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ABSTRACT

Generative models have made it possible to synthesize highly realistic images, po-
tentially providing an abundant data source for training machine learning models.
Despite the advantages of these synthesizable data sources, the indiscriminate use
of generated images as real images for training can harm model performance and
even cause model collapse due to modality discrepancies between real and syn-
thetic domains. In this paper, we propose a novel framework for discriminative
use of generated images, coined GenRA (Generated-Real Alignment), that ex-
plicitly treats generated images as a separate modality from real images. Instead
of indiscriminately replacing real images with generated ones in the input space,
our approach bridges the two distinct modalities in the same latent space through
a multi-modal learning approach. To be specific, we first fine-tune a model ex-
clusively on generated images using a cross-modality alignment loss and then
employ this aligned model to further train various vision-language models with
generated images. By aligning the two modalities, our approach effectively lever-
ages the benefits of recent advances in generative models, thereby boosting the
effectiveness of generated image training across a range of vision-language tasks.
Our framework can be easily incorporated with various vision-language models,
and we demonstrate its efficacy throughout extensive experiments. For example,
our framework significantly improves performance on image captioning, zero-shot
image retrieval, zero-shot image classification, and long caption retrieval tasks. It
also shows positive generated data scaling trends and notable enhancements in the
captioning performance of the large multimodal model, LLaVA.

1 INTRODUCTION

Generative models, such as GANs (Goodfellow et al., 2014; Chen et al., 2016) and diffusion mod-
els (Song et al., 2021a; Dhariwal & Nichol, 2021; Rombach et al., 2022), have revolutionized the
field of computer vision by enabling the synthesis of highly realistic images. These generated im-
ages offer a rich and scalable source of data, which can significantly augment training datasets,
enhance data diversity, and reduce the dependency on costly real-world data collection. However,
despite their potential, incorporating generated images directly into training pipelines poses sub-
stantial challenges due to inherent modality discrepancies between generated and real images. This
misalignment often leads to a phenomenon known as model collapse (Shumailov et al., 2024), where
the model’s performance severely deteriorates due to an over-reliance on generated content that fails
to generalize well to real-world scenarios. To prevent model collapse in recursive scenarios, it is
essential to first solve the gen-real discrepancy problem.

Existing approaches (Tian et al., 2023) typically integrate generated images into the training process
without adequately addressing the modality gap between generated and real images. The resulting
models are prone to overfitting the peculiarities of synthetic data, which negatively impacts perfor-
mance across various downstream tasks, particularly when the model encounters real-world data.
The primary source of this collapse lies in the failure to recognize that generated images, despite
their realism, represent a distinct data modality that deviates from real images in subtle but signifi-
cant ways. Addressing this modality gap is crucial to harnessing the full potential of generated data
while maintaining robust performance on real-world tasks.
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The challenge of using generated images stems from the fundamental differences between gener-
ated and real-world data distributions. Even when generated images appear visually convincing,
they often contain subtle artifacts, biases, or domain-specific noise introduced during the generation
process. These discrepancies are not just visual but can also affect higher-level semantic repre-
sentations, resulting in a misalignment in the feature space that can propagate through the training
pipeline. Furthermore, generative models may inadvertently capture and amplify biases present in
their training data, leading to synthetic images that deviate in unexpected ways from real-world
distributions. This modality gap poses significant challenges for downstream tasks, where models
trained on misaligned data struggle with overfitting to generated features, reduced robustness, and
degraded performance when applied to real images. Bridging this gap is critical to leveraging the
strengths of generative models while avoiding pitfalls that compromise model reliability.

To tackle this challenge, we introduce a novel framework for Generated-Real Alignment, namely
GenRA, that explicitly treats generated images as a separate modality from real images. Unlike con-
ventional methods that mix generated and real data indiscriminately, our approach bridges the two
distinct modalities in the latent space by embedding generated images alongside real images having
the same descriptions. Specifically, we fine-tune a model exclusively on generated images using a
cross-modality alignment loss while keeping the pre-trained model for real images unchanged. This
allows for explicit and adaptive alignment between the two modalities, enabling us to utilize the
aligned model for training various vision-language models (Radford et al., 2021; Liu et al., 2023;
Zhang et al., 2024) with highly realistic generated images. Thereby, we fully exploit the advan-
tages of recent advances in generative models (Rombach et al., 2022), enhancing the performance
of generated image training across various vision-language tasks.

Through the extensive experiments across a wide range of vision-language tasks, we demonstrate
tje effectiveness of our framework by incorporating it with various vision-language models such as
LLaVA (Liu et al., 2023). For example, our approach enhances image captioning on COCO (Lin
et al., 2014), zero-shot image retrieval on COCO (Lin et al., 2014) and Flickr30k (Young et al.,
2014), zero-shot image classification across eight widely used datasets, and long caption retrieval
on ShareGPT4V (Chen et al., 2023). Furthermore, we observe positive generated data scaling trends
in our framework across diverse datasets such as COCO (Lin et al., 2014), CC3M (Sharma et al.,
2018), and CC12M (Changpinyo et al., 2021), highlighting the scalability of our method. No-
tably, our approach also improves the captioning performance of the recent large multimodal model,
LLaVA (Liu et al., 2023), demonstrating its broad compatibility.

Our main contributions are summarized as:

• We introduce a novel framework for discriminative use of generated images, explicitly
treating them as a distinct modality and aligning them with real images within the same
latent space. It enables researchers to exploit highly realistic generated images effectively.

• We demonstrate the effectiveness of our framework through extensive experiments on a
diverse set of vision-language benchmarks, including image captioning, zero-shot image
retrieval, and zero-shot image classification, and further validate its compatibility with the
recent large multimodal model, LLaVA.

• We explore the generated data scaling trend of our framework using large-scale generated
datasets, demonstrating that our approach consistently improves as the volume of training
data increases.

2 RELATED WORK

Diffusion Models. Diffusion models (Ho et al., 2020; Song et al., 2021b;a) have emerged as a pow-
erful class of generative models, capable of producing high-quality images that closely mimic the
distribution of real-world images. Prominent examples include Stable-Diffusion (Rombach et al.,
2022), DreamBooth (Ruiz et al., 2022; 2023), and the DALL-E series (Ramesh et al., 2021; 2022;
Betker et al., 2023), which have demonstrated remarkable success in generating diverse and complex
images from textual descriptions. These models leverage advanced diffusion processes to iteratively
refine images from noise, capturing intricate details and generating visually convincing outputs that
can closely resemble real-world imagery. Our work utilizes the power of diffusion models to gen-
erate images, offering an innovative and cost-effective source of training data derived from textual
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descriptions. By aligning these generated images with real image modalities through our GenRA
framework, we bridge the gap between synthetic image generation and practical machine learning
applications, addressing the challenges of model collapse due to modality discrepancies. This appli-
cation of diffusion models represents a novel contribution to the field, as it not only enhances training
efficiency but also expands the use of generative models beyond mere content creation, embedding
them directly into the model training process to improve real-world performance.

Generated Visual Learning. Generated visual learning has gained traction as researchers explore
the potential of synthetic data to augment traditional training paradigms. SynCLR (Tian et al., 2023)
proposed a self-supervised framework that employs synthetic data to pre-train visual representations,
demonstrating that models trained on generated data can achieve competitive results compared to
those trained on real data. However, a critical challenge in this domain is the issue of model collapse,
where the over-reliance on synthetic data without proper alignment leads to performance degradation
when models are applied to real-world tasks. Recent work (Shumailov et al., 2024) highlights the
inherent risks of training models on recursively generated data, emphasizing that models can inherit
and amplify errors present in synthetic data, ultimately compromising their ability to generalize.
Our research directly addresses these challenges by proposing a novel strategy that treats generated
images as a distinct modality and aligns them with real images in the same latent space. This
approach not only mitigates the risk of collapse but also enhances the robustness of models by
embedding generated images within the same latent space as real images.

