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ABSTRACT

Conformal prediction can be used to construct prediction sets that cover the true
outcome with a desired probability, but can sometimes lead to large prediction sets
that are costly in practice. The most useful outcome is a singleton prediction—an
unambiguous decision—yet existing efficiency-oriented methods primarily opti-
mize average set size. Motivated by this, we propose a new nonconformity score
that aims to minimize the probability of producing non-singleton sets. Starting
from a non-convex constrained optimization problem as a motivation, we provide
a geometric reformulation and associated algorithm for computing the noncon-
formity score and associated split conformal prediction sets in O(K) time for
K -class problems. Using this score in split conformal prediction leads to our
proposed Singleton-Optimized Conformal Prediction (SOCOP) method. We eval-
uate our method in experiments on image classification and LLM multiple-choice
question-answering, comparing with standard nonconformity scores such as the
(negative) label probability estimates and their cumulative distribution function;
both of which are motivated by optimizing length. The results show that SOCOP
increases singleton frequency (sometimes by over 20%) compared to the above
scores, with minimal impact on average set size.

1 INTRODUCTION

Reliable uncertainty quantification is often needed for deploying predictive models in settings of
importance. While standard single point predictions can be very useful if models are accurate, they
can be problematic if model accuracy drops. Prediction sets address this limitation by providing a
subset of possible labels, C'(xz) C Y, for a given input € X. The primary requirement for such
sets is usually a form of coverage. Formally, given features X € X with some distribution, and
a multi-class label Y € ), we seek sets C'(X) C Y satisfying the marginal coverage guarantee
P{Y € C(X)} > 1 — «. Conformal prediction (see e.g., Vovk et al.| [1999; Gammerman et al.,
1998 |Vovk et al.|, 2005, etc) offers a methodology for constructing prediction sets that satisfy this
guarantee under the mild assumption of data exchangeability.

While validity is essential, the practical utility of a prediction set is determined by its efficiency.
For instance, a trivial set containing all labels is valid but uninformative. In practice, efficiency
is often evaluated by the expected size of the sets Ex[|C(X)|]. A variety of works have studied
how to achieve small sets on average, ranging from choosing suitable nonconformity scores to ex-
plicit optimization approaches (see e.g., [Takeuchi, 2020; Sadinle et al., 2019; Romano et al., [2020;
Angelopoulos et al.| 2021} |Kiyani et al., 2024, etc).

However, average size is not necessarily the ideal measure of efficiency. Often, the most desirable
outcome is an unambiguous prediction, a singleton set containing only one label. A set of size
two or more may require additional human intervention or changing the workflow when used in
downstream analysis, and thus brings an outsized cost. This motivates an alternative efficiency
criterion, first conceptualized in|Vovk et al.[|(2005) as the M-criterion, which seeks to minimize the
probability of producing a non-singleton set, Px[|C'(X)| > 1]. We refer to this as the singleton
objective)'| To our knowledge, practical conformal prediction methods that aim to optimize the
singleton objective have not yet been developed.

'Strictly speaking, a singleton set refers to a cardinality of exactly one (|C'(X)| = 1). In this work, we use
the term “singleton objective” to broadly refer to the goal of minimizing the probability of returning multiple
labels (JC'(X)| > 1). As we discuss below in our experiments, zero sets occur extremely rarely, and so the two
objectives effectively coincide.
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In this work, we bridge this gap by developing conformal prediction sets motivated by optimizing a
combination of the singleton objective and the expected length for classification problems, subject
to coverage. We begin by formulating this as an optimization problem over prediction sets (which
are discrete variables). Our main contributions are then as follows:

1. Nonconformity score inspired by singleton objective. We use the singleton objective as
inspiration to define a nonconformity score aiming to enhance singleton probability. Since
the original optimization problem is constrained, we consider its Lagrangian, which we
show is separable across z. We show that for each fixed z, the optimal prediction set is
the set of top-few labels, and that the prediction sets are nested as the Lagrangian penalty
parameter increases. This motivates us to define a nonconformity score based on nested
conformal prediction (Vovk et al.l 2005; |Gupta et al., 2022).

2. Efficient algorithm to compute nonconformity score: We derive a highly efficient algo-
rithm to compute the nonconformity score, through a geometric perspective. We show that
this problem reduces to finding the lower convex hull of a set of K two-dimensional points
for K-class classification problems, which has O(K’) complexity per instance. We show
that split conformal prediction sets can be computed with the same complexity.

3. Empirical validation: We conduct detailed experiments on three image classification
datasets (two versions of ImageNet and TissueMNIST) and LLM multiple-choice question
answering. The results demonstrate that our method, which we call Singleton-Optimized
Conformal Prediction (SOCOP), achieves a favorable balance between minimizing average
set size and maximizing the frequency of singleton predictions compared to state-of-the-art
baselines. Often, we can reduce the non-singleton probability by a large fraction (such as
20%) while only incurring a small increase in expected set size.

Notation. For a positive integer K, we denote [K] := {1,...,K}. We denote the (K — 1)-
dimensional simplex of probabilities by Ax 1 := {(z1,...,2K) : .oy 2z = 1}. For a finite set
A, we write | A| for its cardinality. The indicator of a set A is denoted by 7(A).

1.1 RELATED WORK

The origins of distribution-free prediction sets date back to the early works of [Wilks| (194 1)), Wald
(1943)),Scheffe & Tukey|(1945)), and Tukey|(1947;|1948)). Distribution-free inference and conformal
prediction has been extensively studied in recent works (see, e.g., Saunders et al.||[1999; Vovk et al.|
1999; Papadopoulos et al.,|2002; |Vovk et al., [2005} [Vovkl 2013; [Lei et al., [2013} [Le1 & Wasserman,
2014 |Lei et al., 2018; Romano et al., 2020, etc). Overviews of the field are provided by Vovk et al.
(2005); |Shafer & Vovk|(2008), and |Angelopoulos & Bates| (2023).

Recent research has started investigating ways to improve the efficiency of prediction sets. (Sadinle
et al.l 2019) have shown that the true probability of the labels given the features is the conformity
score that leads to prediction sets that minimize expected length. Adaptive scoring schemes (Ro-
mano et al., 2020; /Angelopoulos et al., 2021) have a similar motivation, but are derived from a
conditional coverage perspective. These works are related to ours in that we also derive a new non-
conformity score. However, taking into account the singleton probability or M-criterion (Vovk et al.,
2005), our work requires addressing new technical challenges in terms of efficiently computing the
prediction sets. Recent work aims to directly optimize the length, possibly with conditional coverage
guarantees (Kiyani et al.| [2024). Other work has explored different notions of efficiency, through
direct optimization (Stutz et al., 2022; |Shi et al.,[2025)), computational shortcuts (Liang et al.,|2023)),
or other approaches, see e.g., Liang et al.| (2025); Le Bars & Humbert| (2025); |[Braun et al.| (2025));
Behboodi et al.| (2025), etc. Due to space limitations, additional related work is discussed in Ap-

pendix

2 A SINGLETON-OPTIMIZED NONCONFORMITY SCORE

2.1 PROBLEM FORMULATION

We consider a classification problem with labels y € Y = {1,..., K} and features x € X = R
Our goal is to construct prediction sets C'(z), for all x, satisfying the coverage guarantee P(Y €
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C(X)) 2 1 — a. Let M be the collection of alﬂ (measurable) prediction sets C' : X — 2Y. Our
motivating problem is to find prediction sets that are optimal with respect to a linear combination of
the singleton objective and length, subject to coverage:

Loin FX(C) :==Px [|C(X)[ > 1] + AEx [|C(X)]]
st G(C)=P(Y € C(X)) = (1—a) > 0.

where A > 0 is a regularization parameter that we will set later. This objective balances the probabil-
ity of non-singletons Px [|C'(X)| > 1] and the expected size Ex [|C(X)|]. We will argue that this
leads to a favorable trade-off, whereby increasing one by a small amount results in a large decrease
in the other.

This optimization problem is defined over prediction sets, which belong to a discrete, discontinuous
space (e.g., the linear combination of two sets is undefined), and so standard gradient-based opti-
mization methods are not applicable. However, we emphasize that this problem will merely serve as
a motivation for us to define a useful nonconformity score. We will not attempt to solve this problem
exactly, but rather use it as a starting point, transforming it into a form that allows us to derive our
nonconformity score.

Our first step towards defining the nonconformity score is to study the dual of the above problem.
This will allow us to use separability in the solution, and thus derive a nonconformity score. Let Px
be the distribution of X. The Lagrangian with dual variable > 0 is:

L) = [ [10C@I> D+ NC@] -1 3 Prxllo)] Peld) + 0 -a).
& yeC(x)

Since L (C,n) = F\(C) —nG(C) < F\(C) for every feasible C and n > 0, minimizing £ (C, n)
gives a lower bound on the original problem/’

A key observation is that the minimization of £ (C, 7) over C'is separable in z, i.e., it can be solved
by optimizing over each x separately. Denote, for all x € X, the per-instance loss

Uy (Cl@)in) = I(|C ()| > 1) + AC(@) =0 Y plyle).

yeC(x)

Then, we can write £y ( C’ n) = [y lo(e)x (C(x);n) Px(dz) + n(1 — a) as an integral of the
per-instance loss. Thus, can be m1n1mlzed over C' € M by minimizing £p,(.|5)x (C(z);n) for
each x € X separately. Smce Cp(.12),x (C();n) can be viewed as an instance-level cost associated
with the prediction set C'(x) and the probabilities of the labels p(-|z), this motivates us to leverage
it to construct our nonconformity score.

Continuing with the general approach of leveraging the theoretically optimal prediction set for the
construction of the nonconformity score, we study the minimization of ¢. For any probability distri-
bution v € A _1, and Lagrange multiplier > 0, we consider solving for the following singleton-
optimized set S, ., C [K], defined by the optimization problenﬂ

Sy i= Spy.x € a1g %g 2,2 (S;m). 2)

Then, all solutions of minimizing (1) can be writtetﬂ as Oy (x) == Sy p(|a)-

>We will endow X with the Borel o-algebra. All quantities considered in this paper will be measurable with
respect to appropriate o-algebras; this will not be mentioned further.

3An optimal solution C* to this problem minimizes the original objective F' subject to the constraint
P(Y € C(X)) = P(Y € C*(X)). For this reason, it would be reasonable to consider the original opti-
mization problem subject to the constraint G(C') = 0, in which case, the Lagrange multiplier approach could
provide a certificate of optimality or near-optimality quite directly. However, ultimately, we will not solve the
above problem directly but rather only use it as a way to define a nonconformity score, which we will then
use in conformal prediction. Therefore, certifying the optimality of our intermediate solution to the original
optimization problem is not a central goal of our research.

“If there are multiple solutions, we choose any set that has a minimal size. The same holds for the definitions
in the following text. Our claims will hold for all optimizing sets, and for simplicity we will refer to “the”
optimizer.

SWhen the value of )\ is fixed or clear from the context, we will often omit it from our notation.
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2.2  DEFINITION OF THE NONCONFORMITY SCORE

From now on, without loss of generality, we order the probabilities such that v, > v,, > - >
Yyx > 0, where K = |)|. Fortunately, the structure of the prediction sets .S, , can be characterized.
A starting point is the following simple result, whose proof (with all proofs) is provided in the
appendix. Forany j € {0,1,..., K}, let F; denote a set of the top j labels, breaking ties arbitrarily;
where F is the empty set.

Lemma 2.1 (The structure of singleton optimal sets). Foranyn = 0 andy € Ag_1, Sy~ is the set
of top-7j labels for some j that depends on 1 and vy.

The next and crucial observation is that the sets S, 5 from @) are nested as a function of the Lagrange
multiplier 7.

Lemma 2.2 (Nested Sets Property). For 0 < 11 < n2, we have Sy, v C Sy, +.

This motivates us to define a nonconformity score via nested conformal prediction (Vovk et al.,
2005; |Gupta et al.,[2022), where we aim to find the smallest »—and thus the smallest set S, ,—that
contains the true label.

