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Abstract

We study bandit learning in matching markets
with two-sided reward uncertainty, extending
prior research primarily focused on single-sided
uncertainty. Leveraging the concept of ‘super-
stability’ from Irving (1994), we demonstrate the
advantage of the Extended Gale-Shapley (GS)
algorithm over the standard GS algorithm in
achieving true stable matchings under incom-
plete information. By employing the Extended
GS algorithm, our centralized algorithm attains
a logarithmic pessimal stable regret dependent
on an instance-dependent admissible gap param-
eter. This algorithm is further adapted to a de-
centralized setting with a constant regret increase.
Finally, we establish a novel centralized instance-
dependent lower bound for binary stable regret,
elucidating the roles of the admissible gap and
super-stable matching in characterizing the com-
plexity of stable matching with bandit feedback.

1. Introduction
The problem of finding a stable matching in a two-sided
matching market has gained considerable attention in the
past few years (Das & Kamenica, 2005; Liu et al., 2020;
Sankararaman et al., 2021; Basu et al., 2021; Liu et al.,
2021; Jagadeesan et al., 2021; Hosseini et al., 2024; Ghosh
et al., 2024). A major motivation is the two-sided matching
market provides a model to study multiple real world sys-
tems - such as crowd-sourcing markets like UpWork or Task
Rabbit (Li et al., 2019; Zhang et al., 2023), ride-sharing
systems (Johari et al., 2021) as well as classical markets like
matching students in college programs (Gale & Shapley,
1962), matching organ donors with recipients (Reddy et al.,
2013). In a two-sided market there are two types of agents,
demand side (users) and supply side (arms). Each agent
has an implicit preference order for the other side agents.
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However, this preference order is unknown a-priori, and
must be elicited from noisy feedback by matching with the
other side through repeated interactions. A stable matching
is a matching among the users and arms, where there is no
blocking pair of user i and arm j such that i and j prefer
each other compared to their current partner. The objective
of the system is to converge to one of multiple possible
stable matching with low regret.

Unlike most prior works, except a select few (Pagare &
Ghosh, 2024; Zhang & Fang), which are limited to user side
uncertainty we consider two-sided uncertainty, where all
users and arms need to learn their respective preferences.
Our work also considers general matching markets. In an-
other direction, the existing literature has been limited to
combining bandit learning methods with the standard Gale-
Shapley algorithm. One major shortcoming of this approach
is the need to learn the top N ranks for a general matching
market with N users and K arms where N ≤ K. This does
not capture the intrinsic complexity of the underlying stable
matching problem. We move beyond the standard Gale-
Shapley algorithm, and harness a seminal work of Irving
(1994) to construct an algorithm with regret that grows with
the intrinsic complexity of the problem.

In order to understand the weakness of Gale-Shapley algo-
rithm let us first review the task at hand. Given the history, at
each round users and arms can construct their respective par-
tially recovered rankings, and require to find a stable match
using these partial rankings. However, using Gale-Shapley
algorithm over a partially recovered ranking, breaking ties
in a uncertain manner, the system arrives at a weakly stable
matching. This is a concept of stability defined in Irving
(1994) for partial rankings, where a matching is weakly sta-
ble if there is no blocking pair of user i and arm j such that
i and j strictly prefers each other compared to their current
partner. The problem with weakly stable matching is as
ties in preferences are resolved a weakly stable matching
can turn out to have blocking pairs. Therefore, it is not
stable under the true full-rankings. The only way to ensure
exploration is complete is by resolving the top N ranks for
all the agents and ensure that a weakly stable matching is
indeed stable under the true full-rankings.

Interestingly, in Irving (1994) we can also find a way to
circumvent this issue leveraging the concept of super stable
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matching. A matching is super stable under partial rankings
of the agents if there is no blocking pair of user i and arm
j such that i and j strictly prefers or is indifferent to each
other compared to their current partner. If at any stage a
super stable matching is found it is ensured that this is a
stable matching under the true complete full-rankings. The
Extended Gale-Shapley algorithm in Irving (1994) ensures
whenever a super stable matching exists we can recover one,
otherwise determine none exists. This provides us with a
way to adaptively exploit when a super stable matching is
present under the recovered partial rank, or explore more
when it is absent.

We first show how Extended Gale-Shapley algorithm can be
used with an UCB-LCB based rank recovery in a centralized
setting, and prove that we can achieve a logarithmic pes-
simal stable regret that depends on an instance-dependent
admissible gap parameter. Notably, our method does not
require resolving top N ranks for all agents and adapt to the
problem hardness. Next, using a 2-bit shared feedback we
show how this centralized algorithm can be modified to a de-
centralized algorithm at the cost of constant regret increase.
Finally, we present a new instance-dependent pessimal sta-
ble regret lower bound for general instances in a centralized
setting. Our lower bound depends on the admissible gap,
and shows that admissible gap is indeed an intrinsic hard-
ness parameter for bandits in matching markets. It also
highlights how the super-stable matching plays a pivotal
role in the informational bottlenecks for this problem.

Our main contributions are as follows:

A new algorithmic pathway: Gale-Shapley-based bandit
algorithms suffer from a key limitation: under partial prefer-
ence information, they can only guarantee convergence to
a weakly stable matching, which may not be a true stable
matching. However, as shown by Irving (1994), given a
partial ranking, it is possible to find a super-stable matching
if one exists or to determine that none exists. Crucially, if a
super-stable matching exists for a partial rank that is compat-
ible with the true full rank, then that super-stable matching
is guaranteed to be a true stable matching. Since a UCB-
LCB-based partial rank is compatible with the true full rank
with high probability, the resulting super-stable matching (if
found) incurs no pessimal stable regret. This insight opens
a novel algorithmic pathway for addressing bandit problems
in two-sided matching markets with uncertainty.

Algorithms for two sided uncertainty: Building on this
insight, we first develop a centralized algorithm that con-
structs a UCB-LCB-based partial rank and attempts to re-
cover a super-stable matching using the Extended-GS al-
gorithm (Irving, 1994). If no such super-stable matching
exists, the algorithm defaults to round-robin exploration.
Exploiting the structure of the super-stable matching set due

to Spieker (1995), we define the set of admissible partial
ranks—partial ranks that are compatible with the true full
rank, and whose compatible full ranks all share at least one
stable matching with the true full rank. If the UCB-LCB-
based partial rank falls within this admissible set, a true
stable matching is guaranteed. Let ∆A represent the maxi-
mum of the minimum gaps, where the minimum gap for a
given partial rank is the smallest difference between any two
unequally ranked arms for any user (and vice versa). We
demonstrate that each user and arm incurs an expected cu-
mulative pessimal stable regret of O(K log(T )/∆2

A) over
T rounds. This improves upon existing results that achieve
O(K log(T )/∆2

min), as ∆A ≥ ∆min. Our experiments
confirm the superior performance of our proposed algorithm
compared to existing Gale-Shapley-based approaches. We
then demonstrate how, using only two shared boolean flags,
users and arms can emulate the centralized algorithm in a
decentralized setting, incurring only an additional O(N2)
cumulative regret, independent of the time window. We
also discuss the communication trade-offs involved. This
adaptation from centralized to decentralized settings may
have broader applicability in two-sided matching markets.

Instance-dependent regret lower bound: We establish
the first instance-dependent regret lower bound for stable
matching in the centralized (and consequently decentralized)
setting under two-sided uncertainty. This bound focuses on
binary stable regret, quantifying the number of times a sta-
ble matching is not achieved. Building upon the framework
of Combes et al. (2017) we formulate this lower bound
as an optimization problem over possible matching mar-
ket instances, introducing a novel constraint set. Crucially,
instances sharing a stable matching with the true instance
do not contribute to the lower bound. We derive explicit
lower bounds for specific market structures, including gen-
eral serial dictatorships and markets with redundant arms,
demonstrating a scaling of Ω(Keff log(T )/∆

2
eff ), where

Keff , ∆eff are instance-dependent parameters. Through
a dual formulation, we reveal a fundamental connection
between our lower bound and specific set covers of the
boundary of the admissible partial rank set. While a tight
regret bound remains open, we anticipate that the structure
of admissible partial rank set will be pivotal in achieving it.

2. Problem Formulation
We consider the matching markets with two-sided uncer-
tainty. There are N users and K arms. We are interested in
a setting where the number of users is less or equal to the
number of arms N ≤ K.

Each user i ∈ [N ] has a valuation for an arm j ∈ [K]
denoted by µi,j . Similarly, each arm j ∈ [K] has a valuation
for a user i ∈ [N ] denoted by γj,i. These valuations are a
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priori unknown to the users and arms, and can be learned
only by matching with the other side. We denote by Fu,i as
the preference full-rank of user i ∈ [N ] over the arms [K],
and Fa,j as the preference full-rank of arm j ∈ [K] over the
users [N ]. We denote the set of full-ranks by (Fu, Fa) =
({Fu,i : i ∈ [N ]}, {Fa,j : j ∈ [K]}).

The system evolves in rounds, while in each round a user can
match with at most one arm, and vice versa. When an arm is
matched with multiple users in a round, there is a collision,
and all the users involved in the collision receive zero reward,
and a collision signal. Let us call the match for user i ∈ [N ]
in round t as mi(t) ∈ [K] ∪ {∅}, and the match for an arm
j ∈ [K] in round t as m−1

j (t) ∈ [N ]∪{∅}. Here, mi(t) = ∅
implies the user i is unmatched, and m−1

j (t) = ∅ implies
arm j remains unmatched. For each pair (i, j) ∈ m(t) for
i ∈ [N ] and j ∈ [K] the user i and arm j receives noisy
rewards Yi(t) and Ỹj(t), respectively. The rewards are given
as

Yi(t) = µi,mi(t) + ηi,mi(t)(t) if mi(t) ̸= ∅, else 0,

Ỹj(t) = γj,m−1
j (t) + η′

j,m−1
j (t)

(t) if m−1
j (t) ̸= ∅, else 0,

where ηi,j(t) and η′j,i(t) are independent 1-subgaussian
noise for i ∈ [N ] and j ∈ [K].

We consider two versions of the system that differs in how
the matching is formed in each round.

Centralized: In this setting, in each round the arms and
users reveal their learned preferences to a central platform.
The central platform arrives to a matching in that round.

Decentralized: In this setting, in each round the users can
propose to the arms (possibly multiple). Each arm can ac-
cept and match with at most one user, while rejecting all the
unmatched proposing users. Additionally, users have access
to 2 shared flags (binary semaphores)1. After receiving the
signals from the arms, the users modify the shared bits and
finally use the updated shared bits to match with arms.

In each round, the objective of all the users and the arms are
trying to construct a stable match defined as below.
Definition 2.1 (Stable Match). A matching M is called
stable under a full rank (Fu, Fa) if there is no pair user
i ∈ [N ], and arm j ∈ [K] such that simultaneously user i
prefers to arm j over her match Mi, and arm j prefers user
i over its match M−1

j . The set of all super-stable matching
of the partial rank (Fu, Fa) is denoted as Stable(Fu, Fa).

In general, there are multiple stable matching given a full
rank (Fu, Fa) which we denote by Stable(Fu, Fa). There

1Shared information is used in the literature to avoid technical
difficulties pertaining communication design, e.g. (user, arm)
broadcast in (Liu et al., 2021; Kong & Li, 2023; Pagare & Ghosh,
2024). It is possible to make the algorithm fully decentralized with
an additional O(log(T )) regret in T rounds.

exists a user-pessimal matching M(u) ∈ Stable(Fu, Fa)
such that for each user i ∈ [N ] the reward µi,pess =
µi,Mi(u) is the lowest among all possible partner in a stable
matching. Similarly, we define the stable arm-pessimal
match M(a) and the arm-pessimal reward γj,pess =
γj,M−1

j (a) for each arm j ∈ [K]. We define the expected
pessimal stable regret for the users i ∈ [N ] and the arms
j ∈ [K] in T rounds as

E[Ru,i(T )] = Tµi,pess −
T∑

t=1

∑
j∈[K]

µi,jP(mi(t) = j),

E[Ra,j(T )] = Tγj,pess −
T∑

t=1

∑
i∈[N ]

γj,iP(m−1
j (t) = i).

We also consider the binary stable regret where regret of
failure to find a stable match is counted as 1, and otherwise
0 each round, i.e.

E[R0/1(T )] =

T∑
t=1

P(m(t) /∈ Stable(Fu, Fa)).

2.1. Partial Rank and Super Stable Matching

In this section, we present the structure of the super-stable
matching due to Spieker (1995). In order to state the results
we first define partial rank and super-stable matching.

Definition 2.2 (Partial Rank). A partial rank (Pu, Pa) over
N users and K arms is defined as a set of directed ayclic
graphs (DAG) Pu,i for each i ∈ [N ] and Pa,j for each
j ∈ [K]. Each DAG Pu,i is defined by a set of directed
edges (j, j′) ⊂ [K] × [K], and satisfies j >Pu,i j′ if and
only if there exists a directed path from j to j′. Each DAG
Pa,j is defined analogously. Let us define the set of all
partial ranks for N users, and K arms as P(N,K).

Definition 2.3 (Compatible Full Rank). A partial rank
(P ′

u, P
′
a) is compatible with a partial rank (Pu, Pa) if for any

pair of users i, i′ ∈ [N ], and any pair of arms j, j′ ∈ [K],
j >

P ′
u,i

j′ =⇒ j′ ̸>
Pu,i

j, and i >
P ′

a,j

i′ =⇒ i′ ̸>
Pa,j

i.

