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ABSTRACT

Many tasks that are commonly performed by devices attached to the Internet are
currently being offloaded to the cloud, using the Machine Learning as a Service
(MLaaS) paradigm. While this paradigm is motivated by the reduced capacity
of mobile terminals, it also hinders privacy associated with the data exchanged
over the network. Thus, the data exchanged among parties shall be conveniently
anonymized to prevent possible confidentiality and privacy issues. While many
privacy-enhancing algorithms have been proposed in the past, they are usually re-
lying on very complex models that make difficult their applicability to real-world
systems or envision too friendly attacker models. In this paper, we propose a
deep learning system that creates anonymized representations for the data, while
keeping the accuracy for the targeted MLaaS task high, assuming that the attacker
can re-train an adversarial model. Our results show that the proposed algorithm
i) is effective yet it uses a lighter approach than state-of-the-art ii) considers less
friendly attacker models, and iii) outperforms the benchmark under different pri-
vacy metrics.

1 INTRODUCTION

The complexity and size of ML models is growing over time. Recent examples, such as GTP-3
with 175B parameters [OpenAI (2022 (accessed September 28, 2022)] or Megatron-Turing with
530B [Nvidia (2022 (accessed September 28, 2022)], have presented models that are impossible to
generate or even maintain for most companies in the world, not to speak about academia or users
with personal devices. Moreover, it is expected similar growth in the next years [Fedus et al. (2021)].
This progression, together with the slowdown in the production of new hardware severely limits the
capacity of small (and even big) enterprises to use the last advances in Natural Language Processing
(NLP), image recognition, or other complex ML tasks.

In this scenario, big tech companies have started to offer their models in a Machine Learning as a
Service (MLaaS) fashion. That is, they run the gigantic ML models on their premises and allow
customers to query the model for a pre-negotiated fare. This model is convenient for both customers
that do not have the ability to create their own complex model (i.e., because they do not have a
tagged dataset), and for those that need to execute (even simple) ML tasks on limited devices such
as mobile phones or IoT devices.

However, to perform an MLaaS task, the customer should send the raw data (e.g., an image) to
the service provider. While this operation may not present big problems in certain tasks (e.g., a
connected vehicle sending telemetry data for predictive maintenance), it certainly has heavy pri-
vacy/confidentiality implications in others (e.g.., a surveillance system requesting image classifica-
tion services).

Alternatively, the service provider could give the model to the customer to avoid data transfer.
Nonetheless, this is typically not feasible in the case of limited devices or huge models. And even in
cases where the customer could execute the model, the MLaaS provider may have concerns as the
customer could blackbox or use the model without the provider’s permission.
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In this paper, we present Scrunch, a technique that allows the usage of MLaaS without the privacy
implications of sending raw data to third parties. In our technique, a previously trained model is
split into two parts and then its first part is fine-tuned adding a second loss function, to ensure the
information after this point is only valuable to perform the task at hand, but not to perform any other
task. The usage of a pre-trained model allows the easy usage of already existing models without the
need of training them from scratch.

After the two parts are both trained taking into account the new, combined loss function, the first
part can be sent to the customers that can execute it even with limited resources, and only transfer
the obtained data representations. The rest of the model stays within the service provider ensuring
that customers cannot make non-legitimate usage of the entire model from the provider.

Scrunch is able to create privacy-preserving data representations. It provides accuracy similar to
the one of a neural network without privacy and, at the same time, provides higher privacy than
state-of-the-art privacy solutions.

In the remaining of this paper, we present the privacy model in Section 2, then, we implement our
solution for two different Neural Network architectures and data sets and evaluate its performance
in Section 3. In Section 4, we show how the model parameters affect its way of working. Finally,
Section 5 concludes the paper.

