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Abstract

Prompt Engineering has garnered significant at-001
tention for enhancing the performance of large002
language models across a multitude of tasks.003
Techniques such as the Chain-of-Thought not004
only bolster task performance but also delin-005
eate a clear trajectory of reasoning steps, of-006
fering a tangible form of explanation for the007
audience. Prior works on interpretability as-008
sess the reasoning chains yielded by Chain-of-009
Thought solely along a singular axis, namely010
faithfulness. We present a comprehensive and011
multifaceted evaluation of interpretability, ex-012
amining not only faithfulness but also robust-013
ness and utility across multiple commonsense014
reasoning benchmarks. Likewise, our investi-015
gation is not confined to a single prompting016
technique; it expansively covers a multitude017
of prevalent prompting techniques employed018
in large language models, thereby ensuring a019
wide-ranging and exhaustive evaluation. In ad-020
dition, we introduce a simple interpretability021
alignment technique, termed Self-Entailment-022
Alignment Chain-of-thought, that yields more023
than 70% improvements across multiple dimen-024
sions of interpretability.025

1 Introduction026

In recent trends, Large Language Models (LLM)027

have shown impressive performance across a di-028

verse array of tasks, primarily through extensive029

scaling of model size (Brown et al., 2020). Tech-030

niques such as instruct-tuning (Wei et al., 2021) ap-031

plied across diverse tasks have empowered LLMs032

to execute inference on previously unseen tasks.033

One attributing factor lies with the extensive ef-034

forts put into innovating new ways of prompting035

the LLM to better exploit their knowledge base.036

Chain-of-Thought (CoT) (Wei et al., 2022) has037

gathered much attention due to its simple setup038

which allows the LLM to generate not only the task039

output but also the steps undertaken. In addition to040

its efficacy in enhancing the model’s performance,041

this prompting method concurrently touches on one 042

of the important aspects of utilizing these models 043

for decision-making: interpretability. 044

The assumption is that the reasoning chain pre- 045

ceding the answer illustrates the model’s thought 046

process, enabling the audience to understand how 047

the answer is derived. However, such claims 048

though seemingly plausible should be taken lightly 049

as they may not be faithful to the model’s reasoning 050

process (Jacovi and Goldberg, 2020). In this con- 051

text, plausibility refers to the extent to which an ex- 052

planation resonates with and is deemed acceptable 053

by a human audience. Faithfulness, on the other 054

hand, is characterized by the extent to which the ex- 055

planation accurately reflects the model’s decision- 056

making process. 057

There has been a large number of works that 058

seek to introduce modifications to CoT, including 059

Self-Consistency (Wang et al., 2022b) and Least- 060

to-Most (Zhou et al., 2022). We introduce a simple 061

extension to the list of CoT variants, but purely with 062

a focus on enhancing interpretability in the reason- 063

ing chain. The approach coined Self-Entailment- 064

Alignment CoT (SEA-CoT) similarly utilizes a form 065

of consistency between the set of possible out- 066

comes, with an additional touch of alignment to- 067

wards desirable explainability qualities. Moreover, 068

we conduct an extensive investigation into the rea- 069

soning explanations by evaluating under three piv- 070

otal axes of interpretability: faithfulness, robust- 071

ness, and utility on three commonsense reason- 072

ing datasets. These assessments are implemented 073

across multiple prompting techniques including 074

CoT and various adaptations of it. 075

2 Motivation 076

Efforts aimed to enhance faithfulness in NLP take 077

various forms. Extractive rationalizing model (Lei 078

et al., 2016), designed to be faithful, generally com- 079

prises two separate components: explainer and 080

predictor. This design paradigm conditions the 081
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predictor exclusively on text spans extracted by082