In practice, the true conditional probability p(-|x) is typically unknown; and instead, we only have
access to an estimated probability p(-|x). By plugging in the estimated probabilities in lieu of the
true ones and using nested conformal prediction (Vovk et al., 2005} |(Gupta et al., [2022)), we define
the singleton-optimized nonconformity score:

Definition 2.3 (Singleton-optimized nonconformity score). For an input x € X with label y €
Y, for a probabilistic predictor p such that p(- | x) is a probability distribution over ), and a
regularization parameter \ > 0, define the singleton-optimized nonconformity score

r(z,y) :=ra(z,y) = inf {7’ >0:y€ ST7,;(.‘$)7,\} . 3)

where the singleton-optimal set Sy, ~ » is defined in for a Lagrange multiplier n > 0.

In principle, this nonconformity score can be used with a variety of techniques from conformal
prediction, including split conformal prediction (Papadopoulos et al., 2002), cross-conformal pre-
diction (Vovkl |2015), Mondrian and label conditional conformal prediction (Vovk et al., 2005), etc,
to construct prediction sets. The method of choice depends on the type of data and guarantee de-
sired. However, the practical use of the nonconformity score first requires an efficient algorithm
to compute it. As we will see below, a naive search over 7 can be expensive when the number of
classes is large. In what follows, we discuss how to compute the nonconformity score r efficiently.
Readers more interested in experimental results may skip to Section 3]

2.3  GEOMETRIC APPROACH TO COMPUTING THE NONCONFORMITY SCORE

In order to develop a method to compute the nonconformity score, we first study the problem of
computing the prediction set S, , for a given vector of probabilities v € Ag_;. This is used
directly in the nonconformity score. By Lemma [2.1] the optimal prediction sets from (2) are equal
to the top few labels. Specifically, S, = Fy(y;y). Where s (n;) is the optimal subset size (or

optimal index), defined via the optimization problem: .

K(1;7) = arg IIllIl {\II (kyy)=Ik>1)+Xc—n- ny% 4)

=1

For a fixed value of 7, the optimal index «(7; ) can be found in time O(K') by observing that, for
k > 3, the gaps 0y := ¥, (k,7) — ¥, (k — 1,7) = X\ — 1y, are non-decreasing in & due to the
ordering 7y, = 7y, = . ... Hence, to find the optimum, it is enough to find the smallest index £* > 3
such that 6= < 0 < k=41, if such an index exists; otherwise setting £* = K. Then, we compare
the objective value at k* with those for £ = 0, 1,2 and choose the best. This immediately leads to
an O(K) algorithm for computing the prediction set .S,, .

Next, by leveraging the reduced problem (@), the nonconformity score in (3) can be equivalently
written as:

r(z,y;) =inf{r 2 0: k(7;p(-|x)) > i}. 5)
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A direct approach might be to search over values of 7, checking  (7; p(+|z)) > i for each case, until
we find a value that approximates the true value within a certain desired accuracy. However, this
direct approach becomes computationally challenging for large values of K, because computing the
optimal index takes linear time O(K) for each 7. Therefore we propose a fast alternative computa-
tional method, which relies on studying the optimal index for different values of 7 simultaneously,
and can be viewed through a geometric perspective.

A first step observation is that the nested sets property immediately implies that  — (n;7) is a
monotone step function.

Corollary 2.4 (Properties of optimal index function). For any v € Ag_1, k(:;7) : [0,00] —
{0,1, ..., K'} is a monotonically non-decreasing, left-continuous step function with £(0;~) = 0 and
k(003 7y) = lim, o0 k(-3 7) = K.

Next, we aim to characterize the specific points where the jumps of « happen. Denote 'y, =
Zle vy, and g, = I(k > 1) + Ak for conciseness. For each k = 0,1, ..., we consider the point
Py = (T, gx) in R?. This yields a set of K + 1 points P = {P,..., Px}. Our algorithm will
leverage the convex hull of P, i.e., {Zfio BiP; : B; > 0, Zfio B; = 1}, which is a convex polygon
in R2. The lower convex hull is the lower boundary of this polygon, starting from Py = (0,0) to
Pk = (1,14 \K).

Let the ordered sequence of vertices of the lower convex hull of P be {P,,, Py, ,. .., Py, }, where
vg < v < -+ < vy, are indices from {0, ..., K}. By construction, we have vy = 0 and v,,, = K,
since Iy, are strictly increasing and gy, are non-decreasing with k. Fori = 1,. .., m, define the slope

of the edge connecting the vertices P, , and P,, as ; := (gv, — gv,_,)/(Tv; — T'y,_, ). To unify
the analysis, we define 1y := 0 and 7,,,+1 := +00. The following theorem (with proof in Appendix
characterizes the jumps and slopes of . Figure [[|shows an example of a lower convex hull of a
point set P for a probability vector with K = IOE]

Theorem 2.5 (Characterizing the optimal index function k). The range of k(n;~) for n € [0, 00)

is precisely the set {vg,v1, ..., Uy} of indices of the vertices of the lower convex hull. Moreover,
the discontinuity points of n — k(n;~y) are the slopes n;, i = 1, ..., m of the edges of the vertices.
Specifically, 0, forn e [0,m]

k(n;y) = v, forne (ni,nip1], 1<i<m—1
K, forn € (nm,00).

Computing the nonconformity score. With Theorem we can efficiently compute the
nonconformity scores and the final prediction

Pio sets. The form r(z,y;) = inf{n > 0 : y; €

2.00 Point P = (Tk, g) Pofns=147 Sy piay} = inf{n = 0 ¢ k(p;p(|x)) > i} is
175 —e— Lower Convex Hull of P P7B,724==33'7 equivalent to finding the smallest slope 1; that
15 N Ps P leqc{s to a prediction set of size v; “2. i.” In-
P, tuitively, the slope 7 represents the “price” per

1.25 P2 unit of coverage relative to the set-size penalty.
1,00 Navigating the lower convex hull corresponds to
finding the minimum price required to “purchase”

0.75 enough coverage to include the target label y; in
0.50 the set. To compute this, we can first find the ver-
025 tiges of the lower convex hull (which.can be done
b P, with a standard approach, see Algorithm [2), and
0.00 Mm=05 identify the correct slope; these can be performed
60 02 04 06 08 10 in a single loop. Having an efficient algorithm to

Mk
Figure 1: Lower convex hull for a simulated proba-
bility vector with K = 10.

compute the nonconformity score is useful in a
variety of conformal prediction methods, such as
split conformal prediction (Papadopoulos et al.,
2002), cross-conformal prediction (Vovk, |2015)),
Mondrian conformal prediction (Vovk et al.| |2005), etc. In this paper, we will focus on split confor-
mal prediction, which is one of the most popular and widely applicable methods.

SRed points indicate the hull vertices, and 7; denote the corresponding slopes. The nonconformity scores
are r(z,y1) = n, r(@,y2) = - = r(z,y7) = n2, r(z,ys) = 03, r(z,yo) = na, and r(z, y10) = 7.
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To run split conformal prediction given a set of n calibration data points and a desired target coverage
level 1 — avin [0, 1], we can compute §, the (1 —«)(1+ 1/n)-th quantile of the nonconformity scores
over the calibration set; see Algorithm [3|in the Appendix.

Coverage guarantees. Naturally, the guarantees of conformal prediction are inherited here. Specif-
ically, if our calibration and test data point are exchangeable, then we have that P(Y,+; €

C(Xp41)) = 1 — a, where the randomness is taken jointly over the calibration and test data.

Computing the prediction set. Consider a new data point x,, 1 for which we aim to compute the
prediction set C’(mn+1). The range of 7(z+1,91)," -, 7(Tnt1, Yxi ) is the set of the discontinuity
points of k(n; p(:|zp+1)). Therefore, due to the monotonicity of  in 7, we do not need to compute
the score for each candidate label individually. Instead, we can directly search for the maximal slope
along the lower convex hull that falls below the quantile ¢; see Algorithm|[I]

Algorithm 1 SOCOP: Singleton-Optimized (Split) Conformal Prediction; with Singleton-Optimized Score

Require: Pre-trained model: p, test point: X1, penalty: A > 0, (1 — «)(1 4 1/n)-th quantile of calibration
set nonconformity scores: q.
Ensure: A prediction set C (Xn+1) with coverage 1 — «.
1: Sort p(+| Xr+1) to get Psored (-] Xn+1) and associated labels idXsorted, n+1
(V,T, g) « Find lower convex hull using Algorithm@]with input (Psorted (| Xn+1), A)
kﬁnal 0
forj=1to|V| —1do
vo = Vi—1 vy <V 0 (9o =90 )/ (Doy —To_)
If n; < g then Kfina — v, else break from for loop
end for
C(Xn+1) <~ { idxsnned,n-&-l[k} : 0 g k < kﬁnal -1 }
return C'(X,,11)

ORI NR2N

2.4 THE SCOPE OF OUR FRAMEWORK

In this section, we discuss certain important special cases and extensions of our methodology.

Our nonconformity score was derived starting from a linear combination of the singleton probability
and the expected length. Therefore, it would be reassuring to know that our solution can indeed
provably interpolate between the two by recovering them in certain limiting cases. In the next result,
we show that this is indeed true and that our nonconformity score reduces to the corresponding
nonconformity scores for these two cases. Recall below that we consider the labels to be sorted such
that p(y1|z) > p(y2|z) > .. ..

Corollary 2.6 (Recovery of singleton objective optimization and least ambiguous sets). (1) When
A — 00, the nonconformity scores have the limit r,5(x, y;) = 1/D(yi|z). The resulting split confor-
mal prediction sets have the form {y € Y : p(y|z,t1) > ¢}, for some quantity ¢, recovering least
ambiguous set-valued classifiers (Sadinle et al.| 2019)).

(2) When \ = 0, the nonconformity score becomes Tingieton (T, i) = 1(i > 2)(1 —p(y1 | x))il.
The resulting split conformal prediction sets are either the top-1 label {y1} if p(y1|Tns1) = ¢ for
some quantity c, or the whole set ) otherwise.

The proof of Corollary [2.6]is provided in Appendix [B] The solution to the pure singleton objective
has an intriguing structure. The prediction sets are either the top-label or the full-label set. This
is intuitively reasonable: in the singleton objective, we are not paying any cost for the first label
included in the set, so it makes sense to always include the most confident label. Moreover, we are
paying full cost for any additional label included, and thus to ensure coverage, it is reasonable to
include all labels into the prediction set.

However, this dichotomous behavior may not provide enough granularity in practice and may often
output large prediction sets. This motivates our approach of taking a linear combination between
the singleton and the length objectives. Our empirical results demonstrate that the nonconformity
scores derived from this linear combination offer a favorable trade-off, significantly reducing the
probability of non-singletons compared, while only increasing the length by a little.
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Extension to P(size > ko). Beyond controlling the probability of non-singletons, in some appli-
cations it might instead be more desirable to control the probability of sets larger than some other
number, such as two, three, or ten. For instance, we might have two employees check one output
each, and thus we might tolerate prediction sets of size two. Therefore, it is desirable to extend our
framework to control the probability Px [|C(X)| > ko] of sets size larger than kg € {1,..., K —1}.

Fortunately, it turns out that our methods extend seamlessly to this case. We now seek to minimize
Px[|C(X)| > ko] + AEx[|C(X)]], subject to the same coverage constraint. The corresponding
Lagrangian and separability arguments proceed similarly, with the difference that in the problem (@),
g in the cost function becomes g, = I(k > ko) + Ak, k = 0,1,..., K. The remaining steps are
identical. The nonconformity score for the case A = 0 from Corollary becomes 7p-k (2, yi) =

I({i > ko})/(1 — 250:1 p(y; | z)). The corresponding sets consist of either the top kq indices or
the full set.

3  EXPERIMENTS

In this section we report experiments comparing our SOCOP method with several prediction sets.
The first one uses the probabilities output by the classifier directly, sorts them in decreasing order,
and outputs the smallest set of classes whose predicted probabilities sum to at least 1 — «; we
call this the P1lug—-In sets[] We also report results with split conformal prediction sets using a
variety of nonconformity scores such as RAPS (Angelopoulos et al., 2021); Pure Singleton
(A =0); Least Ambiguous Sets (Sadinle et al.,|2019), corresponding to the nonconformity
scoreﬂ (x,y) — 1—p(y|x), which recovers the case A — oo in our method. We additionally evaluate
the CPL method proposed by [Kiyani et al.[|(2024). This approach employs the same nonconformity
score as Least Ambiguous Sets, but is conceptually different, as it replaces split conformal
prediction with a training procedure to optimize prediction set length. Results for this method are

reported in Table[17]in Appendix

For our proposed SOCOP method, the hyperparameter X is selected by aiming to find a “knee point”
of the size-singleton probability curve on the tuning subset, as detailed in Section[3.1.1] The evalu-
ation metrics we use are Coverage, Average Size,andP (size>1) ﬂ

3.1 IMAGE CLASSIFICATION ON IMAGENET

First, we consider image classification on the ImageNet-Val and ImageNet-V?2 datasets, with several
models, including ResNet152-v2,EfficientNet-v2-1,and ViT-h-14.

