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Abstract—The relationship between the macronutrient com-
position of a meal and the resulting post-prandial glucose
response is complex given the large inter-individual differences in
metabolism. We present JointCGMacros, a computational model
that learns a joint embedding of meal macronutrients and post-
prandial glucose, mediated by demographics, metabolic health,
and gut microbiota variables. The model extracts parallel em-
beddings from (1) postprandial glucose responses to a meal and
(2) the meal’s macronutrient composition conditioned on health
parameters using a triplet loss. The macronutrient embedding is
an interpretable parametric expression that captures how health
parameters modulate the effect of individual macronutrients.
We evaluated the model on an experimental dataset containing
postprandial glucose responses to a variety of mixed meals from
subjects with different metabolic health status (healthy, pre-
diabetes, type 2 diabetes). JointCGMacros significantly outper-
forms a model that attempts to predict macronutrients directly
from postprandial glucose. These findings may lead to the
development of automatic dietary monitoring using off-the-shelf
wearable devices.

Index Terms—Continuous glucose monitors, diet monitoring,
triplet loss, metabolic syndrome.

I. INTRODUCTION

Sustained levels of high blood glucose can have serious

health consequences, increasing the risk of developing diabetes

and its long-term consequences (e.g., kidney failure, blindness,

limb amputations). Thus, monitoring and controlling diet is

critical to preventing and managing diabetes. However, manual

recording of food intake is often time-consuming and error-

prone [1]. Several technologies have been proposed to assist

in automatic diet monitoring (e.g., inertial measurements, mi-

crophones, wearable cameras), but these solutions only capture

limited information, such as the timing, type, and amount of

food, but not their macronutrient composition.

An alternative approach is to analyze the glucose response

after consuming a meal, i.e., the post-prandial glucose re-

sponse (PPGR), which can be measured using off-the-shelf

continuous glucose monitors (CGMs). The primary contributor

to elevated PPGRs is the amount (and type) of carbohy-

drates, but PPGRs are also influenced by other, non-glycemic

macronutrients in the meal. For example, adding protein and

fat to a carbohydrate-rich meal can reduce the initial peak
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and slow down recovery to baseline [2], [3]. Thus, PPGRs

contain information that may be used to recover, in part, the

macronutrient composition of meals. The main challenge with

this approach is the large inter-individual difference in PPGRs

to identical meals.

To address this challenge, we propose JointCGMacros,

a machine-learning model that learns a joint embedding of

PPGRs and macronutrients that captures their underlying

relationship, conditioned on each individual’s health and de-

mographic factors. JointCGMacros consists of two modules:

(1) a PPGR encoder that consumes CGM data to produce

a low-dimensional embedding of the PPGR to a meal, and

(2) a health encoder that consumes health and demographics

factors to produce a personalized macronutrient embedding.

We train JointCGMacros using a triplet loss [4] that aligns

PPGR and macronutrient embedding pairs from the same meal

while forcing PPGR and macronutrient embedding pairs from

different meals to be away from each other. We evaluate the

performance of the proposed joint-learning model against an

equivalent model that predicts a generic (i.e., not personalized)

embedding of macronutrients.

II. RELATED WORK

Studies over the past decade have explored the use of CGMs

to develop personalized nutrition programs that account for

inter-individual differences. Zeevi et al. [5] collected CGM

data and meal logs from an 800-person cohort, and developed a

machine-learning (ML) model that integrated clinical features,

dietary habits, physical activity, and gut microbiome profiles

to predict glycemic responses to meals. Their approach was

validated in a randomized controlled trial, where personalized

dietary recommendations significantly reduced postprandial

glucose excursions. Tily et al. [6] also highlighted the im-

portance of gut microbiome activity in predicting PPGRs.

ML models trained on food composition, anthropometrics,

and microbial pathway activity showed that gut microbiome

features significantly improved predictions.

These studies seek to estimate PPGRs from the macronu-

trient amounts of meals (i.e., a direct problem). Its inverse
counterpart, i.e., predicting macronutrients from PPGRs, is

far more challenging. It is a one-to-many problem in which

metabolic health parameters (e.g., HbA1c, insulin sensitivity)

and demographics (e.g., sex, age) play a major role. Thus,
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Fig. 1. (a) Block diagram of JointCGMacros. A PPGR g(t) is passed to
an encoder network to produce a one-dimensional embedding zP . Health
parameters H are fed to a second encoder network to produce a set of weights
that are combined with the meal macronutrients M to produce a macro
embedding zM using a parametric function fW (M). (b) The two encoders
are then jointly trained using triplet loss, which takes a PPGR embedding zP
as an anchor and macro embeddings from the same meal (M+) and from
different meals (M−) to bring zP and z+M closer to each other and push zP
and z−M apart.