1.1 STATE OF THE ART

———————————————-

The application of privacy-preserving techniques to data sharing and ML has been widely studied
in the past years with solutions ranging from the already classic k-anonymity [Sweeney (2002)],
l-diversity [Machanavajjhala et al. (2007)] or t-closeness [Li et al. (2007)] to more novel solutions
such as z-anonymity [Jha et al. (2020)]. Among all of them, Differential Privacy (DP) [Dwork et al.
(2006)] is, with absolute certainty, the most accepted and used by the ML community.

DP grants a formal guarantee about how likely the data is to leak sensitive information, i.e. info
beyond what is legitimately intended to be publicly available by the data owner. The problem to be
solved in our scenario, instead, concerns ’inference privacy’, i.e. reducing the amount of information
that is sent/published in the first place. In addition, applying DP - e.g. in the form of noise - to
the data with no further tweaks usually tends to quickly degrade the whole informational content,
including what should be kept usable.

Other approaches that try to preserve the privacy of exchanged data are those that employ advanced
cryptographic techniques. Two particularly researched approaches today are Fully Homomorphic
Encryption (FHE) and Secure Multi-Party Computation. Thanks to FHE, direct inference on en-
crypted data becomes possible [Gilad-Bachrach et al. (2016); Gentry (2009); Bos et al. (2013)].
And since data is never decrypted, its privacy is guaranteed. FHE usually suffers from an accu-
racy drop with complex networks, since it works by approximating a neural network with a low
degree polynomial function. But the real major drawback is the computational cost: the encryption
schemes’ complexity makes the inference time increase by many orders of magnitude, making it
impractical for real-time use cases. Another cryptographic approach is Secure Multi-Party Compu-
tation (SMC), which makes it possible for two entities to compute a function over their inputs while
maintaining those inputs perfectly private [Mohassel & Zhang (2017); Liu et al. (2017)]. Usually,
SMC scenarios are based on garbled circuits, secret sharing, and oblivious transfer. SMC also suf-
fers from high cryptographic complexity. Another popular field of research concerns about how to
securely run an ML model on a cloud machine. Proposals from this field rely on trusted execu-
tion environments such as Intel SGX and ARM TrustZone [Tramer & Boneh (2018); Hanzlik et al.
(2021)]. Nevertheless, such scenarios still require the client to trust the cloud servers with their data.

Finally, more similar to our work, there is another sub-field of the Privacy-Preserving research com-
munity that tries to generate privacy-preserving data representations. AutoGAN [Nguyen et al.
(2020)] proposes a non-linear dimension reduction framework based on a GAN structure. On it, a
Generator and a Discriminator are iteratively trained in turn, in an adversarial manner, to enforce
a certain distance between original and potentially reconstructed data. Osia et al. (2018) protects
the data against the execution of previously known ML tasks. Moreover, works like [Osia et al.
(2020)], Cloak [Mireshghallah et al. (2020a)] and Shredder [Mireshghallah et al. (2020b)] apply a
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Figure 1: High-level scenario.

contrastive loss to privatize the data with small differences among them on the network structure
and application. Contrary to all of them, we employ the center loss in our work, allowing that way
better privacy protection without the need of complex Siamese Networks.

2 MODEL

The Scrunch model uses as a starting point a pre-trained neural network, then it splits it into two
parts and makes modifications to it to improve the privacy provided by the final solution. In this
solution, the computation of the inference is shared between a client, that executes the first part of
the neural network (namely, the Encoder) and sends the output features to a Server (i.e., in the cloud)
that executes the second part (namely, the Classifier) and returns the ML task answer.

Figure 1 shows a summary of how the general model works in inference: 1) The server sends an
Encoder to the Client. 2) The client uses the encoder to generate anonymized representations of the
raw data. 3) The client sends the anonymized data to the Server. 4) The server uses the Classifier
to solve the ML task at hand and 5) sends the prediction back to the client. 6) Even using the data
available to the Server, the latter - or another, malicious entity - cannot train a different Classifier to
solve a different task, based solely on the privatized representations.