Evaluation on ImageNet-Val. In this experiment, we randomly sample three subsets of ImageNet-
Val over 100 trials: one tuning subset of size 10K, one conformal calibration subset of size 20K and
one evaluation subset of size 20K. For the RAP S baseline, we employ the hyperparameter tuning
method from Algorithm 4 of|Angelopoulos et al.|(2021). The details of the hyperparameter grid are
provided in Appendix [E]

The averaged results for ResNet152-v2 and ViT-h-14, along with standard errors, are reported
in Table m Results for EfficientNet-v2-1, ConvNeXt-base, and Swin-v2-b are in Ap-
pendix and show similar trends. All methods achieve the target coverage of 0.95. Our method
SOCOP outperforms P1ug—-In and RAPS in both Average Size and P (size>1). Compared
to Least Ambiguous Sets, SOCOP maintains a good balance: it produces sets nearly as small
as Least Ambiguous Sets while significantly reducing the probability of non-singletons.

Evaluation on ImageNet-V2. We apply the same evaluation pipeline to ImageNet-V2 (Recht et al.,
2019), which is a more challenging test dataset. This dataset was constructed by re-collecting im-
ages with a new sampling pipeline, introducing a natural distribution shift that typically results in
a significant drop in accuracy for models trained on the original ImageNet dataset. Since this is

"This strategy is not theoretically guaranteed to attain the nominal level of coverage. However, it can be
viewed as a reasonable empirically motivated baseline that practitioners might use by default.

$In Corollary we wrote this non-conformity score as 1/p(y|z); These are equivalent since any strictly
monotone transformation of a nonconformity score induces the same prediction sets.

“We also evaluated the empty set rate, P(|C'(X)| = 0), across all experiments. We observed that empty
sets occur in fewer than 0.01% of test instances for all methods, with the exception of RAPS (where they can
be slightly larger but still insignificant, reaching ~ 0.1%). Consequently, we omit this metric from the results
as its impact is negligible.
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Table 1: Performance on ImageNet-Val, for a Coverage of 1 — o = 0.95; Methods compared: Plug-1In,
RAPS (Angelopoulos et al} [2021), Pure Singleton (A = 0), Least Ambiguous Sets (A = o0)
(Sadinle et al.|[2019; Kiyani et al.}[2024) and our method SOCOP. Results are averages over 100 random splits.
The smallest values in each column are highlighted in green, while all results worse than our method are
highlighted in red. For our method SOCOP, the Avg Size and P(size > 1) are highlighted in light green to
facilitate comparison across models.

Model Method Coverage Avg Size P(size > 1)
Plug-In 0.968 +0.003 = 44.955 £5.558  0.460 + 0.019
RAPS 0.950 £+ 0.002 3.158 £ 0.101 0.603 = 0.154

ResNet1l52-v2 Pure Singleton 0.949 £ 0.002 = 249.453 +4.960  0.249 £ 0.005
Least Ambiguous Sets 0.950 £ 0.002 2.274 4+ 0.046 0.466 + 0.007
SOCOP (ours) 0.950 + 0.002 2.477 £0.048 0.370 £ 0.006
Plug-In 0.976 £+ 0.001 8.529 £+ 0.805 0.356 £ 0.008
RAPS 0.950 + 0.002 1.380 £ 0.020 0.314 £ 0.031

ViT-h-14 Pure Singleton 0.950 +0.002 = 136.219 £4.980 0.135 = 0.005
Least Ambiguous Sets 0.950 &+ 0.002 1.291 +0.011 0.224 £+ 0.006
SOCOP (ours) 0.950 £+ 0.002 1.356 £+ 0.017 0.175 £+ 0.006

a smaller dataset, we randomly sample three subsets of Imagenet-Val over 100 trials: one tuning
subset of size 1K, one conformal calibration subset of size 4K, and one evaluation subset of size 4K.
Table[T1]in Appendix [D.2]reports the results for all five models. The empirical findings are consis-
tent with those on ImageNet-Val. Notably, the advantages of SOCOP are even more pronounced on
this more challenging dataset. The variance of the coverage is higher due to having less data.

3.1.1 EFFECT OF A AND HYPERPARAMETER TUNING

SOCOP: Effect of A SOCOP Tradeoff

1.00
5.0 0.45 ij —*— Tuned Point
45 '
9 038
3 0.404 =
040 A A 036
=) —=— P(size > 1) (SOCOP) [T}
C35 : N N34
g =y 7 P(size > 1) (LAS) 0.35% g,
< 3.0 —— Avg Size (SOCOP) 0.32
B Avg Size (LAS)
,s 0.30 0.30
' 0.28
0.0 0.2 0.4 0.6 0.8 1.0 2.5 3.0 3.5 4.0 4.5 5.0

A Average Size
Figure 2: Visualizing the evaluation results of ResNet 152-v2 on ImageNet-Val from Table@ LAS denotes
Least Ambiguous Sets. Left: Average size and P(size > 1) varying with \; Right: visualization of
(Average size, P(size > 1)), each point corresponding to a specific A. Results corresponding to the hyperpa-
rameter \ selected by the kneedle algorithm (Satopaa et al.,|2011)) are highlighted.
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Figure 3: Set sizes produced with ResNet152—-v2 on ImageNet-Val. LAS denotes Least Ambiguous
Sets. Bars indicate empirical probabilities of set sizes, and shaded bins mark non-singleton set sizes where
SOCOP assigns higher mass. Reported A values denote the cumulative probability difference on shaded bins.
The x-axis is truncated at 20 for clarity.

Next, we study the effect of the regularization parameter A on Average Size andP (size>1).
See Figure[2|for the trade-offs on the Re sNet 152 -v2 model evaluated over ImageNet-Val. Results
are averaged over 100 random splits of Imagenet-Val, each of size 20K for calibration and 20K for
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evaluation. As A goes from 0 to oo, the Average Size decreases from the level of the Pure
Singleton (A = 0) and converges to the Least Ambiguous Sets limit (A = oo); while
P (size>1) follows an opposite trajectory.

The right panel of Figure 2] summarizes this trade-off by plotting P (size>1) against Average
Size. In practice, one can choose A according to their own preference by drawing the tradeoff
plot (the right panel of Figure[2) on their tuning dataset. For illustration, in our experiments from
Section [3.1] we use the kneedle algorithm (Satopaa et all, 2011), which is a popular method for
choosing points along a trade-off curve that come with favorable trade-offs. All five models exhibit
the same pattern on both ImageNet-Val and ImageNet-V2, see Tables [6}{I6]in the Appendix.

We investigate the effect of regularization in more detail. For two values of A, we collect the set
sizes produced by SOCOP and Least Ambiguous Sets, and report their histograms in Figure
Bl The figure shows that SOCOP yields more singleton sets and fewer small set sets (as desired),
but produces slightly more sets with a large size sets (as expected due to the tradeoff). To quantify
this shift toward larger sets, we calculate the cumulative excess probability mass A of SOCOP over

Least Ambiguous Sets onnon-singleton sizes,i.e., A := Zfi2 I(fSOCOP . fLAS)(fSOCOP_
JEAS), where fOCOP| fLAS are empirical frequencies of prediction set size i for the two methods.

We observe that this value is small, meaning that our method only leads to slightly more large sets.

3.1.2 ADAPTIVENESS ON IMAGENET

In this experiment, we evaluate the size-stratified coverage violation (SSCV) introduced by |An-
gelopoulos et al.|(2021) as a measure of adaptiveness and conditional coverage violation. Following
Angelopoulos et al|(2021), we adopt the same set-size strata : 0-1, 2-3, 4- 10, 11-100, and 101-
1000, and to maximize adaptiveness, we choose the hyperparameter A to minimize SSCV on the
tuning set for RAPS and SOCOP. The details of the hyperparameter grid are provided in Appendix
[E] The results are reported in Table 2]

Table 2: Evaluation results for the SSCV metric on ImageNet-Val, with the same protocol as in Table

Method Coverage Avg Size P(size > 1) SSCV
ResNet152-v2

Plug-In 0.969 + 0.003 47.362 4+ 7.138 0.469 £+ 0.025 0.046 4 0.001
RAPS 0.950 4+ 0.002 8.568 4+ 1.580 0.448 +£0.012 0.031 £ 0.011
Pure Singleton 0.950 + 0.002 = 250.539 +4.554 0.250 £ 0.005 0.050 % 0.000
Least Ambiguous Sets 0.950 £ 0.002 2.279 4+ 0.046 0.467 £ 0.007 0.197 4 0.026
SOCOP (ours) 0.950 = 0.002 3.372 & 0.198 0.304 + 0.008 0.039 £ 0.009
ViT-h-14

Plug-In 0.976 + 0.001 8.529 4+ 0.805 0.356 & 0.008 0.048 4 0.002
RAPS 0.950 + 0.002 7.652 + 2.259 0.319 £ 0.007 0.047 £ 0.003
Pure Singleton 0.950 +0.003 = 136.219 £4.980 0.135 4 0.005 0.050 £ 0.000
Least Ambiguous Sets 0.950 £ 0.002 1.291 £0.011 0.224 +£0.006 0.126 +=0.119
SOCOP (ours) 0.950 4+ 0.002 1.519 + 0.068 0.155 4+ 0.006 0.041 £ 0.016

Our method SOCOP and RAP S achieve the smallest SSCV among the methods compared. However,
the average size of RAP S increases drastically (from ~ 3.2 to ~ 8.6 for Resnet152-v2 and from
~ 1.4 to~ 7.7 for ViT-h-14), while our SOCOP method maintains a reasonably small average
size and a significantly lower non-singleton probability, demonstrating that SOCOP can achieve
adaptivity without sacrificing efficiency.

3.2 IMAGE CLASSIFICATION ON TISSUEMNIST

We further evaluate on a medical image classification problem. We use the TissueMNIST dataset, a
subset of MedMNIST (Yang et al.,2023)), which contains microscopy images of human kidney cor-
tex cells categorized into eight classes. We use a ResNet-50 (224) model released by the dataset
authors. We perform 100 random splits into 10K/15K/15K for tuning, calibration, and evaluation.
The results are summarized in Table[3] As in previous experiments, we observe that our method can
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significantly reduce the non-singleton probability (by about 15%), while increasing the average size
only slightly. This again validates the efficiency of our method.

Table 3: Evaluation results on TissueMNIST using ResNet—-50 (224) (Yang et al., [2023), with the same

protocol as in Table[T]
Method Coverage Avg Size P(size > 1)
Plug-In 0.973 £0.002 = 3.294 £ 0.030 0.866 £ 0.005
RAPS 0.950 £ 0.003 2.844 £0.031 = 0.844 £ 0.006
Pure Singleton 0.950 £0.003 = 4.931 £ 0.053 0.562 £ 0.008
Least Ambiguous Sets 0.950£0.003 2.647 £ 0.028 0.788 &£ 0.005
SOCOP (ours) 0.950 £0.003  2.847 £ 0.037 0.638 £ 0.009

3.3 MULTIPLE CHOICE QUESTION ANSWERING

We also evaluate on MMLU (Hendrycks et al.,|2021)), a multiple-choice question answering dataset.
Following the same evaluation pipeline, we perform 100 random splits into 4K/5K/5K for tun-
ing, calibration, and evaluation. We use Llama-3.1-8B-Instruct (Dubey et al., 2024), and following
Kiyani et al.|(2024)), we input the fixed prompt: “This is a 4-choice question that you should answer:
{question}{choices} The correct answer to this question is: ”. We then extract the logits of the first
output token corresponding to the answer options A, B, C, and D. Applying the softmax function
yields probabilities over the four choices. The results are summarized in Table @ As in previous
experiments, we observe that our method can reduce the probability that the set size is greater than
one by a significant amount (about 10%), while only increasing the average size by a negligible
amount. This further reinforces that our approach provides a favorable trade-off between size and
non-singleton probability.

