

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SINGLETON-OPTIMIZED CONFORMAL PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Conformal prediction can be used to construct prediction sets that cover the true outcome with a desired probability, but can sometimes lead to large prediction sets that are costly in practice. The most useful outcome is a singleton prediction—an unambiguous decision—yet existing efficiency-oriented methods primarily optimize average set size. Motivated by this, we propose a new nonconformity score that aims to minimize the probability of producing non-singleton sets. Starting from a non-convex constrained optimization problem as a motivation, we provide a geometric reformulation and associated algorithm for computing the nonconformity score and associated split conformal prediction sets in $O(K)$ time for K -class problems. Using this score in split conformal prediction leads to our proposed Singleton-Optimized Conformal Prediction (SOCOP) method. We evaluate our method in experiments on image classification and LLM multiple-choice question-answering, comparing with standard nonconformity scores such as the (negative) label probability estimates and their cumulative distribution function; both of which are motivated by optimizing length. The results show that SOCOP increases singleton frequency (sometimes by over 20%) compared to the above scores, with minimal impact on average set size.

1 INTRODUCTION

Reliable uncertainty quantification is often needed for deploying predictive models in settings of importance. While standard single point predictions can be very useful if models are accurate, they can be problematic if model accuracy drops. Prediction sets address this limitation by providing a subset of possible labels, $C(x) \subseteq \mathcal{Y}$, for a given input $x \in \mathcal{X}$. The primary requirement for such sets is usually a form of *coverage*. Formally, given features $X \in \mathcal{X}$ with some distribution, and a multi-class label $Y \in \mathcal{Y}$, we seek sets $C(X) \subseteq \mathcal{Y}$ satisfying the marginal coverage guarantee $\mathbb{P}\{Y \in C(X)\} \geq 1 - \alpha$. Conformal prediction (see e.g., Vovk et al., 1999; Gammerman et al., 1998; Vovk et al., 2005, etc) offers a methodology for constructing prediction sets that satisfy this guarantee under the mild assumption of data exchangeability.

While validity is essential, the practical utility of a prediction set is determined by its *efficiency*. For instance, a trivial set containing all labels is valid but uninformative. In practice, efficiency is often evaluated by the expected size of the sets $\mathbb{E}_X[|C(X)|]$. A variety of works have studied how to achieve small sets on average, ranging from choosing suitable nonconformity scores to explicit optimization approaches (see e.g., Takeuchi, 2020; Sadinle et al., 2019; Romano et al., 2020; Angelopoulos et al., 2021; Kiyani et al., 2024, etc).

However, average size is not necessarily the ideal measure of efficiency. Often, the most desirable outcome is an unambiguous prediction, a *singleton set* containing only one label. A set of size two or more may require additional human intervention or changing the workflow when used in downstream analysis, and thus brings an outsized cost. This motivates an alternative efficiency criterion, first conceptualized in Vovk et al. (2005) as the M-criterion, which seeks to minimize the probability of producing a non-singleton set, $\mathbb{P}_X[|C(X)| > 1]$. We refer to this as the *singleton objective*.¹ To our knowledge, practical conformal prediction methods that aim to optimize the singleton objective have not yet been developed.

¹Strictly speaking, a singleton set refers to a cardinality of exactly one ($|C(X)| = 1$). In this work, we use the term “singleton objective” to broadly refer to the goal of minimizing the probability of returning multiple labels ($|C(X)| > 1$). As we discuss below in our experiments, zero sets occur extremely rarely, and so the two objectives effectively coincide.

054 In this work, we bridge this gap by developing conformal prediction sets motivated by optimizing a
 055 combination of the singleton objective and the expected length for classification problems, subject
 056 to coverage. We begin by formulating this as an optimization problem over prediction sets (which
 057 are discrete variables). Our main contributions are then as follows:

