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ABSTRACT

The pretrained large language models (LLMs) are finetuned with labeled data for
better instruction following ability and alignment with human values. In this paper,
we study the learning dynamics of LLM finetuning on reasoning tasks and reveal
the uncovered over-memorization phenomenon during a specific stage of LLM
finetuning. At this stage, the LLMs have excessively memorized training data
and exhibit high test perplexity while maintaining good test accuracy. We explore
the conditions that contribute to over-memorization and discover that this issue is
prevalent across various tasks, models, and fine-tuning methods, with prolonged
training and large learning rates exacerbating the problem. Although models
with over-memorization demonstrate comparable test accuracy to normal models,
they suffer from reduced robustness, poor out-of-distribution generalization, and
decreased generation diversity. In light of our findings on over-memorization, we
offer recommendations for checkpoint selection and propose techniques such as
checkpoint merging and memorization-aware reweighting to mitigate this effect.

1 INTRODUCTION

Large language models (LLMs) demonstrate remarkable capabilities attributed to the expansion
of both training data and model parameters (Fedus et al., 2022; Achiam et al., 2023; AI@Meta,
2024; Team, 2024b; Brown et al., 2020). To adapt these models to domain-specific applications such
as mathematical reasoning (Yu et al., 2024) and code generation (Zheng et al., 2025), finetuning
on supervised data has become a standard practice. A wide range of finetuning methods have
been proposed (Hu et al., 2022; Meng et al., 2024; Wang et al., 2025) and systematically analyzed
(Biderman et al., 2024; Yang et al., 2024). Despite these advancements, checkpoint selection during
multi-epoch finetuning often relies on simple heuristics, such as choosing the final checkpoint (Li
et al., 2024; Tong et al., 2024) or selecting based on validation perplexity or accuracy (Huang et al.,
2024; Liu et al., 2022a).

In this work, we analyze the learning dynamics of LLM finetuning on reasoning tasks and argue
that such heuristic practices may be suboptimal. Specifically, we focus on the study of the over-
memorization phenomenon, where we define this as a state where the model has excessively
memorized training data, leading to high test perplexity while still counter-intuitively maintaining
good test accuracy. We further investigate (1) the conditions inducing the over-memorization
phenomenon and (2) its detrimental impacts. Experiments reveal key triggers: higher learning rates
accelerate over-memorization onset, while lower learning rates also induce this state given sufficient
training epochs, implicating prolonged training duration itself as a fundamental factor regardless
of the learning rate. The over-memorization phenomenon is broadly applicable in various tasks,
models, as well as finetuning methods like fully finetuning and LoRA-based methods. Although
achieving good performance on in-domain benchmarks, over-memorized LLMs tend to exhibit
reduced robustness and generalization. Additionally, their abilities to calibrate responses and generate
diverse outputs are compromised.

These findings suggest that placing too much emphasis on benchmark accuracy can be risky. It may
result in selecting models that rely on memorization rather than demonstrating strong generalization
capabilities essential for real-world applications. We propose that the characteristic rise in perplexity
during over-memorization reflects the model becoming ‘overconfident’ and ‘stubborn’—over-relying
on rigid, memorized pathways instead of flexibly exploring alternatives on new data. Recognizing
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#### 3   Sentence PPL: 3.20

Over-memorization Model: It takes 2/2=<<2/2=1>>1 bolt of white fiber

So the total amount of fabric is 2+1=<<2+1=3>>3 bolts of fabric 

#### 3   Sentence PPL: 17.86

Epoch 0

Figure 1: “Over-memorization” in LLM finetuning: a phenomenon where test accuracy remains
stable despite increasing test perplexity after extensive training epochs. The left plot (perplexity and
accuracy are measured on the GSM8K test set) uses background colors to indicate model states: black
(low accuracy), yellow (high accuracy, low perplexity), and purple (high accuracy, high perplexity).

these adverse effects and the phenomenon’s dynamics, we identify the problem of the conventional
checkpoint selection methods and propose our suggestions based on the observations in our over-
memorization experiments. Additionally, we explore two lightweight mitigation strategies, checkpoint
merging and memory-aware reweighting loss, which effectively alleviate over-memorization.

2 RELATED WORK

Deep neural networks often possess more learnable parameters than training samples, enabling
them to simply memorize the data rather than converge to generalizable solutions (Novak et al.,
2018). Understanding the phenomenon of memorization in models is therefore crucial for improving
generalization performance (Brown et al., 2021; Feldman, 2020; Feldman & Zhang, 2020a). Previous
studies have explored various definitions of memorization in deep neural networks (Carlini et al.,
2019; 2021a; Feldman & Zhang, 2020b; Zhang et al., 2023). One widely accepted definition is based
on differential privacy (Dwork et al., 2006), which formalizes the principle that the removal of any
single example from the training set should not substantially alter the resulting model. Based on
this definition, some works link stronger memorization during training to reduced generalization
ability (Bousquet & Elisseeff, 2000), whereas others emphasize its importance for handling long-tail
distributions (Feldman, 2020). In language models, memorization typically refers to generating
outputs that resemble specific training examples (Carlini et al., 2021b; Inan et al., 2021; Carlini et al.,
2023; Tirumala et al., 2022; Hans et al., 2024). However, some of these works primarily focus on
privacy and copyright concerns (Carlini et al., 2021b; Inan et al., 2021; Hans et al., 2024), while others
analyze the dynamics of memorization during the pretraining stage (Carlini et al., 2023; Tirumala et al.,
2022). The work most similar to ours is Kang et al. (2025), which also investigates memorization
during LLM finetuning and specifically analyzes how the finetuned model’s generalization behavior
is characterized by its pre-memorization training accuracy. In contrast, to the best of our knowledge,
we are the first to uncover the phenomenon of over-memorization and investigate its impact on the
model’s generalization behavior.