Table 4: Evaluation on MMLU using Llama-3.1-8B-Instruct, with the same protocol as in Table

Method Coverage Avg Size P(size > 1)

Plug-In 0.965 £0.002 = 2.648 +£0.013  0.745 £ 0.005
RAPS 0.950 £ 0.004 ' 2.601 £0.032 0.779 & 0.025
Pure Singleton 0.950 £0.004 2.633 +0.029 0.544 £ 0.010
Least Ambiguous Sets 0.950+0.004 2.426 +0.030 0.675 £ 0.008
SOCOP (ours) 0.950 £0.004 2.477+0.034 0.587 £ 0.016

3.4 DISCUSSION

SOCOQP reframes efficiency in conformal classification around the goal of producing singletons, de-
riving a nonconformity score from a geometric analysis of a Lagrangian relaxation of the singleton
objective. This yields an O(K') per-instance algorithm, enabling split conformal sets that preserve
marginal coverage while substantially increasing singleton frequency with minimal impact on aver-
age size. Empirically, over image classification and LLM multiple-choice benchmarks, this reduces
non-singleton rates significantly relative to length-optimized baselines at near-identical set sizes;
suggesting that our method could be broadly useful in practice.

In future work, it would be of interest to extend this method to more advanced conformal pre-
diction methods, such as label-conditional or Mondrian conformal prediction (Vovk et al., [2005)).
Furthermore, a challenging but interesting theoretical direction is to design a nonconformity score
intrinsically targeted for conditional coverage. This would likely entail retracing the derivation of
SOCQOP starting from a conditional-aware optimization objective, such as the one from |Gibbs et al.
(2025). Finally, while our current protocol uses a separate tuning set to maintain validity, future
work could investigate data-dependent selection of \ using the calibration set directly to improve
data efficiency, while accounting for the resulting tuning bias (Zeng et al., |[2025)).

10
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REPRODUCIBILITY STATEMENT

All experimental details, including dataset information and evaluation protocols, are provided in
Section [3] and appendix [D] An anonymous GitHub repository, containing the implementation of
SOCOP, baseline methods, and code to reproduce all experiments, is available at this repository.
All theoretical results and assumptions are stated in Section with complete proofs provided in

Appendix
LLM USAGE

LLMs did not play a significant role in this work and were only used for grammar polishing in
writing.

REFERENCES

Alex M Andrew. Another efficient algorithm for convex hulls in two dimensions. Information
processing letters, 9(5):216-219, 1979.

Anastasios N Angelopoulos and Stephen Bates. Conformal prediction: A gentle introduction. Foun-
dations and Trends® in Machine Learning, 16(4):494-591, 2023.

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jitendra Malik. Uncertainty
sets for image classifiers using conformal prediction. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=eNdiU_DbMO9.

Meshi Bashari, Roy Maor Lotan, Yonghoon Lee, Edgar Dobriban, and Yaniv Romano. Synthetic-
powered predictive inference. arXiv preprint arXiv:2505.13432, 2025.

Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan.
Distribution-free, risk-controlling prediction sets. Journal of the ACM (JACM), 68(6):1-34, 2021.

Arash Behboodi, Alvaro HC Correia, Fabio Valerio Massoli, and Christos Louizos. Fundamental
bounds on efficiency-confidence trade-off for transductive conformal prediction. arXiv preprint
arXiv:2509.04631, 2025.

Sacha Braun, Liviu Aolaritei, Michael I Jordan, and Francis Bach. Minimum volume conformal sets
for multivariate regression. arXiv preprint arXiv:2503.19068, 2025.

Kwan Ho Ryan Chan, Yuyan Ge, Edgar Dobriban, Hamed Hassani, and René Vidal. Con-
formal information pursuit for interactively guiding large language models. arXiv preprint
arXiv:2507.03279, 2025.

Rafael Correa, Abderrahim Hantoute, and Marco A Lépez. Fundamentals of convex analysis and
optimization. Springer, 2023.

Edgar Dobriban. Statistical methods in generative ai. arXiv preprint arXiv:2509.07054, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

A Gammerman, V Vovk, and V Vapnik. Learning by transduction. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence, 1998.

Seymour Geisser. Predictive inference: an introduction. Chapman and Hall/CRC, 2017.

Isaac Gibbs, John J Cherian, and Emmanuel J Candés. Conformal prediction with conditional guar-
antees. Journal of the Royal Statistical Society Series B: Statistical Methodology, pp. qkaf008,
2025.

Chirag Gupta, Arun K Kuchibhotla, and Aaditya Ramdas. Nested conformal prediction and quantile
out-of-bag ensemble methods. Pattern Recognition, 127:108496, 2022.

11


https://anonymous.4open.science/r/Singleton-Optimized-Conformal-Prediction-F818
https://openreview.net/forum?id=eNdiU_DbM9

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Eliahu Horwitz and Yedid Hoshen. Conffusion: Confidence intervals for diffusion models. arXiv
preprint arXiv:2211.09795, 2022.

Sunay Joshi, Shayan Kiyani, George Pappas, Edgar Dobriban, and Hamed Hassani. Conformal in-
ference under high-dimensional covariate shifts via likelihood-ratio regularization. arXiv preprint
arXiv:2502.13030, 2025.

Shayan Kiyani, George J Pappas, and Hamed Hassani. Length optimization in conformal prediction.
Advances in Neural Information Processing Systems, 37:99519-99563, 2024.

Batiste Le Bars and Pierre Humbert. On volume minimization in conformal regression. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=f2inwmDR4g.

Yonghoon Lee, Edgar Dobriban, and Eric Tchetgen Tchetgen. Conditional predictive inference for
missing outcomes, 2025. URL https://arxiv.org/abs/2403.04613.

Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):71-96, 2014.

Jing Lei, James Robins, and Larry Wasserman. Distribution-free prediction sets. Journal of the
American Statistical Association, 108(501):278-287, 2013.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094-1111, 2018.

Ruiting Liang, Wanrong Zhu, and Rina Foygel Barber. Conformal prediction after efficiency-
oriented model selection. arXiv preprint arXiv:2408.07066, 2024.

Ruiting Liang, Wanrong Zhu, and Rina Foygel Barber. Conformal prediction after data-dependent
model selection, 2025. URL https://arxiv.org/abs/2408.07066.

Ziyi Liang, Yanfei Zhou, and Matteo Sesia. Conformal inference is (almost) free for neural networks
trained with early stopping. In International Conference on Machine Learning, pp. 20810-20851.
PMLR, 2023.

Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guaran-
tees. In Forty-first International Conference on Machine Learning, 2024.

Joseph o’Rourke. Computational geometry in C. Cambridge university press, 1998.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
machines for regression. In Machine learning: ECML 2002: 13th European conference on ma-
chine learning Helsinki, Finland, August 19-23, 2002 proceedings 13, pp. 345-356. Springer,
2002.

Sangdon Park, Edgar Dobriban, Insup Lee, and Osbert Bastani. PAC prediction sets under covariate
shift. In International Conference on Learning Representations, 2022a.

Sangdon Park, Edgar Dobriban, Insup Lee, and Osbert Bastani. PAC prediction sets for meta-
learning. In Advances in Neural Information Processing Systems, 2022b.

Hongxiang Qiu, Edgar Dobriban, and Eric Tchetgen Tchetgen. Prediction sets adaptive to unknown
covariate shift. Journal of the Royal Statistical Society Series B: Statistical Methodology, pp.
gkad069, 07 2023.

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S Jaakkola, and Regina
Barzilay. Conformal language modeling. In The Twelfth International Conference on Learning
Representations, 2024.

12


https://openreview.net/forum?id=f2inwmDR4g
https://openreview.net/forum?id=f2inwmDR4g
https://arxiv.org/abs/2403.04613
https://arxiv.org/abs/2408.07066

Under review as a conference paper at ICLR 2026

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389-5400. PMLR,
2019.

R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1997.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
age. Advances in neural information processing systems, 33:3581-3591, 2020.

Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
bounded error levels. Journal of the American Statistical Association, 114(525):223-234, 2019.

Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a “kneedle” in a
haystack: Detecting knee points in system behavior. In 2011 31st international conference on
distributed computing systems workshops, pp. 166—171. IEEE, 2011.

Craig Saunders, Alexander Gammerman, and Volodya Vovk. Transduction with confidence and
credibility. In ZJCAI, 1999.

Henry Scheffe and John W Tukey. Non-parametric estimation. I. Validation of order statistics. The
Annals of Mathematical Statistics, 16(2):187-192, 1945.

Matteo Sesia, Stefano Favaro, and Edgar Dobriban. Conformal frequency estimation using discrete
sketched data with coverage for distinct queries. Journal of Machine Learning Research, 24(348):
1-80, 2023.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(Mar):371-421, 2008.

Yuanjie Shi, Hooman Shahrokhi, Xuesong Jia, Xiongzhi Chen, Janardhan Rao Doppa, and Yan
Yan. Direct prediction set minimization via bilevel conformal classifier training. arXiv preprint
arXiv:2506.06599, 2025.

Wenwen Si, Sangdon Park, Insup Lee, Edgar Dobriban, and Osbert Bastani. PAC prediction sets
under label shift. International Conference on Learning Representations, 2024.

David Stutz, Krishnamurthy Dj Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet. Learning opti-
mal conformal classifiers. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=t80-4LKFVX.

Kei Takeuchi. Contributions on theory of mathematical statistics. Springer, 2020.

Jacopo Teneggi, Matthew Tivnan, Web Stayman, and Jeremias Sulam. How to trust your diffusion
model: A convex optimization approach to conformal risk control. In International Conference
on Machine Learning, pp. 33940-33960. PMLR, 2023.

John W Tukey. Non-parametric estimation II. Statistically equivalent blocks and tolerance regions—
the continuous case. The Annals of Mathematical Statistics, 18(4):529-539, 1947.

John W Tukey. Nonparametric estimation, III. Statistically equivalent blocks and multivariate toler-
ance regions—the discontinuous case. The Annals of Mathematical Statistics, 19(1):30-39, 1948.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian Conference on
Machine Learning, 2013.

Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence, 74
(1):9-28, 2015.

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random world.
Springer Science & Business Media, 2005.

Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of al-
gorithmic randomness. In International Conference on Machine Learning, 1999.

13


https://openreview.net/forum?id=t8O-4LKFVx

Under review as a conference paper at ICLR 2026

Abraham Wald. An extension of wilks’ method for setting tolerance limits. The Annals of Mathe-
matical Statistics, 14(1):45-55, 1943.

S. S. Wilks. Determination of sample sizes for setting tolerance limits. The Annals of Mathematical
Statistics, 12(1):91-96, 1941.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41, 2023.

Yachong Yang and Arun Kumar Kuchibhotla. Selection and aggregation of conformal prediction
sets. Journal of the American Statistical Association, 120(549):435-447, 2025.

Hao Zeng, Kangdao Liu, Bingyi Jing, and Hongxin Wei. Parametric scaling law of tuning bias in
conformal prediction. arXiv preprint arXiv:2502.03023, 2025.

A ADDITIONAL RELATED WORK

The non-parametric techniques which have been studied in conformal prediction belong to a much
broader tradition of predictive inference in statistics which over the years have been developed both
under parametric and non-parametric assumptions. See for instance |Geisser| (2017) and more recent
works such as|Bates et al.|(2021)); [Park et al.| (2022alb)); |Sesia et al.|(2023); Q1u et al.|(2023));[S1 et al.
(2024); |Lee et al|(2025); Bashari et al.|(2025); Joshi et al.|(2025)), which concern problems under a
variety of assumptions.

Regarding the efficiency and optimality of conformal prediction, early work by Takeuchi in the
1970s—reviewed in [Takeuchi| (2020)—has established fundamental results, such as the fact that
conformal prediction with a conformity score equal to a particular density f is optimal—in terms of
minimizing the expected length at the distribution with density f—among all methods of predictive
inference that have marginal coverage over all distributions. Modern work has revisited optimality
questions from a variety of different angles, as discussed in the main paper.