PPGRs from two individuals cannot be compared without

controlling for these health/demographic factors. Our proposed

model (JointCGMacros) addresses this complex issue by learn-

ing a joint embedding that aligns PPGRs with the macronu-

trient composition of a meal, conditioned on metabolic and

demographic parameters. The end result is an interpretable

and personalized embedding of a meal that accounts for inter-

individual differences.

III. METHODS

A. Joint embedding model
The proposed model is illustrated in Figure 1a. It consists of

two encoder networks trained jointly in a data-driven manner.

The PPGR encoder consumes the 3-hour postprandial glucose

response to a meal (as measured by a CGM every 15 min) as a

13-dimensional vector (g(t)), and generates a one-dimensional

PPGR embedding zP . In turn, the health encoder consumes

a vector of metabolic health and demographics parameters

of each individual (H) and generates a personalized set of

weights that are combined with the macronutrient amounts of

a meal (M ) to produce an embedding zM as:

zM =
C − wPP − wFF − wBB

1 + w′
CC + w′

PP + w′
FF + w′

BB
(1)

where C, P , F , and B are the amount of net carbs, protein,

fat and fiber, respectively, in calories1. Coefficients wP , wF ,

and wB in the numerator denote how much protein, fat, and

fiber subtract from the effect of carbs, whereas coefficients

w′
C , w′

P , w′
F , and w′

B in the denominator produce an adjusted

caloric content. As such, the embedding zM can be interpreted

as a generalization of the carb-caloric-ratio, the proportion of

calories in a meal that come from carbohydrates, a measure

of the glycemic load of a meal:

CCR =
C

C + P + F +B
(2)

1Macronutrient amounts in grams are converted into calories as follows: 4
calories/gram for carbs, 4 calories/gram for protein, 9 calories/gram for fat,
and 2 calories/gram for fiber

For (w′
C , w

′
P , w

′
F , w

′
B) → 0, the denominator approaches

one, in which case zM only considers the subtractive effect of

non-glycemic macronutrients. In turn, for w′
C=w′

P =w′
F =w′

B=1

and wP =wF =wB=0, zM reduces to the CCR in equation (1).

This parametric embedding has two main advantages. First,

it allows the model to learn the optimum combination of

macronutrients that is related to PPGRs (either linearly or non-

linearly) for each individual. Second, the resulting weights are

interpretable (one per macronutrient) and can be traced back

to the health parameters of each individual. Both zM and zP
are one-dimensional embeddings to prioritize interpretability

and reduce the risk of overfitting.

B. Triplet loss
We use a triplet loss to learn the joint embedding space by

aligning PPGR embeddings with their corresponding macronu-

trient embeddings. As illustrated in Figure 1b, each training

example consists of a triplet (zP , z+M , z−M ), where zP is

the PPGR embedding (anchor), and z+M and z−M are the

macronutrient embeddings from the same meal (positive) and

a different meal (negative), respectively. By changing only

the macronutrient in each triplet, we force the network to

distinguish between positive and negative macros. Thus, the

loss function encourages the PPGR embedding to be closer to

meals that induce similar responses and far away from those

that induce different responses:

Ltriplet =

N∑

i=0

max(||z(i)P − z
(i)
M+ ||22 − ||z(i)P − z

(i)
M− ||22 + α, 0)

(3)
where N is the number of triplets2, and α is the margin

separating the positive examples from the negative examples.

We use the L2 norm as the distance metric between PPGR

and macro embeddings.

C. Network architecture
The PPGR encoder consists of two hidden layers with 64

nodes and 32 nodes, each followed by BatchNorm [7] and

ReLU activation [8], and dropout set to 0.1. Health parameters

H are passed to an encoder with two hidden layers, the first

one of size 64 followed by BatchNorm and ReLU activation,

and the second one of size 7, i.e., the number of learnable

weights in eq. (1). To force the weights to be positive, we pass

them through a softplus activation and compute zM using eq.

(1). The network is trained using a learning rate of 5 ∗ 10−3

with a batch size of 64. The triplet margin (α) is set to 1.0.

D. Predicting macro embedding
Once trained, the model can be used to predict the macro

embedding (zM ) of a meal from the corresponding PPGR,

as follows. First, the PPGR of a test meal is passed to the

PPGR encoder to obtain the corresponding embedding (zP ).

Then, an individual’s health parameters H are passed to the

second encoder and combined with a macronutrient vector M
to produce the embedding zM . Since M is unknown for a

2The dataset used for this study –see section III-F– contains six unique meal
combinations. This results in five distinct triplets per CGM, each sharing the
same anchor and positive, but differing in the negative.



TABLE I
MACRONUTRIENT COMPOSITION OF BREAKFAST MEALS, CODED AS

HAVING HIGH (H) OR LOW (L) AMOUNTS OF C,P, F AND B.