The set of all full ranks compatible with a partial rank
(Pu, Pa) is denoted as FullRank(Pu, Pa).

If a full rank (Fu, Fa) is compatible with a partial rank
(Pu, Pa), then there exists a way of breaking ties (by adding
more directed edges) in the partial rank (Pu, Pa) to reach
(Fu, Fa). The reversal of the process takes us from a full
rank to a compatible partial rank.

We now define the notion of super-stability for a partial rank,
and follow it up with a proposition due to Spieker (1995)
that shows how it relates to the compatible full ranks.

Definition 2.4 (Super-Stable Match). A matching M is
called super-stable under a partial rank (Pu, Pa) if there is
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no pair user i ∈ [N ], and arm j ∈ [K] such that simultane-
ously user i prefers or is indifferent to arm j over her match
M(i), and arm j prefers or is indifferent to user i over its
match M−1(j). The set of all super-stable matching of the
partial rank (Pu, Pa) is denoted as SuperStable(Pu, Pa).

Proposition 2.5. [Adapted from Spieker (1995)] For a par-
tial ranking (Pu, Pa), the set of super-stable matching is the
(possibly empty) intersection of all the stable matching of
full ranks (Fu, Fa) compatible with (Pu, Pa),

SuperStable(Pu, Pa)

= ∩
(Fu,Fa)∈FullRank(Pu,Pa)

Stable(Fu, Fa).

From the above proposition, given a full rank we define a set
of partial match, namely admissible partial rank, for which
a super-stable match is always stable under the specific full
rank.

Definition 2.6 (Admissible Partial Rank). For a given full
rank (Fu, Fa), we define a partial rank (Pu, Pa) to be ad-
missible if and only if (Fu, Fa) ∈ FullRank(Pu, Pa) and
SuperStable(Pu, Pa) ̸= ∅. We define the set of admissible
partial rank instances as A(Fu, Fa).

It follows from Proposition 2.5 that for any partial ranking
in the set A(Fu, Fa) a super-stable match is a stable match
for the true Stable matching instance (Fu, Fa).

Corollary 2.7. For a full rank (Fu, Fa), for any admis-
sible partial rank (Pu, Pa) ∈ A(Fu, Fa) and each super-
stable matching M ∈ SuperStable(Pu, Pa) we have M ∈
Stable(Fu, Fa).

3. Centralized Two-Sided Matching Bandit
In this section, we present a centralized algorithm that re-
covers a stable match with uncertainty of the rewards on
both sides of the market. Each agent and arm maintain their
own partial rankings based on UCB-LCB (similar to Kong
& Li (2023)). Similarly to Liu et al. (2020) in each round,
users share their UCB-LCB-based partial rankings with the
centralized platform. The centralized platform then uses
the partial ranking and finds a super-stable match if it ex-
ists using the Extended-Gale Shapley algorithm in Irving
(1994) (given as Algorithm 2). If such a match does not
exist, then using a round-robin schedule, the centralized
platform explores.

We update the UCB, LCB, and partial rank estimates as
follows for all i ∈ [N ] and all j ∈ [K]:

µ-ucbi,j(t) = µ̂i,j(t) +
√
6 log(t)/ni,j(t),

µ-lcbi,j(t) = µ̂i,j(t)−
√
6 log(t)/ni,j(t) (1)

γ-ucbj,i(t) = γ̂j,i(t) +
√
6 log(t)/ni,j(t),

Algorithm 1: Centralized Two-Sided Matching Bandit

1 Exploration Index: τex ← 0
2 Initial Ranking: Pu,i(1)← [[K]] for all i ∈ [N ],

Pa,i(1)← [[N ]] for all i ∈ [K]
3 for t ≥ 1 do
4 The centralized platform receives the partial ranks:
5 users, Pu(t) = {Pu,i(t) : i ∈ [N ]} and
6 arms Pa(t) = {Pa,j(t) : j ∈ [K]}.
7 Obtain Mstable ← EXTENDED-GS(Pu(t),Pa(t))
8 if Mstable = ∅ then
9 Play: M(t)← {mi(t) = (i+ τex) mod K}

10 Increase exploration index: τex ← τex + 1

11 else
12 Trim and play matching:

M(t)← {(i, argmaxj∈mi
µ-ucbi,j(t)) :

(i,mi) ∈Mstable}
13 for each pair (i, j) ∈M(t) do
14 User i receives reward Yi,j(t), and arm j

receives reward Ỹj,i(t)
15 User i and arm j updates the partial rank

Pu,i(t+ 1) and Pa,j(t+ 1) (Eq. (3))

γ-lcbj,i(t) = γ̂j,i(t)−
√
6 log(t)/ni,j(t) (2)

Pu,i(t) =


j′ > j if µ-ucbi,j(t) < µ-lcbi,j′(t),
j′ < j if µ-ucbi,j′(t) < µ-lcbi,j(t),
j′ = j otherwise.

Pa,j(t) =


i′ > i if γ-ucbj,i(t) < γ-lcbj,i′(t),
i′ < i if γ-ucbj,i′(t) < γ-lcbj,i(t),
i′ = i otherwise.

(3)

Here for round t, for i ∈ [N ], arm j ∈ [K], for user i the
mean reward for arm j is µ̂i,j(t), for arm j the mean reward
for user i is γ̂j,i(t), and number of matches between user i
and arm j is ni,j(t) as defined in the Appendix C.

3.1. Regret Upper Bound

We obtain a logarithmic regret with two-sided uncertainty.
Our result relies on a few key properties of the system.
Firstly, we know from Kong & Li (2023) that with high
probability the LCB and UCB-based partial ranking contains
the true ranking for each of the user and arm. Next, by the
seminal work of Irving (1994), the Extended Gale-Shapley
algorithm can retrieve a super-stable matching if there exists
one under a given partial ranking, or declare if there is no
such super-stable matching. Finally, the key observation is
that a super-stable matching for a partial ranking is always
a stable (not necessarily the user-optimal) matching for any
full ranking contained by the specific partial ranking (c.f.

4



Competing Bandits in Matching Markets via Super Stability

Spieker (1995)). Our exploration is forced when there is no
super-stable matching available.

We now define the gaps in our system that will appear in
our regret upper bounds. Note that all the gaps we mention
is with respect to the underlying rewards (µ,γ).

Definition 3.1 (Minimum Gap). For a system with re-
wards (µ,γ) and a partial rank (Pu, Pa), the minimum gap
∆min(Pu, Pa;µ,γ) is defined as the minimum gaps among
the users and arms with different ranks, i.e.,

∆min(Pu, Pa;µ,γ)

= min
(

min
i∈[N ],

j ̸=j′ in Pu,i

|µi,j − µi,j′ |, min
j∈[K],

i ̸=i′ in Pa,j

|γj,i − γj,i′ |
)
.

Definition 3.2 (Admissible Gap). Consider a system with
rewards (µ,γ) and corresponding full rank (Fu, Fa). The
admissible gap ∆A(µ,γ) is defined as the largest mini-
mum gap for the admissible partial rankings of (Fu, Fa),
∆A(µ,γ) = max

(Pu,Pa)∈A(Fu,Fa)
∆min(Pu, Pa;µ,γ).

We also need to define the width of the rewards of users or
arms that have the same partial order.

Definition 3.3 (Overlap Width). For a system with re-
wards (µ,γ) and a partial rank (Pu, Pa), overlap width
Wov(Pu, Pa;µ,γ) as the maximum variation of rewards
among overlapping users and arms with an equivalent par-
tial rank, i.e.,

Wov(Pu, Pa;µ,γ)

= max
(

max
i∈[N ],

j=j′ in Pu,i

|µi,j − µi,j′ |, max
j∈[K],

i=i′ in Pa,j

|γj,i − γj,i′ |
)
.

We next show that the set A(Fu, Fa) has the following
‘completeness’ property with respect to reward gap.

Lemma 3.4. Consider the system with rewards (µ,γ) and
the corresponding full rank (Fu, Fa). For a partial rank
(Pu, Pa) if (Fu, Fa) ∈ FullRank(Pu, Pa) and the overlap
width Wov(Pu, Pa;µ,γ) < ∆A(µ,γ) then (Pu, Pa) ∈
A(Fu, Fa).

The regret upper bound proof shows that once we have
enough exploration, such that we can resolve a gap of
Θ(∆A(µ,γ)) with high probability in round t, the partial
rank (Pu(t),Pa(t)) lies in the admissible set A(F ∗

u , F
∗
a ).

Hence, the Algorithm 1 always lands on a super-stable
matching, as the set SuperStable(Pu(t),Pa(t)) ̸= ∅ as
per Corollary 2.7. Furthermore, due to Corollary 2.7 we
know that SuperStable(Pu(t),Pa(t)) ⊆ Stable(F ∗

u , F
∗
a ).

Therefore, the algorithm suffers no stable regret. Finally,
once the number of exploration satisfies Nexplore(t) >

K+ 96K log(T )
∆2

A(µ,γ)
we show that (Pu(t),Pa(t)) ∈ A(F ∗

u , F
∗
a ),

i.e. the recovered partial rank lies in the set of admissible

partial rank instances of the true rankings. This culminates
in the following regret bound.
Theorem 3.5 (Centralized Regret Bound). The cumulative
regret of Algorithm 1 in T rounds for the true stable match-
ing instance with no ties (F ∗

u , F
∗
a ) satisfies the following

upper bound.

max
i∈[N ],j∈[K]

(
E[Ru,i(T )]

µi,pess−µi,min
,

E[Ra,j(T )]
γj,pess−γj,min

)
≤ E[R0/1(T )],

E[R0/1(T )] ≤
(
K +

NKπ2

3
+

96K log(T )

∆2
A(µ,γ)

)
.

Improved Regret Bound: We first note that for the partial
rank where the top user for each arm, and the top arms for
each user are separated we always have the user-optimal
matching as a super stable-matching. Hence, ∆min ≤ ∆A
holds for all the instances. For general instances, it is not
possible to improve this relationship, as there are instances
where they are equal. We now present a motivating example
that shows stark separation between these two quantities.

Consider an example with N users and N arms, for some
N ≥ 3. Fix an ε ∈ (0, 1/2). For each user i ∈ [N ] let i and
(i+1)modN be the top 2 arms with the respective rewards
µi,i = (1−ε) and µi,(i+1)modN = (1−2ε). The remaining
arms j ∈ [N ] \ {i, (i + 1)modN} all have mean reward
µi,j = ε. For each arm j ∈ [N ], let γj,(j−1)modN = ε and
γj,i = (1 − ε) for all users i ̸= (j − 1)modN . For this
instance we have ∆min = ε. One stable matching for this
instance is given as {(i, i) : i ∈ [N ]}.

Next, let us consider the partial ranks for each user i,

Pu,i = {i > j, (i+ 1)modN > j :

∀j ∈ [N ] \ {i, (i+ 1)modN}},

and the partial ranks for each arm j

Pa,j = {i > (j−1)modN : ∀i ∈ [N ]\{(j−1)modN}}.

For the above partial ranks, we have ∆min(Pu, Pa,µ,γ) =
(1 − 2ε). Moreover, this partial rank (Pu, Pa) has {(i, i) :
i ∈ [N ]} as a super-stable matching. Therefore, (Pu, Pa)
is admissible, and the gap ∆A ≥ (1 − 2ε). The ratio
∆A
∆min

= 1
ε − 2 is unbounded as ε → 0. This shows that

there can be an arbitrary separation between ∆min and ∆A.

4. Decentralized Two-Sided Matching Bandit
In this section, we convert the centralized algorithm to a
decentralized version where the users use two global binary
flags restart and success to coordinate. We present Algo-
rithm 3 used by a user i, and Algorithm 4 used by an arm j
in the Appendix C due to the lack of space.

Our algorithm proceeds in phases (of at most N2 steps each)
and simulates the Algorithm 2 in each phase in a staggered
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manner. An ongoing phase is terminated by setting the
restart flag to True by a user, and as the flag restart is
shared the change of phase is always in sync across arms
and users. Each phase τℓ, starting at time t+ 1, begins with
setting the initial partial rank of each user i to Pu,i(t) and
each arm j to Pa,j(t) (the UCB-LCB based partial ranks
obtained at the end of previous phase). This is similar to the
centralized algorithm starting a round with updated partial
ranks.

Next, a user i reads the flag success which if False indicates
the phase τℓ is used for exploration. Otherwise, the success
flag being True indicates the previous phase ended with a
super-stable match. This implies at least one arm accepted
proposal of user i, and the user chooses as the arm with
highest UCB index among accepting arms as it’s match
Mi(τℓ) for the phase τℓ.