3 THE OVER-MEMORIZATION PHENOMENON

In classical machine learning, extensive training on limited data often leads to overfitting, where
the model performs well on the training set but generalizes poorly to unseen data (Shalev-Shwartz
& Ben-David, 2014; Salman & Liu, 2019; Rezaei & Sabokrou, 2023). Overfitted models exhibit
an increase in test perplexity and a decrease in test accuracy when the training error decreases or
converges (van den Burg & Williams, 2021).
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However, our preliminary experiments reveal different training dynamics. We finetune LLaMA-3.1-
8B using both LoRA (with learning rates of 2e-4 and 2e-5) and full finetuning (with a learning rate of
2e-6) on the MetaMathQA 10K dataset (Yu et al., 2024). Figure 1(left) presents evaluation results
on the GSM8K test set across different finetuning steps. In the early stages of training (e.g., from
epoch 0 to epoch 1), the model exhibits a rapid increase in test accuracy and a decrease in perplexity,
indicating improved generalization to unseen data. Contrary to the initial rapid gains, a distinct
pattern emerges between epochs 1 and 10 for LoRA (lr=2e-5) and full finetuning (lr=2e-6). While
test perplexity markedly rises during this period, interestingly, test accuracy resists a corresponding
decrease.

Inspired by the aforementioned preliminary experiment observation, we study the “over-
memorization” phenomenon, where the model has excessively memorized training data, while
still counter-intuitively maintaining good test accuracy. We focus on the analyses of the over-
memorization phenomenon on reasoning tasks like mathematical reasoning. In these tasks, LLMs
are finetuned to produce a solution that contains both steps and an answer. While each question is
associated with a unique correct answer, the reference output typically illustrates only one possible
way to arrive at it. The over-memorized LLMs are likely to generate a reasoning path from the
training data and assign high perplexity to other valid paths, while the well-finetuned LLM may
generate the correct answer but follow a different reasoning path. Figure 1(right) presents an example
that the over-memorized LLM assigns disproportionately low probabilities to alternative tokens or
sequences that may still be valid. We further study the over-memorization phenomenon on general
tasks in Section 4.4. A brief mechanistic explanation is provided in Appendix C.

By analyzing LLM responses on training and test queries, we can gain insights into the learning
dynamics of LLM finetuning with an emphasis on both the correctness of the final prediction and
the perplexity of the reference reasoning path. The accuracy measures whether the model produces
the correct final answer and directly reflects task performance, solely determined by the final answer.
Perplexity (i.e., ppl) is defined as ppl = exp(− 1

|yi| log(fθ(y
i | xi))), where xi is the query input,

yi is the response, |yi| is the number of tokens in yi. The perplexity on the training set can serve
as an indicator of the memorization of the training data. On the test set, perplexity quantifies how
probable the model deems this reference path; a higher perplexity indicates that the model assigns
lower likelihood to the tokens in the reference solution.

4 WHEN DOES THE MODEL OVER-MEMORIZE?

In this section, we investigate the factors that affect the over-memorization of LLMs, such as learning
rates, training time, and finetuning methods. We further extend our analyses to different models and
tasks, and provide scaling experiments on dataset size and model scale (Appendix E.1). Our findings
indicate that higher learning rates cause the model to enter over-memorization earlier, while lower
learning rates also lead to over-memorization after more lengthy training. Furthermore, although
different finetuning methods exhibit varying levels of adaptation to the learning rates, they all lead
to the model’s over-memorization. By default, we finetune LLaMA-3.1- 8B on the MetaMathQA
100K dataset and examine their performance on the MetaTrain, MetaTest, and GSM8K dataset (see
Appendix B.1 for dataset details) unless otherwise specified.

4.1 IMPACT OF LEARNING RATES

We finetune the LLM using the LoRA method across five different learning rates. As shown
in Figure 2a, the perplexity on MetaTrain keeps declining, and the model demonstrates varying
memorization levels across different learning rates. For instance, a small learning rate (e.g., 2e-6)
fails to memorize all data even after 10 epochs, achieving an accuracy below 70%. A learning rate of
2e-4 accelerates memorization compared to 5e-5, suggesting that larger learning rates tend to result
in faster learning and memorization of the training data.

The training dynamics of small learning rates (e.g., 2e-5, 2e-6) are similar on MetaTest and GSM8K
test as shown in Figure 2b and Figure 2c. In contrast, large learning rates (e.g., 2e-4, 5e-4) exhibit
markedly different training dynamics: the perplexity initially declines before subsequently increasing
during the training process. The growth is more significant in the GSM8K test set than in MetaTest,
as the gap in data distribution is larger between GSM8K and the training set. The perplexity curves
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Figure 2: Results of perplexity and accuracy of LLMs finetuned with different learning rates. The
results are reported on MetaTrain (training set), MetaTest (validation set), and GSM8K (test set).

indicate a significant divergence between the predicted and true reasoning trajectories, aligning
with our existing understanding of overfitting. Surprisingly, test accuracy remains stable despite
a significant increase in test perplexity. This behavior contradicts the common assumption that
rising perplexity invariably leads to degraded test accuracy, and we term this specific phenomenon
“over-memorization”.

From the results in Figure 2b and Figure 2c, we observe that larger learning rates are more likely
to induce over-memorization within the same training epochs. Although the reference reasoning
trajectories have low probabilities, the finetuned LLMs manage to derive the correct answers on the
test dataset. The results are hypothesized to be related to the fact that math reasoning tasks often have
multiple valid reasoning paths. The over-memorizing LLM still retains the possibility of exploring
alternative valid reasoning paths.

4.2 IMPACT OF TRAINING EPOCHS

Small learning rates like 2e-5 result in relatively low test perplexity even after training for 10
epochs, as shown in Figure 2c. To further investigate whether smaller learning rates also exhibit
over-memorization under lengthy training, we finetuned the LLM with a learning rate of 2e-5 for 20
epochs. As shown in Figure 1, the perplexity on the test set increased to 16, which is similar to 2e-4,
indicating a substantial divergence between model predictions and reference answers. However, the
test accuracy remained above 70%, demonstrating that even with a small learning rate, prolonged
training can result in over-memorization. These findings highlight that while smaller learning rates
may delay the onset of over-memorization, they are not immune to this phenomenon when models
are trained for an excessively long time. This reinforces the importance of carefully monitoring both
perplexity and accuracy during training to prevent over-memorization, regardless of the learning rate.