Vision-Language Models. Vision-language models, such as CLIP (Radford et al., 2021), have rev-
olutionized cross-modal understanding by learning joint representations of images and text through
contrastive learning objectives. While these models excel at leveraging large-scale real-world data,
they often struggle when trained on generated images due to the modality gap. To overcome this, re-
cent methods have explored various alignment techniques to improve cross-modal performance. For
example, Long-CLIP (Zhang et al., 2024) extended CLIP by integrating longer captions, improving
its ability to handle more descriptive textual inputs. Similarly, LLaVA (Liu et al., 2023) has demon-
strated the potential for vision-language models to handle multimodal tasks like visual question
answering and captioning by leveraging large-scale vision-language data. Our work builds on these
foundational efforts by introducing an explicit generated-real alignment framework that enhances
the adaptability of vision-language models when using generated data. By embedding generated
images within the same latent space as real images and training the alignment, our approach directly
addresses the modality discrepancies that limit model performance, offering a scalable solution that
significantly boosts cross-modal learning across diverse vision-language tasks, including image cap-
tioning, zero-shot retrieval, and classification.

3 METHOD

In this section, we describe our proposed Generated-Real Alignment (GenRA) framework, which
tackles the challenge of training on generated images while ensuring robust performance during in-
ference on real-world data, as illustrated in Figure 1. Our approach introduces two key components:
(1) a Gen-CLIP flow on training and inference that handles generated and real images as separate
modalities, and (2) an explicit alignment strategy with vision-language models to facilitate better in-
tegration with large language models (LLMs) such as CLIPCap (Mokady et al., 2021), LLaVA (Liu
et al., 2023), and Llama3 (Meta, 2024). In this part, we detail the problem setup, the key components
of our framework, and the alignment strategy used to enhance the performance of models trained on
both generated and real data.

3.1 PRELIMINARIES

In this subsection, we introduce the problem setup and notations, followed by an overview of the
contrastive language-image pre-training methodology that forms the foundation of our approach.

Problem Setup and Notations. Let Dr = {(xr, yr)} represent a dataset of real images with corre-
sponding labels or annotations, and Dg = {(xg, yg)} denote a dataset of generated images synthe-
sized by generative models, such as GANs or diffusion models. Our objective is to train a model f(·)
that performs well across a broad set of downstream tasks, utilizing both Dr and Dg , while mitigat-
ing the risk of model collapse caused by the inherent modality gap betweenDr andDg . To formally
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Figure 1: Illustration of the proposed GenRA framework for vision-language tuning with gen-
real alignment from diffusion models. We introduce explicit alignment into the training regimen
of the pre-trained CLIP model from real images to align the generated images with the real captions
for training with state-of-the-art vision-language models.

define the alignment process, we introduce two models: a base model fr, pre-trained on real im-
ages, and a fine-tuned model fg , trained specifically on generated images. The primary goal of our
framework is to align fg with fr, ensuring that the feature representations of generated images are
semantically consistent with those of real images. This alignment facilitates a unified understanding
of both modalities, allowing the model to generalize across real data during inference.

Contrastive Language-Image Pre-training. Our framework builds on the foundation of Con-
trastive Language-Image Pre-Training (CLIP) (Radford et al., 2021), which learns joint embeddings
for images and textual descriptions. CLIP leverages a contrastive loss that brings the embeddings
of paired images and texts closer, while pushing apart the embeddings of unpaired ones, fostering
cross-modal alignment. However, traditional CLIP training does not explicitly address the discrep-
ancy between generated and real images, often leading to performance degradation when integrat-
ing generated data directly. To extend CLIP to handle generated images as a distinct modality, we
propose a modified training objective that incorporates contrastive learning not only between real
images and text but also between generated images and text. This treats generated and real images
independently, preserving the unique characteristics of each modality during training.

3.2 GEN-CLIP FLOW

The first key component of our method is the Gen-CLIP flow, which focuses on training the model
on generated images while treating them as a distinct modality. Unlike traditional approaches that
mix generated and real images indiscriminately, we handle generated images separately to prevent
the model from overfitting to the peculiarities of synthetic data. In the Gen-CLIP flow, we fine-
tune a pre-trained CLIP model (Radford et al., 2021) using generated images, paired with the same
textual descriptions used for real images. During fine-tuning, we employ a cross-modality alignment
loss to minimize the feature space discrepancy between generated and real images. This contrastive
alignment loss encourages the model to learn representations that place generated and real images
with the same descriptions close to each other in the latent space, while maintaining their distinct
modality-specific characteristics. To maintain computational efficiency and prevent catastrophic
forgetting of real image representations, we apply Low-Rank Adaptation (LoRA) (Hu et al., 2021)
during fine-tuning. LoRA introduces lightweight, efficient updates to the model, ensuring that the
alignment process does not degrade the model’s ability to generalize across different data modalities.

In the inference phase, the model fine-tuned on generated images in the Gen-CLIP flow is deployed
to process real images without further fine-tuning. By keeping the pre-trained CLIP model for real
images unchanged during the generated image training process, we ensure that the learned represen-
tations from the generated data remain aligned with real data. The CLIP flow leverages these aligned
representations for inference on real images, allowing the model to generalize well to real-world
data without suffering from the typical model collapse associated with over-reliance on generated
content. This dual-model structure allows the model to benefit from the complementary strengths
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of both real and generated images, ensuring that it performs robustly during real-world deployment
while still benefiting from the scalability of generated training data. Note that the encoder fine-tuned
with the LoRA and the projection for real is used on real images during inference time.

3.3 ALIGNMENT WITH VISION-LANGUAGE MODELS

Our alignment strategy is designed to enhance the integration of generated data into vision-language
models, particularly large language models (LLMs) such as CLIPCap (Mokady et al., 2021),
LLaVA (Liu et al., 2023), and Llama3 (Meta, 2024). This extension of GenRA ensures that gen-
erated images can be utilized effectively within these models for tasks such as image captioning,
retrieval, and long-form question answering.

Gen-Real Alignment. The key to our framework is the cross-modality alignment loss, which en-
sures that generated images are embedded within the same latent space as real images, while main-
taining their distinct characteristics. The alignment loss is formulated as:

Lalign = − 1

|B|
∑

(xg,xr)∈B

log
exp(sim(fg(xg), fr(xr))/τ)∑

x′
r∈B exp(sim(fg(xg), fr(x′

r))/τ)
, (1)

where xg and xr represent generated and real images, fg and fr are their corresponding feature
representations, sim(·, ·) denotes cosine similarity between embeddings, and τ is a temperature pa-
rameter. This loss encourages generated images to be aligned with their real counterparts, facilitating
effective transfer of knowledge across both modalities.

CLIPCap (Mokady et al., 2021) combines CLIP’s image embeddings with a transformer-based
language model to generate captions from images. By aligning generated images with real image
embeddings, we ensure that CLIPCap can generate high-quality captions from both real and gen-
erated data. Fine-tuning CLIPCap with our alignment framework allows the model to handle both
modalities effectively, resulting in enhanced performance on image captioning tasks.