Inside the phase τℓ in each round, we have the following
alternating steps between users and arms.
(i) A user i first propose to the ‘source’ nodes of the (up-
dated) partial rank PRu,i(τℓ) (line 14 Alg. 3).
(ii) An arm j receives the proposals and computes the
‘source’ nodes (i.e., the non-dominated nodes) I∗(j) among
the proposing nodes S̃j(t) and (updated) partial rank
PRa,j(τℓ) (line 10 Alg. 4). If there is a unique ‘source’
node i∗(j), that node is accepted by arm j and all nodes
dominated by i∗(j) are deleted from PRa,j(τℓ) (line 11-14
Alg. 4). Otherwise, with multiple proposals all propos-
ing users are rejected, and the ‘tail’ nodes in partial rank
PRa,j(τℓ) are deleted (line 15-17 Alg. 4).
(iii) A user i receives the accept or reject signals from the
proposed arms, and deletes rejecting arms from PRu,i(τℓ)
(line 15-16 Alg. 3). Next, it determines whether to explore
or exploit based on explore(τℓ). If it explores then matches
with the arm mi(t) = (i+τex) mod K, otherwise matches
with mi(t) = Mi(τℓ) (line 17-20 Alg. 3). We note that τex
is also in sync for each user as explore(τℓ) and phases are in
sync. Next, the user and the arms, if matched, observe their
respective rewards, and updates the partial ranks Pu,i(t) for
users i ∈ [N ], and Pa,j(t) for arms j ∈ [K]. (line 22-23
Alg. 3, and line 21-23 Alg. 4)

In the global communication phase the users play an active
role. First, if a user i is rejected by all proposed arms then
she sets success to False.2 Next, the success flag is read
by user i. If success is True (each user has a prospective
match) or if PRu,i(τℓ) is empty the phase terminates. User
i sets restart to True.

Finally, the restart flag is read, by each user and arm. If
the flag is True the system enters a new phase. Otherwise,
the old phase continues.3

2We require users not changing the flags to also update the
flags, so that shared flags are ready to be read.

3To trigger a system-wide ‘restart’ in fully decentralized man-

Our regret upper bound for the decentralized system fol-
lows the centralized system closely. We argue that each
phase mimics one round of the centralized system. After
O
(
K log(T )/∆2

A(µ,γ)
)

many rounds of exploration, any
phase with high probability ends in finding a true stable
matching, similar to Lemma E.4. The final regret bound in
the decentralized case is given as follows.

Theorem 4.1 (Decentralized Regret Bound). For a true
stable matching instance (F ∗

u , F
∗
a ) when the users follow

Algorithm 3, and the arms follow Algorithm 4, the cumula-
tive regret in T rounds satisfies the following upper bound.

max
i∈[N ],j∈[K]

(
E[Ru,i(T )]

µi,pess−µi,min
,

E[Ra,j(T )]
γj,pess−γj,min

)
≤ E[R0/1(T )],

E[R0/1(T )] ≤
(
1 +N2 +K +

NKπ2

3
+

96K log(T )

∆2
A(µ,γ)

)
.

Balancing Communication, and Regret: We rely on a 2-
bit communication protocol per round in order to mimic the
centralized system. However, it is possible to make the com-
munication sparse, by forcing the communication to happen
once every phase, and force the phases to have arbitrary
lengths. The idea is to perform the Global communication if
round t is multiple of a pre-determined period, say L. This
will increase the regret constant from (1 +N2) to (1 + L).
However, this requires working with older matching Mi(τℓ)
for a user i, which can be non-optimal from user i’s point
of view. Thus it can create some tension between commu-
nication and incentives. Exploring this tension is left as an
interesing avenue of future work.

Experimental Validation: We numerically study the be-
havior of the proposed centralized algorithm. Due to lack of
space we defer the details of our experiment in Appendix B.
As the decentralized algorithm is guaranteed to have only a
regret O(N2) away from the centralized one, we omit the
decentralized algorithm. We compare against centralized
Explore-then-Gale Shapley (ETGS) algorithm for fair com-
parison.4 Extended-GS significantly outperforms ETGS by
quickly identifying a viable partial ranking during the explo-
ration phase. This leads to lower regret than ETGS, which
needs a full ranking of the top N items before achieving
comparable performance.

Regret Comparison: We end this section by comparing
the regret guarantees of a selected few works in this domain
in Table 1. We provide the first regret upper bound that

ner, a user broadcasts a RESTART signal to all arms in a single
round. Upon receipt, an arm echoes the RESTART signal to all
proposing users. Consequently, within one additional round, all
users receive the RESTART signal, achieving a fully-decentralized
‘restart’ flag setting. A congruent strategy can be adopted by users
for managing the ‘success’ flag.

4A decentralized version of this algorithm with shared global
flags (aka blackboard) is presented in Algorithm 2 in (Pagare &
Ghosh, 2024).
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works for two sided general matching markets and depends
on the instance dependent intrinsic gap ∆A. Note that our
algorithm uses the 2-bit feedback which is more restrictive
than the (user, arm) broadcast where all the users and arms
can observe the matching that occurs in each round. We also
provide the first centralized regret lower bound that depends
on gaps (which we call ∆A,avg for simplicity) related to
∆A. See Section 5 for details.

5. Regret Lower Bound
We develop an instance-dependent lower bound for binary
stable regret for the centralized setting. A pessimal stable
regret lower bound in general instances is not meaningful
for the learning task of finding the stable matching. For
example, there may exists a set of matchings which are not
stable but can be scheduled to achieve negative pessimal
stable regret. Hence, binary stable regret which is always
positive is the right quantity to lower bound for the bandit
learning problem in matching markets.

We adapt the framework in Combes et al. (2017) to our
multi-agent setup. The detailed formulation is provided
in the Appendix F. Our system is parameterized by θ =
(µ,γ) ∈ Θ := [0, 1]2NK . We focus on Bernoulli rewards
with appropriate means for ease of exposition. For any
(i, j) ∈ [N ] × [K], the term kl(θ, λ; (i, j)) denotes the
sum of KL-divergence between the θ and λ instances for
the rewards associated with the match (i, j) and satisfies
kl(θ, λ; (i, j)) = kl(µi,j(θ), µi,j(λ))+kl(γj,i(θ), γj,i(λ)).
This can be extended to the kl divergence given a matching
M as kl(θ, λ;M) =

∑
(i,j)∈M kl(θ, λ; (i, j)).

We need to take extra care while adapting the main results
in Combes et al. (2015) as we are dealing with multiple so-
lutions. To that end, we note that Graves & Lai (1997), from
which Combes et al. (2015) is adapted, allows for switch-
ing between optimal stationary policies without any cost.
Moreover, while defining ‘bad’ parameter space Graves &
Lai (1997) considers the parameter that does not share an
optimal solution with the true parameter, θ, and which has
no ‘divergence’ with θ while playing any one of the optimal
policy. Therefore, our ‘bad’ parameter space for a given θ
becomes

Λ(θ) = {λ ∈ Θ : kl(θ, λ;M) = 0,∀M ∈ Stable(θ)︸ ︷︷ ︸
for all stable match of θ divergence is 0

;

Stable(λ) ∩ Stable(θ) = ∅︸ ︷︷ ︸
no common solution

}.

We now want to formulate the set Λ(θ) using the admissible
sets. If Stable(λ) ∩ Stable(θ) = ∅, that means any partial
rank (Pu, Pa) such that both λ and θ are compatible to
(Pu, Pa)

5 has no super-stable match. We note that for any

5An instance θ is compatible to a partial rank means the un-

λ′ such that Stable(λ′) ∩ Stable(θ) ̸= ∅ we can create a
partial rank (P ′

u, P
′
a) (by keeping only the shared pairwise

inequalities of θ and λ′) which lies in A(θ). Hence,

∪(Pu,Pa)∈A(θ) FullRank(Pu, Pa) =

{λ : Stable(λ) ∩ Stable(θ) ̸= ∅}.

It follows that the admissible set is regret free. As there
can be no divergence for any matched pairs in a true stable
matching that narrows the ‘bad’ set of parameters further.
We first define the ‘Locked’ edges as follows.
Definition 5.1. For any instance θ ∈ Θ, we define
Locked(θ) as the set of all user-arm pairs (i, j), such that
(i, j) ∈M for some matchM∈ Stable(θ).

The set Λ(θ) can be equivalently stated as

Λ(θ) =
{
λ ∈ Θ : λ /∈ ∪

(Pu,Pa)∈A(θ)
FullRank(Pu, Pa); ∀(i, j)

∈ Locked(θ) : µij(θ) = µij(λ), γji(θ) = γji(λ)
}
. (4)

A policy π is uniformly good if for any θ = (µ(θ),γ(θ))
the algorithm π has O(Tα) regret for any α > 0. We now
state our regret lower bound below for any uniformly good
policy.
Theorem 5.2 (Centralized Regret Lower Bound). For
any instance θ ∈ Θ, for any uniformly good pol-
icy π the binary stable regret is lower bounded as
lim infT→∞

E[Rπ
0/1(T ;θ)]

log(T ) ≥ c(θ), where c(θ) minimizes the
following optimization problem

min
η(M)≥0

∑
M∈Match(N,K)\Stable(θ)

η(M), s.t.

∑
(i,j)∈[N ]×[K]

∑
M∋(i,j)

η(M)kl(θ, λ; (i, j)) ≥ 1,∀λ ∈ Λ(θ),

where Λ(θ) is defined in Equation (4).

We now present binary stable regret lower bounds derived
for some special instances.
Corollary 5.3 (Serial Dictatorship). Consider a general
serial dictatorship instance θ with two sided uncertainty,
where N ≤ K, γj,i(θ) > γj,i′(θ) for all i < i′ and j,
and the unique stable matching is {(i, i) : i ∈ [N ]}. Then
the binary stable regret for θ is lower bounded as for any
uniformly good policy π is lower bounded as

lim inf
T→∞

E[Rπ
0/1(T ;θ)]

log(T ) ≥ max

(
max
i∈[N ]

cu,i(θ), max
j∈[K]

ca,j(θ)

)
where,

cu,i(θ) =
∑

j∈Di(θ)

1
kl(γj,i(θ),γj,j(θ))

+
∑
j>i

1
kl(µi,j(θ),µi,i(θ))

,

derlying (unique) full rank is compatible to the partial rank under
consideration. More generally, we may replace (Fu, Fa) with θ.
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Algorithm Two sided Market Assumptions Upper Bound per User/Arm
C-UCB (Liu et al., 2020) NO Centralized Pessimal O(NK log(T )/∆2

min)
UCB-D3 (Sankararaman et al., 2021) NO Serial Dictatorship Unique O(NK log(T )/∆2

min)
CA-UCB (Liu et al., 2021) NO (user, arm) broadcast Pessimal O(exp(N)N5K2 log(T )/∆2

min)
UCB-D4 (Basu et al., 2021) NO uniqueness consistency Unique O(NK log(T )/∆2

min)
UCB-DMA (Maheshwari et al., 2022) NO α-reducible Unique O(CαNK log(T )/∆2

min)
ETGS (Kong & Li, 2023) NO (user, arm) broadcast Optimal O(K log(T )/∆2

min)
PCA-DAA (Pokharel & Das, 2023) YES (user, arm) broadcast -
ETGS+BB (Pagare & Ghosh, 2024) YES (user, arm) broadcast User Optimal O(K log(T )/∆2

min))
CA-ETC (Pagare & Ghosh, 2024) YES no broadcast User Optimal O(poly(T ))

Ours YES 2-bit broadcast Pessimal & Binary O(K log(T )/∆2
A)

Two sided Market Type Lower Bound per User/Arm
NO No Broadcast Unique Ω(N log(T )/∆2

min +K log(T )/∆min) (Sankararaman et al., 2021)
YES Centralized Binary Ω(L log(T )/∆2

A,avg) [Ours]

Table 1: A more comprehensive regret comparison. We consider three type of gaps satisfying ∆min ≤ ∆A ≤ ∆A,avg. Cα

is a parameter specific to α-irreducibility in (Maheshwari et al., 2022). For lower bound, L denotes the average number
of (user, arm) pairs not participating in a stable matching with (K − N) ≤ L ≤ (K − 1) (see Theorem 5.2). In regret
upper bound, ‘Unique’ means unique stable matching, ‘Optimal’ means User optimal stable regret, ‘Pessimal’ means User
pessimal stable regret, and ‘Binary’ means binary stable regret.

ca,j(θ) =
∑

i:j∈Di(θ)

1
kl(γj,i(θ),γj,j(θ))

+
∑
i<j

1
kl(µi,j(θ),µi,i(θ))

.

Note the above instance holds with out loss of generality up
to renaming of arms and user, and thus covers all instances
of general serial dictatorship. This lower bound differs from
Sankararaman et al. (2021) in several ways. It’s for binary
stable regret (not per-user regret), applies to general serial
matching (not just OSB instances), and accounts for two-
sided (not just user-sided) uncertainty. Thus, the bounds are
incomparable.

Corollary 5.4 (General Instance with Redundant Arm).
Consider a general two-sided stable matching instance
θ with redundant arms N < K, where j∗(i) ≜
maxj{µi,j(θ) : (i, j) ∈ Locked(θ)}. Then the binary sta-
ble regret for θ is lower bounded as for any uniformly good
policy π is lower bounded as lim infT→∞

E[Rπ
0/1(T ;θ)]

log(T ) ≥

max

(
max
i∈[N ]

cu,i(θ), max
j:(·,j)/∈Locked(θ)

ca,j(θ)

)
where,

cu,i(θ) =
∑

j:(·,j)/∈Locked(θ)

1
kl(µi,j(θ),µi,j∗(i)(θ))

,

ca,j(θ) =
∑
i∈[N ]

1
kl(µi,j(θ),µi,j∗(i)(θ))

.

General Instances: Because of space constraints, detailed
definitions and results for the fully general case (where N
may equal K) are relegated to Appendix G. We provide a
brief and high-level overview here.