Conformal-type techniques have been developed to be used beyond standard classification and re-
gression problems, for instance in sampling from large semantic spaces with generative AI models,
see e.g.,|[Horwitz & Hoshen| (2022); [Teneggi et al.[(2023); |Quach et al.|(2024); Mohr1 & Hashimoto
(2024); |Chan et al.[(2025)), etc; and see Dobriban| (2025)) for a review. In our work, we provide an
illustration for language model multiple-choice question answering, which becomes a conventional
classification problem.

Recent frameworks (Liang et al.,|[2024; [Yang & Kuchibhotlal 2025)) optimize efficiency by selecting
a nonconformity score from a pre-specified candidate set that minimizes a target loss. This differs
fundamentally from our approach, which uses the loss to derive the score directly. Applying our
composite loss within these selection frameworks faces two practical difficulties: (1) the resulting
performance is strictly bounded by the pre-defined candidate pool; and (2) this would introduce
the additional difficulty of selecting the hyperparameter A, and their framework would have to be
potentially extended to allow the selection of not just non-conformity scores but also loss functions.

B AUXILIARY RESULTS AND PROOFS

B.1 PROOF OF LEMMA[21]

Proof. Clearly, Sp, = () = Fy. Now let > 0. If S, , is empty, then the claim holds; therefore,
we only need to consider the case where S, - is non-empty. Assume .S, - includes y;, but not y;,
where 7, > 7, . Then we can construct S" = (S, 5\ {yi, }) U {yi, } such that

64(8"sm) = £5(Syim) +1 Z Ty =7 Z Yy = Ly(Snyim) +1 ('Yyil - 'Yya,z) < L(Sy43m)s
YESy ~ yes’

which contradicts with the optimality of S, ,. Therefore, S, , must be the set of top-j labels for
some j that depends on 7 and ~. [
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B.2 PROOF OF LEMMA[2.2]

Proof. For any set S € [K], we define g(S) = I(|S| > 1) + A[S|and I'(S) = >_ <57y We will
first prove that for n; < 72, T'(Sy, ) < I'(Sp,,y)- Then by Lemma[2.1 we must have S,, , C Sy, -

By the optimality of each set, we have
* E(Sﬂl»“/’nl) < K(Sfizﬁﬂ 771)’ ie, g(Smﬁ) - P(Smﬁ) 9(5772,“/) - F(Snzﬁ)7
* U(Snas12) < U(Syy iy m2)s i€ 9(Snay) = 12T (Snay) < 9(Sniy) = 12T (Siyy)-

N

Combining these inequalities gives

2 (F(Smﬁ) - F(Snz,v)) < g(Sm,v) - Q(Snz,w) <M (F(Sm v) - F(Snz,v))~

Since o —m1 > 0, we have I'(S,, 4) —T'(Sy,,) < 0. By Lemma.1| foranyn > Oandy € Ag_1,
Sy~ is the set of top-j labels for some j. Then I'(.S,,, ) < I'(Sy, - mphes that S, ,» € Sy, O

B.3 PROOF OF THEOREM 2.3}

To simplify notation, let us denote K(Wk)(n) = 0(Fr;m) = g — nl'x. Then the minimization
problem in @) can be rewritten as k(7;y) = arg miny K,(yk) (n). The optimal value of the objective is
given by

S0 = min o)
() = min 7).

This problem can be analyzed from two viewpoints, see also Figure (]

* Dual Space (7, £): Foreach k € {0, ..., K}, we can view Kfyk) (n) = g — nT', as a linear
function of 7 for (1, £) € R?. For a fixed value 7, the optimal value £% (1) corresponds to
finding the lowest point among the intersections of the K + 1 lines with the vertical line
¢ = 7. As shown in the left plot of Figure@ the function ¢ forms the lower envelope of
this family of K + 1 lines. The vertices of this lower envelope correspond to the values of
7 where the optimal index «(7); ) transitions from one value to another.

* Primal Space (T, g): Since g, = nI'y + é(wk) (n), é(wk) (n) can be viewed as the intercept of
a line with slope 7 that passes through the point P, = (I, gx ). For a fixed 7, in the space

of (T, g), {g = nI' + ¢,£ € R} is a family of parallel lines. Minimizing Eﬁ,k) (n) over k
amounts to finding the first point in { Py, . . . Px } that is “hit” by such a line as the intercept
{ raises from —oo.

Mathematically, the duality between these two perspectives can be formalized using convex conju-
gacy. Define a primal function ¢ : [0, 1] — [0, oo] based on the point set P = { Py, ..., Px}:
gk 1fF:Fk,0§k<K
F =
9(T) {—i—oo otherwise.

The convex conjugate (see e.g., Rockafellar, [1997)) of ¢ is

¢*(n) = itellﬂg{nf —o(D)} = Oggxl{{nfk — gk} = —L3(n). (6)
Furthermore, the biconjugate of ¢, defined as the conjugate of ¢* is
¢™*(T) = sup {nl’ — ¢*(n)} = sup {nl + £ (n)} . )
neR neR

By the Fenchel-Moreau-Rockafellar theorem (see e.g. Theorem 3.2.2 in |Correa et al.| (2023))), ¢**
is the closed convex hull of the original function ¢: ¢** = ©o(¢), where ¢o(¢) denotes the closed
convex hull of ¢. Thus, it suffices to characterize ¢6(¢), which we will do through its epigraph.
Let epi(¢) denote the epigraph of ¢, defined as epi(¢) = UkK:1 {(Tk,w) | w > gi} . Using that
epi(co(¢)) = co(epi(¢)), any point (I',w) € T6(¢) can be expressed as:

Mw

% (T, wy) for some i > 0, Zﬂk =1, and (T'x,wg) € epi(9).
k::l
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Dual Space (n, £): Lower Envelope of Lines Primal Space (I, g): Lower Convex Hull of Points
) P1o
25 2.00 Point Py = ([, gk) Polne.10 = 14.7
\ —e— Lower Convex Hull of P Ps /ngo=3.7
0.0 1.75
No,1=0.5
-25 Ngo9=3.7 1.50
50 1.25
~ ©1.00
-7.5
0.75
-10.0
0.50
-12.5 T
— 1 =147
v (.fl) . N9, 10 0.05
~15.0 Inactive lines
-=-= Lower Envelope £, (1) .00
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 0.0 0.2 0.4 0.6 0.8 1.0
n r
Figure 4: Primal and dual views, for A\ = 0.1 and the example probability vector 7 is

[0.202,0.172,0.157,0.143,0.127,0.077,0.057,0.031, 0.027, 0.007].

Since w = Zszl Brwy, > Zszl Brgk, and the minimum is attained, we know that

K K
¢**(F):inf{2,@kgk|F=Zﬂkrk,ﬁkzo,25k:1} ®)
k=1

k=1
which is precisely the lower convex hull of the point set P.
We now continue with the proof of Theorem 2.3

Lemma B.1. An index k is in the set of optimal solutions for some 1y (i.e., Eg,k) (n0) = €5(no)) if
and only if its corresponding point Py, lies on the graph of the lower convex hull function ¢**(T')

(i.e., gr = ¢**(Tk)).

Proof. ( =) Assume E(Vk) (n0) = £(no). By definition, this implies gr. — 1oL’y = £3(no). From
the biconjugate , ¢**(Tx) = sup, {Txn + €5 (n)} = Trno + €5(no) = gr.- Since ¢** is the lower
convex hull function of P, we must also have ¢**(I'y,) < gi. Therefore, g, = ¢**(T'x).

( <= ) Assume that the point P, = (I'y, gx) lies on the graph of the lower convex hull, i.e.,
gr = ¢**(T'x). By the Supporting Hyperplane Theorem (Rockafellar,1997), Pj, being on the lower

boundary of convex hull implies that there exists a supporting line to the function ¢** at the point
I' = T'x. Let the slope of this supporting line be 7. Then for all ' in the domain, we have

¢ (I') = ¢™*(T'k) + ne(T' = T'k).
For any j € {0,...,K}, P; = (I';,g;) must lie on or above the lower convex hull, i.e., g; >
¢**(I';). Applying this to the inequality above for I =I';, we find:

g; =2 ¢ (L) 2 o™ (L) +ne (L — Ty).
By our initial assumption ¢**(I'y;) = gi, then we have g; > gi + nx(I'; — I'x). This inequality
holds for all j € {0,...,K}. Thus, g; — mI'; = g — mels, that is, £ () > ¢F () for all

j €40,..., K}. Therefore, fgk)(nk) = (2(ny), i.e., k is an optimal index for 7 = 7. O
Recall that the vertices of the lower convex hull of P are {P,,, P,,,..., Py, }, where 0 = vy <
vy < -+ < vy = K are indices from {0,..., K'}. Recall from Sectionthat fori =1,...,m,

the slope of the edge connecting vertex P,, , and P,, is defined as n; := % where we define
v vi—1

no := 0 and 7,41 := +o00. From the definition of convexity, it follows that these slopes are strictly
increasing: 0 < 1y <12 < -+ < 7y, < 00. Our next result is the following:
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Min-k Tie-Breaking Rule (Left-Continuous) Max-k Tie-Breaking Rule (Right-Continuous)
10 —_— -~
ns =147 ns =147
na=3.7 na=3.7
8 o -
n3=32 n3=32
o—e *—0
< 6
=
<
4 n2=22 n=22
2
O— *-—0
n=0.5 n=0.5
Qs =0
0.0 25 5.0 75 100 125 15.0 175 20.0 0.0 2.5 5.0 75 10.0 125 15.0 175 20.0
n n

Figure 5: Optimal Set Size x(n; v) with the same parameters as FigureEI The tie-breaking rule does not affect
the value of nonconformity score.

Lemma B.2 (Unique Optimality on Vertex Intervals). For any n € (n;,m;41), we have E(f") (n) <

A/k) (n) for all k # v;.

Proof. Letn € (n;,n;41) for a giveni € {0,1,...,m — 1}. We need to show that g5, — g,, >
ﬁ

n(y — T'y,) for any k& # v;. By Lemma [B.1} any point not on the lower convex hull cannot be
optimal, so it suffices to check this for other vertices P,; where j # i.

Case 1: j > i (i.e, 'y, > I';,). Since ¢™* is convex, for any j > i, we have

gvi+1 — Gu; gvj — G,
i1 = < .
T =, o1, ST, -,

Vi1

By our choice of 1, we have < 17;4;. Combining these gives n < fjvj :1{“" CAsTy, =Ty, >0, we
’Uj ’Ui

have n(I'y; — T'y;) < gv; — gu,, so that E(vvi')(n) < Z(fj)(n).
Case 2: j < (e, 'y, <T',). Similarly, for any j < ¢, by the convexity of ¢**, we have:

Gu; — g’Uj < Gv; — Gu;—1
T, —T, T, —T,_,

= N,

which implies £§" (1)) < £\ () as above.
This finishes the proof. O

Proof of Theorem[2.3] From Lemma for any 7 in the open interval (7;,7;+1), the unique min-
imizer is v;, so k(n;7y) = v;. At the boundary points n = n; for i € {1,...,m}, we have
ngi’l)(m) = %f”(m) by definition. The proofs in Lemma show that for any other vertex
IR e(;’f)(m) is strictly greater. Thus, the set of optimal indices is {v;_1,v;}. By the tie-breaking
ruleEL we have k(1;;7) = vi—1.

Combining these observations, fori = 1,...,m — 1, and for any n € (1;,7;+1], the optimal index
is #(n;y) = v;. Itis clear that x(0; y) = 0. Therefore, for n € [0,71], x(n;y) = 0. By Lemma[B.2]
forn € (N, Nm+1) = (Mm, 00), K(1; ) = v This finishes the proof. O

"When there are multiple solutions, we choose any set that has minimal size, which corresponds to choosing
the smallest index for x(7; )

17
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B.4 PROOF OF COROLLARY

Let v = p(-|x) be the probability prediction from some pre-trained model. We order the probabilities
such that p(y1|z) > p(y2|x) > pyk|x).