4.3 IMPACT OF FINETUNING METHODS

In this section, we study over-memorization under four parameter-efficient finetuning and one full
finetuning method (Hu et al., 2022; Meng et al., 2024; Wang et al., 2025). The specific experimental
configurations are detailed in Table 6.

The results are shown in Figure 3. Our experiments reveal that over-memorization occurs not
only in LoRA but also across various finetuning methods. Specifically, under different finetuning
methods, larger learning rates are more likely to lead to over-memorization. Fully finetuning is
observed to exhibit higher perplexity compared to LoRA-based methods. Notably, over-memorization
in full finetuning not only emerges in lengthy training. As shown in Figure 3(a)-(b), the test perplexity
in full finetuning already begins to increase around epoch 3, earlier than in other methods. This
suggests that full finetuning may be more prone to early over-memorization, which becomes more
prominent as training continues. We attribute this to the fact that fully finetuning updates a larger
number of parameters. To further validate this assumption, we design LoRA+, a variant of LoRA.
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Figure 3: Results of different finetuning methods at three different learning rates, assessing both test
perplexity and accuracy.
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Figure 4: Test perplexity and accuracy curves illustrating over-memorization in Gemma-2-9B and
Mistral-7B model.

The only difference is that the attention output linear projector and feed-forward gate weight are also
finetuned. Under the same settings, LoRA+ exhibits higher perplexity than LoRA, confirming that
increasing the number of finetuned parameters leads to higher perplexity. More comprehensive
results across a wider range of learning rates, including training, validation, and test performance, are
provided in Appendix E.

4.4 OVER-MEMORIZATION ON DIVERSE TASKS AND DIVERSE MODELS

Table 1: Over-memorization across diverse tasks.

Task Metrics Epoch 0 Epoch 2 Epoch 4 Epoch 6 Epoch 8 Epoch 10

GPQA
PPL 4.80 4.51 7.47 14.77 30.08 40.53
Accuracy (%) 5.41 21.62 22.30 25.00 22.97 25.00

HumanEval
PPL 1.66 1.82 2.13 2.58 3.26 4.08
Accuracy (%) 37.80 46.95 48.17 50.61 48.17 50.61

Diverse Task To examine the broader appli-
cability of the over-memorization phenomenon
beyond mathematical reasoning, we broaden
our study to include code generation, scientific
question answering, and open-ended text gen-
eration (Appendix E). Across all tasks, we fine-
tune LLaMA-3.1-8B using LoRA (details in Ap-
pendix Table 6). For code generation, models are trained on CodeFeedback 10K (Zheng et al., 2025)
and evaluated on HumanEval (Chen et al., 2021a). Scientific QA uses the GPQA benchmark (Rein
et al., 2024), with 300 training examples and the remainder for evaluation, leveraging gold reasoning
chains for perplexity computation.

As illustrated in Table 1, our findings consistently indicate the presence of over-memorization
across a diverse set of domains. A recurring pattern emerges: test perplexity increases rapidly during
finetuning, while task-specific evaluation metrics remain high. For instance, in HumanEval, finetuning
with a learning rate of 2e-4 led to a sharp rise in test perplexity, despite test accuracy remaining
stable, aside from minor fluctuations attributable to the small size of the evaluation set (164 samples).
Similar trends appear in GPQA, where perplexity steadily increases even as final answer accuracy
remains largely unaffected. These results provide compelling evidence that over-memorization is a
pervasive and task-agnostic phenomenon.
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Table 2: Accuracy of normal and over-memorized models on ID and OOD mathematical reasoning
benchmarks. The Avg. is the average result over OOD test sets.

Methods ID Test Set OOD Test Set
GSM8K MATH SVAMP ASDiv MAWPS TabMWP Minerva MMLU_STEM Avg.

Normal model 75.6 28.9 77.1 81.7 89.7 67.1 27.4 17.9 60.2
Over-memorized model 76.4 28.5 75.3 79.1 89.6 63.6 29.2 12.0 58.1

Diverse Model To further evaluate the generality of the over-memorization phenomenon across
different model architectures, we expand our analysis to Mistral-7B-v0.3(Jiang et al., 2023) and
Gemma-2-9B(Team, 2024a). Both models are finetuned on the MetaMath-10K dataset using LoRA.
As shown in Figure 4, both models exhibit clear signs of over-memorization, manifested as rising
test perplexity despite sustained or even improved test accuracy. These results are consistent with
our earlier observations and further reinforce the finding from Section 4.1: under the same model,
larger learning rates tend to induce a more rapid increase in test perplexity, thereby leading to
over-memorization more quickly.

5 BEHAVIORAL ANALYSES

Over-memorized models often achieve high test accuracy and seem effective. However, these models
typically exhibit higher perplexity on the test set, raising the question of whether they are truly
performing well. To address this, we evaluate the model from multiple perspectives, including
robustness, OOD performance, diversity, privacy risk, and calibration. To analyze this, we select the
LoRA checkpoints from epoch 3 and epoch 10 with a learning rate of 2e-4, representing the normal
model and the over-memorized model, respectively. Both models achieve similar performance on
the GSM8K test set (75.6 vs. 76.4 for the normal and over-memorized model, respectively), while
the test perplexity of the over-memorized model exceeds that of the normal model by 4.52 times.
Please refer to Appendix D.1 and Appendix D.2 for details of the evaluations on model calibration
and privacy risk.