A cover of the set A(θ) is a set of triplets (2nd and 3rd
entries are unordered) (i, {j, j′}), (j, {i, i′}) for i, i′ ∈

[N ], j, j′ ∈ [K] such that - (i) for each (Pu, Pa) ∈ A(θ)
there is at least one (i, {j, j′}) such that j ̸=

Pu,i

j′ or

(j, {i, i′}) such that i ̸=
Pa,j

i′; (ii) at most one of (i, j) or

(i, j′) lies in Locked(θ), same for (i, j) and (j, i′); and (iii)
all the triplets are ‘realizable’. See, Def. F.5 in appendix
for formal version. Also, two triplets above are overlapping
if they share a common (user, arm) pair, e.g. (i, {j, j′})
and (j, {i, i′}). We define a collection of ‘non-connected’
cover-group where no pair of covers share any overlapping
triplet. See Def. F.6 in appendix. The set of cover-group for
θ is CG(θ).

Through a dual formulation of optimization problem in
Theorem 5.2 we show in Theorem F.7 that the value c(θ)
therein admits the lower bound

c(θ) ≥ max
G∈CG(θ)

∑
C∈G

kl(θ, C)−1, (5)

where the divergence for a cover C is given as

kl(θ, C) ≜
∑
i∈[N ]

max
(i,j′)∈Locked(θ),

(i,{j,j′})∈C

kl
(
µij(θ), µij′(θ)

)
+

∑
j∈[K]

max
(i′,j)∈Locked(θ),(j,{i,i′})∈C

kl
(
γji(θ), γji′(θ)

)
.

The quantity CG(θ) and kl(θ, C) depends on the combinato-
rial structure of the admissible partial rank setA(θ), and any
further simplification without large sub-optimality proves
to be difficult.

Remarks on Lower Bound: Multiple remarks on our
regret lower bound is in order.

⋄ OSSB Applicability: We note that in Combes et al.
(2015) the authors provide an algorithm that can attain the

8
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regret lower bound named OSSB. However, as the size of
the set of all matchings is exponential in N ) a OSSB style
algorithm is computationally prohibitive for our problem.
More importantly, OSSB algorithm is designed for instances
with unique optimal solution, so it is unclear if OSSB can
be applied in our case directly.
⋄ Regret ‘Free’ Instances: If for each pair (i, j) there ex-
ists a stable matchM∈ Stable(θ) then regret is o(log(T )).
Playing the stable matching in a round robin manner re-
solves all the gaps with exp(−Ω(T )) probability without
any regret. So statistically O(1) regret is feasible even
for uniformly good policies. We present a detailed argu-
ment, and a sequence of such zero regret instances for
all N ≥ 2 in the appendix G.For N = 2 in the in-
stance U1 : [1, 2], U2 : [2, 1], A1 : [2, 1], A2 : [1, 2] both
[(1, 1), (2, 2)] and [(2, 1), (1, 2)] are stable matching, and
these two covers all edges.

6. Conclusion and Future Work
This work investigates two-sided bandit learning in general
matching markets, providing both centralized and decentral-
ized algorithms with logarithmic regret guarantees (Theo-
rems 3.5 and 4.1, respectively). Our algorithms leverage
the concept of super-stable matching (Irving, 1994), playing
such a match when possible and exploring otherwise. Our
centralized regret lower bound (Theorem F.7) highlights
the importance of the super-stable set in determining the
difficulty of stable matching bandit learning. While our cur-
rent work employs a sub-optimal round-robin exploration
strategy, future work will focus on refining exploration tech-
niques to achieve tight regret bounds. Furthermore, while
we guarantee pessimal stable regret, developing algorithms
that optimize for specific objectives (e.g., user-optimal or
social-optimal) represents another important direction. We
hypothesize that our initial stable matching algorithm could
be combined with the distributive lattice structure of the sta-
ble matching set to efficiently explore and identify optimal
stable matching.

Impact Statement
This paper presents a theoretical exploration in the field of
Bandit learning in Matching markets with two sided uncer-
tainty. The ideas presented may have future implications
in developing efficient algorithms in various fields, such as
e-commerce and crowd-sourcing marketplaces, ride-sharing
systems. However, given the pure theoretical nature of this
work, and gaps from practice (e.g. lack of contextual re-
wards) it is hard to foresee any specific impact at this stage.

References
Basu, S., Sankararaman, K. A., and Sankararaman, A. Be-

yond log2(t) regret for decentralized bandits in match-
ing markets. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 705–715. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/basu21a.html.

Combes, R., Talebi Mazraeh Shahi, M. S., Proutiere, A.,
et al. Combinatorial bandits revisited. Advances in neural
information processing systems, 28, 2015.

Combes, R., Magureanu, S., and Proutiere, A. Minimal
exploration in structured stochastic bandits. Advances in
Neural Information Processing Systems, 30, 2017.

Das, S. and Kamenica, E. Two-sided bandits and the dating
market. In IJCAI, volume 5, pp. 19. Citeseer, 2005.

Etesami, S. R. and Srikant, R. Decentralized and uncoor-
dinated learning of stable matchings: A game-theoretic
approach, 2024. URL https://arxiv.org/abs/
2407.21294.

Gale, D. and Shapley, L. S. College admissions and the sta-
bility of marriage. The American Mathematical Monthly,
69(1):9–15, 1962. ISSN 00029890, 19300972. URL
http://www.jstor.org/stable/2312726.

Ghosh, A., Sankararaman, A., Ramchandran, K., Javidi, T.,
and Mazumdar, A. Competing bandits in non-stationary
matching markets. IEEE Transactions on Information
Theory, 70(4):2831–2850, 2024. doi: 10.1109/TIT.2024.
3352228.

Graves, T. L. and Lai, T. L. Asymptotically efficient adap-
tive choice of control laws incontrolled markov chains.
SIAM journal on control and optimization, 35(3):715–
743, 1997.

Hosseini, H., Roy, S., and Zhang, D. Putting gale & shapley
to work: Guaranteeing stability through learning. arXiv
preprint arXiv:2410.04376, 2024.

Irving, R. W. Stable marriage and indifference. Discrete
Applied Mathematics, 48(3):261–272, 1994.

Jagadeesan, M., Wei, A., Wang, Y., Jordan, M., and Stein-
hardt, J. Learning equilibria in matching markets from
bandit feedback. Advances in Neural Information Pro-
cessing Systems, 34:3323–3335, 2021.

Johari, R., Kamble, V., and Kanoria, Y. Matching while
learning. Operations Research, 69(2):655–681, 2021.

9

https://proceedings.mlr.press/v139/basu21a.html
https://proceedings.mlr.press/v139/basu21a.html
https://arxiv.org/abs/2407.21294
https://arxiv.org/abs/2407.21294
http://www.jstor.org/stable/2312726


Competing Bandits in Matching Markets via Super Stability

Kong, F. and Li, S. Player-optimal stable regret for bandit
learning in matching markets. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1512–1522. SIAM, 2023.

Kong, F. and Li, S. Improved bandits in many-to-one match-
ing markets with incentive compatibility. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 13256–13264, 2024.

Lai, T. and Robbins, H. Asymptotically efficient
adaptive allocation rules. Advances in Applied
Mathematics, 6(1):4–22, 1985. ISSN 0196-8858.
doi: https://doi.org/10.1016/0196-8858(85)90002-8.
URL https://www.sciencedirect.com/
science/article/pii/0196885885900028.

Li, B., Cheng, Y., Yuan, Y., Wang, G., and Chen, L. Three-
dimensional stable matching problem for spatial crowd-
sourcing platforms. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 1643–1653, 2019.

Lin, S., Mauras, S., Merlis, N., and Perchet, V. Stable
matching with ties: Approximation ratios and learning.
arXiv preprint arXiv:2411.03270, 2024.

Liu, L. T., Mania, H., and Jordan, M. Competing ban-
dits in matching markets. In Chiappa, S. and Calan-
dra, R. (eds.), Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learn-
ing Research, pp. 1618–1628. PMLR, 26–28 Aug
2020. URL https://proceedings.mlr.press/
v108/liu20c.html.

Liu, L. T., Ruan, F., Mania, H., and Jordan, M. I.
Bandit learning in decentralized matching markets.
Journal of Machine Learning Research, 22(211):1–
34, 2021. URL http://jmlr.org/papers/v22/
20-1429.html.

Maheshwari, C., Sastry, S., and Mazumdar, E. Decentral-
ized, communication- and coordination-free learning in
structured matching markets. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 15081–15092. Curran Associates, Inc., 2022.

Pagare, T. and Ghosh, A. Explore-then-commit algorithms
for decentralized two-sided matching markets. In 2024
IEEE International Symposium on Information Theory
(ISIT), pp. 2092–2097, 2024. doi: 10.1109/ISIT57864.
2024.10619416.

Parikh, S., Basu, S., Ghosh, A., and Sankararaman, A. Com-
peting bandits in decentralized large contextual matching
markets. arXiv preprint arXiv:2411.11794, 2024.

Pokharel, G. and Das, S. Converging to stability in
two-sided bandits: The case of unknown preferences
on both sides of a matching market. arXiv preprint
arXiv:2302.06176, 2023.

Reddy, M. S., Varghese, J., Venkataraman, J., and Rela, M.
Matching donor to recipient in liver transplantation: rele-
vance in clinical practice. World journal of hepatology, 5
(11):603, 2013.

Saha, P. R., Choudhury, S., and Salomaa, K. Altruistic
bandit learning for one-to-many matching markets. In
Proceedings of the 2024 International Conference on
Information Technology for Social Good, pp. 197–203,
2024.

Sankararaman, A., Basu, S., and Abinav Sankararaman,
K. Dominate or delete: Decentralized competing
bandits in serial dictatorship. In Banerjee, A. and
Fukumizu, K. (eds.), Proceedings of The 24th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 130 of Proceedings of Machine Learn-
ing Research, pp. 1252–1260. PMLR, 13–15 Apr
2021. URL https://proceedings.mlr.press/
v130/sankararaman21a.html.

Spieker, B. The set of super-stable marriages forms a dis-
tributive lattice. Discrete Applied Mathematics, 58(1):
1–11, 1995.

Zhang, N., Liu, Z., Li, F., Xu, Z., and Chen, Z. Stable
matching for crowdsourcing last-mile delivery. IEEE
Transactions on Intelligent Transportation Systems, 24
(8):8174–8187, 2023.

Zhang, Y. and Fang, Z. Decentralized two-sided bandit
learning in matching market. In The 40th Conference on
Uncertainty in Artificial Intelligence.

10

https://www.sciencedirect.com/science/article/pii/0196885885900028
https://www.sciencedirect.com/science/article/pii/0196885885900028
https://proceedings.mlr.press/v108/liu20c.html
https://proceedings.mlr.press/v108/liu20c.html
http://jmlr.org/papers/v22/20-1429.html
http://jmlr.org/papers/v22/20-1429.html
https://proceedings.mlr.press/v130/sankararaman21a.html
https://proceedings.mlr.press/v130/sankararaman21a.html


Competing Bandits in Matching Markets via Super Stability

A. Related Work
Stable Matching with Partial Preference: Stable matching has been a successful concept for studying equilibria among
incentivized agents in two-sided matching markets. In the foundational work Gale & Shapley (1962), participants express
preferences through strict rankings. A natural extension allows for more realistic scenarios with partial preferences. Irving
(1994) expanded the concept of stability to partial preferences by introducing three distinct stability concepts: weak, strong,
and super-stability. Our work draws from Irving (1994), and connects super-stability to the inherent hardness of learning
stable mathcing under bandit feedback. The Extended Gale-Shapley algorithm there is the central algorithm that we use
breaking from the literature that exclusively uses the original Gale-Shapley algorithm. Next, we build on the work of Spieker
(1995) which provides structure of the set of super-stable matchings.

Bandit Learning in Matching Markets: The work of (Das & Kamenica, 2005) introduced the problem of learning
stable matching for a matching markets with one-sided uncertainty, i.e. the users have unknown preferences but the
arms have complete knowledge of their prefrences. In (Liu et al., 2020) the authors provided a UCB based centralized
algorithm with the first theoretical regret guarantee of O(NK log(T )/∆2

min). An explore-then-commit algorithm with
the knowledge of minimum gap ∆min was also proposed. Next, the work was extended to the decentralized setup that
removes the knowledge of gap but imposes uniqueness of stable matching via structural assumptions on preference
rank (Sankararaman et al., 2021; Basu et al., 2021; Maheshwari et al., 2022). The algorithms proposed therein achieve a
O(NK log(T )/∆2

min) user pessimal stable regret. The collision avoidance UCB based algorithm proposed in (Liu et al.,
2021) achieves O(exp(N) log2(T )/∆2

min) regret in general matching markets.

A separate thread of work explored the Explore-then-commit type algorithms for general markets starting from (Basu et al.,
2021), and improved in the ETGS (Kong & Li, 2023). The ETGS type algorithms are able to achieve a O(K log(T )/∆2

min)
user optimal stable regret. A more recent work (Hosseini et al., 2024) provides sample complexity bounds, which translates
to O(E log(T )/∆2

min) regret bound, using a concept of envy-set where E is the size of average envy set, and may be less
than K based on the underlying instances. There has been multiple works with ETGS as the core where a user can match
with multiple arms (upto a quota) in each round (Kong & Li, 2024; Saha et al., 2024).

Only a select few recent works (Pokharel & Das, 2023; Pagare & Ghosh, 2024; Zhang & Fang) study matching markets
with two-sided uncertainty where both sides need to learn their respective preferences from bandit feedback. In (Pagare &
Ghosh, 2024), the authors present a black-board model similar to ours and attain a O(K log(T )/∆2

min) algorithm similar to
centralized ETGS mentioned in this work. Similar guarantees are provided in (Zhang & Fang) without baclkboard, while
(Pokharel & Das, 2023) lacks any theoretical guarantee. But all these works focus on user optimal stable match learning.
This is incomparable to the task in this paper of finding any one stable matching.