Following, we describe how to efficiently generate an Encoder and a Classifier to maximize the
accuracy for the task to be solved, while decreasing the performance of other non-related tasks over
the anonymized data.

2.1 ENCODER AND CLASSIFIER

We build on the intuition that features obtained in the middle of a neural network are an abstract
representation of the input data and can be used to share data in a privacy-preserving way. However,
without additional modifications, such features may still contain a significant amount of extra infor-
mation, as demonstrated for example by the visualization techniques [Dosovitskiy & Brox (2016)].

Moreover, it is well known that, the deeper we go through the layers of a neural network, the more
specialized, abstract [Yosinski et al. (2014)] and specific to the main task the features become.
Furthermore, in most networks design, going deeper means also having to deal with much fewer
dimensions. This all collaterally contributes to data privacy: whatever extra information was con-
tained in the data – beyond what is actually useful to perform the main task – goes gradually and
irreversibly lost [Osia et al. (2017); Malekzadeh et al. (2018)].

In the extreme case, when the network split is done after the last layer, the complete ML task would
be executed by the client, obtaining that way “perfect privacy”. However, this situation is not realistic
in most of the use cases, either because the client cannot run the complete neural network due to
hardware limitations, or because the service provider does not want to share the complete model
with the client.

Thus, as a rule of thumb, one should first choose the split point that provides the client with the
heaviest model it can support (and the service provider is willing to share). This alone would al-
ready grant some degree of privacy – depending on the chosen point – regarding any other extra
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information the data carries. Then, in addition to this – especially in cases where one is constrained
to the lower levels of the network –, other approaches may further enhance the privacy of the data.

2.2 ADDING PRIVACY

In a scenario where no knowledge about potential sensitive features is assumed (i.e. no private
labels), the only reasonable choice is to try and reduce the general amount of information contained
in the data, while constraining the accuracy of the main task to be as high as possible. In a more
formal way, considering the input data and their corresponding privacy-preserving representations,
we would like to reduce their Mutual Information (MI) as much as possible, while still keeping
the cross-entropy loss of the whole model as low as possible. The latter is embodied in the typical
softmax cross-entropy loss, computed on the output of the very last layer of the intact model: it
basically keeps the points belonging to different classes well separated in the encoding space. In
other words, it tries to maximize the inter-class distance.

In addition to this, we would also like to minimize the inter-class distance, to reduce any extra
information contained in the structures of same-class points. Other works have tried to achieve this
by employing siamese network architectures and contrastive or triplet losses [Osia et al. (2020);
Mireshghallah et al. (2020b)]. The problem is these methods [Sun et al. (2014); Wen et al. (2016a);
Schroff et al. (2015)] suffer from a non-negligible data expansion since the training set must be
recombined in specific pairs. Furthermore, since these losses need pairs of points to be computed,
two forward passes are needed, thus increasing the training time. That is why we chose instead to
employ the Center Loss function, originally proposed by [Wen et al. (2016b)]. It is worth noting that,
same as for triplet and contrastive losses, this loss was not primarily designed for privacy-preserving
purposes, but to improve the discriminative power of the deeply learned features. As far as we know,
this is the first time it is actually applied to such a goal. The center loss is defined as:

LC =
1

2

m∑
i=1

||xi − cyi
||22 (1)

where m is the total number of classes in the dataset, xi is the i-th encoding, and cyi is the center
of the yi class. Hence, the term introduced by LC minimizes the euclidean distance between any
encoding classified to that class and the center of such class. We apply this function as done by Wen
et al. (2016b), combining it with the usual softmax categorical cross-entropy LS . The two losses are
governed by a weight factor λ as follows1:

L = λLC + (1− λ)LS (2)