5.1 PERFORMANCE ON OOD DATASET

In Section 4, we previously observed that the over-memorized model generalizes well on in-
distribution (ID) test sets. A natural question that arises is how it performs on out-of-distribution
(OOD) test sets. In this section, we explore this by comparing normal and over-memorized models on
the OOD mathematical benchmarks, including SVAMP (Patel et al., 2021), ASDiv (Miao et al., 2020),
MAWPS (Koncel-Kedziorski et al., 2016), TabMWP (Lu et al., 2023), Minerva_MATH (Lewkowycz
et al., 2022), and MMLU_STEM (Hendrycks et al., 2020). We also include results on ID test sets for
reference. In addition to GSM8K discussed in Section 3, we add results on MATH (Hendrycks et al.,
2021). Since MATH is one of the seed datasets used to synthesize MetaMathQA, it is also considered
an ID test set.

As shown in Table 2, the over-memorized model performs comparably to the normal model on
in-domain (ID) test sets, but falls behind by an average of 2.1 points on out-of-domain (OOD)
benchmarks. This suggests that over-memorization does not harm ID generalization, but undermines
robustness to distribution shifts. The effect becomes more pronounced as the gap between training
and test distributions increases, indicating that over-memorized models are particularly vulnerable
to OOD evaluation. In summary, over-memorized models suffer from generalization problems and
have poor performance on OOD data, like overfitting models. However, the generalization defects of
overfitting models are more pronounced, as they exhibit poor performance even on ID samples.

5.2 ROBUSTNESS AGAINST PROMPT PERTURBATION

We begin by comparing the normal and over-memorized models on their robustness against prompt
perturbation. Specifically, for each test sample, we combine the original training prompt (see
Appendix B.3) and the test input as the query. Then, we present the model with the original queries
and also with queries where short, neutral preambles are appended (Kang et al., 2025). These
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preambles are designed to be plausible introductory phrases that a model might itself generate,
without affecting the core problem or its answer. The specific preambles are:

• First: First, let’s tackle this step by step together.
• Today: Today, we’ll work through this problem together and find a clear solution.
• We: We understand the problem we’re tackling and will work together to solve it.
• Good: That’s a great question! We understand the problem we’re tackling and will work together to solve it.

Table 3: Accuracy of the normal and over-
memorized model with and without prompt pertur-
bation on the GSM8K dataset.

Models w.o Perturb First Today We Good Avg.

Normal 75.6 76.7 72.0 73.9 73.6 74.1
Over-memorized 76.4 74.7 70.3 72.0 72.5 72.4

We examine the model’s behavior under slight
variations in the input prompt. Given that these
neutral additions resemble typical openings in
valid reasoning, a robust model should still pro-
duce the correct solution. Conversely, if it fails,
the model likely only regurgitates the training re-
sponse. Table 3 shows the evaluation results on
the GSM8K test set. While the over-memorized
model performs better than the normal model
on unaltered prompts, its performance significantly degrades with perturbed prompts, averaging 1.7
points lower than the normal model. These findings suggest that over-memorization negatively
impacts the model’s robustness.

5.3 DIVERSITY OF GENERATIONS
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Figure 5: BoN and PassN accuracy of normal mod-
els and over-memorized models on the GSM8K.

Inference-time techniques that generate multiple
outputs (Welleck et al., 2024; Snell et al., 2025),
such as Best-of-N (BoN) sampling (Charniak
& Johnson, 2005; Stiennon et al., 2020), can
enhance LLM reasoning. The effectiveness of
these methods often correlates with output diver-
sity, as a wider exploration of the solution space
typically yields better results (Chow et al., 2025).
To this end, we compare these model types by
generating N outputs per query (Figure 5) and
evaluate them using two metrics: BoN accuracy,
where the optimal sample from N candidates is identified by the Skywork-o1-Open-PRM-Qwen-2.5-
7B process reward model (o1 Team, 2024), and Pass@N accuracy, which measures if at least one
correct answer is present among the N samples (Chen et al., 2021b).

The results in Figure 5, using a sampling temperature of 1.0, demonstrate that the conventionally
trained model consistently surpasses the over-memorized model in both BoN and Pass@N accuracy
for N ≥ 3. To ascertain whether this disparity might be an artifact of an inadequately low temperature
for the over-memorized model, its BoN performance was further assessed across temperatures from
1.0 to 2.0. This analysis confirmed that its performance persistently lagged behind the conventionally
trained model, especially for larger N . These findings suggest that over-memorized models tend
to generate less diverse outputs, thereby diminishing the performance gains achievable through
repeated sampling techniques for reasoning tasks. This trend is further corroborated by additional
lexical and semantic diversity metrics reported in Appendix D.3.

6 METHODS FOR MITIGATING OVER-MEMORIZATION

6.1 RECEIPT FOR CHECKPOINT SELECTION

When finetuning large models, previous work either finetunes the model for 1-4 epochs and selects
the last checkpoint as the final model (Meng et al., 2024; Wang et al., 2025), or alternatively, performs
model selection or early stopping based on the perplexity or accuracy on a validation set (Zhang et al.,
2024a; Huang et al., 2024; Lin et al., 2024). However, we find that due to the over-memorization
effect, solely relying on validation perplexity or accuracy can lead to suboptimal results.

To verify this, we finetune the model using LoRA (Hu et al., 2022) and PiSSA (Meng et al., 2024) with
a learning rate of 2e-4, employing MetaTest as the validation set, GSM8K, and MATH as the ID test
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sets, and the same OOD test sets as in Section 5.1. As shown in Table 4, we report the average perfor-
mance on both ID and OOD test sets using different model selection metrics. We observe that valida-
tion perplexity tends to select an earlier checkpoint, whereas validation accuracy tends to select a later
checkpoint. This trend is consistent across various finetuning methods and learning rate combinations.

Table 4: Model selection results with different se-
lection metrics. We finetune the model utilizing
LoRA and PiSSA with a learning rate of 2e-4 and
MetaTest as the validation set. ACC denotes ac-
curacy. Selection with ID and OOD accuracy is
reported for reference.