Our work provides an entirely new algorithmic idea by applying the Extended Gale Shapley algorithm (Irving, 1994).
Furthermore, we provide a new instance dependent lower bound for general instances for centralized setting, and hence also
for decentralized setting. The long standing regret lower bound before this work comes from (Basu et al., 2021) which is
applicable only to decentralized setting, and for the limited special case of serial dictatorship. Our work is based on

On the algorithmic side, apart from Gale Shapley based bandit algorithms, the authors in (Etesami & Srikant, 2024) take
a new game-theoretic approach of preference learning with exponential weight learning with one-sided uncertainty and
provide a O(N2log3(T ) +N2log(T )/∆N

min) regret bounds. Also, there has been work that involved non-stationarity in
the mean rewards of the arms (Ghosh et al., 2024; Maheshwari et al., 2022), and mean rewards have a linear contextual
structure (Jagadeesan et al., 2021; Parikh et al., 2024). Finally, in (Lin et al., 2024) the authors study approximation ratios
and learning to find weak-stable matches which is different from the standard setup.

B. Experiments
In this section, we numerically study the behavior of the proposed centralized algorithm. As the decentralized algorithm is
guaranteed to have only a regret O(N2) away from the centralized one, we omit the decentralized algorithm. We first show
the pessimal stable regret dynamics of the centralized algorithm for a system with N users and K arms. We generate a
bandit instance by selecting a random preference order for each user and each arm. We generate the mean rewards µi,j

and γj,i, for i ∈ [N ] and j ∈ [K] such that the permutation is randomized, and the gaps are chosen uniformly at random
from [∆min,∆max]. For each reward observation we apply independent Gaussian noise with standard deviation σ (the UCB
and LCB bonuses are also scaled with σ). We plot the evolution of the mean cumulative regret with time for our proposed
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Algorithm 1, and a centralized Explore-then-Gale Shapley (ETGS) algorithm of Kong et al. (Kong & Li, 2023) for fair
comparison.6 Centralized ETGS explores until the top N ranks are resolved for each user and arms, and then commits to the
Gale Shapley solution afterwards.

In Figure 1, we consider one such instance with N = 8 users, M = 8 arms, ∆min = 0.2,∆max = 0.5, and σ = 0.4. We
observe the logarithmic pessimal stable regret for both the algorithms. However, clearly the proposed Extended-GS based
algorithm outperforms the Centralized ETGS adapted from Kong et al. (Kong & Li, 2023). We plot the mean rewards, as
well as 25% and 75% regret plots averaged over 20 sample paths. Next, in Figrue 2 we study the dependence on σ/∆avg

by varying σ for N = K = 5 and ∆min = 0.2,∆max = 0.5. We observe that there is a clear separation between the
Centralized ETGS and proposed Extended-GS algorithm showing the superiority of the latter. Both the algorithms initially
explore but Extended-GS algorithm finds an admissible partial rank much earlier than the top N rank resolution leading to a
lower regret than ETGS. Figrue 3 exhibits similar behavior with varying gaps ∆min and ∆max.

Figure 1: Pessimal Stable Regret for N = 8 Users, M = 8 Arms, ∆min = 0.2, ∆max = 0.5, and σ = 0.5.

Figure 2: Average pessimal stable regret across all users and arms with different σ, with N = 5 Users, M = 5 Arms,
∆min = 0.2, ∆max = 0.5.

Figure 3: Average pessimal stable regret across all users and arms with different ∆min, and ∆max, with N = 5 Users,
M = 5 Arms, σ = 0.4.

6A decentralized version of this algorithm with shared global flags (aka blackboard) is presented in Algorithm 2 in (Pagare & Ghosh,
2024).
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C. Algorithms Addendum
In round t for i ∈ [N ] and j ∈ [K], the estimated mean rewards µ̂i,j(t) and γ̂j,i(t), and number of samples ni,j(t) for our
Algorithms (Algo 1,Algo 4, and Algo 3) are given as

ni,j(t) = ni,j(t− 1) + 1((i, j) ∈M(t))

µ̂i,j(t) =
ni,j(t− 1)µ̂i,j(t− 1) + Yi(t)

ni,j(t− 1) + 1
if (i, j) ∈M(t) else µ̂i,j(t− 1)

γ̂j,i(t) =
ni,j(t− 1)γ̂j,i(t− 1) + Ỹj(t)

ni,j(t− 1) + 1
if (i, j) ∈M(t) else γ̂j,i(t− 1).

We now state the Extended GS algorithm from Irving (Irving, 1994).

Algorithm 2: Extended Gale Shapley (EXTENDED-GS)

1 Input: User partial rankings Pu, and arm partial rankings Pa

2 Initialize: mi = ∅ for all i ∈ [N ]
3 while for all i ∈ [N ], Pu,i ̸= ∅ ∧ ∃i ∈ [N ],mi = ∅ do
4 for each user i ∈ [N ] do
5 Propose to all ‘source’ arms j ∈ [K] under partial rank Pu,j

6 for arm j ∈ [K] do
7 Gather the proposing users Prop(j)
8 Get the ‘source’ nodes S(j) in the DAG Pa,j ∩ Prop(j)
9 for each user k <

Pa,j

s, for some s ∈ S(j) do

10 Remove arm j from Pu,k, and user k from Pa,j

11 if |S(j)| = 1 then
12 ▷ A user i can be accepted by multiple arms
13 For i∗j ∈ Sj , append j to mi∗j

14 else
15 for each user k in the ‘sink’ of Pa,j (a DAG) do
16 Remove arm j from Pu,k, and user k from Pa,j

17 if for all i ∈ [N ], mi ̸= ∅ then
18 Return Mstable = {(i,mi) : i ∈ [N ]}
19 else
20 Return ∅

Next, we state the full decentralized algorithms here. We colorize the communication among the users and the arms, the
observations, and the update to global shared flags.

13
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Algorithm 3: Decentralized Two-Sided Matching Bandit, User i

1 Global Flags: restart← False, success← False
2 Local Indices: Exploration τex ← 0, Phase count τℓ ← 1,
3 Phase exploration indicator explore(1)← False
4 Initial Ranking: Pu,i(0)← empty K node DAG
5 ▷ Let global time t← 0 (convention)
6 for τℓ ≥ 1 do
7 Update PRu,i(τℓ)← Pu,i(t)
8 Read shared flag success and set explore(τℓ)← ¬success
9 if success then

10 Mi(τℓ)← argmaxj:Si,j(t)=accept µ-ucbi,j(t)

11 while True do
12 ▷ Globally: restart← False, success← True
13 ▷ Increment global time t← t+ 1

14 Propose for all arms j in ‘source’ of PRu,i(τℓ), S̃j(t)← S̃j(t) ∪ {i}
15 Receive the signals from the proposed arms Si,j(t)
16 Delete all {j : Si,j(t) = reject} from PRu,i(τℓ)
17 if explore(τℓ) then
18 Match with mi(t)← (i+ τex) mod K, and set τex ← τex + 1.

19 else
20 Match with mi(t)←Mi(τℓ). ▷ Match from previous phase

21 ▷ No collision occurs, and mi(t) ̸= ∅
22 Observe reward Yi,mi(t)(t) and update UCB and LCB using Eq. (1).
23 Compute Pu,i(t) using Eq. (3).

24 ▷ GLOBAL COMMUNICATION
25 if ∀ proposed arm j, Si,j(t) = reject then
26 Set success← success ∧ False

27 else
28 Set success← success ∧ True

29 Read shared flag success (once all updates are done)
30 if PRu,i(τℓ) = ∅ ∨ success then
31 Set restart← restart ∨ True

32 else
33 Set restart← restart ∨ False

34 Read shared flag restart (once all updates are done)
35 if restart then
36 break ▷ Enters a new phase

The algorithm for the arm is given as follows.

14
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Algorithm 4: Decentralized Two-Sided Matching Bandit, Arm j

1 Global Flags: restart
2 Counter: Phase counter τℓ ← 1
3 Initial Ranking: Pa,j(0)← empty N node DAG
4 ▷ Let global time t← 0 (convention)
5 for τℓ ≥ 1 do
6 Update PRa,j(τℓ)← Pa,j(t)
7 while True do
8 ▷ Increment global time t← t+ 1

9 Receive proposals from users S̃j(t)

10 Get ‘source’ nodes I∗(j) from S̃j(t) ∩ PRa,j(τℓ)
11 if |I∗(j)| = 1 then
12 Accept the unique user i∗(j) ∈ I∗(j), by setting Si∗(j),j(t) = accept

13 For all i ∈ S̃j(t) and i ̸= i∗(j), set Si,j(t) = reject
14 For all i < i∗(j), delete i in PRa,j(τℓ)

15 else if |I∗(j)| > 1 then
16 For all i ∈ S̃j(t), set Si,j(t) = reject
17 All ‘tail’ user i in PRa,j(τℓ) are deleted
18 ▷ Arm j matches with user m−1

j (t)

19 ▷m−1
j (t) = {i : (i+ τex) mod K = j} (possibly ∅) if explore(τℓ) = True

20 ▷m−1
j (t) = ∅ or i∗(j) if explore(τℓ) = False

21 if m−1
j (t) ̸= ∅ then

22 Observe reward Ỹj,m−1
j (t)(t) and update UCB and LCB using Eq. (2)

23 Compute Pa,j(t) using Eq. (3).

24 ▷ GLOBAL COMMUNICATION
25 Read shared flag restart (once all users finish update)
26 if restart then
27 break ▷ Enters a new phase

D. Proofs of Preliminary Section
Proof of Lemma 3.4. Given (Fu, Fa) ∈ FullRank(Pu, Pa), we need to show that SuperStable(Pu, Pa) ∩
Stable(Fu, Fa) ̸= ∅ in order to prove this lemma. It is sufficient to argue that FullRank(Pu, Pa) ⊆ FullRank(P ′

u, P
′
a) for

any (P ′
u, P

′
a) ∈ A(Fu, Fa), because

Stable(Fu, Fa) ∩ SuperStable(Pu, Pa)
(i)
= Stable(Fu, Fa) ∩

⋂
(F ′

u,F
′
a)∈FullRank(Pu,Pa)

Stable(F ′
u, F

′
a)

(ii)

⊇ Stable(Fu, Fa) ∩
⋂

(F ′
u,F

′
a)∈FullRank(P ′

u,P
′
a)

Stable(F ′
u, F

′
a)

(iii)
= Stable(Fu, Fa) ∩ SuperStable(P ′

u, P
′
a)

(iv)

̸= ∅

The equality (i) and (iii) is by the definition of super-stable set. Inequality (ii) follows from the assumption
FullRank(Pu, Pa) ⊆ FullRank(P ′

u, P
′
a), and inequality (iv) holds because we chose (P ′

u, P
′
a) ∈ A(Fu, Fa).

What is left to complete the proof is to show that the assumption FullRank(Pu, Pa) ⊆ FullRank(P ′
u, P

′
a) is true for some

(P ′
u, P

′
a) ∈ A(Fu, Fa). Let us choose a partial rank (P ′

u, P
′
a) ∈ A(Fu, Fa) with a minimum gap ∆A(µ,γ) which exists

due to the finiteness of the set A(Fu, Fa). For any pair of users i, i′ ∈ [N ] and arms j, j′ ∈ [K], we have by definition of
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overlap width, and becauseWov(Pu, Pa;µ,γ) < ∆A(µ,γ)

|µi,j − µi,j′ | ≥ ∆A(µ,γ) =⇒ j ̸=
Pu,i

j′ and |γj,i − γj,i′ | ≥ ∆A(µ,γ) =⇒ i ̸=
Pa,j

i′.

However, by definition of ∆A(µ,γ) and the fact that (P ′
u, P

′
a) attains the maximum gap we know

j ̸=
P ′

u,i

j′ =⇒ |µi,j − µi,j′ | ≥ ∆A(µ,γ) =⇒ j ̸=
Pu,i

j′

i ̸=
Pa,j

i′ =⇒ |γj,i − γj,i′ | ≥ ∆A(µ,γ) =⇒ i ̸=
Pa,j

i′.

In other words, any pair of users (or arms) that are unequal in the partial rank (P ′
u, P

′
a) are also unequal in the partial rank

(Pu, Pa). This in turn implies that FullRank(Pu, Pa) ⊆ FullRank(P ′
u, P

′
a). This completes our proof.

E. Proofs of Regret Upper Bounds
We define the good event Gt for all time t ≥ 1 as

∀i ∈ [N ], j ∈ [K],max
(
|µi,j − µ̂i,j(t)|, |γj,i − γ̂j,i(t)|

)
≤

√
6 log(t)

ni,j(t)
.

Lemma E.1. The probability of ‘bad’ event Gct , for any t ≥ 1, satisfies P(Gct ) ≤ 2NK/t2.