- 059 **Nonconformity score inspired by singleton objective.** We use the singleton objective as
 060 inspiration to define a nonconformity score aiming to enhance singleton probability. Since
 061 the original optimization problem is constrained, we consider its Lagrangian, which we
 062 show is separable across x . We show that for each fixed x , the optimal prediction set is
 063 the set of top-few labels, and that the prediction sets are nested as the Lagrangian penalty
 064 parameter increases. This motivates us to define a nonconformity score based on nested
 065 conformal prediction (Vovk et al., 2005; Gupta et al., 2022).
- 066 **Efficient algorithm to compute nonconformity score:** We derive a highly efficient algo-
 067 rithm to compute the nonconformity score, through a geometric perspective. We show that
 068 this problem reduces to finding the lower convex hull of a set of K two-dimensional points
 069 for K -class classification problems, which has $O(K)$ complexity per instance. We show
 070 that split conformal prediction sets can be computed with the same complexity.
- 071 **Empirical validation:** We conduct detailed experiments on three image classification
 072 datasets (two versions of ImageNet and TissueMNIST) and LLM multiple-choice question
 073 answering. The results demonstrate that our method, which we call Singleton-Optimized
 074 Conformal Prediction (SOCOP), achieves a favorable balance between minimizing average
 075 set size and maximizing the frequency of singleton predictions compared to state-of-the-art
 076 baselines. Often, we can reduce the non-singleton probability by a large fraction (such as
 077 20%) while only incurring a small increase in expected set size.

078 **Notation.** For a positive integer K , we denote $[K] := \{1, \dots, K\}$. We denote the $(K - 1)$ -
 079 dimensional simplex of probabilities by $\Delta_{K-1} := \{(z_1, \dots, z_K) : \sum_{i=1}^K z_i = 1\}$. For a finite set
 080 A , we write $|A|$ for its cardinality. The indicator of a set A is denoted by $I(A)$.

082 1.1 RELATED WORK

083 The origins of distribution-free prediction sets date back to the early works of Wilks (1941), Wald
 084 (1943), Scheffe & Tukey (1945), and Tukey (1947; 1948). Distribution-free inference and conformal
 085 prediction has been extensively studied in recent works (see, e.g., Saunders et al., 1999; Vovk et al.,
 086 1999; Papadopoulos et al., 2002; Vovk et al., 2005; Vovk, 2013; Lei et al., 2013; Lei & Wasserman,
 087 2014; Lei et al., 2018; Romano et al., 2020, etc). Overviews of the field are provided by Vovk et al.
 088 (2005); Shafer & Vovk (2008), and Angelopoulos & Bates (2023).

089 Recent research has started investigating ways to improve the efficiency of prediction sets. (Sadinle
 090 et al., 2019) have shown that the true probability of the labels given the features is the conformity
 091 score that leads to prediction sets that minimize expected length. Adaptive scoring schemes (Ro-
 092 mano et al., 2020; Angelopoulos et al., 2021) have a similar motivation, but are derived from a
 093 conditional coverage perspective. These works are related to ours in that we also derive a new non-
 094 conformity score. However, taking into account the singleton probability or M-criterion (Vovk et al.,
 095 2005), our work requires addressing new technical challenges in terms of efficiently computing the
 096 prediction sets. Recent work aims to directly optimize the length, possibly with conditional coverage
 097 guarantees (Kiyani et al., 2024). Other work has explored different notions of efficiency, through
 098 direct optimization (Stutz et al., 2022; Shi et al., 2025), computational shortcuts (Liang et al., 2023),
 099 or other approaches, see e.g., Liang et al. (2025); Le Bars & Humbert (2025); Braun et al. (2025);
 100 Behboodi et al. (2025), etc. Due to space limitations, additional related work is discussed in Ap-
 101 pendix A.

102 2 A SINGLETON-OPTIMIZED NONCONFORMITY SCORE

103 2.1 PROBLEM FORMULATION

104 We consider a classification problem with labels $y \in \mathcal{Y} = \{1, \dots, K\}$ and features $x \in \mathcal{X} = \mathbb{R}^d$.
 105 Our goal is to construct prediction sets $C(x)$, for all x , satisfying the coverage guarantee $P(Y \in$

108 $C(X)) \geq 1 - \alpha$. Let \mathcal{M} be the collection of all² (measurable) prediction sets $C : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$. Our
 109 motivating problem is to find prediction sets that are optimal with respect to a linear combination of
 110 the singleton objective and length, subject to coverage:

$$\begin{aligned} \min_{C \in \mathcal{M}} \quad & F_\lambda(C) := \mathbb{P}_X [|C(X)| > 1] + \lambda \mathbb{E}_X [|C(X)|] \\ \text{s.t.} \quad & G(C) := \mathbb{P}(Y \in C(X)) - (1 - \alpha) \geq 0. \end{aligned}$$

114 where $\lambda \geq 0$ is a regularization parameter that we will set later. This objective balances the probability
 115 of non-singletons $\mathbb{P}_X [|C(X)| > 1]$ and the expected size $\mathbb{E}_X [|C(X)|]$. We will argue that this
 116 leads to a favorable trade-off, whereby increasing one by a small amount results in a large decrease
 117 in the other.