FT Method Selection Metric Position ID ACC OOD ACC

LoRA

ID ACC epoch 9 53.00 67.88
OOD ACC epoch 1 51.25 71.32

Valid PPL epoch 2 51.70 70.56
Valid ACC epoch 9 53.00 67.88

PiSSA

ID ACC epoch 10 51.40 65.52
OOD ACC epoch 1 48.55 68.04

Valid PPL epoch 2 48.45 65.46
Valid ACC epoch 10 51.40 65.52

In these cases, validation accuracy gradually in-
creases, while validation perplexity initially de-
creases and then increases as training progresses.
However, when using validation perplexity for
model selection, the final model’s ID perfor-
mance is suboptimal, with gaps of 1.30 and 2.95
compared to the best ID accuracy achieved for
LoRA and PiSSA, respectively. This also indi-
cates that early stopping based on an increase in
validation perplexity is not ideal, as continued
training can further enhance the model’s perfor-
mance on the ID test sets. In contrast, selecting
models based on validation accuracy results in
good ID performance. Nevertheless, these mod-
els tend to perform poorly on OOD data and
exhibit various issues discussed in Section 5,
such as robustness, calibration, diversity, and
privacy concerns.

To address the above issues, we offer the following suggestions: (1) When finetuning LLMs, it is
advisable to use a small number of epochs, typically between 1 and 4. This reduces the likelihood
of over-memorization, allowing the last checkpoint to be used as the final model. (2) For model
selection, it is recommended to use a combination of validation accuracy and perplexity, choosing
models with the highest validation accuracy within a certain range of validation perplexity.

6.2 MITIGATING OVER-MEMORIZATION VIA CHECKPOINT MERGING

Our first strategy mitigates over-memorization by merging checkpoints from different training stages.
Earlier checkpoints (e.g., epoch 3) tend to preserve higher output diversity and OOD performance,
whereas later checkpoints (e.g., epoch 10) achieve stronger ID accuracy but suffer from reduced
diversity and OOD accuracy, as discussed in Section 5. By merging them, we aim to combine these
complementary strengths, effectively ensembling the capabilities of different training stages (Dang
et al., 2025; Wortsman et al., 2022).

Concretely, we follow the training and evaluation setup in Section 5, where we finetune LLaMA-3.1-
8B with LoRA (learning rate 2× 10−4) on MetaMath-100K and subsequently evaluate the model’s
ID/OOD performance, as well as its generation diversity. Let θbase denote the pre-trained parameters,
θ3 the parameters after epoch 3, and θ10 those after epoch 10. We compute deltas ∆3 = θ3 − θbase
and ∆10 = θ10 − θbase, and define the merged model as:

θmerge = θbase +
1
2 (∆3 +∆10). (1)

As shown in Figure 6a and Table 5, checkpoint merging gets the best Pass@1 across all checkpoints
and also has a great Pass@10 accuracy. Additionally, SFT Merge achieves a great average OOD
accuracy, surpassing epoch 3 and epoch 10 by 1.2 and 3.3 points, respectively. These results indicate
that merging effectively alleviates over-memorization without requiring additional training.

6.3 MITIGATING OVER-MEMORIZATION VIA MEMORIZATION-AWARE REWEIGHTING

While merging provides a training-free solution, we further mitigate over-memorization by modifying
the finetuning objective itself. Standard SFT assigns equal weight to all tokens, regardless of their
learning difficulty. As a result, frequently memorized tokens dominate optimization, reinforcing rigid
memorization rather than improving generalization.

We introduce Memorization-Aware Reweighting (MAR), which downweights tokens that the model
already predicts with high confidence and upweights those with lower probabilities. Formally, for
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Figure 6: Evaluation of over-memorization mitigation methods. (a) Pass@N comparison across
methods. (b) Accuracy (left) and perplexity (right) during 10 training epochs.

Table 5: Accuracy of methods on in-domain (ID) and out-of-domain (OOD) benchmarks. Avg.
denotes the average over OOD test sets. Detailed descriptions of OOD benchmarks are in Section 5.1.

Methods ID Test Set OOD Test Set
GSM8K MATH SVAMP ASDiv MAWPS TabMWP Minerva MMLU_STEM Avg.

SFT Epoch 3 75.6 28.9 77.1 81.7 89.7 67.1 27.4 17.9 60.2
SFT Epoch 10 76.4 28.5 75.3 79.1 89.6 63.6 29.2 12.0 58.1
SFT Merge 78.5 31.4 77.8 81.5 90.4 68.9 31.6 17.9 61.4
MAR Epoch 3 76.7 29.2 74.4 81.2 90.1 68.9 29.2 17.1 60.2
MAR Epoch 10 76.4 29.6 74.5 80.8 90.2 68.7 29.6 21.4 60.9
MAR Merge 77.1 31.2 76.7 82.0 91.4 68.4 33.2 23.5 62.5

each token yt, we compute its predicted probability pθ(yt | x, y<t) and reweight its contribution by
1− pθ(yt | x, y<t):

LMAR =

T∑
t=1

(
1− pθ(yt | x, y<t)

)
· ℓ(yt), (2)

where ℓ(yt) is the standard cross-entropy loss. This adjustment encourages the model to focus on
tokens that remain uncertain, reducing excessive memorization of already-learned patterns.

Figure 6b and Table 5 summarize the results. Compared with SFT, MAR maintains comparable
performance across both ID and OOD benchmarks but achieves substantially lower perplexity
throughout training, with less than half of SFT’s perplexity at epoch 10. On OOD benchmarks,
MAR does not suffer from performance degradation due to additional training; in fact, its accuracy
at epoch 10 even surpasses that of MAR at epoch 3 and SFT at the same epoch. Furthermore,
unlike SFT, MAR’s Pass@N accuracy at epoch 10 exceeds that at epoch 3, further suggesting
that additional training does not lead to over-memorization in MAR. In addition, merging MAR
checkpoints from different training stages (Epoch 3 and Epoch 10) further improves performance,
yielding the highest Pass@10 accuracy and strongest OOD results among all evaluated methods.
These results demonstrate that our proposed methods can effectively mitigate over-memorization,
which achieves better ID accuracy compared to SFT, while preserving strong output diversity and
OOD performance (see MAR Epoch 10 and MAR Merge).