the explainer, positing that the resultant output,083

ŷ is faithfully aligned with the extracted text, ê.084

However, prior studies (Wiegreffe et al., 2020) cau-085

tions against such beliefs, identifying limitations086

in adopting the explain-then-predict approach. The087

authors mentioned that such an approach restricts088

the focus of the predictor toward the target iden-089

tified by the explainer, thereby raising questions090

about what is being explained. Conversely, Jacovi091

et al. (Jacovi and Goldberg, 2021) highlight con-092

cerns relating to the lack of meaningful insights093

from multiple text spans.094

In accordance, we hypothesize that besides the095

limitation of narrowing the predictors’ context, gen-096

erating the explanation and output using separate097

modules could compromise the faithfulness of the098

explanation. Thus, we conduct a preliminary study,099

wherein we compare the faithfulness and utility100

of a single LLM that jointly predicts both ŷ and101

ê, against another modular approach that involves102

two distinct LLMs, each tasked with predicting one103

of the two variables. We adopt the PINTO frame-104

work (Wang et al., 2022a), which uses an LLM, rθ105

as the explainer while employing a smaller predic-106

tor, fϕ to generate the task label, ŷ = fϕ(x⊕ê) over107

the generated explanation, ê = rθ(x) concatenated108

with the context x, ⊕ stands for the concatenation109

process. More importantly, PINTO addresses the110

label-specific issue by generating an explanation111

for each given option in a multiple-choice setup.112

We are interested to see if generating both ratio-113

nale and answer with a single model, yields a better114

ê. In this setup, we train fϕ to generate both ê and115

ŷ jointly. We measure faithfulness by computing116

the drop in performance when swapping êi with an-117

other instance within the same batch, ˆej ̸=i before118

deriving ŷ|x; ê. We use Leakage-Adjusted Sim-119

ulatability (LAS) (Hase et al., 2020) to measure120

the utility of the rationale, a higher score would121

indicate that ê is more useful towards learning ŷ.122

We conduct experiments on two common-123

sense reasoning datasets: Commonsense QA124

(CSQA) (Talmor et al., 2018) and OpenBookQA125

(OBQA) (Mihaylov et al., 2018). Figure 1 shows126

that the joint approach scores higher on both ac-127

counts of faithfulness and utility. We hypothesize128

that a single model is in better control of aligning129

its explanation to the resultant outcome. Contrarily,130

a model relying on explanations synthesized by an131

external model may instead exhibit a diminished132

Figure 1: Faithfulness and Utility scores for joint and
modular approach on two reasoning datasets: CSQA
and OBQA.

correlation between the interdependent variables, 133

explaining the marginal difference in performance 134

despite being given an unrelated stimulus. 135

Notably, this observation resonates well with 136

the recognized capability of recent LLMs to self- 137

generate text serving diverse objectives. In partic- 138

ular, LLMs pre-trained on a large amount of text 139

can elucidate their reasoning processes, assisted 140

with the appropriate prompting format. This pre- 141

liminary experiment serves as the main motivation 142

to conduct experiments to scrutinize the quality of 143

explanations produced by a singular LLM. 144

3 Prompt Techniques 145

In this section, we systematically review various 146

ways an LLM, fϕ can be prompted. These meth- 147

ods primarily differ in how the language model is 148

queried to derive the final answer. Furthermore, we 149

proposed an approach, SEA-CoT, aimed at improv- 150

ing the interpretability traits of the reasoning chain 151

to serve as the explanation for the resultant output. 152

A high-level overview is shown in Figure 2. 153

• CoT: Chain-of-thought prompting has shown 154

promising results in encouraging an LLM to 155

better answer the task by reasoning aloud the 156

steps before arriving at the final answer. (Ko- 157

jima et al., 2022) has shown that it is possible 158

in the zero-shot setting simply by appending 159

‘Let’s think step by step’ at the end of the in- 160

struction. 161

• Self-Consistent CoT (SC-CoT): Following 162

on, other works like Self-Consistency (Wang 163

et al., 2022b) address the suboptimality of 164

greedy decoding in CoT by generating multi- 165

ple paths and choosing the final answer, ŷ∗ via 166
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Figure 2: Overview of different prompting techniques to derive the reasoning chain, to serve as the explanation
(boxed with dashed line). [Top to Bottom]: Cot, SC-CoT, SEA-CoT, QD, SR. SC-CoT and SEC-CoT differ in the
explanation selection stage, where the former selects based on maximum cumulative probability (blue) and the latter
(green) on two objectives: entailment, E, and overlap, O with an additional forward pass. Each robot figure denotes
a forward pass from the LLM, SR stops when encounters a stopping criteria or exceeds the max number of passes.