In other words, we train the model with Joint Supervision, as discussed in the work by Wen et al.
(2016b). The variable λ plays a fundamental role in steering the encoding anonymization process,
and weights how the encodings are anonymized. First, we remark that these two terms need to be
jointly optimized (so, configurations where λ is 0 or 1, are asymptotic cases that are not necessarily
meaningful in a real scenario), but λ also has a meaning for the anonymization process. When λ = 0,
the model is trained to only optimize the cross-entropy among classes, as a typical classifier would
do. Thus, encodings may still exhibit intra-class variations that may leak sensitive information, as
shown by Dosovitskiy & Brox (2016). Basically, when λ = 0, no anonymization is applied beyond
what is already provided by the deep features. Instead, when λ = 1, no effort is made by the
network to separate the classes, thus yielding poor results on the machine learning task. Hence,
the correct parametrization of λ is fundamental to steering the operation of the system toward an
optimal balance between accuracy and privacy.

Assuming we have a pre-trained model for our ’Public Task’, and once the split point has been
decided, Figure 2 presents - in this case specifically for the VGG16 model - an example of how our
pipeline would work when modifying the architecture:

1. The architecture is rearranged so that it becomes a multi-output network, with the activa-
tions of the split point going two separate ways:

• The natural continuation of the original network, i.e. the Dense Part
1For more details about the loss function implementation, please refer to Wen et al. (2016b)

4



Under review as a conference paper at ICLR 2023

VGG16  
Convolutional Part

VGG16  
Dense Part

Center
Loss 
Layer

Cross-
Entropy

Loss

Center
Loss

Mid Activations

Fixed 
Auto 

Encoder

Combined
Loss

1
Original Network

Dimensionality Reduction

Our Addition

Cross-Entropy Back-Propagation

CL Back-Propagation

2

2Input Images

3

Figure 2: Model Architecture

• The new added branch, composed of a fixed pre-trained Autoencoder – for dimen-
sionality reduction – followed by the main component of the approach, i.e. the Center
Loss Layer

2. The whole network is carefully fine-tuned with a low learning rate and a Joint Supervision

• During the forward pass, the CL layer ”learns” new, more accurate class centroids,
based on the current batch. Such centroids are then used to compute the Center Loss

• The weights in the Dense part are adjusted thanks to the Cross-Entropy back-
propagation, as usual

• The Convolutional Part, instead, is trained by the back-propagation of both losses, so
that it produces features that retain both privacy and utility

3. Once the training is finished, the first part of the network will be frozen and deployed on
the client side as a black-box anonymizer

3 EXPERIMENTAL EVALUATION

We implemented Scrunch to work with two different network architectures and datasets. Further-
more, we tested it against some of the privacy metrics that are in line with the attacker model pre-
sented in Sec. 1, benchmarking it against the results obtained by another privacy-preserving solution:
Shredder. For this, we re-implemented the original Shredder source code in Tensorflow/Keras, as
also Scrunch is implemented using the same framework.

3.1 DATASETS AND NETWORK ARCHITECTURES

We employ two different architectures – both for image classification – to test our approach: a
LeNet-5 neural network with the MNIST dataset, for which we also provide a direct comparison
with another state-of-the-art approach [Mireshghallah et al. (2020b)] and a VGG16 neural network,
with the CelebA dataset.

The LeNet-5 network takes as input a 32 X 32 X 1 image. The channel is just one because the
network is designed to use greyscale images. The architecture then consists of 5 learnable layers.
The first three of these are convolutional (Conv) layers with 6, 16, and 120 filters, respectively. All
three layers use a kernel size of (5,5). After the 1st and the 2nd Conv layers, we also find a Max
Pooling (MP) layer. Finally, the last two are Fully Connected (FC) layers. The first has 84 neurons,
while the second and last FC layer has usually 10 neurons since the digits in the MNIST dataset are
10. Lastly, such a layer is usually followed by a Softmax layer that classifies the images into the
corresponding classes.