7 CONCLUSION

In this paper, we introduce and systematically analyze the phenomenon of over-memorization in
LLM finetuning, where test accuracy remains stable despite a rapid increase in test perplexity. We
study the factors such as learning rates, training epochs, and fine-tuning methods that influence over-
memorization. We analyze its impact on LLM model behavior, including negative effects on model
robustness, OOD performance, calibration, generation diversity, and privacy protection. Our scaling
analyses show that over-memorization is common regardless of the finetuning dataset scale or the LLM
model size. Our findings enhance practitioners’ understanding of LLM finetuning, providing insights
into checkpoint selection and introducing methods to mitigate over-memorization. Additionally,
our research highlights that overparameterized pretrained LLMs possess unique properties distinct
from traditional machine learning models. We encourage future research to further empirically and
theoretically investigate the training and generalization mechanisms of LLMs.
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ETHICS STATEMENT

Our study introduces the "over-memorization" phenomenon in LLM finetuning, which is particularly
relevant for ensuring the reliability and trustworthiness of finetuned LLMs. This work highlights
that accuracy alone is an insufficient measure of a model’s true capabilities. Future efforts should
therefore encourage more nuanced analysis and comprehensive evaluation of LLMs, fostering the
development of responsible, helpful, and trustworthy AI systems for diverse real-world applications.

REPRODUCIBILITY STATEMENT

This work primarily presents an analysis of the "over-memorization" phenomenon in LLM fine-tuning.
Full details of the training setup, including dataset configuration, hyperparameters for each fine-tuning
method, and prompt designs, can be found in Appendix B of the paper.
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LIMITATION

While our work introduces the over-memorization phenomenon in LLM finetuning, we acknowledge
that our work has a limitation in that our analysis predominantly focused on reasoning tasks. Although
supplementary AlpacaEval experiments were included, the exploration of this phenomenon in open-
ended generation tasks remains less comprehensive and warrants further study.

A LLM USAGE

In the preparation of this paper, we only used large language models (LLMs) as an assistive tool for
grammar correction and text polishing.

B EXPERIMENT SETUP

This section presents the detailed experimental configuration, including the finetuning parameters,
datasets used for training and evaluation, and the prompt format.

B.1 DATASET SETUP

Unless otherwise specified, this paper utilizes LLaMA-3.1-8B as the base language model, with the
first 100K samples from the MetaMathQA dataset serving as the training set. A subset of this data,
denoted as MetaTrain, is first sampled to monitor training dynamics such as perplexity and accuracy.
An additional set, MetaTest, is constructed from the remaining, unseen portion of MetaMathQA.
Both MetaTrain and MetaTest are set to have the same sample size as the GSM8K test set. Since
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MetaTest originates from the same distribution as the training data, it is inherently more similar to
the training set than GSM8K. Therefore, for clarity and ease of distinction, we designate MetaTest
as the validation set and GSM8K as the test set by default. MetaMathQA is derived from GSM8K
and MATH, making all three datasets share similar formats and reasoning styles. As a result, in
Section 5.1, we treat GSM8K and MATH as in-distribution (ID) test sets.

B.2 HYPERPARAMETER CONFIGURATION

Table 6: Hyperparameters for different finetuning methods.

Full Finetuning LoRA MiLoRA PiSSA LoRA+

Batch Size 128 128 128 128 128
Optimizer AdamW AdamW AdamW AdamW AdamW

LR Scheduler Linear Linear Linear Linear Linear
Warmup Step 100 100 100 100 100

Epoch 10 10 10 10 10
LoRA Dropout - 0.05 0.05 0.05 0.05

LoRA Rank - 64 64 64 64
LoRA Alpha - 128 64 64 128

Target - qproj,kproj,vproj,upproj,downproj Add oproj,gateproj

Table 6 summarizes the hyperparameter settings used for different finetuning strategies. All exper-
iments are conducted on NVIDIA A100-80G GPUs, using a batch size of 128 to ensure training
stability. These settings are inspired by the LLM-Adapter configuration in Hu et al. (2023), with some
adjustments to suit our setup. As a reference point, finetuning with LoRA on the MetaMath-10K
subset takes approximately 1.5 hours on two NVIDIA A100-80G GPUs.

B.3 PROMPT FORMAT

The prompt format used for both training and evaluation follows a standard instruction-following
template for the mathematics task. The prompt is shown below:

Training and Evaluation Prompt

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

### Instruction:
{instruction}

### Response:

C MECHANISTIC EXPLANATION OF OVER-MEMORIZATION

The paradoxical coexistence of high accuracy and high perplexity in over-memorized LLMs can be
explained by the cross-entropy (CE) loss used in supervised finetuning. Given input x and target
sequence y1:T ,

LCE(θ) = −
T∑

t=1

log pθ(yt | x, y<t), (3)

with gradient
∂LCE

∂zt(j)
= pt(j)− 1{j = yt}. (4)

Here, the annotated token yt is consistently reinforced, while all alternatives a ̸= yt are uniformly
suppressed. Because pt(a) ∝ ezt(a), repeated updates drive an exponential decay in their probabilities.
The dominant reasoning path is preserved, but alternative paths become increasingly implausible.
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Figure 7: Calibration of the normal model and the over-memorized model.

This mechanism explains why the set of high-perplexity tokens remains stable between a normally
finetuned model and an over-memorized model, yet their perplexity magnitudes escalate dramatically.
Accuracy remains unaffected because the dominant path is still valid, while perplexity rises due to
systematic discouragement of all other continuations.

D ADDITIONAL BEHAVIORAL ANALYSES OF OVER-MEMORIZED MODELS

The main paper (Section 5) discusses various behavioral aspects of over-memorized models. Due
to space constraints in the main text, the detailed evaluations of model calibration (Appendix D.1)
and membership inference attack performance (Appendix D.2) are presented in this section. These
analyses provide further insights into the characteristics of over-memorized models.