Day Meal Carb (g) Prot (g) Fat (g) Fiber (g) CCR

4 HHHH 66 66 42 07 0.287
5 LLLL1 24 22 11 00 0.345
9 LLLL2 24 22 11 00 0.345
10 HLHH 66 22 42 07 0.355
3 HLHL1 66 22 42 00 0.362
8 HLHL2 66 22 42 00 0.362
2 HHLL1 66 66 11 00 0.424
7 HHLL2 66 66 11 00 0.424
1 HLLL1 66 22 11 00 0.591
6 HLLL2 66 22 11 00 0.591

test sample, we generate multiple embeddings (zM,1, zM,2, ...

zM,n) from a list of potential meals (M1, M2, ... Mn). The

meal Mi whose macronutrient embedding zM,i is closest to

zP is treated as the prediction.

E. Validation
We compare JointCGMacros against a baseline model that

predicts the CCR in eq. (2) from its corresponding PPGR.

The baseline model is a feedforward network with the same

number of parameters as the PPGR encoder in JointCGMacros.

It consists of two hidden layers, each with 64 units and each

followed by BatchNorm, Dropout, and ReLU activation. A

final fully-connected (FC) layer takes the output of the hidden

layer and produces the CCR. Because the baseline model does
not use health parameters H , this comparison allows us to
determine if the personalized macro embedding zM can reduce
the effect of inter-individual differences.

We train both models using 10-fold cross-validation. For

each training fold, we randomly select 80% of the data for

training and 20% for validation. We use validation data for

early stopping (10 epochs) to prevent overfitting. We report

two performance measures on the test fold: the Pearson corre-

lation and the normalized root mean squared error (NRMSE)

between ground truth and prediction. Because the NRMSE is

the percentage of error relative to ground truth, it allows us to

compare errors between target variables of different scales.

F. Dataset description
We used the publicly available CGMacros dataset [9] on

PhysioNet. CGMacros contains PPGRs, meal macronutrients,

and health/demographics parameters for 45 subjects (ages: 18-

69; BMI: 21-46 kg/m2; 15 healthy, 16 with pre-diabetes, and

14 with type 2 diabetes). Participants wore an Abbott FreeStyle

Libre Pro CGM (15-min sampling period) and a Dexcom G6

Pro CGM (5-min) on the upper arm and abdomen, respectively.

For 10 days, participants consumed breakfast, lunch, and

dinner meals with different amounts of carbs, protein, fat,

and fiber following the average American diet [10]. Breakfast

compositions are shown in Table I, sorted by CCR. Some of

the breakfasts were consumed twice during the 10-day study.

Lunches were ordered from a fast-casual chain restaurant

(Chipotle Mexican Grill Inc.). For dinners, participants ate

foods of their own choice and recorded the contents on

MyFitnessPal. To minimize interferences in glucose responses

TABLE II
DEMOGRAPHIC, METABOLIC HEALTH, AND GUT MICROBIOME

PARAMETERS USED IN THE MODEL

Demographics (2):  
- Age, gender 

Health (10):  
- Body Mass Index (BMI), Fasting Glucose (FG), Glycated Hemoglobin (HbA1c), 

Insulin (Ins), Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) 
- High-Density Lipoprotein (HDL), Cholesterol (Chol), Cholesterol HDL (cHDL), 

non-HDL, Very Low-Density Lipoprotein (VLDL),  
Gut microbiome (22):  
- Overall: Gut Microbiome Health (MicroHealth), Inflammatory Activity (Inflam), 

Digestive E iciency (DigE ), Metabolic Fitness (MetFit), Gas Production (Gas), 
Gut Lining Health (GutLin), Microbiome-Induced Stress (Stress), Protein 
Fermentation (ProtFerm), Active Microbial Diversity (Div) 

- Pathways for Flagellar Assembly (Flag), Chemotaxis/Virulence (ChemVir), 
Lipopolysaccharide Biosynthesis (LipoSacc), Salt Stress (Salt) 

- Metabolism Pathways for Bile Acid (Bile) and Oxalate (Oxal) 
- Production Pathways for Ammonia (Amm), Butyrate (But), Sulfide Gas (Sulf), 

Putrescine, (Putr), Trimethylamine (TMA), Methane Gas (Mth) and Uric Acid (Uric) 

from prior meals, participants were instructed to eat lunch at

least 3 hours after breakfast, with only water or coffee (without

sugar) in between, and dinner at least 3 hours after lunch.

They also took meal photographs before and after eating, from

which we extracted the meal timestamps and the proportion of

the meal they consumed. We report results from the breakfast

meals using PPGRs from the Abbott FreeStyle CGM. We

used 34 variables available on the CGMMacros dataset as

health/demographics parameters -see Table II.