majority voting. SC-CoT has shown improve-167

ments across multiple arithmetic and common-168

sense reasoning benchmarks. Since multiple169

explanations may lead to the majority answer.170

We choose the explanation with the highest171

cumulative probability. We also experiment172

with different ways, further discussed in the173

ablation section.174

• Question decomposition (QD): (Zhou et al.,175

2022) demonstrates that decomposing a com-176

plex problem into more manageable sub-177

problems significantly facilitates the problem-178

solving capability of the model. The model179

answers each sub-problem and pieces together180

the answers to conclude the principal prob-181

lem. We treat the sub-question and answers182

as the target explanation and assess their inter-183

pretability properties.184

• Self-Refine (SR): SR (Madaan et al., 2023)185

is a type of iterative process of prompting the186

LLM with a set of instructions. The main idea187

is to instruct the LLM to continuously pro-188

vide feedback for its’ own output and refine189

using the feedback, the process stops when190

the feedback deems the output as sufficient191

in solving the task at hand. The whole iter-192

ative process is achieved by self-prompting193

the same language model. There exist other 194

forms of acquiring feedback, such as querying 195

a trained feedback model or using external fac- 196

tual knowledge (Pan et al., 2023). We choose 197

the approach of querying the same LLM as we 198

are focused on the explainability of generated 199

outputs from a sole LLM. 200

4 Proposed Approach 201

Most adaptations on CoT are only aimed at max- 202

imizing task performance as covered in Section 203

3. Our work is instead focused on enhancing the 204

interpretability of the presented reasoning chain 205

preceding the task output. We adapt from SC-CoT, 206

by focusing on the N sequences produced, ranked 207

based on specified objectives. Instead of picking 208

explanations based on heuristics such as highest cu- 209

mulative probability, the reasoning is chosen based 210

on the maximization of two objectives: entailment 211

and overlapping score between the supported con- 212

text (x⊕ ŷ) and reasoning ê. We posit that a credi- 213

ble explanation should intrinsically align with the 214

given context it aims to elucidate; in this scenario, 215

it encompasses both the question being addressed 216

and the prediction label, measured by the level of 217

entailment. We additionally maximize the overlap 218

between two sets of tokens to ensure the impor- 219

tant keywords are aligned, promoting faithfulness. 220
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This extension takes advantage of the N reasoning221

chains and performs a self-alignment to pick the222

most suitable chain to serve as the explanation.223

Inspired by works that employ the LLM itself to224

do self-correction, we do the same by asking the225

LLM to rate the entailment level between each own226

generated reasoning, êi and the joint context, x⊕ ŷ.227

We prompt the LLM with few-shot examples of228

natural language inference (NLI), xe in Figure 16229

and determine if the hypothesis entails the premise.230

The final score to be ranked, ST is a combination231

of both the probability of entailment, Se, and the232

IoU score, So.233

Se = pe(fϕ(x⊕ ŷ, êi|xe)) (1)234

So =
|êi ∩ (x⊕ ŷ)|
|êi ∪ (x⊕ ŷ)|

(2)235

ST = Se + So (3)236

The most interpretable explanation is then chosen237

via maximizing ST . One caveat is that in the event238

where |ŷ∗| = 1, we fall back to SC-CoT. However,239

this can be avoided by trivially setting the number240

of sequences, N to be higher than the number of241

possible options.242

5 Interpretability Qualities243

Figure 3: The interpretability qualities measured by
different perturbation tests, to achieve the corresponding
goals of an explanation. Goals referenced from (Yeo
et al., 2023)