118 This optimization problem is defined over prediction sets, which belong to a discrete, discontinuous
 119 space (e.g., the linear combination of two sets is undefined), and so standard gradient-based optimiza-
 120 tion methods are not applicable. However, we emphasize that this problem will merely serve as
 121 a motivation for us to define a useful nonconformity score. We will not attempt to solve this problem
 122 exactly, but rather use it as a starting point, transforming it into a form that allows us to derive our
 123 nonconformity score.

124 Our first step towards defining the nonconformity score is to study the dual of the above problem.
 125 This will allow us to use separability in the solution, and thus derive a nonconformity score. Let P_X
 126 be the distribution of X . The Lagrangian with dual variable $\eta \geq 0$ is:

$$\mathcal{L}_\lambda(C, \eta) = \int_{\mathcal{X}} \left[I(|C(x)| > 1) + \lambda |C(x)| - \eta \sum_{y \in C(x)} P_{Y|X}(y|x) \right] P_X(dx) + \eta(1 - \alpha). \quad (1)$$

131 Since $\mathcal{L}_\lambda(C, \eta) = F_\lambda(C) - \eta G(C) \leq F_\lambda(C)$ for every feasible C and $\eta \geq 0$, minimizing $\mathcal{L}_\lambda(C, \eta)$
 132 gives a lower bound on the original problem.³

133 A key observation is that the minimization of $\mathcal{L}_\lambda(C, \eta)$ over C is separable in x , i.e., it can be solved
 134 by optimizing over each x separately. Denote, for all $x \in \mathcal{X}$, the per-instance loss

$$\ell_{p(\cdot|x), \lambda}(C(x); \eta) = I(|C(x)| > 1) + \lambda |C(x)| - \eta \sum_{y \in C(x)} p(y|x).$$

138 Then, we can write $\mathcal{L}_\lambda(C, \eta) = \int_{\mathcal{X}} \ell_{p(\cdot|x), \lambda}(C(x); \eta) P_X(dx) + \eta(1 - \alpha)$ as an integral of the
 139 per-instance loss. Thus, (1) can be minimized over $C \in \mathcal{M}$ by minimizing $\ell_{p(\cdot|x), \lambda}(C(x); \eta)$ for
 140 each $x \in \mathcal{X}$ separately. Since $\ell_{p(\cdot|x), \lambda}(C(x); \eta)$ can be viewed as an instance-level cost associated
 141 with the prediction set $C(x)$ and the probabilities of the labels $p(\cdot|x)$, this motivates us to leverage
 142 it to construct our nonconformity score.

143 Continuing with the general approach of leveraging the theoretically optimal prediction set for the
 144 construction of the nonconformity score, we study the minimization of ℓ . For any probability distri-
 145 bution $\gamma \in \Delta_{K-1}$, and Lagrange multiplier $\eta \geq 0$, we consider solving for the following *singleton-
 146 optimized set* $S_{\eta, \gamma} \subseteq [K]$, defined by the optimization problem⁴

$$S_{\eta, \gamma} := S_{\eta, \gamma, \lambda} \in \arg \min_{S \subseteq \mathcal{Y}} \ell_{\gamma, \lambda}(S; \eta). \quad (2)$$

150 Then, all solutions of minimizing (1) can be written⁵ as $C_\eta(x) := S_{\eta, p(\cdot|x)}$.

151 ²We will endow \mathcal{X} with the Borel σ -algebra. All quantities considered in this paper will be measurable with
 152 respect to appropriate σ -algebras; this will not be mentioned further.

153 ³An optimal solution C^* to this problem minimizes the original objective F subject to the constraint
 154 $\mathbb{P}(Y \in C(X)) = \mathbb{P}(Y \in C^*(X))$. For this reason, it would be reasonable to consider the original optimi-
 155 zation problem subject to the constraint $G(C) = 0$, in which case, the Lagrange multiplier approach could
 156 provide a certificate of optimality or near-optimality quite directly. However, ultimately, we will not solve the
 157 above problem directly but rather only use it as a way to define a nonconformity score, which we will then
 158 use in conformal prediction. Therefore, certifying the optimality of our intermediate solution to the original
 159 optimization problem is not a central goal of our research.