The MNIST dataset [LeCun & Cortes (2010)] used to test this case is composed of greyscale images
of size 32x32 pixels, representing handwritten digits going from ’0’ to ’9’. The training set contains
60,000 different examples of images, while the test set contains another 10,000 example images for
model evaluation. The labels are simple integer numbers from 0 to 9, that indicate the specific digits
in the images
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The other network in use is the well-known VGG16 [Simonyan & Zisserman (2014)], a 16-layer-
deep CNN (Convolutional Neural Network) primarily designed to perform image classification. In
particular, we use the pre-trained version of VGG16 – trained on the huge ImageNet dataset [Deng
et al. (2009)] – and we first fine-tune it for the ’public task’, via transfer learning. The network
consists of a first, convolutional part, and then a second, fully connected part. The first part is
composed of 5 macro-blocks. Each of these blocks is a stack of 2 or 3 Convolutional layers, always
followed by a Max Pooling Layer. For each block, all the conv layers have the same number of
filters. From the 1st to the 5th block we have, respectively, 64, 128, 256, 512, and 512 filters. The
2nd part of the network is simply made up of a Flatten layer followed by two Dense-Dropout blocks
and the final Dense Layer. The first two Dense layers have both 4096 neurons, and both dropouts
have a probability of 0.5, while the last Dense Layer has a number of neurons that depends on the
number of classes of the specific task at hand.

In this case, we use the CelebA dataset [Liu et al. (2015)]. The original CelebA dataset consists
of 202,599 images of celebrities’ faces, of variable sizes. We crop these images to a fixed size of
128x128x3 pixels. The images are colored, hence the three channels. The dataset comes with a huge
set of labels: 10,177 identities; 5 landmark locations for each image; 40 binary attributes annotations
per image. We limit ourselves to two sets of binary labels: the gender and a label that indicates
whether the person in the photo is smiling or not. We use gender as our primary/public task, and
purposefully choose a simple binary attribute such as smiling/not-smiling as our malicious/private
task. We do this in order to prove that our approach works for hindering even such a simple task,
as opposed to choosing something that would more likely be private information – and intuitively
more difficult to leak – such as identity.

3.2 PRIVACY METRICS

Mutual information (MI) is an information-theoretic notion. Assuming two data points x and y,
MI(x,y) quantifies the average amount of information that leaks (i.e. is learnable) from y about
x. This measure is commonly employed in literature [Cuff & Yu (2016); Kalantari et al. (2017)],
both as an anonymity metric when dealing with database potential leakage [Wang et al. (2016);
Liao et al. (2017)] and to better explain the behavior of neural networks [Saxe et al. (2019)]. In
our experiments, we calculate the Mutual Information Drop experienced when comparing the MI
between raw data and simple mid-network features (no enhanced privacy) with the MI between raw
data and the data representations obtained after the encoder.

Moreover, since the encoder is public (to all possible clients, and the server itself), a malicious entity
could try to retrain a Classifier in order to solve a different task than the one requested by the Client.
Thus, we compute the normalized Private Task Accuracy Drop of an adversary classifier. That is,
how worse the privacy task results are when trained on deep features or data representations, with
respect to a typical classifier free to train the private task on the raw input data.

Proving that the chosen ’sensitive’ task fails does not guarantee that any other potentially sensitive
information is safe, of course. Hence, we resort to also testing how well a full decoder can be trained
on some leaked data, in order to reconstruct the original input images from the data representations.
Intuitively, if the reconstructed images are too similar to the original ones, it means that the extra
information contained in the image may potentially leak from the data representations obtained. We
not only provide a visual comparison for such similarity but also a quantitative measure, in the form
of the Structural Similarity Index Measure (SSIM) [Wang et al. (2004)], a metric specifically
designed to mimic human perception of ’image similarity’. In its simplest form, SSIM is represented
by a number between -1 and 1 - usually rescaled between 0 and 1 - where -1 means “completely
different” and 1 means “exactly the same”.