Proof. We start our bound as follows,

P(Gct )

= P
(

max
i∈[N ], j∈[K]

max
(
|µi,j − µ̂i,j(t)|, |γj,i − γ̂j,i(t)|

)
>

√
6 log(t)

ni,j(t)

)
≤

∑
i∈[N ],j∈[K]

P
(
|µi,j − µ̂i,j(t)| >

√
6 log(T )

ni,j(t)

)
+

∑
i∈[N ],j∈[K]

P
(
|γj,i − γ̂j,i(t)| >

√
6 log(t)

ni,j(t)

)

≤
∑

i∈[N ],j∈[K]

t∑
s=1

(
P
(
ni,j(t) = s, |µi,j − µ̂i,j(t)| >

√
6 log(t)

s

)
+ P

(
|γj,i − γ̂j,i(t)| >

√
6 log(t)

s

))
(i)

≤ 2NK

t∑
s=1

P
(
|µ̂(s)

X | >
√

6 log(t)

s

∣∣∣ni,j(t) = s
)

≤ 2NK

t∑
s=1

exp(−3 log(t)) ≤ 2NK/t2.

All the rewards come from some 1-sub-gaussian distribution. Therefore, we can bound inequality (i) using the sub-
gaussian concentration bound with m samples for a 1-subgaussian zero mean distribution X (c.f. Lattimore et al ())
P(|µ̂(s)

X | > ϵ) ≤ 2 exp(−sϵ2/2).

Lemma E.2. Conditioned on the good event G(t), the recovered set of partial matching (Pu(t),Pa(t)) satisfies that
(F ∗

u , F
∗
a ) ∈ FullRank((Pu(t),Pa(t))).

Proof. We know that given the good event G(t), for any two users i, i′ ∈ [N ] and any two arm j ∈ [K] we have

µ-ucbi,j(t) ≥ µi,j +
√

6 log(T )
ni,j(t)

− |µ̂i,j − µi,j | ≥ µi,j ,

µ-lcbi,j(t) ≤ µi,j −
√

6 log(T )
ni,j(t)

+ |µ̂i,j − µi,j | ≤ µi,j .
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Therefore, µ-ucbi,j′(t) < µ-lcbi,j(t) implies that µi,j > µi,j′ under the good event G(t). Similarly, γ-ucbi′,j(t) <
γ-lcbi,j(t) implies γi,j > γi′,j under the good event G(t).

Therefore, for any fixed user i ∈ [N ] any pair of arms j, j′ ∈ [K] if we have µi,j > µi,j′ , i.e. j >
F∗

u,i

j′, then j ≥
Pu,i(t)

j′.

Similarly, for any fixed arm j ∈ [K] any pair of arms i, i′ ∈ [K], i >
F∗

a,j

i′ implies i ≥
Pu,j(t)

i′. This implies by definition that

(F ∗
u , F

∗
a ) ∈ FullRank((Pu(t),Pa(t))).

Lemma E.3 (Convergence to Admissible Set). Conditioned on the good event ∩t≥1G(t), for any time t ≥ 1 if number of
explorations Nexplore(t) > K + 96K log(T )

∆2
A(µ,γ)

we have (Pu(t),Pa(t)) ∈ A(F ∗
u , F

∗
a ), i.e. the recovered partial rank lies in

the set of admissible partial rank instances of the true rankings.

Proof of Lemma E.3. Let Nexplore(t) be the number of exploration steps taken by the centralized platform up to time t. That
implies that for each user and arm pair (i, j) for i ∈ [N ] and j ∈ [K], the number of samples ni,j(t) ≥ (Nexplore(t)−K)/K.
With ni,j(t) many samples, under the good event G(t) by definition

max
(
|µi,j − µ̂i,j(t)|, |γj,i − γ̂j,i(t)|

)
≤

√
6 log(t)

ni,j(t)
.

Therefore, for any fixed user i ∈ [N ] and any pair of j, j′ ∈ [K], if

(µi,j − µi,j′) > 4

√
6K log(T )

Nexplore(t)−K
≥ 2

√
6 log(T )

(
1√

ni,j(t)
+ 1√

ni,j′ (t)

)
,

then we have µ-lcbi,j(t) > µ-ucbi,j′(t) and j >
Pu,i(t)

j′. Similarly, if (γj,i − γj,i′) > 4
√

6K log(T )
Nexplore(t)−K we have i >

Pa,j(t)
i′.

Therefore, by definitionWov(Pu(t),Pa(t);µ,γ) ≤ 4
√

6K log(T )
Nexplore(t)−K .

From Lemma E.2 ((F ∗
u , F

∗
a ) ∈ FullRank(Pu(t),Pa(t)) under the good event Gt. Therefore, under good event ∩tGt, from

Lemma 3.4 ifWov(Pu(t),Pa(t);µ,γ) < ∆A(µ,γ) then (Pu(t),Pa(t)) ∈ A(F ∗
u , F

∗
a ). Therefore, for all t such that

Nexplore(t) ≥ K + 96K
log(T )

∆2
A(µ,γ)

we have (Pu(t),Pa(t)) ∈ A(F ∗
u , F

∗
a ).

Lemma E.4. Conditioned on the good event ∩t≥1G(t), for some t ≥ 1 if and only if (Pu(t),Pa(t)) /∈ A(F ∗
u , F

∗
a ) then

exploration is triggered in round t.

Proof. For round t ≥ 1, if Algorithm 2 does not return a stable match then exploration is triggered in Algorithm 1.
Therefore, we need to show that under ∩t≥1G(t), if (Pu(t),Pa(t)) /∈ A(F ∗

u , F
∗
a ) then Algorithm 2 does not return a

stable match. Note that from Lemma E.2 we have (F ∗
u , F

∗
a ) ∈ FullRank(Pu(t),Pa(t)) under the good event Gt. If there

is a stable match returned by Algorithm 2 in round t, then SuperStable(Pu(t),Pa(t)) ̸= ∅. Therefore, by definition
(Pu(t),Pa(t)) ∈ A(F ∗

u , F
∗
a ). This proves the lemma.

Proof of Centralized Upper Bound Theorem 3.5. We now create the regret decomposition. We first define the following
for notational simplicity

Th(T ) = K + 96K
log(T )

∆2
A(µ,γ)

,

where Th(T ) corresponds to the sufficient amount of exploration necessary to find a super-stable matching for any t ≤ T
(we will show this shortly).

E[Ru,i(T )](µi,pess − µi,min)
−1
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(i)

≤ E
[ T∑

t=1

1
(
M(t) /∈ Stable(F ∗

u , F
∗
a )
)]

(ii)
= E

[ T∑
t=1

1
(
(Pu(t),Pa(t)) /∈ A(F ∗

u , F
∗
a )
)]

(iii)

≤ E
[ T∑

t=1

1
(
(Pu(t),Pa(t)) /∈ A(F ∗

u , F
∗
a )
)∣∣ ∩t Gt]+ T∑

t=1

P(Gct )

(iv)

≤ E
[ T∑

t=1

1
(
(Pu(t),Pa(t)) /∈ A(F ∗

u , F
∗
a )
)
1
(
Nexplore(T ) ≤ Th(T )

)∣∣ ∩t Gt]
+ E

[ T∑
t=1

1
(
(Pu(t),Pa(t)) /∈ A(F ∗

u , F
∗
a )
)
1
(
Nexplore(T ) > Th(T )

)∣∣ ∩t Gt]+ T∑
t=1

2NK/t2

(v)

≤ Th(T ) + TP
[
Nexplore(T ) > Th(T )

∣∣ ∩t Gt]+NKπ2/3

(vi)

≤ Th(T ) + TP
[
∃1 ≤ s ≤ T : Nexplore(s) = Th(T ) ∧ 1

(
(Pu(s),Pa(s)) /∈ A(F ∗

u , F
∗
a )
)∣∣ ∩t Gt]+NKπ2/3

(vii)

≤ Th(T ) +NKπ2/3

The first inequality (i) simply states that we incur regret (µi,pess − µi,min) regret if Algorithm 1 does not create a stable
matching M(t) at round t. Inequality (ii), follows as (Pu(t),Pa(t)) ∈ A(F ∗

u , F
∗
a ) implies M(t) is a stable matching under

true preference by definition of A(F ∗
u , F

∗
a ). In equality (iii) we condition under good event ∩tGt, and it’s complement

∪tGct . We also use a union bound over t, to upper bound the latter quantity by (µi,pess − µi,min)
∑T

t=1 P(Gct ). In
equality (iv) we further break the first term by considering two cases: (a) when (Nexplore(T ) > Th(T )) and (b) it’s
complement. Inequality (v) first bounds the case where Nexplore(T ) ≤ Th(T ). From Lemma E.4 it follows that under
good event ∩tGt, Nexplore(T ) =

∑T
t=1 1

(
(Pu(t),Pa(t)) /∈ A(F ∗

u , F
∗
a )
)
. Hence, under ∩tGt, Nexplore(T ) ≤ Th(T )

gives a regret bound of (µi,pess − µi,min)Th(T ). Inequality (v) next bounds the second term with a trivial T bound on∑T
t=1 1

(
(Pu(t),Pa(t)) /∈ A(F ∗

u , F
∗
a )
)
. In (vi), we notice that in order Nexplore(T ) > Th(T ) to hold there must be a time

s when Nexplore(T ) = Th(T ) and (Pu(s),Pa(s)) /∈ A(F ∗
u , F

∗
a )
)
. Finally, due to Lemma E.3 we know that this event is

not possible which gives our final bound.

A similar chain of inequalities proves the regret bound for E[Ra,j(T )].

Proof of Decentralized Upper Bound Theorem 4.1. We now create the regret decomposition. We first define the following
for notational simplicity

Th′(T ) = 1 +N2 + Th(t) = 1 +N2 +K + 96K
log(T )

∆2
A(µ,γ)

,

where Th′(T ), similar to the centralized case, corresponds to the sufficient amount of exploration necessary to find a
super-stable matching for any t ≤ T (we will show this shortly). Note that as our exploration may cross the centralized
threshold at the beginning of a phase, it can occur for N2 extra rounds.

We note that the restart flag ensures synchronization of each phase across the agents and arms. Each phase of the
decentralized system follows one round of centralized system. Hence, the following results hold due to a similar line of
reasoning as in the centralized system.

1. If and only if (PRu(τℓ), PRa(τℓ)) ∈ A(F ∗
u , F

∗
a ) then the phase τℓ ends in ‘success’ and the recovered mapping used in

phase (τℓ + 1), M(τℓ + 1) ∈ Stable(F ∗
u , F

∗
a ). This is true by definition of A(F ∗

u , F
∗
a ).

We now present the on the regret decomposition of the user i below.

E[Ru,i(T )](µi,pess − µi,min)
−1
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(i)

≤ E
[ T∑

t=1

1
(
M(t) /∈ Stable(F ∗

u , F
∗
a )
)]

(ii)
= E

[ ∑
τℓ≥1

∑
t∈Phase(τℓ)

1
(
explore(τℓ)

)]
(iii)

≤ E
[ ∑
τℓ≥1

n(τℓ)1
(
explore(τℓ)

)∣∣ ∩t Gt]+ T∑
t=1

P(Gct )

(iv)

≤ E
[ ∑
τℓ≥1

n(τℓ)1
(
explore(τℓ)

)
1
(
Nexplore(T ) ≤ Th′(T )

)∣∣ ∩t Gt]

+ E
[ ∑
τℓ≥1

n(τℓ)1
(
explore(τℓ)

)
1
(
Nexplore(T ) > Th′(T )

)∣∣ ∩t Gt]+ T∑
t=1

2NK/t2

(v)

≤ Th′(T ) + TP
[
Nexplore(T ) > Th′(T )

∣∣ ∩t Gt]+NKπ2/3

(vi)

≤ Th′(T ) + TP
[
∃ phase s starting at (ts + 1) : Nexplore(ts) = Th′(T ) ∧ 1(explore(s))

]
+NKπ2/3

(vii)
= Th′(T ) +NKπ2/3 + TP

[
∃ phase s′ starting at (ts′ + 1) :

Nexplore(ts′) ≥ Th′(T )−N2 ∧ (PRu(s
′), PRa(s

′)) /∈ A(F ∗
u , F

∗
a )
]

(viii)
= Th′(T ) +NKπ2/3 + TP

[
∃t ≤ T : Nexplore(t) ≥ (Th′(T )−N2 − 1) ∧ (Pu(t), Pa(t)) /∈ A(F ∗

u , F
∗
a )
]

(ix)

≤ Th′(T ) +NKπ2/3

The inequality (ii) follows as for all t ∈ Phase(τℓ) the matching M(t) = M(τℓ) /∈ Stable(F ∗
u , F

∗
a ) only if the (τℓ − 1)-th

phase terminated with a super-stable match and we have success = False. But if (τℓ − 1)-th phase has success = False
then explore(τℓ). The inequality (iii) and (iv) follows identically to the centralized system. The first term in inequality (v)
follows by noting that conditioned on good event Nexplore(T ) =

∑
τℓ
n(τℓ)1(explore(τℓ)). Hence Nexplore(T ) ≤ Th′(T )

bounds the first term by Th′(T ). The second term uses the trivial bound T for
∑

τℓ
n(τℓ)1(explore(τℓ)). For the inequality

(vi) we note that Nexplore(T ) can cross Th′(T ) only if there is phase s that has explore(s) = True, and Nexplore(t) is
equal to Th′(T ) at the beginning of phase s. For inequality (vii) we note that explore(s) = True only if for the (s− 1)-th
phase (PRu(s − 1), PRa(s − 1)) /∈ A(F ∗

u , F
∗
a ), and Nexplore(t) should at least be (Th′(T ) −N2) at the beginning of

phase (s− 1). The former holds due to the fact (1), and the latter is true as each phase lasts at most N2 steps. For inequality
(viii) we note that the above is equivalent to an existence of a time t (t can be taken as the penultimate round in phase (s−2))
such that Nexplore(t) ≥ (Th′(T ) −N2 − 1) and the recovered UCB-LCB rank (Pu(t), Pa(t)) /∈ A(F ∗

u , F
∗
a ). However,

noting (Th′(T )−N2 − 1) = Th(t) due to Lemma E.3 we know this is not possible. This gives the final result.