(1) When dividing the Lagrangian (1) by A, the problem remains equivalent by changing variables
from 7 to 77 := n/A. The resulting x(77; p(+|x)) becomes:

. . I(k>1) k
K0 p([)) = arg min {A EZ: Pyilz) }

I(k>1)

+ k) We first con-
sider the simpler case where p(yi|z) > p(ye|z) > -+ > plyx|z). When A = o0, P, —

The corresponding set of points P becomes P, = (Zle p(yi|x),

(Zle Py;|x), k) := P, The slope between two consecutive points is: 1/p(yg1|2), which is

strictly increasing in k. Hence, every point Py, is a vertex of the lower convex hull. Thus r(7j; p(-|x))
becomes:

0, fornc {O, 7ﬁ(yilx)}
A p(1e) = Qi forn € (550 s | 1 SIS K -1

1
K, forne By

Therefore, the nonconformity score is r1,5(2, ¥;) = 1/P(y;|x).

Now, suppose there is a tie, e.g., p (yx | 2) = P (yr+1 | ) = -+ = P (Yr+m | ) for some k >

1,m > 1. Then, the points Pk 1,P;€, .. Pk+m are collinear, with vertices Pk 1 and Pk+m and

slope m The function x(-; p(+|x)) exhibits a single jump from & — 1 to k + m as ) crosses this

slope value. For any label y; with k£ < ¢ < k 4 m, the nonconformity score is
Tias (2, 93) = Inf{7) > 0: 6(7; p(-|x)) > i} = 1/p (v | ©) = 1/P (vi | 2),

as desired.

(2) When \ = 0, the set of points P = { P, ..., Pk} becomes

P():(0,0), ( (y1|:c Pk(Zpyﬁx ) ) PK*(I 1)

As T', is strictly increasing in k, the vertices of the lower convex hull are { Py, Py, Pk }. The corre-
sponding slopes are 1; = m = 0 and
o = 9K — 91 _ 1

ZiKzl plyile) —pQnlz)  1- Py | )

Hence, x(n; p(+|z)) becomes:

0, forn=0
1
R 1, forne |0, ———],
k(m; p(:|)) = K L—p(y | x)}
1
K, forne n , 00
1=p(n | )
Therefore, by definition of the nonconformity score r(x,y;) = inf {n > 0: k(n; p(:|z)) > i}, we
. . ~1
have Tsingteton (7, %) = 1(i > 2)(1 — p(y1 | x)) . O

C ADDITIONAL ALGORITHMS

We leverage the monotone chain algorithm (Andrewl, |1979; o’ Rourke} |1998) to find the vertices of
lower convex hull, as detailed in Algorithm @

For calibration, we adopt standard split conformal prediction, see Algorithm 3]

18
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Algorithm 2 Compute Lower Convex Hull via Monotone Chain Algorithm

Require: Sorted probability vector p, penalty A > 0.
Ensure: A tuple (V,T', g) where V is the list of vertex indices of lower convex hull, I" are cumulative
sums, and g are objective values.
Compute cumulative sums I'y, < Z§:1 pjfork=0,.... K >Sy=0
Compute objective values g, < I(k > 1)+ Ak fork =0,..., K
Define CrossProduct(j, ¢, k; T', ¢)= (I's — ') (g — ¢5) — (95 — ;) (Tx — T%).
Initialize an empty list of indices V.
for k = 0to K do > Monotone Chain
while |V| > 2 and CrossProduct(V[—2], V[—-1], k;T', g) < 0 do > Last two points
Remove the last index from V.
end while
Append index k to V.
end for
return (V, T, g).

RPN RELN 2

—_ =

Algorithm 3 SOCOP Conformal Calibration

Require: Pre-trained model p, calibration data {(X;, Y;)}™ ,, level a € (0, 1), penalty A > 0.
Ensure: Calibrated threshold q.
1: fori =1tondo
2 SOI’tﬁ('|X¢) to getf)sorted("Xi)
3 Let 7., be the 1-based rank of the true label Y;
4 (V,T, g)  Algorithm ﬁsorted('|Xi)7 )
5: Find the smallest index j € {1,...,|V| — 1} such that V[j] > 4.k
6: v« V[j—1; vy« V[j]
7. T (g'qu - gv,) / (FU+ - Fv,>
8: end for
9: G < the [(1 — a)(1+ n)] largest value in {r; }7_,
10: return g

D ADDITIONAL EXPERIMENTS RESULTS

D.1 IMAGENET-VAL

Results for EfficientNet-v2-1, ConvNeXt-base, and Swin-v2-b on the ImageNet-Val
dataset are reported in Table[5]

For this dataset, the effect of A\ on our SOCOP across all five models are reported in Table [6H10]
respectively.

Table 5: Continuation of the results in Tablewith the same protocol used.

Model Method Coverage Avg Size P(size > 1)
Plug-In 0.970 + 0.002 16.606 + 2.023 0.401 + 0.013
RAPS 0.950 + 0.002 1.909 £ 0.077 0.769 + 0.076
EfficientNet-v2-1 Pure Singleton 0.950 + 0.002 188.942 + 4.836 0.188 + 0.005
Least Ambiguous Sets 0.950 + 0.002 1.542 £ 0.018 0.329 + 0.007
SOCOP (ours) 0.950 + 0.002 1.659 £ 0.023 0.262 4+ 0.006
Plug-In 0.967 + 0.003 27.137 £ 5.790 0.444 + 0.030
RAPS 0.950 + 0.003 2.546 + 0.096 0.843 + 0.234
ConvNeXt-base Pure Singleton 0.950 4+ 0.002 226.991 + 4.935 0.226 4+ 0.005
Least Ambiguous Sets 0.950 4+ 0.002 1.897 £ 0.034 0.398 + 0.007
SOCOP (ours) 0.950 + 0.002 2.086 + 0.046 0.316 + 0.007
Plug-In 0.968 + 0.003 19.646 + 3.701 0.423 + 0.023
RAPS 0.950 + 0.002 2.314 + 0.062 0.477 + 0.121
Swin-v2-b Pure Singleton 0.950 + 0.002 = 225.685 + 4.909  0.225 + 0.005
Least Ambiguous Sets 0.950 4+ 0.002 1.881 £ 0.033 0.396 + 0.007
SOCOP (ours) 0.950 + 0.002 2.068 4+ 0.038 0.316 + 0.007
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Table 6: Performance of ResNet152-v2 on ImageNet-Val with different A\ values (o = 0.05). Results are
averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.949 + 0.002  249.453 +4.960  0.249 % 0.005
0.01 SOCOP (ours) 0.950 + 0.002 5.078 + 0.200 0.279 + 0.005
0.02 SOCOP (ours) 0.950 + 0.002 3.932 +0.125 0.293 + 0.005
0.03 SOCOP (ours) 0.950 + 0.002 3.508 £ 0.103 0.302 + 0.006
0.04 SOCOP (ours) 0.950 + 0.002 3.267 £ 0.104 0.309 + 0.006
0.05 SOCOP (ours) 0.950 + 0.002 3.110 4+ 0.092 0.315 + 0.006
0.06 SOCOP (ours) 0.950 + 0.002 3.002 + 0.081 0.321 + 0.006
0.07 SOCOP (ours) 0.950 + 0.002 2.916 + 0.074 0.325 + 0.006
0.08 SOCOP (ours) 0.950 + 0.002 2.847 £ 0.071 0.329 + 0.006
0.09 SOCOP (ours) 0.950 + 0.002 2.795 + 0.069 0.332 + 0.006
0.10 SOCOP (ours) 0.950 + 0.002 2.749 + 0.068 0.336 + 0.006
0.20 SOCOP (ours) 0.950 + 0.002 2.527 + 0.061 0.360 £ 0.006
0.30 SOCOP (ours) 0.949 + 0.002 2.461 + 0.058 0.376 + 0.006
0.40 SOCOP (ours) 0.950 + 0.002 2.430 £ 0.059 0.388 + 0.007
0.50 SOCOP (ours) 0.950 + 0.002 2.406 + 0.054 0.396 + 0.006
0.60 SOCOP (ours) 0.950 + 0.002 2.388 + 0.051 0.403 + 0.006
0.70 SOCOP (ours) 0.950 + 0.002 2.373 £ 0.051 0.408 + 0.006
0.80 SOCOP (ours) 0.950 + 0.002 2.364 + 0.051 0.412 + 0.006
0.90 SOCOP (ours) 0.950 + 0.002 2.355 + 0.053 0.416 + 0.007
1.00 SOCOP (ours) 0.950 + 0.002 2.349 + 0.054 0.419 + 0.007

0o Least Ambiguous Sets 0.950 + 0.002 2.274 + 0.046 0.466 + 0.007

Table 7: Performance of EfficientNet-v2-1 on ImageNet-Val with different A values (a = 0.05).
Results are averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 + 0.002 188.942 £ 4.836  0.188 £ 0.005
0.01 SOCOP (ours) 0.950 + 0.002 2.873 £ 0.091 0.205 % 0.005
0.02 SOCOP (ours) 0.950 + 0.002 2.326 + 0.060 0.212 + 0.005
0.03 SOCOP (ours) 0.950 + 0.002 2.122 + 0.053 0.217 + 0.006
0.04 SOCOP (ours) 0.950 + 0.002 2.012 £+ 0.042 0.221 + 0.005
0.05 SOCOP (ours) 0.950 + 0.002 1.946 £ 0.038 0.226 + 0.005
0.06 SOCOP (ours) 0.950 + 0.002 1.898 £ 0.035 0.229 + 0.005
0.07 SOCOP (ours) 0.950 + 0.002 1.859 £+ 0.034 0.232 + 0.006
0.08 SOCOP (ours) 0.950 + 0.002 1.828 £+ 0.033 0.234 + 0.006
0.09 SOCOP (ours) 0.950 + 0.002 1.802 £ 0.031 0.236 + 0.006
0.10 SOCOP (ours) 0.950 + 0.002 1.782 £ 0.028 0.238 + 0.005
0.20 SOCOP (ours) 0.950 + 0.002 1.678 £ 0.023 0.255 + 0.005
0.30 SOCOP (ours) 0.950 + 0.002 1.640 £ 0.022 0.265 + 0.006
0.40 SOCOP (ours) 0.950 + 0.002 1.621 £+ 0.021 0.274 + 0.006
0.50 SOCOP (ours) 0.950 + 0.002 1.608 £ 0.023 0.279 + 0.006
0.60 SOCOP (ours) 0.950 + 0.002 1.596 £ 0.023 0.283 + 0.007
0.70 SOCOP (ours) 0.950 + 0.002 1.587 £ 0.022 0.286 + 0.007
0.80 SOCOP (ours) 0.950 + 0.002 1.581 £ 0.022 0.289 + 0.006
0.90 SOCOP (ours) 0.950 + 0.002 1.575 £ 0.022 0.291 + 0.007
1.00 SOCOP (ours) 0.950 + 0.002 1.571 £ 0.022 0.293 + 0.007

0o Least Ambiguous Sets 0.950 + 0.002 1.542 £ 0.018 0.329 + 0.007

Table 8: Performance of ConvNeXt-base on ImageNet-Val with different A values (o« = 0.05). Results are
averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 £0.002  226.991 +£4.935  0.226 £ 0.005
0.01 SOCOP (ours) 0.950 £ 0.002 4.074 £ 0.155 0.244 £ 0.005
0.02 SOCOP (ours) 0.950 £ 0.002 3.194 £ 0.097 0.254 £ 0.005
0.03 SOCOP (ours) 0.950 £ 0.002 2.866 + 0.081 0.262 £ 0.005
0.04 SOCOP (ours) 0.950 £ 0.002 2.683 £ 0.068 0.268 £ 0.005
0.05 SOCOP (ours) 0.950 £ 0.002 2.567 £ 0.067 0.274 £ 0.005
0.06 SOCOP (ours) 0.950 £ 0.002 2.485 + 0.065 0.278 £ 0.006
0.07 SOCOP (ours) 0.950 £ 0.002 2.429 + 0.062 0.283 £ 0.006
0.08 SOCOP (ours) 0.950 £ 0.002 2.383 £ 0.063 0.287 £ 0.006
0.09 SOCOP (ours) 0.950 £ 0.002 2.344 £ 0.060 0.290 £ 0.006
0.10 SOCOP (ours) 0.949 £ 0.002 2.307 £ 0.056 0.293 £ 0.006
0.20 SOCOP (ours) 0.950 £ 0.002 2.121 £ 0.045 0.310 £ 0.006
0.30 SOCOP (ours) 0.950 £ 0.002 2.044 £ 0.036 0.321 £ 0.006
0.40 SOCOP (ours) 0.950 £ 0.002 2.008 + 0.036 0.330 £ 0.006
0.50 SOCOP (ours) 0.950 £ 0.002 1.983 £ 0.035 0.336 £ 0.006
0.60 SOCOP (ours) 0.950 £ 0.002 1.964 £ 0.033 0.341 £ 0.005
0.70 SOCOP (ours) 0.950 £ 0.002 1.951 4+ 0.035 0.345 £ 0.006
0.80 SOCOP (ours) 0.950 £ 0.002 1.943 £ 0.035 0.349 £ 0.006
0.90 SOCOP (ours) 0.950 £ 0.002 1.937 £ 0.034 0.352 £ 0.006
1.00 SOCOP (ours) 0.950 £ 0.002 1.932 £ 0.033 0.355 £ 0.006