LLaVA (Liu et al., 2023) & Llama3 (Meta, 2024) are advanced multimodal models designed to
perform vision-language tasks. To align generated images with these models, we first fine-tune the
vision-language models using our GenRA strategy to ensure that representations from generated data
are aligned with real data. The aligned vision representations are then integrated with the LLMs,
allowing the models to handle complex vision-language tasks such as long captioning and retrieval
more effectively. This alignment enhances the robustness and flexibility of LLaVA and Llama3 in
real-world applications involving both real and generated images.

Our framework is designed to scale effectively with larger datasets, as evidenced by the perfor-
mance improvements observed on large-scale datasets such as CC3M (Sharma et al., 2018) and
CC12M (Changpinyo et al., 2021). The alignment strategy ensures that as the volume of generated
training data increases, the model continues to generalize effectively to real-world data. This scal-
ability demonstrates the potential of GenRA as a cost-effective solution for training robust vision-
language models using synthetic data.

4 EXPERIMENTS

In this section, we provide the experimental setup, evaluation metrics, and comparative analysis
conducted to validate the effectiveness of our proposed method. Through rigorous experimentation
on a diverse set of datasets, we assess our model’s performance on image captioning, zero-shot
image retrieval, and zero-shot image classification tasks, comparing it against existing benchmarks
to highlight our contributions.

4.1 EXPERIMENTAL SETUP

Datasets. Our experiments leverage a comprehensive collection of datasets to evaluate the versa-
tility and effectiveness of our proposed Gen-Real alignment framework. We focus on a diverse set
of tasks, including image captioning, zero-shot image retrieval, and zero-shot image classification,
ensuring broad coverage across various domains. COCO (Lin et al., 2014): We use the COCO
dataset for image captioning and zero-shot image retrieval tasks, as it provides a diverse collection
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Table 1: Image captioning. We perform semi-images fine-tuning on pre-trained ClipCap and
LLaMA-3 for image captioning on COCO. We report the standard metrics to evaluate the qual-
ity of generated captions. The best results are indicated in bold.

Method B@4 (↑) METEOR(↑) CIDEr (↑) SPICE (↑) ROUGE-L (↑) WMD (↑)

ClipCap (Mokady et al., 2021) 32.15 27.10 108.35 20.12 – –
ClipCap + GenRA (ours) 38.12 31.67 119.53 23.75 56.27 62.16
LLaVA (Liu et al., 2023) 39.67 32.38 134.29 24.17 61.36 65.78
LLaVA + GenRA (ours) 43.26 34.89 146.38 27.23 65.25 71.39
Llama3 (Meta, 2024) 47.36 35.21 158.13 28.35 68.32 75.13
Llama3 + GenRA (ours) 50.21 38.59 168.53 32.58 73.29 80.25

of real-world images paired with detailed captions, which serve as a benchmark for evaluating the
alignment between generated and real image modalities. Zero-Shot Image Classification: Fol-
lowing the original CLIP (Radford et al., 2021) setup, we evaluate our model on eight widely-used
benchmarks to assess its performance across diverse visual recognition tasks: DTD (Cimpoi et al.,
2014): evaluates the model’s ability to classify textural attributes in images. Stanford Cars (Krause
et al., 2013): a fine-grained visual classification task focusing on car models. SUN397 (Xiao et al.,
2010; 2014): a large-scale scene classification dataset that tests the model’s scene understanding
capabilities. Food 101 (Bossard et al., 2014): assesses the model’s ability to recognize food items
from various cuisines. Aircraft (Maji et al., 2013): a dataset for fine-grained classification of air-
craft models. Oxford Pets (Parkhi et al., 2012): used for breed classification of cats and dogs.
Caltech 101 (Fei-Fei et al., 2004): a general object recognition dataset covering a wide range of cat-
egories. ImageNet 1K (Deng et al., 2009): a large-scale benchmark for object classification tasks.
CC3M (Sharma et al., 2018) and CC12M (Changpinyo et al., 2021): To demonstrate the scaling
behavior of our Gen-Real alignment approach, we include large-scale datasets CC3M and CC12M,
allowing us to explore the effectiveness of our method when training with extensive generated and
real image collections. ShareGPT4V: For long caption retrieval, we utilize ShareGPT4V, which
challenges the model to handle complex, descriptive captions associated with generated and real
images, emphasizing the need for strong cross-modal alignment.

Evaluation Metrics. To comprehensively evaluate our framework, we employ task-specific metrics
tailored to image captioning, zero-shot image retrieval, and zero-shot image classification: Image
Captioning: Performance is assessed using standard metrics such as BLEU@4 (B@4) (Papineni
et al., 2002), METEOR (Denkowski & Lavie, 2014), CIDEr (Vedantam et al., 2014), SPICE (Ander-
son et al., 2016), ROUGE-L (Lin & Och, 2004), and Word Mover’s Distance (WMD) (Kusner et al.,
2015). These metrics evaluate the quality and semantic accuracy of generated captions compared
to ground truth. Zero-Shot Image Retrieval: We measure both image-to-text and text-to-image
retrieval capabilities using Recall@1, Recall@5, and Recall@10. These metrics assess the model’s
ability to correctly retrieve relevant items based on the provided query, highlighting its cross-modal
understanding. Zero-Shot Image Classification: The classification performance on unseen cate-
gories is evaluated using top-1 accuracy, reflecting the model’s generalization ability to new classes
without prior training on those specific categories.

Implementation. For image captioning, we adhere to the implementation strategy of Clip-
Cap (Mokady et al., 2021), which combines CLIP with a text generation model to produce descrip-
tive captions for images. ClipCap uses CLIP’s image embeddings as input to a transformer-based
captioning model, enabling the generation of semantically accurate and contextually rich captions
for both real and generated images. For zero-shot evaluation on both retrieval and image classifi-
cation tasks, we follow the setup detailed in the original CLIP (Radford et al., 2021) paper. This
setup emphasizes the model’s ability to generalize across unseen data by using natural language
prompts to guide image classification and retrieval, leveraging the contrastive training between im-
ages and textual descriptions without explicit fine-tuning on target datasets. We adopt Stable Diffu-
sion v2 (Rombach et al., 2022) to generate semi-images using captions from the COCO (Lin et al.,
2014) train2014 set. Stable Diffusion provides high-quality image synthesis, enabling us to produce
generated images that are both visually realistic and semantically aligned with the training captions,
serving as the generated modality in our alignment framework. During fine-tuning, we use a rank of
4 in Low-Rank Adaptation (LoRA) to adjust the model parameters specifically for generated images,
ensuring that the adaptation remains efficient and computationally manageable. LoRA fine-tuning
allows us to modify the model with a minimal increase in computational overhead, preserving the
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Table 2: Zero-shot image retrieval on COCO. We perform zero-shot retrieval on pre-trained Semi-
CLIP for image retrieval on the COCO benchmark. We report the image-to-text and text-to-image
Recall@1,5,10 metrics to evaluate the quality of retrieved images.

Method Image-to-Text Text-to-Image
R@1 (↑) R@5 (↑) R@10 (↑) R@1 (↑) R@5 (↑) R@10 (↑)

CLIP (Radford et al., 2021) 51.8 76.8 84.3 32.7 57.7 68.2
CLIP + GenRA (ours) 56.8 80.1 87.2 37.5 62.7 73.2
Long-CLIP (Zhang et al., 2024) 57.2 80.8 87.8 40.4 65.9 75.7
Long-CLIP + GenRA (ours) 62.3 84.1 91.2 45.6 69.8 79.5

Table 3: Zero-shot image retrieval on Flickr30k. We perform zero-shot retrieval on pre-trained
SemiCLIP for image retrieval on the Flickr30k benchmark. We report the image-to-text and text-to-
image Recall@1,5,10 metrics to evaluate the quality of retrieved images.

