56 (1.25%) architectures.
Notably, SECA consistently requires minimal temperature adjustment (T ≈ 1.1–1.3), indicating that
it produces inherently well-calibrated predictions that require minimal post-hoc correction.

The effectiveness of temperature scaling varies significantly across methods and datasets. While
most approaches benefit from temperature scaling, the magnitude of improvement differs substan-
tially. The Cross-Entropy baseline exhibits the largest temperature adjustments (T ≈ 1.3–1.9), re-
flecting significant initial over-confidence that is effectively mitigated through scaling, resulting in
ECE reductions of up to 74% on CIFAR-100. In contrast, methods such as DualFocal and SECA
require more modest temperature adjustments, suggesting better initial calibration properties.

Several methods demonstrate exceptional synergy with temperature scaling. DualFocal achieves the
best post-TS performance on CIFAR-10 ResNet32 (0.60% ECE), while MDCA attains remarkable
calibration on CIFAR-10 ResNet56 (0.45% ECE). However, some methods show diminishing re-
turns or inconsistent improvements. Label Smoothing exhibits minimal post-TS improvement on
CIFAR-100, with ECE remaining unchanged at 2.35% for ResNet56, potentially indicating over-
regularisation that limits the effectiveness of subsequent temperature scaling.

CIFAR-100 results consistently demonstrate larger absolute improvements from temperature scaling
compared to CIFAR-10, reflecting the increased calibration challenges associated with fine-grained
classification tasks. Despite this increased complexity, SECA maintains robust performance across
both datasets, demonstrating its effectiveness in diverse classification scenarios. The learned tem-
perature values serve as diagnostic indicators of initial model calibration, with values substantially
greater than 1.0 indicating over-confidence requiring correction, while values approaching 1.0 sug-
gest well-calibrated base models.
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F RELIABILITY ANALYSIS

The reliability diagrams presented in Figures 10, 11, 12, and 13 provide a comprehensive visual
assessment of model calibration across different calibration methods using 25 confidence bins. Each
subplot depicts the alignment between expected confidence (red bars) and actual accuracy (purple
bars), with the diagonal dashed line representing perfect calibration. The analysis reveals several
key insights regarding the calibration behaviour of various methods.

Figure 10: Reliability diagrams on CIFAR-10 with ResNet-32.

CIFAR-10 Results. On CIFAR-10 with ResNet-32 (Figure 10), SECA demonstrates superior cali-
bration performance across the confidence spectrum. While baseline methods such as Cross Entropy
exhibit substantial over-confidence, particularly in the high-confidence bins (0.8–1.0) where the ma-
jority of predictions concentrate, SECA maintains close alignment between predicted confidence
and actual accuracy.

Figure 11: Reliability diagrams on CIFAR-10 with ResNet-56.

The trend continues with ResNet-56 (Figure 11). The reliability diagrams reveal that traditional
calibration methods such as Focal Loss and MMCE struggle to maintain consistent calibration across
all confidence bins, often exhibiting erratic behaviour in mid-range confidence intervals (0.4–0.8).
In contrast, SECA maintains smooth and consistent calibration behaviour, with minimal deviation
from the perfect calibration line across all 25 bins.

CIFAR-100 Results. The superiority of SECA becomes even more pronounced on the challenging
CIFAR-100 dataset, which presents increased complexity due to its larger number of classes and
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Figure 12: Reliability diagrams on CIFAR-100 with ResNet-32.

reduced samples per class. On ResNet-32 (Figure 12), SECA achieves remarkable calibration with
an ECE of 1.90%, while Cross Entropy exhibits severe over-confidence with an ECE of 10.0%—a
five-fold improvement. The reliability diagrams clearly illustrate this disparity, Cross Entropy shows
substantial gaps between expected confidence and actual accuracy across multiple bins, while SECA
maintains near-perfect alignment.

Figure 13: Reliability diagrams on CIFAR-100 with ResNet-56.

Similarly, with ResNet-56 (Figure 13), SECA sustains excellent calibration performance (ECE:
1.71%) compared to Cross Entropy (ECE: 9.09%). The fine-grained 25-bin analysis reveals that
SECA’s calibration improvements are not merely concentrated in specific confidence ranges but are
consistently maintained across the entire confidence spectrum. This uniform improvement is par-
ticularly evident in the medium-confidence bins (0.3–0.8), where many competing methods exhibit
significant calibration errors.
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G ROBUSTNESS ON DATASET SHIFT

We evaluate the robustness of our proposed SECA method against dataset shift by conducting out-
of-distribution (OoD) detection experiments. Following established protocols (Mukhoti et al., 2020;
Tao et al., 2023), we train models on CIFAR-10 as the in-distribution dataset and evaluate OoD
detection performance using CIFAR-10-C (corrupted images) (Hendrycks & Dietterich, 2018) and
SVHN (Street View House Numbers) (Goodfellow et al., 2013) as out-of-distribution datasets. The
AUROC metric is employed to measure detection performance, with higher values indicating better
separation between in-distribution and out-of-distribution samples.