Interpretability is a multifaceted characteristic244

with multiple desirable traits concerning various245

goals of interpretability. Inspired by existing work246

on desirable goals of explainable AI (Yeo et al.,247

2023), we assess three aspects of interpretability:248

faithfulness, robustness, and utility. We propose249

these traits as we believe they are directly linked250

to achieving such goals, illustrated in Figure 3. 251

We discuss the connections in further sections. 252

In accordance, we outline the corresponding 253

evaluations sought out to assess each trait, shown 254

in Figure 4. These evaluations are primarily 255

conditioned on both the context and self-generated 256

reasoning chain. 257

258

Faithfulness: The concept of faithfulness 259

seeks to gauge the extent to which the explanation 260

aligns with the underlying decision-making pro- 261

cess. (Lanham et al., 2023) conducted a series of 262

tests assessing the faithfulness of reasoning chains 263

generated using CoT from an LLM. However, 264

the authors only investigated a single prompting 265

technique, while we conducted extensive experi- 266

ments covering multiple prompting approaches. 267

A faithful explanation is crucial as it fosters 268

trust (Cambria et al., 2023) and fairness, ensuring 269

that users can rely on the explanation to reflect the 270

decision-making process and identify any potential 271

biases, thereby improving model transparency and 272

understanding of any causal relationships 273

274

Robustness: Robustness seeks to measure 275

how resilient or consistent a given explanation 276

is under various circumstances. For instance, 277

employing adversarial attacks on an explanation, 278

as delineated by (Chen et al., 2022), could serve 279

as a mechanism to ascertain whether the model’s 280

decision is susceptible to diversion or distraction 281

induced by these attacks. A robust explanation 282

instills confidence and trust in users that the model 283

would behave appropriately despite noises in the 284

input. 285

286

Utility: A largely understudied but impor- 287

tant trait, utility is paramount towards maximizing 288

the information conveyed to the audience. A 289

useful explanation can allow the discovery of new 290

knowledge to human users such as understanding 291

the causal relationships or enable more efficient 292

knowledge distillation between neural models. 293

5.1 Paraphrase 294

Paraphrasing ê corresponding to ŷ allows us to 295

question the robustness of the explanation, ie how 296

robust is the explanation against minor variations, 297

assuming that these variations do not alter the core 298

intent, yet still enable the model to produce the 299

same outcome? Albeit such a test concurrently 300
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Figure 4: Interpretability test for faithfulness, robustness, and utility. The reasoning chain is subjected to perturba-
tions: paraphrasing and inserting mistakes, before re-generating the subsequent output. Counterfactual: the original
question is changed to check if the resultant reasoning accounts for edits (shaded red). Simulatability: increase in
task performance when training data is augmented with reasoning chain, measured with a student model.

touches on the concept of faithfulness, where simi-301

lar thought processes should lead to identical con-302

clusions given the same model (Jacovi and Gold-303

berg, 2020). However, for the sake of differenti-304

ation, we consider the primary objective of para-305

phrasing as an evaluation of robustness in the fol-306

lowing experiments. We utilize OpenAI’s GPT3.5307

to rephrase the target reasoning explanation, ê. To308

ensure correctness in the paraphrased explanations,309

em we feed the modified inputs back to GPT3.5310

and only select instances where ŷ|em remains the311

same.312

5.2 Adding mistakes313

In contrast to ensuring answer consistency among314

similar reasoning, inserting erroneous inputs into315

an explanation can assess if the reasoning preced-316

ing the output is truly faithful. One would expect317

the model to change its decision given an erroneous318

reasoning chain if it is faithful from the start. We319

focus on the alteration in prediction rather than320

actual task performance, since incorrect reason-321

ing may potentially correct an erroneous explana-322

tion, though such occurrences are exceedingly rare.323

Similarly, GPT3.5 is used as the modifier to add324

non-factual errors to the initial reasoning. During325

the modification stage, we only select instances326

which changes the label corresponding to the pre-327

modified reasoning chain as generated by the mod-328

ifier.329

5.3 Simulatability330

As it is costly to employ humans to assess if a331

reasoning chain is useful, we employ forward sim-332

ulatability as a proxy for utility. We measure simu- 333

latability using LAS in Section 2 as it highly corre- 334

lates with human judgment. A 220M T5-base (Raf- 335

fel et al., 2020) is selected as the student model. 336

The generated reasoning, ê is appended to the input 337

context x, which is then used as the final context 338

for predicting the task label, ŷ = fs(ê⊕ x), where 339

fs refers to the student model. The student model 340

undergoes fine-tuning with the aid of these samples, 341

followed by an evaluation of its performance. A 342

key aspect of LAS lies with the notion of subtract- 343

ing a baseline, Ms(fs(x)) from Ms(fs(ê ⊕ x)), 344

where Ms is a task scoring function such as accu- 345

racy or F1-score. This is used to assess the benefits 346

gained by adding ê into the training process. 347

5.4 Counterfactual reasoning 348

An alternative method to ascertain faithfulness fol- 349

lows by evaluating whether an explanation would 350

change when the original question is modified in 351

a different direction, particularly when directed to- 352

wards a counterfactual scenario. (Atanasova et al., 353

2023) shows that an instance of unfaithfulness can 354

be detected if the counterfactual explanation, e′ 355

does not acknowledge the modifications, c in the 356

counterfactual instance x′i : y′, yet still success- 357

fully predicting the counterfactual label, y′ ̸= y. 358

The distinction from Section 5.2 is that besides de- 359

tecting signs of unfaithfulness, it also embodies a 360

directed approach that assesses a model’s capacity 361

to contemplate alternative scenarios. Conversely, 362

introducing mistakes can be seen as an undirected 363

measure aimed at gauging the decline in confidence, 364

given an erroneous prior belief. We deemed an 365
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instance of unfaithfulness under the following con-366