Method Image-to-Text Text-to-Image
R@1 (↑) R@5 (↑) R@10 (↑) R@1 (↑) R@5 (↑) R@10 (↑)

CLIP (Radford et al., 2021) 44.1 68.2 77.0 24.7 45.1 54.6
CLIP + GenRA (ours) 47.1 71.2 79.6 30.2 50.3 60.5
Long-CLIP (Zhang et al., 2024) 47.2 71.5 80.0 33.1 55.6 64.9
Long-CLIP + GenRA (ours) 51.6 75.3 83.6 39.3 61.5 71.8

model’s core capabilities while enhancing its alignment with the generated data. For optimization,
we use the AdamW optimizer with a learning rate of 1×10−4 and weight decay of 0.01. We employ
a cosine annealing schedule with warm restarts to dynamically adjust the learning rate, enhancing
convergence stability across training phases. Batch normalization and gradient clipping are applied
to prevent exploding gradients and ensure smooth training dynamics.

4.2 COMPARISON TO PRIOR WORK

Image Captioning. We compare our model’s performance on the COCO dataset against prior
commonly-used baselines, including ClipCap (Mokady et al., 2021), LLaVA (Liu et al., 2023),
and LLAMA-3 (Meta, 2024) The results, detailed in Table 1, demonstrate significant improvements
across all evaluated metrics, underscoring the efficacy of our Gen-Real Alignment (GenRA) ap-
proach when combined with semi-images and LoRA optimization. For ClipCap, the proposed Clip-
Cap + GenRA configuration achieves 38.12 B@4, 31.67 METEOR, 119.53 CIDEr, 23.75 SPICE,
56.27 ROUGE-L, and 62.16 WMD, significantly outperforming the baseline ClipCap and the Clip-
Cap + LoRA setup. Specifically, our GenRA approach boosts the original ClipCap (Mokady et al.,
2021) by 5.97 B@4, 4.57 METEOR, 11.18 CIDEr, and 3.63 SPICE. These results highlight the
advantages of aligning generated and real images within a unified semantic space, allowing for en-
hanced image captioning performance. Similarly, when applied to LLAMA-3, our LLAMA-3 +
GenRA model reaches 50.21 B@4, 38.59 METEOR, 168.53 CIDEr, 32.58 SPICE, 73.29 ROUGE-
L, and 80.25 WMD, demonstrating notable improvements over both the baseline and the LoRA
fine-tuning strategy. Compared to LLAMA-3 alone, GenRA achieves gains of 2.85 B@4, 2.46 ME-
TEOR, 10.35 CIDEr, and 4.30 SPICE, establishing our approach as a robust technique for enhancing
models through gen-real alignment. The substantial gains observed across both model architectures
confirm the effectiveness of our GenRA framework. By fine-tuning with generated images while
maintaining alignment with real image modalities, our method effectively bridges the modality gap,
resulting in better understanding and generation of descriptive captions aligned with real-world data.

Zero-shot Image Retrieval. The comparative results in Tables 2 and 3 highlight our model’s su-
perior recall rates, showcasing its robustness in understanding and associating visual and textual
data. Our method is evaluated on two benchmarks: COCO and Flickr30k, using both image-to-text
and text-to-image retrieval tasks, demonstrating significant improvements over prior baselines. On
the COCO dataset, our approach, CLIP + GenRA, achieves 56.8 R@1, 80.1 R@5, and 87.2 R@10
for image-to-text retrieval, outperforming the original CLIP (Radford et al., 2021) trained on real
images by 5.0 R@1, 3.3 R@5, and 2.9 R@10. For text-to-image retrieval, CLIP + GenRA scores
37.5 R@1, 62.7 R@5, and 73.2 R@10, demonstrating gains of 4.8 R@1, 5.0 R@5, and 5.0 R@10
compared to the baseline CLIP. These improvements validate the effectiveness of our alignment
strategy in bridging the gap between generated and real image modalities, enhancing zero-shot re-
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Table 4: Zero-shot image classification. We perform a zero-shot evaluation on pre-trained Semi-
CLIP for image classification on eight benchmarks. We report the top-1 accuracy to evaluate the
quality of learned representations from semi-images. The best results are indicated in bold.

Method DTD Stanford Cars SUN397 Food 101 Aircraft Oxford Pets Caltech 101 ImageNet

CLIP (Radford et al., 2021) 55.20 77.53 69.31 93.08 32.88 93.33 93.24 75.54
CLIP + GenRA (ours) 65.26 81.32 75.53 95.21 37.85 95.23 95.57 77.68
SynCLR (Tian et al., 2023) 79.90 93.80 76.20 91.60 81.70 93.60 95.30 85.80 (ft)
SynCLR + GenRA (ours) 83.67 96.56 81.25 96.38 86.75 95.70 98.35 87.95 (ft)

Table 5: Long caption retrieval on ShareGPT4V. We report the image-to-text and text-to-image
Recall@1 to evaluate the quality of retrieved images. The best results are indicated in bold.

Method Image-to-Text Text-to-Image

CLIP (Radford et al., 2021) 78.2 79.6
CLIP + GenRA (ours) 85.2 86.7
Long-CLIP (Zhang et al., 2024) 94.6 93.3
Long-CLIP + GenRA (ours) 97.2 96.1

trieval capabilities. Similarly, when applied to the Long-CLIP architecture (Zhang et al., 2024), our
Long-CLIP + GenRA configuration further boosts performance, achieving 62.3 R@1, 84.1 R@5,
and 91.2 R@10 on image-to-text retrieval, and 45.6 R@1, 69.8 R@5, and 79.5 R@10 on text-
to-image retrieval. This demonstrates that GenRA consistently enhances model performance across
different backbone architectures by facilitating better alignment of generated images with real-world
data. On the Flickr30k dataset, our CLIP + GenRA model achieves 47.1 R@1, 71.2 R@5, and 79.6
R@10 for image-to-text retrieval, outperforming CLIP by 3.0 R@1, 3.2 R@5, and 2.6 R@10. In
text-to-image retrieval, the model scores 39.3 R@1, 61.5 R@5, and 71.8 R@10, with respective
gains of 14.6 R@1, 16.0 R@5, and 17.2 R@10 over CLIP. These results validate the robustness of
our approach in learning meaningful representations from generated images for zero-shot retrieval
on real images, highlighting the advantages of our Gen-Real alignment in enhancing cross-modal
retrieval tasks across various benchmarks and model architectures.

Zero-shot Image Classification. We evaluate the zero-shot classification performance of our model
across eight diverse benchmarks, including DTD, Stanford Cars, SUN397, Food 101, Aircraft, Ox-
ford Pets, Caltech 101, and ImageNet 1K. As shown in Table 4, our model consistently achieves top-
1 accuracy surpassing previous approaches, validating the advantage of leveraging generated images
through our framework for enhancing zero-shot learning capabilities. Our CLIP + GenRA approach
achieves a top-1 accuracy of 65.26 on the DTD benchmark, outperforming the original CLIP (Rad-
ford et al., 2021) by 10.06 points, demonstrating the significant benefit of aligning generated images
with real data. On the Stanford Cars dataset, our model reaches 81.32, showing robust performance
gains, particularly in fine-grained classification tasks. For the challenging FGVC Aircraft bench-
mark, our method scores 37.85, marking a substantial improvement of 4.97 over the baseline CLIP,
highlighting our model’s capacity to handle complex visual distinctions. Additionally, our model
performs exceptionally well on other benchmarks, achieving 75.53 on SUN397, 95.21 on Food 101,
95.23 on Oxford Pets, 95.57 on Caltech 101, and 77.68 on ImageNet 1K. These results consistently
outperform both the standard CLIP and the CLIP + LoRA setup, confirming the effectiveness of
our gen-real alignment strategy in broadening the model’s generalization capabilities across various
domains. Through these experiments, we affirm the effectiveness of our methodology in advancing
the state-of-the-art across a spectrum of visual and textual understanding tasks.