The architectures of the adversary classifier and decoder are the following:

• For the classifier, we take what remains of the VGG16 or the LeNet-5 network after the
chosen split point, and retrain it with the private labels and the anonymized data represen-
tations of a holdout set.

• For the decoder, we employ a simple custom upsampling network for the LeNet-5/MNIST
case and the AlexNet decoder [Dosovitskiy & Brox (2016)] for the VGG16/CelebA case.
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Table 1: Accuracy and privacy results.

Dataset Algorithm Normalized Public
Task Accuracy (%)

Private Task
Accuracy Drop (%)

Mutual Info
Drop (%)

95th Percentile
SSIM Drop (%)

MNIST
NoPrivacy/DeepFeatures 100.0 00.36 N/A 10.19

Shredder 98.93 23.98 (1.172) 66.97 91.34 (75.572)
Scrunch 99.34 60.56 79.66 81.75

CelebA NoPrivacy/DeepFeatures 100.0 29.86 N/A 39.94
Scrunch 99.73 40.02 29.84 70.8

We train it with a holdout set of anonymized data representations, and their original coun-
terparts as labels.

3.3 PRIVACY RESULTS

Table 1 shows the obtained privacy results against the metrics we introduced above. Higher values
mean better performances, in all columns. The public accuracy is normalized by the accuracy that
the models reach in absence of any privacy-preserving approach, for their public tasks. The private
accuracy loss is computed with respect to the accuracy that a full, free model would obtain by
training with the private labels. We tested two popular datasets, MNIST and CelebA, using LeNet-5
and VGG16 respectively as the backbone network for the classification tasks. Both networks have
been split right after their convolutional part (layer block5 pool for VGG16 and conv 3 for LeNet-5).
For the training of the encoder, we split the original dataset into Training, Validation, and Test with
a 40%, 40%, 20% proportion for both the solutions. When training the adversary attacker classifiers
we also use a similar split. For Scrunch the best results are obtained with λ = 0.9, with a learning
rate of 10−5. The adversary classifiers and decoders are trained with learning rates of 10−5 and
10−3, respectively. Shredder is configured as in the original paper.

Results show that for both the datasets, Scrunch can basically retain all the accuracy on the public
task as if there was no privacy solution applied, with a drop that is below 1% for MNIST and 0.26%
for CelebA. Also, Shredder is on par with these results. However, Scrunch proves to be much more
powerful in dropping the accuracy in the private tasks than Shredder. For the MNIST case, where
both implementations can be compared, we more than double the privacy drop obtained by Shredder,
approximating the performance of a random guesser.

This is also partially explained by the loss in the mutual information (13% higher in Scrunch),
which quantifies the amount of information - about the original data points - that leaks from the data
representations. Similar considerations apply also to the CelebA dataset (for which we do not have
a working Shredder implementation). Here we can drop the accuracy on the private task, while the
mutual information is less affected due to the high dimensionality of the input raw data.

It is fundamental to remark here that, besides obtaining better privacy metrics than a state-of-the-art
solution, Scrunch does that while enforcing a much more stringent privacy scenario. While Shredder
does not retrain the adversarial attacker on possibly similar data with available labels (an aspect that
is more appropriate in many cyber-attack scenarios), in our approach we let the adversary re-train
on leaked data, to improve the effectiveness of the attack. Still, even in this extremely challenging
scenario, we can obtain better results than Shredder for MNIST and a significant decrease in the
accuracy for the private task for CelebA.

Figure 3 provides an overview of the visual reconstructions. Without privacy, the raw data can be
reconstructed in a more or less straightforward way from the decoders, depending on the network
complexity and the chosen split point. Particular mention should go to the VGG16/CelebA case
(right image): while the simple embeddings - i.e. with no privacy - are unmistakably much less
recognizable than their original counterparts, it is still possible, even for a human observer, to dif-
ferentiate sensitive features (e.g. whether the person is smiling). Such a sensitive feature is then lost
when Scrunch is applied, leaving the public task the only one feasible. The left image provides a
quick intuition of how Scrunch works with respect to Shredder and other naive solutions. Scrunch
”learns” how to blend together samples from the same public classes, making them indistinguishable

2This is the obtained value when the adversary classifier is retrained with a holdout pool of data
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(a) MNIST dataset (b) CelebA dataset

Figure 3: Example images reconstructed from the data representations obtained after the encoder.