IV. RESULTS

A. Comparison against baseline
In a first step, we compare the performance of the baseline

model against a JointCGMacros model that uses all 34 health

parameters in Table II. Results are summarized in Figure 2a.

JointCGMacros strongly outperformed (lower RMSE, higher

correlation) the baseline model, indicating that our proposed

model is able to account for inter-individual differences in

postprandial glucose responses. Note that, for the baseline

model, the correlation coefficient can become negative and

the NRMSE can exceed an error of 100%, indicating that

PPGRs are not predictive of the macronutrient composition of

meals unless individual health/demographics parameters are
considered.

B. Model interpretation

Figure 2b shows a scatterplot of the predicted macro and

PPGR embeddings for the JointCGMacros model, color-coded

by the ground-truth CCR in eq. (2). The embeddings towards

the bottom left (dark blue) have the lowest CCR, which

represents meals with high amounts of carbs, protein, fat, and

fiber (e.g., meal HHHH in Table I). Since these meals have

the highest amounts of non-glycemic macronutrients, they lead

to the lowest PPGRs. Meals with the highest CCR (dark red)

appear towards the top right. These meals have a high amount

of carbs and low amounts of other macronutrients (HLLL in

Table I), which leads to the highest PPGRs.

Table III shows the distribution of the weights in eq. (1)

learned by the model. In the numerator, fiber (wB = 3.95)

has the strongest effect, followed by protein (wP = 1.22) and



Fig. 2. (a) NRMSE and correlation between ground truth and predicted
macronutrients for the baseline model (red) and JointCGMacros (blue) with
34 health parameters (**:0.001 < p < 0.01, ***:p < 0.001). (b) Scatterplot
of macro zM vs. PPGR zP embeddings, color coded by the CCR in eq. (2.)

TABLE III
MACRONUTRIENT WEIGHTS LEARNED BY THE JOINT MODEL (μ± σ)

C P F B

Numerator 1.22(0.34) 0.33(0.21) 3.95(2.04)
Denominator 0.33(0.14) 0.04(0.08) 0.01(0.01) 0.01(0.01)

fat (wF = 0.34), suggesting healthy alternatives to control

elevated post-prandial glucose response (i.e., add fiber and

protein, but not fat). In the denominator, net carbs (w′
C)

have the strongest contribution (w′
C = 0.33), whereas the

effect of the three non-glycemic macronutrients is negligible

(w′
P = 0.03, w′

F = 0.01, w′
B = 0.01). Ignoring the smallest

weights, these results indicate that, when factoring health
parameters, post-prandial glucose responses are proportional

to the expression (C − 3.95B − 1.22P )/(1 + 0.33C).

C. Feature importance
In a final analysis, we performed a bidirectional search

to identify the most critical health parameters. Bidirectional

search alternates between forward subset selection (FSS) from

the empty set and backward selection (BSS) from the full

set, with the constraints that features added by FSS cannot be

removed by BSS, and vice versa. As a result, both searches

converge in the middle. Results are shown in Figure 3. The two

most important features are HOMA-IR, a clinical measure of

insulin resistance and beta-cell function, and fasting glucose,

a key parameter for the diagnosis of T2D. The optimal feature

set (lowest NRMSE) contains 17 features, including a mix of

demographics (age, gender), metabolic health (lipid profiles,

HbA1c), and several pathways from gut microbiome analytics.

This optimal set achieves a lower NRMSE than the full

feature set (rightmost boxplot, in brown), a difference that is

statistically significant (0.247 vs. 0.291, p = 0.03).

V. DISCUSSION

Prior research has shown that the relationship between post-

prandial glucose and meal macronutrients is largely driven

by inter-individual differences. Our results show that this

three-way relationship can be unveiled by learning a joint

embedding of PPGRs and macronutrient composition con-

ditioned on a few demographic, metabolic health, and gut

microbiota parameters. We find that the key contributors to

elevated postprandial glucose are net carbs (as expected) with

a linear correction for fiber and protein. It is the expression
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Fig. 3. Bidirectional search to identify the most important demographic (red),
metabolic health (green), and gut microbiome (blue) variables.

(C − 3.95B − 1.22P )/(1 + 0.33C), and not the conventional

carb-caloric-ratio, that can be recovered from PPGRs, but

only when accounting for an individual’s health variables.

We used the parametric expression in eq. (1) to improve

the interpretability of our model, but further improvements

in macronutrient prediction from PPGRs may be achieved by

relaxing this constraint, e.g., concatenating macronutrient and

health vectors [M ,H] and feeding them to a deep-learning

model, but this would likely require access to a larger dataset

than CGMacros, the only of its nature that is publicly available.
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