Long Caption Retrieval. We evaluate our model’s capability to handle long captions using the
ShareGPT4V (Chen et al., 2023) benchmark, as reported in Table 5. The evaluation focuses on
image-to-text and text-to-image retrieval tasks, with Recall@1 used to assess the quality of retrieved
results. Our model demonstrates an enhanced ability to comprehend and generate relevant responses
to extended textual inputs, affirming its utility in applications that require detailed and descriptive
outputs. For the CLIP-based models, our CLIP + GenRA configuration achieves 85.2 for image-
to-text and 86.7 for text-to-image retrieval, outperforming both the original CLIP (Radford et al.,
2021) and the CLIP + LoRA variants. This result highlights the effectiveness of our alignment
strategy in bridging the semantic gap between generated and real images, particularly when handling
complex, long-caption scenarios. When applied to the Long-CLIP architecture (Zhang et al., 2024),
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Table 6: Ablation study on Gen-Real Alignment. We perform ablation studies on image captioning
from pre-trained CLIP on generated images. The best results are indicated in bold.

Alignment B@4 (↑) METEOR(↑) CIDEr (↑) SPICE (↑) ROUGE-L (↑) WMD (↑)

✗ 36.15 30.32 115.35 22.95 55.12 61.08
✓ 38.12 31.67 119.53 23.75 56.27 62.16

Table 7: Scaling trend of Gen-Real alignment on zero-shot image retrieval on Flickr30k. We
perform zero-shot retrieval on models trained from COCO, CC3M, and CC12M on the Flickr30k
benchmark. We report the Recall@1,5,10 metrics to evaluate the quality of retrieved images.

Train Data Image-to-Text Text-to-Image
R@1 (↑) R@5 (↑) R@10 (↑) R@1 (↑) R@5 (↑) R@10 (↑)

COCO 47.1 71.2 79.6 30.2 50.3 60.5
CC3M 48.6 73.6 82.2 32.6 52.6 62.3
CC12M 50.9 75.3 84.6 34.9 54.7 64.8

our Long-CLIP + GenRA configuration reaches 97.2 for image-to-text and 96.1 for text-to-image
retrieval, marking the highest performance among all tested configurations. These gains of 2.6
and 1.6 over Long-CLIP + LoRA confirm that our approach not only strengthens the alignment
between modalities but also substantially improves the retrieval of images and captions involving
extended and intricate descriptions. Overall, the results confirm the robustness and scalability of our
framework in managing complex captioning tasks, paving the way for more nuanced and effective
models in vision-language applications that involve detailed descriptive content.

4.3 EXPERIMENTAL ANALYSIS

In this section, we performed ablation studies to demonstrate the benefit of gen-real alignment. We
also conducted extensive experiments to explore the scaling trend on different training data sizes.

Gen-Real Alignment. To quantify the impact of gen-real alignment fine-tuning on our model’s
performance, we conducted ablation studies comparing models with and without alignment opti-
mization. The results, presented in Table 6, demonstrate significant improvements across all metrics
when alignment tuning is applied, validating the effectiveness of our proposed approach. In the con-
text of image captioning tasks, models fine-tuned with gen-real alignment consistently outperform
their counterparts that lack this optimization step. Specifically, adding gen-real alignment to the
vanilla baseline using semi-images to fine-tune all parameters led to substantial increases across all
evaluated metrics: 3.56 in B@4, 1.13 in METEOR, 4.18 in CIDEr, 0.8 in SPICE, 1.15 in ROUGE-
L, and 1.09 in WMD. These improvements highlight the critical role of alignment fine-tuning in
bridging the modality gap between generated and real images, which enables the model to better
capture and replicate the semantic richness found in real-world data. The results underscore the
effectiveness of gen-real alignment in optimizing model performance, particularly in adapting to the
nuances of semi-generated images and their associated textual descriptions. By embedding gener-
ated images within the same latent space as real images, our approach enhances the model’s ability
to understand and process complex visual-language relationships, ultimately leading to superior per-
formance in downstream tasks.

Scaling trend of Gen-Real alignment. To further evaluate the scalability of our proposed Gen-Real
alignment, we explore its performance across varying scales of training data. Specifically, we ap-
ply our training framework on semi-images derived from COCO Lin et al. (2014), CC3M Sharma
et al. (2018), and CC12M Changpinyo et al. (2021). The comparison results on zero-shot image re-
trieval on the Flickr30k benchmark are reported in Table 7. The results reveal a clear scaling trend,
where increasing the volume of training data from COCO to CC3M and then to CC12M consistently
enhances the model’s performance on both image-to-text and text-to-image retrieval tasks. Specif-
ically, our model trained on CC12M achieves the highest scores with 50.9 R@1, 75.3 R@5, and
84.6 R@10 for image-to-text retrieval, and 34.9 R@1, 54.7 R@5, and 64.8 R@10 for text-to-image
retrieval, outperforming the models trained on the smaller COCO and CC3M datasets. These im-
provements demonstrate that our Gen-Real alignment framework benefits significantly from larger
and more diverse training datasets of generated images, effectively capturing richer semantic rep-
resentations and enhancing retrieval capabilities. The results underscore the effectiveness of our
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Figure 2: Visualizations of real (Column 1) and generated images (Columns 2-6) using the same
caption. Those generated images generally capture high-level semantics in real images.

method in leveraging the scaling trend of generated data, showing that as the scale of semi-images
increases, our model continues to learn and generalize better across zero-shot retrieval tasks.

Visualization of Generated Images. To further understand the quality and semantic alignment of
the generated images used in our training process, we provide visualizations of a subset of generated
images alongside their corresponding real-world counterparts, as shown in Figure 2. These images
were generated using state-of-the-art generative models such as Stable Diffusion (Rombach et al.,
2022), and are designed to closely match the real-world data in terms of visual realism and content.
Through these visualizations, we observe that while generated images generally capture high-level
features and structures present in real images, they may still exhibit subtle artifacts or variations that
could contribute to the modality gap. Despite these differences, our Gen-Real Alignment framework
successfully bridges this gap, as evidenced by the alignment of semantic features between the gener-
ated and real images in the learned latent space. The visualizations not only illustrate the potential of
generated data as a cost-effective supplement to real-world data but also highlight the importance of
explicit alignment strategies to mitigate discrepancies between generated and real data distributions.

5 CONCLUSION

In this work, we present GenRA, a novel framework for gen-real alignment that addresses the modal-
ity gap between generated and real images, a key challenge that often leads to model collapse when
integrating generated data into training pipelines. Our approach explicitly treats generated images as
a separate modality and employs a training scheme that aligns these images within the same latent
space as real images. By fine-tuning models on generated images while maintaining a pre-trained
model for real images, our framework facilitates explicit alignment between the two modalities,
leading to significant performance improvements across various vision-language tasks. Extensive
experiments demonstrate the efficacy of our method on a wide range of benchmarks, including
image captioning, zero-shot image retrieval, and zero-shot image classification. Our results con-
sistently show that GenRA enhances the model’s ability to generalize and perform across tasks,
particularly when trained on large-scale datasets. The scaling trend observed with larger generated
datasets such as CC12M further highlights the robustness and adaptability of our approach.