D.1 MODEL CALIBRATION

Calibration requires that the probabilities assigned by the model to its predictions (i.e., confidence)
match the actual correctness of those predictions (i.e., accuracy) (Wang et al., 2020). We use Expected
Calibration Error (ECE) to measure the calibration of the model, which is a commonly used metric for
evaluating calibration error. ECE measures the expected difference between confidence and accuracy
(Naeini et al., 2015). Specifically, ECE divides the predictions into M bins {B1, B2, . . . , BM} based
on their confidence and computes the weighted average of the accuracy-confidence difference for
each bin:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (5)

where N is the number of prediction samples and |Bm| is the number of samples in the m-th bin.

Figure 7 presents a comparative analysis of calibration between the normal model and the over-
memorized model. For this analysis, predictions are generated using a sampling configuration with a
temperature of 1.0 and top_p of 1.0; this setup is chosen to foster diverse yet plausible outputs. The
confidence of each prediction is determined by calculating the average token probability across the
entire generated sequence. As depicted in the figure, the color intensity within the bars indicates the
density of samples per confidence interval, with darker shades representing higher concentrations of
samples.

The normal model exhibits superior calibration, achieving an ECE of 0.145, which is lower than the
0.204 ECE of the over-memorized model. This difference suggests that the normal model provides
more reliable confidence estimates, thereby enabling users to better assess the likely correctness of its
predictions. In contrast, the over-memorized model displays a marked tendency to overestimate
its confidence. This is evidenced by the majority of its predictions registering confidence levels above
0.9. Such overconfidence makes it more challenging for users to accurately discern the reliability of
the model’s outputs.
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Table 7: Performance of normal models and over-memorized models under different membership
inference attack methods.

Loss Zlib Min-K% Min-K++%
AUROC TPR@5%FPR AUROC TPR@5%FPR AUROC TPR@5%FPR AUROC TPR@5%FPR

Normal Model 58.5 12.0 55.0 13.6 58.5 12.4 65.0 14.2
Over-memorized Model 72.2 22.4 65.5 21.2 72.2 22.8 75.5 26.4

Table 8: Measuring the impact of over-memorization on generation diversity. EAD and Sentence-
BERT are used as diversity metrics, where higher values indicate greater diversity.

Base Model Finetuning Methods Over-memorization EAD Sentence-BERT

Llama3.1-8B
LoRA Normal Model 47.71 9.08

Over-memorized Model 37.71 6.57

Full finetuning Normal Model 48.66 10.40
Over-memorized Model 35.52 6.40

Mistral-7B-v0.3
LoRA Normal Model 51.62 11.59

Over-memorized Model 34.61 6.32

Full finetuning Normal Model 54.20 15.50
Over-memorized Model 37.39 8.39

Gemma-2-9B
LoRA Normal Model 48.09 9.19

Over-memorized Model 31.04 4.51

Full finetuning Normal Model 48.62 10.46
Over-memorized Model 30.77 5.27

D.2 MEMBERSHIP INFERENCE ATTACK PERFORMANCE

Membership Inference Attacks (MIA), which aim to determine whether a given data instance has
been used for model finetuning, can uncover underlying privacy concerns associated with the model.
Previous work (Yu et al., 2022; Fu et al., 2024) has identified finetuning as the stage most susceptible
to privacy leaks, due to the relatively small and often private datasets used in this process. Therefore,
this section compares the MIA attack performance of two finetuned LLMs, namely normal and
over-memorized models, to understand their susceptibility to privacy leaks.

Specifically, we construct a test dataset with two sets of records: a member set, which contains 500
samples from the training set, and a nonmember set, which includes 500 unseen samples from the
held-out MetaMathQA dataset. Given a finetuned LLM, MIA predicts whether each test sample
belongs to the member or nonmember set. Since MIA is essentially a binary classification task,
we follow previous work (Zhang et al., 2024b) and report the AUROC and TPR@5%FPR as the
attack metrics, where higher scores indicate more severe privacy leakage. As presented in Table
7, we compare normal and over-memorized models using four widely used MIA methods: Loss
(Yeom et al., 2018), Zlib (Carlini et al., 2021b), Min-k% (Shi et al., 2023), and Min-k%++ (Zhang
et al., 2024b). As can be seen, the AUROC of the normal model across all MIA methods remains
in the range of 55%-65%, suggesting a moderate risk of privacy leakage. In contrast, the over-
memorized model exhibits a notable increase in AUROC, ranging from 70%-75%. This trend is
further supported by the TPR@5%FPR metric. Consequently, over-memorized models demonstrate
greater susceptibility to membership inference attacks, underscoring the heightened privacy risks
associated with excessive memorization.

D.3 MORE DIVERSITY METRIC

Although the BoN and Pass@N results reported in the Section 5.3 provide some insight into the
diversity of generated outputs, we further supplement this analysis with additional diversity metrics
in this section: EAD (Expectation-Adjusted Distinct N-grams) and Sentence-BERT diversity. EAD
measures lexical diversity by counting distinct 1- to 5-grams, and includes an adjustment mechanism
to mitigate bias from shorter outputs (Li et al., 2016; Liu et al., 2022b). Sentence-BERT diversity
measures semantic diversity, calculated as 1 − average cosine similarity between Sentence-BERT
embeddings of generated responses (Kirk et al., 2024).
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Figure 8: Evaluating the Qwen2.5 model of different sizes when finetuned with four different learning
rates, assessing both test perplexity and accuracy.
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Figure 9: Evaluating LLM finetuned with varying size of the dataset, assessing both test perplexity
and accuracy.

In addition to LLaMA3.1-8B, we also include results for Gemma-2-9B and Mistral-7B-v0.3, under
both LoRA and full finetuning settings. As shown in Table 8, over-memorized models consistently
demonstrate substantially lower diversity compared to their normally finetuned models. These
findings confirm that over-memorization reduces the diversity of model generations, thereby limiting
their effectiveness in sampling-based inference-time strategies.