9] Least Ambiguous Sets  0.950 £ 0.002 1.897 £+ 0.034 0.398 £+ 0.007
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Table 9: Performance of Swin-v2-b on ImageNet-Val with different A values (o« = 0.05). Results are
averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 + 0.002 225.685 +4.909  0.225 £ 0.005
0.01 SOCOP (ours) 0.949 + 0.002 3.844 +0.121 0.245 + 0.004
0.02 SOCOP (ours) 0.949 + 0.002 3.089 + 0.087 0.256 £ 0.005
0.03 SOCOP (ours) 0.949 + 0.002 2.775 + 0.070 0.262 + 0.005
0.04 SOCOP (ours) 0.949 + 0.002 2.610 + 0.060 0.268 £ 0.005
0.05 SOCOP (ours) 0.949 + 0.002 2.502 + 0.054 0.273 £ 0.005
0.06 SOCOP (ours) 0.949 + 0.002 2.426 + 0.052 0.278 £ 0.005
0.07 SOCOP (ours) 0.949 + 0.002 2.369 + 0.056 0.281 + 0.005
0.08 SOCOP (ours) 0.949 + 0.002 2.324 + 0.053 0.284 + 0.005
0.09 SOCOP (ours) 0.949 + 0.002 2.285 + 0.051 0.287 + 0.005
0.10 SOCOP (ours) 0.949 + 0.002 2.253 + 0.051 0.289 + 0.006
0.20 SOCOP (ours) 0.949 + 0.002 2.096 + 0.045 0.309 + 0.006
0.30 SOCOP (ours) 0.949 + 0.002 2.030 + 0.038 0.320 + 0.006
0.40 SOCOP (ours) 0.949 + 0.002 1.997 £ 0.036 0.329 + 0.006
0.50 SOCOP (ours) 0.949 + 0.002 1.976 £+ 0.035 0.336 £ 0.006
0.60 SOCOP (ours) 0.950 £ 0.002 1.961 £ 0.035 0.341 £ 0.006
0.70 SOCOP (ours) 0.950 £ 0.002 1.949 £ 0.036 0.345 + 0.006
0.80 SOCOP (ours) 0.950 + 0.002 1.942 £ 0.037 0.349 + 0.007
0.90 SOCOP (ours) 0.950 + 0.002 1.935 £ 0.037 0.352 + 0.007
1.00 SOCOP (ours) 0.950 £ 0.002 1.931 £0.037 0.355 £ 0.007

o0 Least Ambiguous Sets  0.950 £ 0.002 1.881 £+ 0.033 0.396 + 0.007

Table 10: Performance of ViT-h—-14 on ImageNet-Val with different \ values (o = 0.05). Results are
averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 + 0.002 136.219 £4.980  0.135 £ 0.005
0.01 SOCOP (ours) 0.950 £ 0.003 2.061 + 0.062 0.141 £ 0.005
0.02 SOCOP (ours) 0.950 £ 0.003 1.761 £ 0.040 0.145 + 0.005
0.03 SOCOP (ours) 0.950 + 0.002 1.641 £+ 0.030 0.148 + 0.005
0.04 SOCOP (ours) 0.950 £ 0.002 1.572 £ 0.025 0.151 £ 0.005
0.05 SOCOP (ours) 0.950 + 0.002 1.529 £+ 0.023 0.153 £ 0.005
0.06 SOCOP (ours) 0.950 £ 0.002 1.498 £ 0.023 0.155 £ 0.005
0.07 SOCOP (ours) 0.950 + 0.002 1.474 £ 0.022 0.156 £ 0.005
0.08 SOCOP (ours) 0.950 + 0.002 1.457 £ 0.021 0.158 £ 0.005
0.09 SOCOP (ours) 0.950 £ 0.002 1.444 £ 0.021 0.159 + 0.005
0.10 SOCOP (ours) 0.950 + 0.002 1.432 £ 0.022 0.161 £ 0.005
0.20 SOCOP (ours) 0.950 £ 0.002 1.368 £ 0.016 0.171 £ 0.005
0.30 SOCOP (ours) 0.950 £ 0.002 1.344 £0.015 0.177 £ 0.005
0.40 SOCOP (ours) 0.950 + 0.002 1.332 £0.014 0.183 £ 0.005
0.50 SOCOP (ours) 0.950 + 0.002 1.324 £0.014 0.187 £ 0.005
0.60 SOCOP (ours) 0.950 + 0.002 1.319 £0.013 0.190 £ 0.005
0.70 SOCOP (ours) 0.950 £ 0.002 1.315 £ 0.012 0.193 £ 0.005
0.80 SOCOP (ours) 0.950 + 0.002 1.312 £0.013 0.195 + 0.006
0.90 SOCOP (ours) 0.950 + 0.002 1.309 £ 0.014 0.197 £ 0.006
1.00 SOCOP (ours) 0.950 + 0.002 1.307 £ 0.014 0.198 + 0.006

oo Least Ambiguous Sets  0.950 £ 0.002 1.291 £+ 0.011 0.224 + 0.006
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Table 11: Performance on ImageNet-V2, with a protocol identical to that in Table

Model Method Coverage Avg Size P(size > 1)
Plug-In 0.975+0.004  190.453 + 23.837 0.839 £+ 0.035
RAPS 0.950 + 0.004 11.524 £+ 0.793 1.000 £ 0.000
ResNet152-v2 Pure Singleton 0.950 £ 0.005 432.673 £ 12.869 0.432 + 0.013
Least Ambiguous Sets  0.949 £ 0.005 9.067 + 0.677 0.798 + 0.011
SOCOP (ours) 0.950 + 0.005 10.212 4+ 1.099 0.655 + 0.031
Plug-In 0.963 + 0.004 70.999 £+ 7.761 0.661 + 0.022
RAPS 0.950 + 0.005 5.947 + 0.485 0.920 + 0.069
EfficientNet-v2-1 Pure Singleton 0.950 £ 0.005 369.726 £+ 14.194  0.369 £ 0.014
Least Ambiguous Sets 0.950 £ 0.004 4.157 + 0.231 0.718 + 0.016
SOCOP (ours) 0.950 £ 0.004 4.736 + 0.354 0.571 + 0.024
Plug-In 0.971 +£0.005 = 161.625 + 22.907 0.845 + 0.030
RAPS 0.950 + 0.005 10.380 + 0.819 1.000 £ 0.000
ConvNeXt-base Pure Singleton 0.950 + 0.004 = 428.852 + 14.761 0.428 + 0.015
Least Ambiguous Sets 0.950 £ 0.005 6.810 + 0.492 0.787 + 0.016
SOCOP (ours) 0.950 + 0.005 7.578 + 0.558 0.629 + 0.016
Plug-In 0.981 +£0.004  166.462 £ 26.307 0.941 £+ 0.032
RAPS 0.951 + 0.005 9.306 + 0.860 1.000 £ 0.000
Swin-v2-b Pure Singleton 0.950 £ 0.005  414.604 + 13.283 0.414 + 0.013
Least Ambiguous Sets 0.950 + 0.004 6.673 £+ 0.472 0.777 £ 0.017
SOCOP (ours) 0.950 £ 0.005 7.634 4+ 0.703 0.626 + 0.021
Plug-In 0.965 + 0.003 33.017 £ 3.027 0.540 + 0.013
RAPS 0.951 + 0.005 3.259 + 0.264 0.979 + 0.092
ViT-h-14 Pure Singleton 0.950 £ 0.004  304.159 + 13.851  0.304 + 0.014
Least Ambiguous Sets 0.950 + 0.005 2.378 & 0.105 0.539 + 0.018
SOCOP (ours) 0.950 + 0.005 2.695 + 0.165 0.421 + 0.024

Table 12: Performance of ResNet152-v2 on ImageNet-V2 with different A values (o« = 0.05). Results are
averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 + 0.005  432.673 + 12.869 0.432 + 0.013
0.01 SOCOP (ours) 0.950 4+ 0.006 25.474 £ 3.292 0.502 + 0.013
0.02 SOCOP (ours) 0.950 + 0.005 16.743 + 1.657 0.531 £+ 0.013
0.03 SOCOP (ours) 0.950 + 0.005 14.088 + 1.270 0.550 + 0.012
0.04 SOCOP (ours) 0.950 + 0.005 13.112 +1.138 0.567 £+ 0.012
0.05 SOCOP (ours) 0.950 + 0.005 12.527 + 1.047 0.581 + 0.013
0.06 SOCOP (ours) 0.950 + 0.005 12.091 + 1.020 0.592 + 0.013
0.07 SOCOP (ours) 0.950 + 0.005 11.732 +0.974 0.601 + 0.013
0.08 SOCOP (ours) 0.950 &+ 0.005 11.432 +0.931 0.609 + 0.013
0.09 SOCOP (ours) 0.950 &+ 0.005 11.171 4+ 0.876 0.615 + 0.012
0.10 SOCOP (ours) 0.950 + 0.005 10.920 + 0.826 0.620 + 0.012
0.20 SOCOP (ours) 0.950 + 0.005 9.949 £+ 0.685 0.660 + 0.011
0.30 SOCOP (ours) 0.950 % 0.005 9.745 + 0.661 0.684 + 0.011
0.40 SOCOP (ours) 0.950 &+ 0.005 9.616 + 0.623 0.699 + 0.010
0.50 SOCOP (ours) 0.950 + 0.005 9.555 + 0.609 0.711 £ 0.010
0.60 SOCOP (ours) 0.950 4+ 0.005 9.508 + 0.579 0.720 £ 0.010
0.70 SOCOP (ours) 0.950 £+ 0.005 9.427 4+ 0.543 0.726 + 0.010
0.80 SOCOP (ours) 0.950 + 0.005 9.344 + 0.554 0.730 £ 0.010
0.90 SOCOP (ours) 0.950 + 0.005 9.290 4+ 0.564 0.735 £+ 0.010
1.00 SOCOP (ours) 0.950 + 0.005 9.262 + 0.578 0.739 £ 0.011
e} Least Ambiguous Sets 0.949 4+ 0.005 9.067 £ 0.677 0.798 £+ 0.011

D.2 IMAGENET-V2

Results for all five models on the ImageNet-V2 dataset are reported in Table[TT]

For this dataset, the effect of A on our SOCOP across all five models are reported in Table [T2}{T6]
respectively.

D.3 CPL METHOD

We report the performance of the CPL method (Kiyani et al., 2024) under the same experimental
protocol as in the main text. Following |Kiyani et al.| (2024), we implement 7{ as a linear head
on top of the pre-trained model, mapping the final hidden-layer representations to a real-valued
scalar. The results, shown in Table[T7] indicate that this method exhibits slight undercoverage, while
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Table 13: Performance of EfficientNet-v2-1 on ImageNet-V2 with different A values (o = 0.05).