Limitation. While our approach significantly improves the performance of models trained on gen-
erated images, it relies heavily on high-quality generative models that produce images with realistic
and semantically accurate content.

Broader Impact. Our proposed Gen-Real alignment framework enhances the integration of gener-
ated images in machine learning, potentially reducing the dependency on costly and time-consuming
real-world data collection. This has broad implications for democratizing access to high-quality
training data, especially in fields where obtaining real data is challenging or ethically sensitive.
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ETHICS STATEMENT

Our work leverages generative models, such as stable diffusion models (Rombach et al., 2022),
to create generated images that can supplement real-world datasets in training machine learning
models. While this approach offers significant benefits in terms of reducing the need for expensive
and time-consuming real-world data collection, we recognize the potential ethical risks associated
with generated data. Generated images may inadvertently reflect biases present in the data used
to train the generative models, potentially perpetuating harmful stereotypes or inaccuracies. To
mitigate this, we emphasize the importance of careful curation of training datasets and encourage
the community to develop strategies for auditing and debiasing generative models. Additionally, the
alignment of generated data with real-world data must be handled with caution, as over-reliance on
generated content can obscure important real-world variations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided detailed descriptions of our experimen-
tal setup, datasets, and models in the Method and Experiments sections. Specifically, we describe
the datasets used, including COCO, CC3M, CC12M, and Flickr30k, as well as the generative mod-
els (e.g., Stable Diffusion) employed to synthesize the semi-images. Additionally, we outline the
key components of our framework, including the explicit alignment process, contrastive loss func-
tions, and the model training strategy. For ease of reproducibility, we will release our code, model
weights, and hyperparameters upon publication. We encourage the use of standardized benchmarks,
as described in the paper, and provide detailed instructions on how to replicate the training and evalu-
ation procedures for both generated and real images. Furthermore, we will ensure that all pre-trained
models, including those fine-tuned on generated images, are accessible for evaluation by the broader
research community. By making all resources publicly available, we aim to promote transparent and
reproducible research in the integration of generated data with real-world training pipelines.
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APPENDIX

In this appendix, we provide the following material:

• addition implementation and datasets details in Section A,
• algorithm for our GenRA in Section B,
• more discussions on Gen-Real alignment in Section C,
• more experimental analyses in Section D,
• qualitative visualization results in Section E,
• discussions on limitations and broader impact in Section F.

A IMPLEMENTATION & DATASET DETAILS

In this section, we provide additional implementation details to ensure the reproducibility of our
experiments, along with a comprehensive description of the datasets used.

Implementation. The base model used in our framework is the CLIP model (Radford et al., 2021),
pre-trained on real images and paired with their textual descriptions. We fine-tune the pre-trained
CLIP model on generated images using the LoRA (Hu et al., 2021) method to introduce low-rank
updates, ensuring that the training remains computationally efficient. For contrastive learning, we
set the temperature parameter τ = 0.07 and optimize using the AdamW optimizer with a learning
rate of 1 × 10−4 and a batch size of 256. The synthetic training data were generated using Stable
Diffusion v2 on NVIDIA A100-80GB GPUs. The number of generated images is consistent with
the number of text-image pairs in the original training set: 560k for COCO, 3.3 million for CC3M,
and 12 million for CC12M. Each image was generated with 50 inference steps, balancing quality
and computational efficiency. The total generation time is 5 GPU days for COCO, 30 GPU days for
CC3M, and 109 GPU days for CC12M. Parallelized generation was employed for larger datasets
like CC12M. Fine-tuning for “Proj for Real” and “Proj for Gen” was performed for 50,000 steps.

Datasets. To evaluate the versatility and effectiveness of our Gen-Real Alignment framework, we
employ a comprehensive suite of datasets across a variety of tasks, including image captioning,
zero-shot image retrieval, and zero-shot image classification. This ensures a broad assessment of
our model’s performance across multiple domains and challenges.

• COCO (Lin et al., 2014): The COCO dataset is used for both image captioning and zero-
shot image retrieval tasks. It offers a large and diverse collection of real-world images
paired with detailed textual descriptions, serving as a benchmark for evaluating the align-
ment of generated and real image modalities.

• Zero-Shot Image Classification: To evaluate the generalization capabilities of our model,
we utilize eight well-known benchmarks, following the setup of the original CLIP (Radford
et al., 2021):

– DTD (Cimpoi et al., 2014): Tests the model’s ability to classify textures across various
images.

– Stanford Cars (Krause et al., 2013): A dataset focusing on fine-grained classification
of car models, used to assess the model’s capacity to distinguish between visually
similar objects.

– SUN397 (Xiao et al., 2010; 2014): A large-scale scene classification dataset used to
evaluate scene understanding.

– Food 101 (Bossard et al., 2014): A benchmark used to assess the model’s ability to
classify food items from various cuisines.

– Aircraft (Maji et al., 2013): Used for fine-grained classification of aircraft models,
testing the model’s accuracy in distinguishing similar objects.

– Oxford Pets (Parkhi et al., 2012): A dataset focused on the classification of various
pet breeds, including both dogs and cats.

– Caltech 101 (Fei-Fei et al., 2004): A widely used object recognition dataset covering
a variety of general categories.
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Algorithm 1 GenRA Algorithm: Training and Inference on Generated and Real Images

Require: Datasets of real images Dr = {(xr, yr)} and generated images Dg = {(xg, yg)}, pre-
trained CLIP model fr, learning rate η, batch size |B|, temperature τ , LoRA parameters.

Ensure: Fine-tuned model fg for generated images, aligned with fr for real images.
1: Initialize: Load the pre-trained CLIP model fr trained on real images, set the alignment loss as
Lalign.

2: Step 1: Gen-CLIP Flow for Training on Generated Images.
3: for each mini-batch Bg from Dg do
4: Extract image features fg(xg) for each xg ∈ Bg using the CLIP model fg .
5: Extract textual features fr(yg) corresponding to each xg from the text encoder.
6: Compute cross-modality alignment loss Lalign:

Lalign = − 1

|B|
∑

(xg,xr)∈B

log
exp(sim(fg(xg), fr(xr))/τ)∑

x′
r∈B exp(sim(fg(xg), fr(x′

r))/τ)

7: Apply LoRA updates to minimize Lalign.
8: Update model parameters fg ← fg − η∇fgLalign.
9: end for

10: Step 2: CLIP Flow for Inference on Real Images.
11: for each mini-batch Br from Dr do
12: Extract real image features fr(xr) using the pre-trained model fr.
13: Use the aligned representations from fg for inference on real images.
14: end for
15: Step 3: Alignment with Vision-Language Models.
16: for each LLM (e.g., CLIPCap, LLaVA, LLaMA3) do
17: Fine-tune the LLM using the aligned generated and real image embeddings.
18: end for
19: Return: Aligned model fg for generated images, aligned with the real-image model fr.

– ImageNet 1K (Deng et al., 2009): A benchmark for large-scale object classification,
testing the model’s ability to handle diverse image categories.

• CC3M (Sharma et al., 2018) and CC12M (Changpinyo et al., 2021): These large-scale
datasets provide millions of image-caption pairs, allowing us to explore the scalability of
our Gen-Real alignment framework. We evaluate our model’s performance when trained
on both real and generated data from these expansive datasets.

• ShareGPT4V: To evaluate long caption retrieval, we use the ShareGPT4V dataset, which
includes complex and descriptive captions associated with both generated and real im-
ages. This dataset emphasizes the importance of strong cross-modal alignment for retriev-
ing long, detailed captions.