E SUPPLEMENTARY EXPERIMENTAL RESULTS

E.1 SCALING ANALYSIS

In the previous section, we demonstrated that over-memorization occurs broadly across tasks and ar-
chitectures. Here, we deepen our analysis by investigating how two key scaling dimensions—training
dataset size and model size—affect the over-memorization phenomenon.

Effect of Model Size We further investigate the effect of model scale on the over-memorization
phenomenon using Qwen2.5 models (Team, 2024b) of varying sizes (0.5B, 1.5B, and 3B), with all
finetuning performed via LoRA, consistent with our main experimental setup. Figure 8 reveals several
key trends: (1) Larger models generally yield better test performance. (2) Over-memorization is more
pronounced in larger models, as indicated by substantially higher test perplexity in the overtraining
regime (Figures 8(c)–(d)). (3) Larger models exhibit stronger initial generalization, achieving lower
test perplexity early in training. However, their greater capacity for memorization (Tirumala et al.,
2022) leads to a faster increase in test perplexity over time, making them more susceptible to over-
memorization (Figures 8(c)–(d)). (4) Larger models favor smaller optimal learning rates, as shown in
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Figure 15 (Appendix E). This may be due to the aggregate effect of conservative updates across a
large number of parameters, enabling effective optimization even with small per-parameter steps.

Effect of Data Size To assess the effect of data size, we finetuned Llama-3.1-8B on subsets of the
MetaMath dataset of varying sizes: 5K, 30K, and 100K samples. For each dataset size, we explored
multiple learning rates to identify optimal configurations and observe performance trends.

The results in Figure 9 reveal several key insights: (1) The over-memorization pattern—characterized
by rising test perplexity despite stable accuracy—persists across all dataset sizes. (2) In line with
prior work (Zhang et al., 2024a), larger datasets generally yield better test performance. (3) Most
notably, we observe a systematic interaction between dataset size and optimal learning rate: larger
datasets favor smaller learning rates. For instance, the optimal learning rate shifts from 2e-4 on the
5K subset to 2e-5 on the 100K subset, with the 30K subset performing well under both. This behavior
likely stems from the increased number of optimization steps induced by larger datasets under fixed
training epochs and batch size, making smaller learning rates sufficient to traverse the solution space.

E.2 ADDITIONAL OPEN-ENDED TASK

Table 9: PPL and LCWR across different epochs

Metrics Epoch 0 Epoch 1 Epoch 2 Epoch 3 Epoch 6 Epoch 8 Epoch 10

PPL 4.67 2.90 2.95 3.23 6.67 12.65 21.88
LCWR 0.21 5.93 7.60 10.27 11.61 10.08 10.77

We investigate whether similar dynamics appear
in open-ended generation tasks, where evalua-
tion typically considers the entire generated out-
put rather than a single final answer. We conduct
experiments using AlpacaEval 2.0 (Dubois et al.,
2024), finetuning with LoRA on 10K samples
from the AlpacaCleaned dataset (Taori et al., 2023), with evaluations performed by GPT-4o-2024-08-
06 (OpenAI et al., 2024). As shown in Table 9, we find that the task performance (length-controlled
win rate, LCWR) continues to improve for a period even after the model’s test perplexity surpasses
its minimum and potentially increases. This sustained or improving task performance, despite non-
optimal and potentially rising perplexity, aligns with the core characteristics of over-memorization,
suggesting its relevance extends to generation-centric evaluations.

E.3 ADDITIONAL EXPERIMENTS FOR DIFFERENT FINETUNING METHODS

This section provides more detailed experimental results than could be included in the main paper
due to space constraints, expanding on the findings for both finetuning methods and model size
scaling. For the various finetuning methods (PiSSA (Meng et al., 2024), LoRA+ (Hu et al., 2022),
MiLoRA (Wang et al., 2025), and Full finetuning) discussed in Section 4.3, the main paper presented
selected test set results (perplexity and accuracy) under various learning rates. This appendix offers a
more comprehensive evaluation by presenting perplexity and accuracy data across a broader range
of learning rates and by including results from the training and validation sets in addition to the test
set. The results for the PiSSA method are shown in Figure 10, for the LoRA+ method in Figure 11,
for the MiLoRA method in Figure 13, and for the Full finetuning method in Figure 14. Detailed
descriptions of these methods and the observed over-memorization phenomena remain in Section 4.3.

Regarding the model size scaling experiments with Qwen2.5 models, introduced in Section E.1, the
main paper included test set perplexity and accuracy for four learning rates, with figures typically
visualizing results for one learning rate across different model sizes. To facilitate a clearer analysis of
how each individual model’s performance varies across these different learning rates, this appendix
presents the test set results in an alternative format in Figure 15. In these figures, each subfigure
is dedicated to a single model size (e.g., Qwen2.5-0.5B) and displays its performance across the
aforementioned learning rates.

E.4 ADDITIONAL EXPERIMENTS FOR CODE GENERATION

To complement the results presented in Section 4.4, which analyzed over-memorization on code
generation tasks using LoRA (2e-4), we additionally finetune the LLaMA-3.1-8B model using more
learning rate on the CodeFeedback 10K dataset and evaluate performance on HumanEval, as shown
in Figure 12.
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Figure 10: Evaluating LLMs finetuned by PiSSA with different learning rates, assessing train,
validation, and test perplexity and accuracy.
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Figure 11: Evaluating LLMs finetuned by LoRA+ with different learning rates, assessing train,
validation, and test perplexity and accuracy.
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Figure 12: Test perplexity and accuracy curves illustrating over-memorization in HumanEval.
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Figure 13: Evaluating LLMs finetuned by MiLoRA with different learning rates, assessing train,
validation, and test perplexity and accuracy.
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Figure 14: Evaluating LLMs fully finetuned with different learning rates, assessing train, validation,
and test perplexity and accuracy.
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(a) Qwen2.5-0.5B
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Figure 15: Evaluation of perplexity and accuracy on the test sets at different sizes of Qwen2.5 model.
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