F. Proof of Regret Lower Bounds
In this section, we present proof of the theorems and lemmas related to the lower bound result. Our lower bound follows
a framework similar to Combes et al. (Combes et al., 2017), which in turn relies on Graves et al. (Graves & Lai, 1997).
However, Combes et al. (Combes et al., 2017) does not capture our use case as it is tailored to bandit feedback. due to the
multiplicity of the stable matching set there is no easy way to encode this problem in the form of linear Semi-bandit like
Combes et al. (Combes et al., 2015).

We recall our system definition. Our system is parameterized by θ = (µ,γ) ∈ Θ := [0, 1]2NK . We extend our notations
(e.g. Stable(Fu, Fa), A((µ,γ))) to replace both (µ,γ) and (Fu, Fa) with θ, as θ uniquely specifies our instance. The
action space is the space of all matching between bipartite graphs between two sides of size N and K, denoted as
Match(N,K). In round t, by choosing a matching M(t) ∈ Match(N,K) the centralized platform observes a random
vector Y (M, t) = ((Yi(t), Ỹj(t)) : i ∈ [N ], j ∈ [K]) where for unobserved user-arm pairs, i.e. (i, j) /∈ M , we have
deterministically Yi(t) = Ỹj(t) = 0, and for any observed user-arm pairs Yi(t) come from an i.i.d. distribution (conditioned
on (i, j) ∈M(t)) with mean µi,j(θ). Similarly, any observed Ỹj(t) are i.i.d. with mean γj,i(θ). For the sake of simplicity,
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for the rest of the paper we work with Bernoulli variables. Extending it to a general single-parameter distribution can be
done similar to Lai et al. (Lai & Robbins, 1985).

We recall from the main paper (Equation (4)) that the set of ‘bad’ parameters is given as

Λ(θ) = {λ ∈ Θ : kl(θ, λ;M) = 0,∀M ∈ Stable(θ)︸ ︷︷ ︸
for all stable match of θ divergence is 0

; Stable(λ) ∩ Stable(θ) = ∅︸ ︷︷ ︸
no common solution

}

= {λ ∈ Θ : µij(θ) = µij(λ), γji(θ) = γji(λ),∀(i, j) ∈ Locked(θ);λ /∈ ∪(Pu,Pa)∈A(θ)FullRank(Pu, Pa)}.

Therefore, we can apply the lower bound formulation in Combes et al. (Combes et al., 2015) and arrive at the following
lower bound for our system. As mentioned earlier, adapting the results of Combes et al. (Combes et al., 2015) to our
multiple-solution setting requires careful consideration because we need to account for the possibility of switching between
optimal stationary policies, which is allowed without cost in the original framework of Graves et al. (Graves & Lai, 1997).
Crucially, Graves et al. (Graves & Lai, 1997) defines the "bad" parameter space as those parameters that do not share an
optimal solution with the true parameter, θ, and exhibit no divergence from θ when any of its optimal policies are applied.
This definition is essential for properly adapting the theoretical framework to our context.

Theorem F.1 (Adapted from Combes et al. (Combes et al., 2015)). For all θ ∈ Θ, for any uniformly good policy π

lim infT→∞
Rπ(θ)
log(T ) ≥ c(θ), where c(θ) minimizes the following optimization problem

min
η(M)≥0

∑
M∈Match(N,K)\Stable(θ)

η(M)

subject to
∑
(i,j)

∑
M :(i,j)∈M

η(M)kl(θ, λ; (i, j)) ≥ 1,∀λ ∈ Λ(θ), (6)

where Λ(θ) is defined in Equation (4).

F.1. Instantiation of Lower Bound for Special Cases

We now construct some regret lower bounds using Theorem F.1.

Regret ‘Free’ Instances: If for each pair (i, j) there exists a stable matchM ∈ Stable(θ) then regret is o(log(T )). Let
for any ordered list L, let rot(L) = [L|L|, L1, . . . , L(|L|−1)] denote one anti-clockwise rotation, rot(L,m) denote applying
rot(·) m times, and rev(L) = [L|L|, L(|L|−1), . . . , L1] denote reversal of the list L. The instance {{Ui : rot([N ], i) : i ∈
[N ]}, {Aj : rev(rot([N ], j)) : j ∈ [N ]}} has the stable matchings [(i, rot([N ], i)[l]) : i ∈ [N ]] for l = 0, . . . , (N − 1).
This covers all the pairs (i, j) for i ∈ [N ] and j ∈ [M ]. For all these instances 0 stable regret is attainable statistically. We
do not have a logarithmic regret lower bound for these instances. Any algorithm that alternates between the possible stable
matching of θ for the first Ω(T 1−ε) rounds for some ε > 0, and then commits to a super-stable matching of the discovered
partial rank if one exists or plays any sub-linear algorithm (like ours) is a uniformly good policy. But for any instance with
Ω(1) reward gaps this learns with O(exp(−T 1−ϵ)) error rate the true rank for all users and arms. So for θ it incurs O(1)
regret. Note this is not a constructive argument as we do not know a-priori which matchings are stable.

General Serial Dictatorship with Two sided Uncertainty: In serial dictatorship all the arms share the same preference.
With out loss of generality (up to renaming users) let us assume user i is preferred than user i′ for i < i′. There exists a unique
stable match which again without loss of generality (up to renaming arms) we can denote as (i, i) for all i ∈ [N ]. Then we
have dominated arm for user i as Di(θ) = {j : µi,j′(θ) > µi,i(θ), j ≤ i} for all i ≤ N . Dominated arms are the armed
preferred by user i compared to it’s own stable matched arm. We can construct an instance λγ,(ij) by picking a j ∈ Di(θ) and
then making user i preferable to user j for arm j, i.e. new γ′

j,i = γj,j(θ)+ε. We have kl(θ, λγ,(ij)) = kl(γj,i(θ), γj,j(θ)+ε).
Because serial dictatorship has unique stable match, we now have a blocking (user, arm) pair (i, j) in λγ,(ij) for the matching
{(i, i) : i ∈ [N ]}, and therefore λγ,(ij) ∈ Λ(θ). We have Λ1 = {λγ,(ij) : i ∈ [N ], j ∈ Di(θ)} ⊆ Λ(θ). Next, we consider
change on the user side. Let λµ,(ij) be constructed by picking any j > i, and making new µ′

i,j = µi,i(θ) + ε. This way now
(i, j) again create blocking pairs and as a consequence we have λµ,(ij) ∈ Λ(θ). Let Λ2 = {λµ,(ij) : i ∈ [N ], j > i} ⊆ Λ(θ).
Then the optimization problem (6), relaxed by replacing Λ(θ) with Λ1 ∪ Λ2 has the instantiation

min
η(M)≥0

∑
M ̸={(i,i):i∈[N ]}

η(M)
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s.t.
∑

M∋(i,j)

η(M) ≥ wi,j ,∀(i, j),

wi,jkl(γj,i(θ), γj,j(θ) + ε) ≥ 1,∀i ∈ [N ],∀j ∈ Di(θ)

wi,jkl(µi,j(θ), µi,i(θ) + ε) ≥ 1,∀i ∈ [N ],∀j > i

Because each user i can match with only one arm j in each matching we have a lower bound for the above optimization
problem as

cu,i =
∑

j∈Di(θ)

kl(γj,i(θ), γj,j(θ))
−1 +

∑
j∈[i+1,K]

kl(µi,j(θ), µi,i(θ))
−1.

Similarly, considering the perspective of each arm j we obtain a lower bound

ca,j(θ) =
∑

i:j∈Di(θ)

kl(γj,i(θ), γj,j(θ))
−1 +

∑
i<j

kl(µi,j(θ), µi,i(θ))
−1.

Thus the final lower bound for the general serial dictatorship for binary stable regret is

c(θ) ≥ max

(
max
i∈[N ]

cu,i(θ), max
j∈[K]

ca,j(θ)

)
.

This lower bound is different than the lower bound in (Sankararaman et al., 2021) in multiple ways. Firstly, our bound is for
binary stable regret, instead of per user individual regret like the previous one. Further note the lower bound therein does not
apply for general serial matching instance, but for further specialized OSB instances. Also the bound in the previous work
only uses user sided uncertainty, not both side uncertainty. So these bounds are incomparable.

F.2. Regret Lower Bound for General Instances

In this part, we connect the lower bound in Theorem F.1 with the admissible set gaps in θ.

Definition F.2 (θ-Locked). A partial rank (Pu, Pa) is θ-Locked iff for all i ∈ [N ] two arms j, j′ in Ji(θ) have the order in
Pu,i identical to Fu,i(θ), and for all j ∈ [K] two users i, i′ in Ij(θ) have the order in Pa,j identical to Fa,j(θ).

For a given instance θ, the boundary of the admissible set, namely B(θ), is defined as the set of partial ranks (Pu, Pa) ∈ A(θ)
that is not compatible with any other (P ′

u, P
′
a) ∈ A(θ).

Lemma F.3 (Λ(θ) Decomposition). Given an instance θ and the boundary admissible set B(θ), for each instance λ and the
corresponding full rank (Fu(λ), Fa(λ)) the following are equivalent: (a) λ ∈ Λ(θ) and
(b) (Fu(λ), Fa(λ)) is (i) θ-Locked, and (ii) reverses at least one θ-open triplet for each (Pu, Pa) ∈ B(θ), as specified below

• a triplet (i, j, j′) such that j >
Pu,i

j′, and either (i, j) or (i, j′) or both not in Locked(θ),

• a triplet (j, i, i′) such that i >
Pa,j

i′, and either (i, j) or (i′, j) or both not in Locked(θ).

Lemma F.3 provides a wider set of instances that have sub-logarithmic regret.

Corollary F.4. If there exists a (Pu(θ), Pa(θ)) ∈ B(θ) that contains no θ-open triplet then Λ(θ) = ∅. Hence, the stable
regret for the instance θ is sub-logarithmic.

Proof of Lemma F.3 and Corollary F.4 are deferred to SectionG.1.

More importantly, Lemma F.3 gives us a way to construct critical instances by reversing θ-open triplets that form a ‘cover’
of the set B(θ) to construct a full rank (Fu, Fa) that is θ-locked, and does not have any stable-match overlapping with the
instance θ. In fact, it is enough to consider the minimal covers of the set B(θ), which we denote as Cover(θ).

Definition F.5 (Cover of B(θ)). A set of triplets (i, j, j′) or (j, i, i′) for i, i′ ∈ [N ] and j, j′ ∈ [K], C is a minimal cover of
B(θ), i.e. C ∈ Cover(θ), iff all the following statements hold
(i) each (Pu, Pa) ∈ B(θ) there exists a triplet o ∈ C such that o is θ-open for (Pu, Pa),
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(ii) any proper subset C ′ ⊂ C, C ′ is not a cover of B(θ),
(iii) the set ΛC defined below is non empty

(µ̃C , γ̃C) ∈ ΛC ⇐⇒ (µ̃C , γ̃C) satisfies

µ̃C
i,j = µi,j(θ), γ̃

C
j,i = γj,i(θ), ∀(i, j) ∈ Locked(θ), (7)

µ̃C
i,j′ ≥ µ̃C

i,j + ε, ∀(i, j, j′) ∈ C, (8)

γ̃C
j,i′ ≥ γ̃C

j,i + ε, ∀(j, i, i′) ∈ C, (9)

As it will be clear shortly, in our lower bound a group of such covers can be simultaneously used as long as these covers are
not overlapping.

Definition F.6 (Non-connected Cover Group). A set of ‘set of triplets’ G = {C1, C2, ..Cc} is called non-connected cover-
group iff for all C ∈ G we have C ∈ Cover(θ), and for each distinct pair of covers C,C ′ ∈ G there is no (i, j) /∈ Locked(θ)
such that

{(i, j, j′), (i, j′, j), (j, i, i′), (j, i′, i) : i′ ∈ [N ], j′ ∈ [K]} ∩ C ∩ C ′ ̸= ∅.

The set of all non-connected cover-groups is denoted as CG(θ).

The next theorem is our main lower bound result. It first formulates the optimization problem in Theorem F.1 using the
θ-open triplets using dual formulation. Next, given the dual optimization in itself does not highlight the dependence clearly
the theorem provides a closed form lower bound (possibly not tight). For this second part we need to define a combined kl
divergence per cover C as

kl(θ, C) ≜
∑
i

max
(i,j)/∈Locked(θ),
(i,j′)∈Locked(θ)
(i,j,j′),(i,j′,j)∈C

kl
(
µij(θ), µij′(θ)

)
+
∑
j

max
(i,j)/∈Locked(θ),
(i′,j)∈Locked(θ)
(j,i,i′),(j,i′,i)∈C

kl
(
γji(θ), γji′(θ)

)
, (10)

which we use in the regret bounds.

Theorem F.7. The value of c(θ) in Theorem F.1 is lower bounded by the value cε(θ) that optimizes the following, for any
ε > 0

max
ι(λ)≥0

∑
λ∈∪C∈Cover(θ)ΛC

ι(λ), s.t.
∑

λ∈∪C∈Cover(θ)ΛC

ι(λ)kl(θ, λ;M) ≤ 1,∀M /∈ Stable(θ), (11)

where ΛC is as defined in Definition F.5.