Evaluation Metrics. To comprehensively evaluate our framework, we employ task-specific metrics
tailored to image captioning, zero-shot image retrieval, and zero-shot image classification:

• Image Captioning: Performance is assessed using standard metrics such as BLEU@4
(B@4) (Papineni et al., 2002), METEOR (Denkowski & Lavie, 2014), CIDEr (Vedantam
et al., 2014), SPICE (Anderson et al., 2016), ROUGE-L (Lin & Och, 2004), and Word
Mover’s Distance (WMD) (Kusner et al., 2015). These metrics evaluate the quality and
semantic accuracy of generated captions compared to the ground truth.

• Zero-Shot Image Retrieval: We measure both image-to-text and text-to-image retrieval
capabilities using Recall@1, Recall@5, and Recall@10. These metrics assess the model’s
ability to correctly retrieve relevant items based on the provided query, highlighting its
cross-modal understanding.

• Zero-Shot Image Classification: Classification performance on unseen categories is eval-
uated using top-1 accuracy, which reflects the model’s generalization ability to classify new
classes without prior training on those specific categories.
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This experimental setup allows us to thoroughly validate our Gen-Real alignment framework across
a wide range of tasks, demonstrating its effectiveness in addressing the modality gap between gen-
erated and real images and enhancing performance across diverse vision-language applications.

B GENRA ALGORITHM

In this section, we outline the algorithm that implements the Generated-Real Alignment (GenRA)
framework, incorporating the Gen-CLIP flow for training on generated images and the CLIP flow
for inference on real images. This algorithm also details the cross-modality alignment loss and how
we ensure alignment with large language models (LLMs) such as CLIPCap (Mokady et al., 2021),
LLaVA (Liu et al., 2023), and LLaMA-3 (Meta, 2024).

Algorithm 1 summarizes the training and inference process for the GenRA framework, detailing
how the model is trained on generated images using the Gen-CLIP flow, and subsequently applied
to real images during inference. The algorithm also explains how to integrate aligned generated and
real data with vision-language models such as CLIPCap, LLaVA, and LLaMA-3 for downstream
tasks.

C MORE DISCUSSIONS ON GEN-REAL ALIGNMENT

In this section, we provide a comprehensive discussion of Gen-Real Alignment. Given training
samples having the same text: real image R, synthetic S, and text T , let us denote our dual encoders
as f, g, h for real-encoder, syn-encoder, and text-encoder, respectively.

Single vs. Dual Modality. In a single-modality scenario (i.e., a single encoder setup where f = g),
given training would reduce distance D(f(R), h(T )) and D(f(S), h(T )), and then D(f(R), f(S))
would be reduced together. However, due to the nature of synthetic images, there could exist a gap
between R and S, such as unnatural artifacts, assuming S contains spurious features. Therefore,
under such approaches to put real and generated images into the same embedding space, generated
artifacts may dominate, causing poor generalization and overfitting to synthetic patterns. Moreover,
if the encoder ignores such different inputs R and S, and produces representations that remain con-
stant and equal, it can lead to “mode collapse” (LeCun, 2022; Assran et al., 2023), where the model
overfits generated patterns, degrading performance on real data. On this line, we consider a dual-
modality scenario, (i.e., dual encoder setup where f ̸= g) to prevent such a problem caused by re-
ducing a distance D(f(R), f(S)). Here, we instead minimize D(f(R), h(T )) and D(g(S), h(T )),
so allowing a small D(f(R), h(S)), not D(f(R), f(S)). Specifically, the expected role of h is to
ignore a synthetic complement of S and produce representations that remain an intersection of S
and R (having the same T ). Such separate mappings of f and g would allow learning focused on
shared characteristics between the real and generated modalities. Thereby treating generated images
as a distinct modality, GenRA could prevent “mode collapse”, enabling the effective use of synthetic
data to augment real datasets without poor generalization and overfitting to synthetic patterns.

Cross-Modality Alignment Loss. Furthermore, the proposed cross-modality alignment loss aims
to directly reduce a distance D(f(R), h(S)) allowing effective and faster training to convergence.
As shown in Table 8, the proposed loss reduced training time and steps to convergence. Throughout
our extensive experiments, for a given R and S having the same T , we have demonstrated the effect
of minimizing a distance D(f(R), h(S)) which learns shared semantics between real and generated
images while ignoring generated artifacts of S may raise poor generalization on real images.

Empirical Validation of Alignment Loss. Nevertheless, we further conducted an ablation study on
the effect of the cross-modality alignment loss (i.e., the effects of directly reducing D(f(R), h(S)))
under the dual encoder setup on COCO captioning. The results in Table 6 confirm that the alignment
loss significantly bridges the modality gap, resulting in consistent performance improvements.

D MORE EXPERIMENTAL ANALYSIS

Computational Costs. We performed additional experiments to compare the computational costs.
Table 8 are the updated results, including explicit details on the contributions of the cross-modality
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Table 8: Computational costs comparisons on COCO training. Our GenRA introduces a slight
increase in memory usage but remains more efficient on the convergence training time and steps
than the baseline of indiscriminate mixing (gen+real) without alignment.

Dual Projection Alignment Synthetic Training Training Memory FLOPs
Data Time (hrs) Steps Usage (GB) (G)

✗ ✗ ✗ 8 50k 24 70.2
✗ ✗ ✓ 12 70k 26 85.5
✓ ✓ ✓ 10 60k 28 85.5

Table 9: Comparison with SigLIP on COCO captioning. Our GenRA significantly improves
SigLIP by effectively addressing the synthetic-real discrepancy. The best results are bold.

Method B@4 (↑) CIDEr (↑)

SigLIP 37.51 117.82
SigLIP + GenRA (ours) 42.35 125.68

Table 10: Visual question answering on ScienceQA. We report the average accuracy on questions
with the image context (IMG). The best results are bold.

Method Accuracy (%, ↑)

LLaVA 85.2
LLaVA + GenRA (ours) 87.6
LLaMA-3 88.5
LLaMA-3 + GenRA (ours) 91.2

Table 11: Comparison with models trained on real images. We perform experiments on image
captioning from pre-trained CLIP on generated images. The best results are indicated in bold.

Dual Projection Alignment Fine-tuning Data B@4 (↑) CIDEr (↑) SPICE (↑)

✗ ✗ ✗ 32.15 108.35 20.12
✗ ✗ Synthetic 36.15 115.35 22.95
✓ ✓ Synthetic 38.12 119.53 23.75
✗ ✗ Real 38.24 119.78 23.86
✓ ✓ Real 38.37 119.95 23.98

alignment loss and dual-model setup. The additional costs for GenRA stem from the cross-modality
alignment loss, which facilitates aligning the features of generated and real images in a shared latent
space, and the dual-projection setup, which processes the two modalities separately. Compared
to CLIP without the dual projection, our GenRA introduces a slight increase in memory usage but
remains more efficient on the convergence training time and steps than the baseline of indiscriminate
mixing on generative and real data without the alignment.

Comparison with SigLIP. To strengthen the novelty of our work, we compared GenRA with
SigLIP (Zhai et al., 2023) on COCO captioning. The results are shown in Table 9. SigLIP (Zhai
et al., 2023) adopts a sigmoid loss for better image-text pre-training, focusing solely on real im-
ages. In contrast, our GenRA aligns real and generated images as distinct modalities, addressing the
challenges of integrating synthetic data into training. GenRA is particularly relevant in scenarios
requiring synthetic data, such as handling expensive attribute annotations or generating diverse sam-
ples. These results demonstrate that our GenRA complements SigLIP by effectively addressing the
synthetic-real discrepancy, allowing for enhanced generalization and performance improvements.