ditions:367

1. x′i = {xi,1, xi,2...c, ...xi,L} : y′i368

2. ŷ = y ∧ ŷ′ = y′369

3. e′ ∩ c = ∅370

The first two conditions are prerequisites for assess-371

ment, while the third indicates signs of unfaithful-372

ness. We use GPT-4 to insert edits, c instead of373

GPT-3.5 since this task is much tougher than the374

previous modifications as x′ has to correspond to375

an alternative answer in the choices while keeping376

c to a minimal length. We separate the process377

of finding c and generating x′i into two passes to378

mitigate errors in the counterfactual generation.379

6 Experiments380

Datasets: We implement the perturbation experi-381

ments across three commonsense reasoning bench-382

marks.383

1. OpenBookQA (Mihaylov et al., 2018), which384

has 4 answer choices for each question and385

assesses open-book reasoning capabilities.386

2. QASC (Khot et al., 2020), is an 8-choice387

multi-hop reasoning dataset, requiring assem-388

bling multiple real-world facts to successfully389

answer the question.390

3. StrategyQA (Geva et al., 2021) is a binary391

question dataset structured such that the392

model is required to strategize a chain of rea-393

soning steps to derive the correct answer.394

We use only the test set to run the experiments for395

all perturbations introduced in Section 5, except396

LAS, where we employ the LLM to generate397

explanations for the training set as well.398

399

Implementation details: We use the 70B400

Llama-v2 (Touvron et al., 2023) from Meta as401

the choice of LLM for this experiment. We use a402

4-bit quantized version, via applying the GPTQ403

technique (Frantar et al., 2022) since the full 32-bit404

model would require extensive resources. The405

full model implementation details can be found in406

Appendix A.2.407

408

Metric details: We use the percentage of409

flipped predictions as the measurement unit for410

both paraphrased and mistake insertion. For 411

counterfactual inputs, we only consider e to be 412

unfaithful if the counterfactual part, e′ has a 413

zero overlap with modification c. This applies to 414

singular reasoning chains, except QD where we 415

only assessed each sub-answer. Utility is measured 416

using the LAS score, corresponding to the 417

increase in performance when supplemented with 418

explanation during training. We list the prompt 419

templates in Appendix A.1. We also compute 420

an overall score to encompass all four qualities, 421

averaging across the four scores after normalizing 422

each score between 0 and 1. For paraphrase and 423

counterfactual, we take the complement score, 424

1− s, where s is the original unit. 425

6.1 Results 426

We show the full experimental results in Figure 5. 427

SEA-CoT surpasses all other baseline methods 428

based on the average normalized score, notably dis- 429

playing a significant difference in OBQA (> 75%) 430

over majority of the baselines. Although SC-CoT is 431

competitive, it still underperforms substantially as 432

compared to SEA-CoT. We observe that the under- 433

performance of SEA-CoT in the mistakes criteria 434

can be explained via the relationship between SR’s 435

weak task performance and high score in mistakes, 436

attributed to a higher likelihood of altering its out- 437

put. Whereas, SEA-CoT achieves the highest task 438

performance, albeit causing a trade-off in this re- 439

gard. Nonetheless, despite comparable levels of 440

task performance, SEA-CoT consistently surpasses 441

SC-CoT across other metrics, indicating that the 442

superior score achieved is still dependent on the 443

selected reasoning. 444

The key distinction between SC-CoT and SEA- 445

CoT is the latter’s self-critique step, which evalu- 446

ates how its explanations align with the context and 447

the intended answer. This approach significantly 448

boosts utility and reduces unfaithfulness in coun- 449

terfactual contexts. Higher utility scores support 450

the hypothesis that context-aligned stimuli enhance 451

the efficiency of learning signals, facilitating eas- 452

ier training for student models. Looking closer in 453

Figure 6, where the word "shunned" is mentioned 454

while other baselines used "would not wear", which 455

does not directly relate to the target question, caus- 456

ing the model to erroneously infer the wrong label. 457

While CoT successfully determines the correct an- 458

swer, it fails to acknowledge the mention of "Amish 459

cousins", thus exhibiting a tenuous connection to 460
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Figure 5: Interpretability results for the 5 prompting techniques across 3 commonsense reasoning benchmarks.
Three axes of interpretability were assessed. 1) Robustness measured via paraphrasing (Para). 2) Faithfulness is
measured with both counterfactual explanations (CF-UF) and mistake insertion. 3) Utility is represented using
simulatability (Simu) of explanation. Avg is the combined average score across the three axes. CF-UF measures
unfaithfulness instead of faithfulness. We take the complement of Para and CF-UF since a lower score is better.