Figure 4: Intra-Class distance for different values of λ

from the private ones. Shredder, instead, works by learning “where to add noise” on each sample, a
technique that proved to be less resilient in our benchmarks.

4 PARAMETRIZATION

As discussed in Section 2, Scrunch can be steered through the configuration of λ. While in Section 3
we discussed the results with the best λ, in this section we discuss the effect of λ to steer the
operation of the system, using the datasets introduced above.

In Scrunch, λ is used to weight the categorical cross entropy and the center loss. Figure 4 depicts the
intra-cluster distance for the two public categories of the CelebA dataset. If we take as reference the
results for λ = 0, increasing it allows for reducing the intra-cluster distance by order of magnitudes.
By reducing the intra-cluster distance, using the same data for tasks other than the public one results
in a lowered accuracy, as discussed earlier.

We further dig into the result by analyzing how λ affects the utility versus privacy trade-off, that is
how the data transformation for privacy purposes affects the accuracy of the public task. We depict
it in Figure 5, indicating the confidence interval in the accuracy averaged over 10 repetitions for the
CelebA dataset. We can clearly observe two areas: the first for higher λ that yields higher privacy
at a cost of lower public accuracy. The public accuracy plateaus instead in the second region, where
decreasing λ does not help the public accuracy, while it quickly increases the private one. Thus, by
changing λ we can effectively control this trade-off.

Another way of assessing how the inter-class distance is reduced by lambda is by plotting the 2-D
embeddings using t-SNE for different λ values. We depict it in Figure 6 for the MNIST dataset,
where the upper row is colored to represent the clusters for the private task and the bottom row is
representing the public one. While there is a clear separation for lower λ for both public and private
clusters, the effect of a growing λ blends points belonging to the same public cluster but different
private ones, achieving thus a drastic drop in accuracy for the private tasks shown in Table 1.
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Figure 5: Utility/Privacy Trade-off

Figure 6: t-SNE of encodings for different Lambda values (MNIST dataset)

4.1 LIMITATIONS

While an increase in the value of λ comes with a significant increase in the privacy obtained, it also
comes with a major difficulty for the neural network to converge during the training. For example,
over 70% of the training phases failed to converge - and started overfitting, triggering an early stop
- after 70 epochs (on average) when λ = 0.999, while all the trainings converged in less than 40
epochs for λ = 0.7. Moreover, the average time to complete training also grows with λ. Still,
while the increase in training time appears to be linear, the decrease in the intra-cluster distance is
exponential.

5 DISCUSSION AND CONCLUSION

This paper presents Scrunch, an ML technique to learn privacy preserving data representations of
data that can be used in MLaaS scenarios. In Scrunch, the client locally executes an encoder over
the raw data and only shares the privatized data representations with the MLaaS Server, ensuring
that way that the server (or other malicious entities) cannot use the data to perform any task different
than the one requested by the Client.

In Scrunch, the encoder used by the client, and the classifier used by the server are generated by
splitting an already trained neural network, modifying it by adding a new layer that ensures the
intra-class distance minimization (i.e., the center loss) and retraining the whole model using joint-
supervision.

Scrunch has demonstrated to provide much better privacy than state-of-the-art solutions (38% and
13% in Private Task Accuracy Drop and Mutual Information Drop, respectively) while keeping the
accuracy for the public task virtually unaffected in spite of ensuring a much more realistic privacy
model. Finally, we show how Scrunch can be parameterized to steer its operation, for instance by
trading privacy for accuracy and reducing the training time.
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