Furthermore, c(θ) satisfies the following lower bound c(θ) ≥ maxG∈CG(θ)
∑

C∈G kl(θ, C)−1 where, kl(θ, C) is defined in
Equation (10).

The proof is provided in Section G.

Our lower bound in the main paper, Theorem 5.2, is derived from the main lower bound in Theorem F.7. We now make
some remarks on various definitions used.

Remark on Definition F.5: We note in the above definition the condition (i) and (ii) together defines the set of minimal
vertex covers of a hyper graph over the triplets as vertices, and the partial ranks (Pu, Pa), containing their respective subset
of θ-open triplets as edges. The condition (iii) ensures that there exists an instance λ corresponding to a cover C. For
example, it avoids inclusion of two triplets (i, j, j1) and (i, j2, j) in cover where (i, j1) and (i, j2) both are in Locked(θ).
This is not realizable because we can not chose a µ̃C

i,j that simultaneously bigger than µi,j2(θ) and smaller than µi,j1(θ),
where µi,j1(θ) < µi,j2(θ). Condition (iii) is present because we need to respect the θ-locked property of any λ ∈ Λ(θ).

G. Proof of Results in Section F
Before proceeding to the proof, we need to define the set kl>0(λ) = {(i, j) : kl(θ, λ; (i, j)) ̸= 0} contain the pairs where λ
changes from θ, and for any set of instances A, kl>0(A) = ∪λ∈Akl>0(λ).

We also require the following two lemmas that help with deriving bounds for optimization problem (12).
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The following lemma shows how Λ(θ) can be broken into non-overlapping support and can be used in bounding the
optimization problem (12).

Lemma G.1. Consider a group of subsets Λl ⊆ Λ(θ) for l ∈ [L] for L ≥ 1, such that for any two distinct pair,
(Λ,Λ′), we have non-overlapping support kl>0(Λ

′) ∩ kl>0(Λ). Then the optimization problem (12) admits a lower bound∑
l(maxλ∈Λl

maxM/∈Stable(θ) kl(θ, λ;M))−1.

Next, we provide a kl divergence bound for instances under the set ΛC for cover C, as defined in F.5.

Lemma G.2. For a minimal cover C ∈ Cover(θ) there exists a λC that for all M /∈ Stable(θ) satisfies kl(θ, λC ;M) ≤
kl(θ, C) where kl(θ, C) is as defined in Equation (10).

Proof of Theorem F.7. (Part 1) We first show that cε(θ), defined in this theorem statement, provides a lower bound for c(θ).
The dual of the above optimization problem in in Theorem F.1 is given as

max
ι(λ)≥0

∑
λ∈Λ(θ)

ι(λ), s.t.
∑

λ∈Λ(θ)

ι(λ)kl(θ, λ;M) ≤ 1,∀M /∈ Stable(θ). (12)

As we need to construct a lower bound, any feasible solution of the above dual optimization problem will give us a valid
lower bound. In particular, for any set Λ′ ⊆ Λ(θ) can be used to create a valid lower bound by setting ι(λ) = 0 for all
λ /∈ Λ′. Therefore, Equation (11) is justified as long as Λ′ used is a subset of Λ(θ). For that purpose, we need to show that
for each triplet C ∈ Cover(θ), for any λC = (µ̃C , γ̃C) that satisfies Equations (7), (8), and (9) we have λC ∈ Λ(θ). We
call the set of λs satisfying these three equations for some C ∈ Cover(θ) as Λ′(θ). Then Λ′(θ) ⊆ Λ(θ). If for a given
C ∈ Cover(θ), λ satisfies Equation (8) or (9), then the condition b(ii) in Lemma F.3 holds. Also, if λ satisfies Equation (7)
then λ is θ-locked, and b(i) in Lemma F.3 holds. Therefore, by Lemma F.3 we know λ ∈ Λ(θ). Hence, the solution to
optimization problem in the current theorem forms a lower bound for c(θ) in Theorem F.1.

(Part 2) The next part of the proof establishes that for any non-connected cover-group G ∈ CG(θ) we have a valid lower
bound as

∑
C∈G

1
kl(θ,C) , where kl(θ, C) is as defined in the theorem statement.

Due to Lemma G.1 we want to create group of subsets Λl ⊆ Λ(θ) which are pairwise non-overlapping (same as in
Lemma G.1). We choose a G ∈ CG(θ). For each C ∈ G we construct a singleton set λC ⊆ Λ that satisfies the
equations (7), (8), and (9) that has small kl divergence as specified in Lemma G.2. The constructed λC has the property
kl>0(λC) ⊆ {(i, j) : {(i, j, ·), (i, ·, j), (j, i, ·), (j, ·, i)} ∩ C ̸= ∅}. But as G is a non-connecting cover-group we have for
any two distinct C,C ′ ∈ G as kl>0(λC) ∩ kl>0(λC′) = ∅. Therefore, due to Lemma G.1 we obtain the lower bound∑

C∈G
1

kl(θ,C) . Taking a max over G ∈ CG(θ) gives us the final result.

G.1. Additional Proofs required for Proof of Theorem F.7

Proof of Lemma F.3. For any λ ∈ Λ(θ) assume (Fu(λ), Fa(λ)) is not θ-locked that implies for some (i, j) ∈ Locked(θ)
we have either µi,j(θ) ̸= µi,j(λ) or γj,i(θ) ̸= γj,i(λ). Which is a contradiction. So (Fu(λ), Fa(λ)) must be θ-locked.
We next assume that the full rank (Fu(λ), Fa(λ)) reverses no θ-open triplet for some partial rank (Pu(θ), Pa(θ)) ∈ B(θ).
Consider any i, i′ ∈ [N ] and any j, j′ ∈ [K]. Then j >

Fu,i(λ)
j′ implies j′ ̸>

Pu,i(θ)

j. Similarly, i >
Fa,j(λ)

i′ implies i′ ̸>
Pa,j(θ)

i.

Hence, (Fu(λ), Fa(λ)) is compatible with (Pu(θ), Pa(θ)), and (Fu(λ), Fa(λ)) ∈ FullRank(Pu(θ), Pa(θ)). But that
leads to a contradiction as (Fu(λ), Fa(λ)) /∈ ∪(Pu,Pa)∈A(θ)FullRank(Pu, Pa). So, (Fu(λ), Fa(λ)) must reverse at least
one θ-open triplet for each (Pu, Pa) ∈ B(θ). This implies that for all λ ∈ Λ(θ) the conditions (i) and (ii) in the lemma
statement are satisfied.

To prove the other direction, for some λ let conditions (i) and (ii) are satisfied. Then due to (i), λ satisfies µij(θ) =
µij(λ), γji(θ) = γji(λ),∀(i, j) ∈ Locked(θ). Next due to (ii), (Fu(λ), Fa(λ)) reverses at least one θ-open triplet for each
(Pu, Pa) ∈ B(θ). But that means (Fu(λ), Fa(λ)) is no longer compatible with any (Pu, Pa) ∈ B(θ). This in turn implies,
from the definition of B(θ) that (Fu(λ), Fa(λ)) is not compatible with any (Pu, Pa) ∈ A(θ). This completes the proof.

Proof of Corollary F.4. From Lemma F.3 it immediately follows that if there is one (Pu(θ), Pa(θ)) ∈ B(θ) that contains no
θ-open triplet then Λ(θ) = ∅. To conclude that we can statistically attain a sub-logarithmic lower bound (not a constructive
argument) we need to show that by playing stable matching we can reach the partial rank (Pu(θ), Pa(θ)). To recover a
partial rank (Pu, Pa) we need to recover all the inequalities that form the partial rank. For (Pu(θ), Pa(θ)) with no θ-open
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triplet any inequality i′ ̸>
Pa,j(θ)

i implies both (i, j) and (i, j′) lie in Locked(θ). But, by playing the set of stable matchings

in a round-robin manner for the first Ω(T 1−ε) rounds, for some ε > 0 we can recover the rewards of (i, j) and (i, j′) up to
any O(1) accuracy Θ(exp(−T 1−ε)) by round t. Similar conclusions follows for any inequality i′ ̸>

Pa,j(θ)

i. Therefore, for

any instance with O(1) reward gaps we can attain a O(1) regret using a uniformly good policy.

Proof of Lemma G.1. The lower bound is obtained by setting
∑

λ∈Λl
ι(λ) = (maxλ∈Λl

maxM/∈Stable(θ) kl(θ, λ;M))−1,
and ι(λ) = 0 for all λ /∈ ∪lΛl. The above choice gives the stated lower bound is easy to see. We need to show the
inequalities hold. We pick an arbitrary M /∈ Stable(θ) and calculate the right hand side of the bound as follows:∑

λ∈Λ(θ)

ι(λ)kl(θ, λ;M) =
∑
l∈[L]

∑
λ∈Λl

ι(λ)kl(θ, λ;M)

= max
l∈[L]

∑
λ∈Λl

ι(λ)kl(θ, λ;M)

≤ max
l∈[L]

max
λ∈Λl

kl(θ, λ;M)
∑
λ∈Λl

ι(λ)

≤ max
l∈[L]

maxλ∈Λl
kl(θ, λ;M)

maxλ∈Λl
maxM/∈Stable(θ) kl(θ, λ;M)

≤ 1

The second equality is due to the non-overlapping support property of any pair of sub sets (Λ,Λ′). Due to this property for
any matching M there exists at most one l ∈ [L] such that

∑
λ∈Λl

ι(λ)kl(θ, λ;M) = 0. The rests are standard.

Proof of Lemma G.2. We fix an arbitrary cover C ∈ Cover(θ). First, observe that for any C ∈ Cover(θ) we first note that
keeping µ̃C

i,j = µi,j(θ) for all (i, j) such that (i, ·, j) /∈ C and (i, j, ·) /∈ C satisfies the inequalities (8). Similarly, keeping
γ̃C
j,i = γj,i(θ) for all (j, i) such that (j, ·, i) /∈ C and (j, i, ·) /∈ C satisfies the inequalities (9). So the changes are isolated in

the triplets under C. Therefore, it follows that

kl(θ, λC ;M)

=
∑

(i,j)∈M

kl(µi,j(θ), µ̃
C
i,j) + kl(γj,i(θ), γ̃

C
j,i)

≤
∑
i

max
j:(i,j)/∈Locked(θ)

kl(µi,j(θ), µ̃
C
i,j) +

∑
j

max
i:(i,j)/∈Locked(θ)

kl(γj,i(θ), γ̃
C
j,i)

≤
∑
i

max
j:(i,j)/∈Locked(θ)

(
1((i, ·, j) ∈ C ∨ (i, j, ·) ∈ C)kl(µi,j(θ), µ̃

C
i,j)

)
+
∑
j

max
i:(i,j)/∈Locked(θ)

(
1((j, ·, i) ∈ C ∨ (j, i, ·) ∈ C)kl(γj,i(θ), γ̃

C
j,i)

)
≤

∑
i

max
j:(i,j)/∈Locked(θ)

max
δ=±ε

max
(i,j′)∈Locked(θ)
(i,j,j′),(i,j′,j)∈C

kl(µi,j(θ), µi,j′(θ) + δ)

+
∑
j

max
i:(i,j)/∈Locked(θ)

max
δ=±ε

max
(i′,j)∈Locked(θ)
(j,i,i′),(j,i′,i)∈C

kl(γi,j(θ), γi′,j(θ) + δ)

The first inequality is true as all non-zero kl distance values are isolated to (i, j) /∈ Locked(θ) as per (7). The second
inequality holds as the changes are further isolated to triplets inside the cover C. We now explain the third inequality. For a
given cover C, by Definition F.5 there is a valid λC that satisfies equations (7), (8), and (9). For such a λC , we claim to have
for any (i, j) /∈ Locked(θ)

min
(i,j′)∈Locked(θ)

(i,j,j′)∈C

µi,j′(θ)− ε ≤ µ̃C
i,j ≤ max

(i,j′)∈Locked(θ)
(i,j′,j)∈C

µi,j′(θ) + ε, (13)
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min
(i,j′)∈Locked(θ)

(j,i,i′)∈C

γj,i′(θ)− ε ≤ γ̃C
j,i ≤ max

(i,j′)∈Locked(θ)
(j,i′,i)∈C

γj,i′(θ) + ε, (14)

Due to the inequalities (7) and (8) we have

µ̃C
i,j ≤ µi,j′(θ)− ε, ∀j′ : (i, j, j′) ∈ C, (i, j′) ∈ Locked(θ),

µ̃C
i,j ≥ µi,j′(θ) + ε, ∀j′ : (i, j′, j) ∈ C, (i, j′) ∈ Locked(θ).

Therefore Equation (13) holds. The inequality (14) follows in a similar manner.

It is easy to see the inequality (13) implies

kl(µi,j(θ), µ̃
C
i,j) ≤ max

δ=±ε
max

(i,j′)∈Locked(θ)
(i,j,j′),(i,j′,j)∈C

kl(µi,j(θ), µi,j′(θ) + δ).

Similarly, the inequality (14) implies

kl(γj,i(θ), γ̃
C
i,j) ≤ max

δ=±ε
max

(i′,j)∈Locked(θ)
(j,i,i′),(j,i′,i)∈C

kl(γi,j(θ), γi′,j(θ) + δ).

Finally, taking infimum over ε > 0 we obtain the final value of kl(θ, C) in Equation 10.
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