Figure 6: StrategyQA example, the reasoning chain
produced by SEA-CoT reflects the important points
in the context, making it easier for a learner model to
simulate the answer from the given explanation.

the question.461

Unexpectedly, Self-Refine underperforms com-462

pared to other baselines, aligning with (Huang463

et al., 2023) who highlight the drawbacks of self-464

correction in reasoning tasks. The primary chal-465

lenge stems from the intricacy of designing few-466

shot examples that can effectively drive successive467

enhancements over prior outputs. Crucially, since468

the input prompt is already optimized to instruct469

the LLM for optimal performance in the given task,470

the potential for self-improvement remains lim-471

ited. SEA-CoT, however, not only prompts self-472

assessment but also offers targeted guidance to473

enhance reasoning consistency with the relevant 474

context. This simple extension greatly improves 475

the quality of the explanation, with no downside on 476

performance. 477

6.2 Ablation 478

Type P(↓) CF-UF (↓) M (↑) S (↑)

Random 6.1 6.44 62.17 11.87
Max 1.8 6.6 61.8 12.59

Overlap (O) 1.56 5.04 70.83 14.88
Entailment (E) 2.38 5.46 69.99 13.46

O&E (SEA-CoT) 1.2 3.81 61.24 16.97

Table 1: Ablation over various ways in selecting reason-
ing steps to serve as an explanation, implemented on
StrategyQA. (O&E) is the proposed SEA-CoT which
uses both components.

This ablation seeks to study the effectiveness of 479

various ways in choosing the most interpretable 480

reasoning chain. We break down SEA-CoT’s rank- 481

ing components and assess each of them, namely 482

the entailment and keyword overlapping score. We 483

additionally implement a baseline of SC-CoT that 484

randomly picks from the list of explanations cor- 485

responding to the majority answer. The results 486

from Table 1 demonstrate the efficacy of consider- 487

ing both components of SEA-CoT when ranking 488

reasoning explanations. Choosing the most proba- 489

ble reasoning step has shown to not perform well, 490

whereas our approach targeted at enhancing the 491

important traits of an explanation is simple and yet 492

does not hinder performance. We also conduct ad- 493
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ditional studies on different values of N sequences494

in Table 3.495

6.3 Model size496

Size P(↓) CF-UF (↓) M (↑) S (↑)