We conduct experiments on two ResNet architectures (ResNet32 and ResNet56) and compare SECA
against ten state-of-the-art calibration methods (similar to Section 4.1). For each method, we report
AUROC scores both before (Pre-T) and after (Post-T) temperature scaling to assess the impact of
post-hoc calibration on OoD detection capabilities.

Methods
CIFAR-10-C SVHN

ResNet32 ResNet56 ResNet32 ResNet56
Pre T Post T Pre T Post T Pre T Post T Pre T Post T

Focal (γ=3.0) 81.36 80.48 88.54 87.61 86.60 86.09 89.18 88.01
LS (α=0.1) 66.19 66.86 88.54 87.61 60.83 62.99 89.18 87.61
MMCE (β=4.0) 86.34 85.59 85.81 85.13 97.13 85.59 95.50 95.01
DCA (β=1.0) 83.91 84.84 83.06 83.66 90.83 91.49 90.47 91.30
FLSD (γ=3.0) 80.08 79.82 88.16 87.62 85.31 85.10 87.37 87.18
MDCA (γ, β=1.0) 83.55 83.62 86.49 86.78 87.83 87.97 83.84 84.34
Brier 78.19 78.36 83.54 83.74 90.46 90.70 89.91 90.20
OLS (α=0.5) 80.21 80.42 83.47 83.58 87.45 87.90 90.24 90.51
DualFocal (γ=5.0) 78.76 78.63 88.34 87.84 90.41 90.27 89.45 89.05
AdaFocal 87.47 87.63 89.72 89.90 86.70 86.67 88.39 88.51
CE (baseline) 81.15 81.23 88.64 89.00 86.14 85.56 92.22 92.80
SECA (Ours) 83.28 83.34 88.69 88.64 89.46 89.29 93.06 93.13

Table 6: Robustness evaluation on dataset shift. AUROC (%) for ResNet-32/56 models trained on
CIFAR-10 (in-distribution) and evaluated on CIFAR-10-C (Gaussian noise, severity 5) and SVHN
(out-of-distribution). Pre T/Post T indicate results before/after temperature scaling.

As shown in Table 6, SECA demonstrates exceptional OoD detection capabilities across both eval-
uation scenarios. On the SVHN dataset, SECA achieves the highest AUROC scores among all
methods, reaching 93.06% with ResNet56 and 89.46% with ResNet32. For CIFAR-10-C detec-
tion, SECA consistently ranks among the top-performing methods, achieving 88.69% (ResNet56)
and 83.28% (ResNet32), representing substantial improvements of +2.13% and +3.32% over the
Cross-Entropy baseline, respectively.

A critical advantage of SECA lies in its remarkable stability when temperature scaling is ap-
plied. While some calibration methods exhibit significant degradation, SECA maintains virtually
unchanged performance. The method exhibits minimal variations of ±0.17% or less across all ex-
perimental conditions, demonstrating that calibration improvements come without sacrificing OoD
detection capabilities.

In terms of cross-architecture performance, SECA demonstrates robust performance across different
network architectures. Unlike some methods that show inconsistent behaviour between ResNet32
and ResNet56, SECA maintains strong and consistent performance improvements across both ar-
chitectures, indicating good generalisation properties.
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H IMBALANCE DATASET

Methods Imbalance CIFAR-100
IF-10 IF-50 IF-100

Focal (γ=3.0) 3.83 5.78 6.56
LS (α=0.1) 3.53 5.89 6.92
MMCE (β=4.0) 5.40 5.36 6.19
DCA (β=1.0) 5.10 7.63 8.48
FLSD (γ=3.0) 3.74 5.89 6.80
MDCA (γ, β=1.0) 4.27 6.51 7.00
Brier 6.06 9.22 9.67
OLS (α=0.5) 3.55 5.72 6.61
DualFocal (γ=5.0) 3.57 5.56 6.43
AdaFocal 4.15 6.43 7.38
CE (baseline) 4.47 7.15 8.25
SECA (Ours) 3.45 5.46 6.42

Table 7: Calibration performance (SCE (‰)) on imbalanced CIFAR-100 under varying imbalance
factors (IF-10/50/100) as suggested by Cui et al. (2019). SECA consistently achieves the best or
second-best SCE across all imbalance levels, demonstrating its robustness in long-tailed settings
without requiring imbalance-specific tuning.

Table 7 reports SCE performance on imbalanced CIFAR-100 with imbalance factors of 10, 50, and
100. SECA exhibits consistently strong calibration behaviour across all imbalance levels. It achieves
the lowest SCE under IF-10, and remains highly competitive under IF-50 and IF-100. Importantly,
SECA requires no adjustment or imbalance-specific hyper-parameters, yet maintains calibra-
tion quality even when minority classes become severely underrepresented. In contrast, several
existing methods (e.g., DCA, AdaFocal) deteriorate notably as imbalance increases. These results
support our claim that SECA’s batch-conditional hybrid targets naturally extend to long-tailed data
and remain effective even when per-class sample frequency is highly uneven.
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