ScienceQA Results. We also evaluated GenRA’s performance on ScienceQA (Lu et al., 2022) when
integrated with LLaVA (Liu et al., 2023) and LLaMA-3 (Meta, 2024). We calculated the average
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Table 12: Ablation study on LoRA rank and full fine-tuning. We perform experiments on image
captioning from pre-trained CLIP on generated images. The best results are indicated in bold.

Method B@4 (↑) CIDEr (↑) SPICE (↑)

LoRA (rank=2) 36.85 117.62 23.10
LoRA (rank=4) 38.12 119.53 23.75
LoRA (rank=6) 37.96 119.12 23.60
Full fine-tuning 37.50 118.95 23.50

Table 13: Quantitative similarity metrics comparisons on COCO. We computed the cosine sim-
ilarity between paired real and generated embeddings without and with alignment.

Alignment Cosine Similarity (↑)

✗ 0.52
✓ 0.89

accuracy of questions with the image context. The comparison results are reported in Table 10.
These results highlight GenRA’s ability to improve generalization across multimodal tasks.

Training on Real Images. To illustrate the impact of GenRA on mitigating over-reliance on syn-
thetic data, we compared performance on COCO captioning using real-only, mixed real-generated
data, and GenRA alignment strategies. The results are shown in Table 11. These results indicate
that GenRA’s alignment strategy not only bridges the synthetic-real gap but also improves models
trained exclusively on real data.

Ablation on LoRA. LoRA allows efficient adaptation to synthetic data while preserving the knowl-
edge from pre-training on large-scale real data. This avoids the need for full fine-tuning, which
can overwrite important pre-trained weights, especially when synthetic data is noisy or biased. The
ablation results are reported in Table 12. As can be seen, LoRA with rank 4 achieves the best perfor-
mance, balancing computational efficiency and alignment quality. Meanwhile, LoRA updates 35%
fewer parameters compared to full fine-tuning while achieving better performance.

Quantitative Similarity Metrics. We quantified alignment using cosine similarity between paired
real and generated embeddings on COCO dataset. The results are shown in Table 13. These results
demonstrate that the alignment loss effectively bridges the gen-real gap, ensuring better feature
consistency across modalities.

Qualitative Embeddings Visualization. To further validate the alignment between real and gener-
ated data, we conducted t-SNE (van der Maaten & Hinton, 2008) visualizations and cosine similarity
analyses of the embeddings without and with alignment. Figure 3 shows the t-SNE plots of real and
generated embeddings from 1000 samples in the COCO dataset. Without alignment, real and syn-
thetic embeddings form two distinct clusters, reflecting the modality gap. With alignment proposed
in our GenRA, the gap between real and synthetic embeddings is significantly reduced, with both
modalities aligning closely.

E QUALITATIVE VISUALIZATIONS

In this section, we provide qualitative visualizations of the generated images used in our experi-
ments. Figures 4, 5, 6, 7, 8 and 9 show examples of images generated by Stable Diffusion (Rombach
et al., 2022), alongside their corresponding real-world counterparts from the COCO dataset (Lin
et al., 2014). Our visualizations demonstrate that the generated images closely resemble real im-
ages, capturing key semantic details and structural elements. However, subtle differences in texture
or object placement are occasionally present. These artifacts highlight the importance of our Gen-
Real Alignment (GenRA) framework, which ensures that these differences do not lead to model
collapse by aligning the feature representations of generated and real images in the latent space.
These visualizations further validate the effectiveness of our alignment strategy, ensuring that both
generated and real data contribute equally to the model’s understanding during inference.
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Figure 3: Qualitative Visualizations of embeddings of real and synthetic images without (Left)
and with (Right) alignment. Blue and red dots denote the embeddings for real and synthetic
images, respectively. Our GenRA with alignment significantly reduced the gap between real and
synthetic images, with both modalities aligning closely in the latent space.

F DISCUSSIONS

F.1 LIMITATIONS

While our proposed GenRA framework shows significant improvements in aligning generated and
real images, there are limitations to be addressed. The quality of the generated images is highly
dependent on the underlying generative models, such as Stable Diffusion (Rombach et al., 2022). In
scenarios where the generative model fails to produce realistic images, the alignment process may
be less effective, leading to suboptimal performance in downstream tasks. Additionally, our method
introduces additional computational overhead during the fine-tuning process due to the need for
separate training on generated and real images, which may be a challenge in resource-constrained
environments.

F.2 BROADER IMPACT

Our work presents a novel approach to utilizing generated images for training vision-language mod-
els, offering a cost-effective and scalable solution for improving model performance. The use of
generated data can reduce the reliance on real-world datasets, which are often expensive and time-
consuming to collect. This has the potential to democratize access to high-quality training data for
researchers and practitioners with limited resources. However, it is important to acknowledge the
ethical concerns around the biases that can be introduced through synthetic data, especially if the
generative models themselves are trained on biased datasets. We encourage future work to explore
methods for mitigating these biases to ensure that the benefits of synthetic data can be realized in a
responsible and equitable manner.

F.3 MORE DISCUSSIONS

Relevance Between Gen-Real Discrepancy and Model Collapse. GenRA focuses on addressing
the misalignment between synthetic and real data distributions during training. By aligning gen-
erated and real data in a shared latent space, GenRA enables the safe and effective integration of
synthetic data for model training. Model collapse in (Shumailov et al., 2024) refers to the degrada-
tion of performance caused by recursive training on synthetic data (e.g., models generating data that
are then used for further training). This leads to a compounding drift from the real data distribution.
To prevent model collapse in recursive scenarios, it is essential to first solve the gen-real discrep-
ancy problem. Without addressing this gap, recursive training on synthetic data exacerbates the
divergence between synthetic and real data distributions, accelerating model collapse. GenRA lays
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Figure 4: Visualizations of real (Column 1) and generated images (Columns 2-6) using the same
caption. Those generated images generally capture high-level semantics in real images.

the groundwork by providing a robust framework for safely using synthetic data in non-recursive
training scenarios.

Applicability of GenRA to Recursive Training Scenarios. While GenRA was designed for single-
stage training using synthetic data, its principles could extend to recursive training: In recursive
scenarios, each generation step could incorporate GenRA to realign synthetic data with real data.
This would mitigate the compounding divergence that leads to collapse. By maintaining alignment
at each stage, GenRA can act as a regularizer, ensuring synthetic data does not drift too far from real
distributions over recursive iterations.

Path Toward Escaping Model Collapse. Our GenRA clearly articulates this pathway and plays the
foundational role in safely integrating synthetic data, providing a step toward solving the broader
model collapse problem.

• Step 1 (Our Work): Address gen-real discrepancies to ensure synthetic data can be safely
used in training alongside real data.

• Step 2 (Future Work): Extend alignment techniques like GenRA to recursive training set-
tings, where models rely entirely on synthetic data for iterative training and generation.
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Figure 5: Visualizations of real (Column 1) and generated images (Columns 2-6) using the same
caption. Those generated images generally capture high-level semantics in real images.

Figure 6: Visualizations of real (Column 1) and generated images (Columns 2-6) using the same
caption. Those generated images generally capture high-level semantics in real images.
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Figure 7: Visualizations of real (Column 1) and generated images (Columns 2-6) using the same
caption. Those generated images generally capture high-level semantics in real images.

Figure 8: Visualizations of real (Column 1) and generated images (Columns 2-6) using the same
caption. Those generated images generally capture high-level semantics in real images.
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Figure 9: Visualizations of real (Column 1) and generated images (Columns 2-6) using the same
caption. Those generated images generally capture high-level semantics in real images.
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