70B 1.2 3.81 61.24 16.97
13B 4.1 4.38 69.62 6.16
7B 3.79 7.81 70.62 15.97

Table 2: Interpretability scores between different model
sizes

The scaling laws of model size primarily con-497

cern the downstream performance of LLMs but498

little is known regarding the influence on inter-499

pretability properties. We replicate the experiments500

on the StrategyQA dataset with a focus on SEA-501

CoT prompting. We present the results in Table 2.502

The largest model, 70B generally outperforms the503

smaller sizes across all metrics while observing504

the same phenomenon in mistake insertion, pre-505

viously discussed in 6.1. The improvement over506

smaller sizes may also be attributed to the enhanced507

accuracy in generating entailment scores for the508

explanation, analogous to observing greater per-509

formance of larger models in NLI tasks. Llama-510

13B surprisingly performs worse than its smaller511

variant, despite having a bigger network. More512

importantly, we note that by using SEA-CoT, even513

a 7B-sized model can generate more interpretable514

reasoning chains than a 70B model with other base-515

line prompts.516

7 Related Works517

Natural Language Explanation (NLE): NLE518

can primarily be categorized as either abstractive519

(AE) or extractive (EE). The former is unrestricted520

by the context and as such produces more521

plausible explanations, while the latter is aimed522

at ensuring faithfulness. Notably, EE falls short523

in the realm of plausibility since humans do not524

understand spans of text without a full context525

in view (Gurrapu et al., 2023). (Majumder et al.,526

2021) utilizes a union of both forms, conditioning527

the generation of AE on the extracted spans of528

text while concurrently grounding the generation529

on relevant world knowledge. The resultant530

interpretation is then assumed to be faithful while531

plausible. Similar works include faithfulness532

through task decomposition (Sanyal et al., 2022),533

label-specific explanations (Kumar and Talukdar,534

2020). (Narang et al., 2020) demonstrate the 535

possibility of inducing plausible explanations 536

simply by pretending the word explain to the input 537

prompt, similar to how CoT works. 538

539

Interpretable CoT: Since its introduction, 540

CoT has garnered interest in the research com- 541

munity to innovate adaptation of it (Chu et al., 542

2023). Despite CoT being primarily introduced 543

to facilitate better reasoning skills out of LLMs, 544

there is much interest to see if these reasoning 545

steps could be used to explain the model’s thought 546

process. Most of such works primarily investigate 547

the faithfulness of the reasoning (Lanham et al., 548

2023; Radhakrishnan et al., 2023; Turpin et al., 549

2023) or improving the faithfulness in CoT outputs, 550

via refinement through knowledge retrieval (He 551

et al., 2022), symbolic reasoning (Lyu et al., 2023), 552

iterative information selection (Creswell and 553

Shanahan, 2022) and factuality calibration (Ye and 554

Durrett, 2022). 555

Concurrently, other works (Wang et al., 2023; 556

He et al., 2022) are focused on ascertaining the 557

faithfulness of an explanation to the presence of 558

factuality. While factuality is an important trait, it 559

is not a sufficient component to ascertain faithful- 560

ness. Non-factual explanations may still align faith- 561

fully with an incorrect answer. Our work strives 562

to conduct a holistic assessment of interpretability 563

across various forms of prompting techniques used 564

in LLMs, taking into account multiple important 565

properties that may be of importance to various 566

audiences. 567

8 Conclusion 568

This work studied multiple ways of assessing the 569

interpretability of an explanation. The focus of this 570

work is centered around the different variants of 571

CoT and how we can better determine the usabil- 572

ity of the reasoning by-product as an explanation 573

for the underlying prediction. We also propose a 574

modification to the SC-CoT framework called SEA- 575

CoT, designed specifically to yield explanations 576

that better fulfill the objectives of interpretability. 577

Our proposed framework surpasses the Robustness, 578

Faithfulness, and Utility dimensions across multi- 579

ple reasoning benchmarks. In the future, we plan to 580

extend our work towards instilling interpretability 581

and safety in the training stages (Yang et al., 2023), 582

such as safety alignment in LLM. 583

8



9 Limitations584

Our work only investigates a single LLM - Llama-2585

This work could be extended toward transformers586

of different structures such as encoder or encoder-587

decoder, or larger models, such as GPT3.5/4.0,588

which due to limiting resources are restricted to589

generate modifications instead. A secondary limi-590

tation is the quality of modifications to the original591

explanation, though we ask the modifier to check592

the outcome of the modified inputs (ie output re-593

mains the same when paraphrased), the correctness594

is nonetheless subjected to the ability of the mod-595

ifier. Lastly, this work left out other techniques596

such as grounding the LLM’s response via external597

knowledge, which we note is an interesting avenue598

to consider next.599
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A Appendix792