Results are averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 + 0.005 369.726 + 14.194  0.369 £ 0.014
0.01 SOCOP (ours) 0.951 + 0.005 12.243 + 1.247 0.422 + 0.014
0.02 SOCOP (ours) 0.950 + 0.004 8.506 + 0.744 0.448 + 0.015
0.03 SOCOP (ours) 0.950 4+ 0.004 7.266 4+ 0.505 0.466 + 0.013
0.04 SOCOP (ours) 0.950 + 0.004 6.643 + 0.433 0.480 + 0.013
0.05 SOCOP (ours) 0.950 4+ 0.004 6.216 4+ 0.413 0.491 £+ 0.014
0.06 SOCOP (ours) 0.950 + 0.004 5.910 4+ 0.398 0.500 + 0.015
0.07 SOCOP (ours) 0.950 4+ 0.004 5.718 + 0.397 0.509 + 0.016
0.08 SOCOP (ours) 0.950 4+ 0.004 5.559 4+ 0.399 0.516 + 0.016
0.09 SOCOP (ours) 0.950 &+ 0.004 5.429 4+ 0.405 0.522 + 0.017
0.10 SOCOP (ours) 0.950 &+ 0.004 5.304 4+ 0.385 0.528 + 0.016
0.20 SOCOP (ours) 0.950 + 0.004 4.751 £+ 0.302 0.565 + 0.016
0.30 SOCOP (ours) 0.950 4+ 0.004 4.586 + 0.285 0.590 + 0.016
0.40 SOCOP (ours) 0.950 + 0.004 4.496 £ 0.290 0.606 + 0.016
0.50 SOCOP (ours) 0.950 + 0.004 4.418 £0.273 0.617 £ 0.016
0.60 SOCOP (ours) 0.950 + 0.004 4.372 £ 0.258 0.626 + 0.015
0.70 SOCOP (ours) 0.950 4+ 0.004 4.335 £+ 0.251 0.634 + 0.015
0.80 SOCOP (ours) 0.950 4+ 0.004 4.305 £ 0.248 0.639 + 0.015
0.90 SOCOP (ours) 0.950 + 0.004 4.284 £ 0.250 0.644 + 0.015
1.00 SOCOP (ours) 0.950 &+ 0.004 4.272 £ 0.249 0.649 + 0.016
oo Least Ambiguous Sets 0.950 4+ 0.004 4.157 £ 0.231 0.718 £ 0.016

Table 14: Performance of ConvNeXt-base on ImageNet-V2 with different A values (o = 0.05). Results

are averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 4+ 0.004 428.852 + 14.761 0.428 + 0.015
0.01 SOCOP (ours) 0.950 + 0.004 19.963 + 2.012 0.465 + 0.012
0.02 SOCOP (ours) 0.950 4+ 0.004 14.093 + 1.081 0.498 + 0.011
0.03 SOCOP (ours) 0.950 + 0.004 11.929 4+ 0.907 0.518 +0.012
0.04 SOCOP (ours) 0.950 + 0.004 10.687 + 0.818 0.531 £ 0.012
0.05 SOCOP (ours) 0.950 4+ 0.004 9.976 + 0.750 0.543 + 0.012
0.06 SOCOP (ours) 0.950 4+ 0.004 9.448 + 0.682 0.552 + 0.012
0.07 SOCOP (ours) 0.950 4+ 0.004 9.104 4+ 0.634 0.560 + 0.012
0.08 SOCOP (ours) 0.950 £ 0.004 8.830 + 0.599 0.568 + 0.011
0.09 SOCOP (ours) 0.950 &+ 0.004 8.649 + 0.577 0.574 £+ 0.011
0.10 SOCOP (ours) 0.950 + 0.004 8.493 + 0.561 0.580 + 0.012
0.20 SOCOP (ours) 0.950 + 0.005 7.668 + 0.525 0.622 + 0.013
0.30 SOCOP (ours) 0.950 4+ 0.005 7.386 4+ 0.494 0.647 + 0.013
0.40 SOCOP (ours) 0.950 &+ 0.005 7.245 + 0.505 0.665 + 0.014
0.50 SOCOP (ours) 0.950 4+ 0.005 7.182 4+ 0.503 0.677 £ 0.014
0.60 SOCOP (ours) 0.950 + 0.005 7.148 £ 0.513 0.688 + 0.015
0.70 SOCOP (ours) 0.950 + 0.005 7.135 + 0.510 0.697 £+ 0.015
0.80 SOCOP (ours) 0.950 4+ 0.005 7.111 +£ 0.519 0.704 + 0.016
0.90 SOCOP (ours) 0.950 + 0.005 7.108 + 0.512 0.711 £ 0.016
1.00 SOCOP (ours) 0.950 &+ 0.005 7.104 + 0.509 0.717 £ 0.016
[eS) Least Ambiguous Sets 0.950 4+ 0.005 6.810 4 0.492 0.787 £+ 0.016

Table 15: Performance of Swin-v2-b on ImageNet-V2 with different A values (o« = 0.05). Results are

averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)

0 Pure Singleton 0.950 + 0.005  414.604 £ 13.283 0.414 + 0.013
0.01 SOCOP (ours) 0.951 4+ 0.004 20.127 £ 1.710 0.478 +£ 0.011
0.02 SOCOP (ours) 0.950 4+ 0.005 13.318 £ 1.226 0.501 £+ 0.013
0.03 SOCOP (ours) 0.950 4+ 0.005 11.647 + 1.024 0.522 + 0.014
0.04 SOCOP (ours) 0.950 4+ 0.004 10.768 + 0.875 0.537 £+ 0.013
0.05 SOCOP (ours) 0.950 4+ 0.004 10.036 + 0.794 0.547 £+ 0.013
0.06 SOCOP (ours) 0.950 4+ 0.004 9.507 + 0.706 0.556 + 0.013
0.07 SOCOP (ours) 0.950 4+ 0.004 9.113 + 0.620 0.564 + 0.013
0.08 SOCOP (ours) 0.950 4+ 0.004 8.834 4+ 0.548 0.571 £+ 0.012
0.09 SOCOP (ours) 0.950 4+ 0.004 8.640 4 0.548 0.579 + 0.013
0.10 SOCOP (ours) 0.950 4+ 0.004 8.450 4+ 0.529 0.585 + 0.013
0.20 SOCOP (ours) 0.950 4+ 0.004 7.625 + 0.596 0.624 + 0.015
0.30 SOCOP (ours) 0.950 4+ 0.005 7.337 + 0.583 0.646 + 0.016
0.40 SOCOP (ours) 0.950 4+ 0.004 7.183 & 0.570 0.662 + 0.016
0.50 SOCOP (ours) 0.950 & 0.005 7.093 + 0.563 0.674 + 0.017
0.60 SOCOP (ours) 0.950 4+ 0.005 7.049 + 0.568 0.684 + 0.017
0.70 SOCOP (ours) 0.950 4+ 0.005 7.004 + 0.551 0.692 + 0.017
0.80 SOCOP (ours) 0.950 4+ 0.005 6.971 4+ 0.549 0.699 + 0.017
0.90 SOCOP (ours) 0.950 + 0.005 6.954 4+ 0.538 0.705 + 0.017
1.00 SOCOP (ours) 0.950 4+ 0.005 6.929 4+ 0.527 0.710 £+ 0.017
[eS) Least Ambiguous Sets 0.950 4+ 0.004 6.673 + 0.472 0.777 £ 0.017

23



Under review as a conference paper at ICLR 2026

Table 16: Performance of ViT-h—-14 on ImageNet-V2 with different A values (o = 0.05). Results are
averaged over 100 data splits.

A Method Coverage Avg Size P(size > 1)
0.00 Pure Singleton 0.950 &+ 0.004 304.159 + 13.851 0.304 £+ 0.014
0.01 SOCOP (ours) 0.950 + 0.004 6.672 + 0.461 0.323 £ 0.012
0.02 SOCOP (ours) 0.950 + 0.004 4.803 £ 0.258 0.336 £ 0.011
0.03 SOCOP (ours) 0.950 4+ 0.004 4.145 £ 0.213 0.346 + 0.011
0.04 SOCOP (ours) 0.950 &+ 0.004 3.747 £ 0.200 0.352 + 0.012
0.05 SOCOP (ours) 0.950 &+ 0.004 3.493 + 0.186 0.357 £ 0.012
0.06 SOCOP (ours) 0.950 + 0.004 3.329 £ 0.176 0.361 + 0.013
0.07 SOCOP (ours) 0.950 4+ 0.004 3.223 +0.162 0.367 £+ 0.013
0.08 SOCOP (ours) 0.950 4+ 0.005 3.147 + 0.160 0.372 £+ 0.013
0.09 SOCOP (ours) 0.950 + 0.005 3.084 + 0.165 0.377 £ 0.014
0.10 SOCOP (ours) 0.950 4+ 0.005 3.027 £ 0.167 0.381 + 0.015
0.20 SOCOP (ours) 0.950 + 0.005 2.743 + 0.142 0.411 + 0.016
0.30 SOCOP (ours) 0.950 4+ 0.005 2.636 + 0.141 0.429 + 0.016
0.40 SOCOP (ours) 0.950 + 0.005 2.575 + 0.141 0.441 + 0.017
0.50 SOCOP (ours) 0.950 &+ 0.005 2.539 £ 0.135 0.450 £+ 0.017
0.60 SOCOP (ours) 0.951 + 0.005 2.516 + 0.127 0.458 + 0.017
0.70 SOCOP (ours) 0.950 + 0.005 2.496 + 0.123 0.464 + 0.017
0.80 SOCOP (ours) 0.950 4+ 0.005 2.480 +0.117 0.469 + 0.016
0.90 SOCOP (ours) 0.950 &+ 0.005 2.471 £ 0.116 0.474 £ 0.016
1.00 SOCOP (ours) 0.950 + 0.005 2.461 + 0.116 0.478 £+ 0.016
oo Least Ambiguous Sets 0.950 %+ 0.005 2.378 £ 0.105 0.539 + 0.018

Table 17: Performance of CPL (Kiyani et al., [2024) on ImageNet-Val, ImageNet-V2, TissueMNIST and
MMLU with the same protocol used (a = 0.05).

Model Coverage Avg Size P(size > 1)
ResNet1l52-v2 0.950 £0.002  2.297 £ 0.059  0.463 £ 0.006
EfficientNet-v2-1 0.949 £0.003 1.542+0.044 0.327 £0.011
ConvNeXt-base 0.948 £0.003 1.866 £+ 0.050 0.392 £ 0.011
Swin-v2-Db 0.948 £0.003 1.841 £0.039 0.386 £ 0.009
ViT-h-14 0.949 £0.004 1.292+0.030 0.221 £0.017
(a) ImageNet-Val
Model Coverage Avg Size P(size > 1)
ResNet152-v2 0.950 £0.006 9.295+1.167 0.797 £0.016
EfficientNet-v2-1 0.940+£0.006 3.3944+0.400 0.675£0.017
ConvNeXt-base 0.949 £0.005 6.677£0.615 0.773 £0.019
Swin-v2-b 0.949 £0.005 6.493 £0.673 0.764 +0.024
ViT-h-14 0.948 £0.005 2.400+0.154 0.489 £0.019
(b) ImageNet-V2
Model Coverage Avg Size P(size > 1)
ResNet-50 (224) 0.950 £0.003 2.640+£0.040 0.791 £ 0.008
(c) TissueMNIST
Model Coverage Avg Size P(size > 1)
Llama3.1-8B-Instruct 0.948£0.006 2.400=+0.046 0.644 +£0.012
(d) MMLU

attaining similar performance to Least Ambiguous Sets. Notably, these results are different
from the ones reported by (Kiyani et al. [2024), where the CPL method reduced average set sizes.
However, the experimental settings considered in the two papers are different, which may explain the
experimental differences. In particular, their results use older large language models which perform
quite poorly on MMLU, such that the original average set sizes are very large, being for instance
equal to approximately 3.5 out of 4 in one example. This leaves ample opportunity for improving
the set sizes by the CPL method. In contrast, in our setting, the language models have a higher
performance (leading to smaller set sizes with the default least ambiguous set sizes method, around
2.5 out of 4), which may leave less opportunity for improvement.
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E HYPERPARAMETER GRID

For RAPS, we follow |Angelopoulos et al| (2021), wusing the gird A €
{0.001,0.01,0.1,0.2,0.5} to optimize set size and a grid with smaller values A €
{0.00001, 0.0001, 0.0008,0.001,0.0015,0.002} to optimize SSCV. For our SOCOP method,
we use a linearly spaced grid of 15 values over over [0.05, 1.0] to optimize the balance between set

size and non-singleton rate, and a linearly spaced grid of 15 values over [0.005, 0.1] to optimize
SSCV.
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