A.1 Perturbation details793

We use GPT3.5 to generate paraphrased versions794

of the reasoning explanation produced by prompt-795

ing the LLM, except QD. For QD, we select one796

subquestion-answer pair to apply the perturbations797

to, we paraphrase both chosen question-answer798

pairs and only add mistakes to the answer as the799

focus is on producing wrong answers and not in-800

comprehensible questions. To convert the ques-801

tion x to a counterfactual instance x′, we use802

GPT4 as GPT3.5 frequently produces nonsensical803

questions that the available answer options can-804

not answer. Furthermore, we subsequently deploy805

GPT3.5 again to identify the edited and original806

portions of x, namely the modification c. Thus, we807

end up with two sets of templates for both para-808

phrasing and addition of mistakes (one for QD, one809

for others) and one set of counterfactual genera-810

tion. We use 2-shot examples for adding mistakes,811

3-shot for counterfactual generation, and 0-shot for812

paraphrasing. All figures are from Figure 7 to 11813

A.2 Inference details814

As we do not use API for the bulk of the experi-815

ments except perturbation generation and ablation816

using GPT3-5. We mainly rely on local resources817

to conduct inference. We use 4 x A6000 GPU for818

all experiments, each GPU has 46GB of VRAM819

and this gives us a total of 184GB VRAM. A 70B820

model would require at least 140GB VRAM, leav-821

ing only 44 VRAM left for text generation. Given822

an average input size of 1000 (usually longer for823

prompts such as QD) and a single batch size of824

1, it would require an additional >60 GB VRAM825

(computed based on L = 80, H= 64, dim = 8192 for826

70B) which makes it infeasible to implement. Thus,827

we perform the experiments using a 4-bit quantized828

version instead, which is performed using GPTQ829

on the original Llama-2 70B model. GPTQ is suit-830

able for quantizing models consisting of billions831

of parameters. It has been validated on models up832

to 176B parameters and shown comparable perfor-833

mance with 16-bit models. The GPTQ-ed models834

are readily available on huggingface.835

We utilized text-generation-inference,836

an optimized platform for conducting fast in-837

ference on LLMs by Huggingface, to speed up838

the inference process. Overall, this allows us to839

process up to a batch size of 16 across the full840

hardware stack.841

A.3 Hyperparameters 842

Besides the prompting techniques that use best-of- 843

n preference to select the final output, we stick to 844

greedy decoding. This leaves SC-CoT and SEA- 845

CoT, where we set N to 10 and fix temperature 846

and k to 1.0 and 50 respectively while doing sam- 847

pling. This is only applied during the process of 848

generating explanations, where we revert to greedy 849

decoding during evaluation across all prompting 850

techniques. The number of sequences is set to 10 to 851

balance the computational resources such as RAM 852

and speed. N = 10 is also reported to be sufficient 853

in (Wang et al., 2022b). 854

A.4 Few-shot Prompts 855

We show the few-shot examples used for the OBQA 856

dataset, highlighting the differences in the instruc- 857

tion prompt between the various techniques re- 858

viewed. The few-shot examples are similar to (Wei 859

et al., 2022), and adjusted when necessary, depend- 860

ing on the specific prompting methodology. 861

For Self-Refine, there are three stages of 862

instruction-prompting, where the second (feed- 863

back) and third (refine) stages continue iteratively 864

until the LLM detects a stopping criterion which 865

ends the cycle, denoted as "Stop refining the an- 866

swer.". In the initial generation, the optimal ex- 867

amples are given, similar to CoT. In the feedback 868

stage, we list scoring criteria which is focused on 869

improving the interpretability of the reasoning ex- 870

planation, instead of focusing on the performance. 871

To simulate various qualities of output, we include 872

both positive and negative examples. The examples 873

in the refine stage are similar to the feedback but 874

are instead designed in a continuous conversion dis- 875

playing the full process of refining a bad example 876

into a good one. We limit the number of examples 877

in the refine stage to 3 as the context length is much 878

longer here. The few-shot example prompts are 879

displayed from Figure 12 to 15. 880

A.5 Entailment Generation 881

We designed a separate prompt to be used solely 882

by SEA-CoT, where the LLM is instructed to self- 883

critique the entailment between its reasoning chain 884

and the combined context of both the question and 885

the produced answer. We use samples from the 886

e-SNLI dataset (Camburu et al., 2018), we only 887

picked instances corresponding to either entailment 888

or contradiction and left out the neutral ones, as the 889

LLM is only instructed to infer if the explanation 890
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N P(↓) CF-UF (↓) M (↑) S (↑)

10 1.2 3.81 61.24 16.97
30 2.01 5.98 67.77 17.2
50 1.8 6.49 68.40 18.7

Table 3: Interpretability scores across different numbers
of sequences generated per sample.

entails or contradicts the target context.891

The probabilities for the entailment label “yes”892

are directly used while we take the complement893

if generated "no", with the assumption that other894

tokens in the vocabulary are negligible. The exam-895

ples are displayed in Figure 16.896

A.6 Number of sequences897

We carry out additional experiments on increasing898

N sequences, to see if increasing the number of899

options allows the ranking process to select more900

interpretable explanations. The results in Table 3,901

showed that increasing N has positive effects on the902

utility of the reasoning steps, while slight negative903

effects on the paraphrasing and counterfactual tests.904

The higher number of sequences may make it dif-905

ficult to optimize for each quality simultaneously,906

as one explanation may be more faithful but lacks907

usefulness in teaching a less technical model to fol-908

low its reasoning process. Nonetheless, this study909

is promising for context distillation, where we may910

be interested in using the generated response of911

a larger LLM to teach a smaller model, by using912

higher N values.913
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Figure 7: 0-shot paraphrase template. Input [Underline] Generated: [highlighted]

Figure 8: 2-shot inserting mistake template for all prompts except QD. Input [Underline] Generated: [highlighted].
Only show 1 example.

Figure 9: 2-shot inserting mistake template for QD. Input [Underline] Generated: [highlighted]. Only show 1
example.
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Figure 10: 3-shot counterfactual generation Input [Underline] Generated: [highlighted]. Only show 1 example.
First, identify the next possible answer before editing the question towards it.

Figure 11: 0-shot edit highlighting. Input [Underline] Generated: [highlighted]. Identify edits corresponding to the
original text.
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Figure 12: 7-shot prompt used for CoT, SC-CoT and SEA-CoT. There are newlines between answer choices and
each given choice, is opted out to save space.

Figure 13: 7-shot prompt used for QD. We show only 4 examples here, and there are newlines between each
sub-questions and answers, which we similarly leave out to save space.
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Figure 14: Prompt for Self-Refine, we show a single example for the initial generation, the rest is similar in CoT
examples. For the feedback, we include both good and bad examples, both displayed here. We use 7 examples for
both initial generation and feedback.

Figure 15: Refine stage in Self-Refine, we show a single example here, where each example demonstrates the entire
refining process from a bad to a good example.
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Figure 16: NLI examples for entailment generation for SEA-CoT, used across all datasets.
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