160 ⁴If there are multiple solutions, we choose any set that has a minimal size. The same holds for the definitions
 161 in the following text. Our claims will hold for all optimizing sets, and for simplicity we will refer to “the”
 162 optimizer.

163 ⁵When the value of λ is fixed or clear from the context, we will often omit it from our notation.

162 2.2 DEFINITION OF THE NONCONFORMITY SCORE
163

164 From now on, without loss of generality, we order the probabilities such that $\gamma_{y_1} \geq \gamma_{y_2} \geq \dots \geq$
165 $\gamma_{y_K} > 0$, where $K = |\mathcal{Y}|$. Fortunately, the structure of the prediction sets $S_{\eta, \gamma}$ can be characterized.
166 A starting point is the following simple result, whose proof (with all proofs) is provided in the
167 appendix. For any $j \in \{0, 1, \dots, K\}$, let \mathcal{F}_j denote a set of the top j labels, breaking ties arbitrarily;
168 where \mathcal{F}_0 is the empty set.

169 **Lemma 2.1** (The structure of singleton optimal sets). *For any $\eta \geq 0$ and $\gamma \in \Delta_{K-1}$, $S_{\eta, \gamma}$ is the set*
170 *of top- j labels for some j that depends on η and γ .*

172 The next and crucial observation is that the sets $S_{\eta, \gamma}$ from (2) are *nested* as a function of the Lagrange
173 multiplier η .

174 **Lemma 2.2** (Nested Sets Property). *For $0 \leq \eta_1 < \eta_2$, we have $S_{\eta_1, \gamma} \subseteq S_{\eta_2, \gamma}$.*

176 This motivates us to define a nonconformity score via nested conformal prediction (Vovk et al.,
177 2005; Gupta et al., 2022), where we aim to find the smallest η —and thus the smallest set $S_{\eta, \gamma}$ —that
178 contains the true label.

179 In practice, the true conditional probability $p(\cdot | x)$ is typically unknown; and instead, we only have
180 access to an estimated probability $\hat{p}(\cdot | x)$. By plugging in the estimated probabilities in lieu of the
181 true ones and using nested conformal prediction (Vovk et al., 2005; Gupta et al., 2022), we define
182 the singleton-optimized nonconformity score:

183 **Definition 2.3** (Singleton-optimized nonconformity score). *For an input $x \in \mathcal{X}$ with label $y \in$
184 \mathcal{Y} , for a probabilistic predictor \hat{p} such that $\hat{p}(\cdot | x)$ is a probability distribution over \mathcal{Y} , and a
185 regularization parameter $\lambda \geq 0$, define the singleton-optimized nonconformity score*

$$186 r(x, y) := r_\lambda(x, y) = \inf \{ \tau \geq 0 : y \in S_{\tau, \hat{p}(\cdot | x), \lambda} \}. \quad (3)$$

188 where the singleton-optimal set $S_{\eta, \gamma, \lambda}$ is defined in (2) for a Lagrange multiplier $\eta \geq 0$.

190 In principle, this nonconformity score can be used with a variety of techniques from conformal
191 prediction, including split conformal prediction (Papadopoulos et al., 2002), cross-conformal pre-
192 diction (Vovk, 2015), Mondrian and label conditional conformal prediction (Vovk et al., 2005), etc,
193 to construct prediction sets. The method of choice depends on the type of data and guarantee de-
194 sired. However, the practical use of the nonconformity score first requires an efficient algorithm
195 to compute it. As we will see below, a naive search over τ can be expensive when the number of
196 classes is large. In what follows, we discuss how to compute the nonconformity score r efficiently.
197 Readers more interested in experimental results may skip to Section 3.

198 2.3 GEOMETRIC APPROACH TO COMPUTING THE NONCONFORMITY SCORE
199

200 In order to develop a method to compute the nonconformity score, we first study the problem of
201 computing the prediction set $S_{\eta, \gamma}$ for a given vector of probabilities $\gamma \in \Delta_{K-1}$. This is used
202 directly in the nonconformity score. By Lemma 2.1, the optimal prediction sets from (2) are equal
203 to the top few labels. Specifically, $S_{\eta, \gamma} = \mathcal{F}_{\kappa(\eta; \gamma)}$, where $\kappa(\eta; \gamma)$ is the *optimal subset size* (or
204 *optimal index*), defined via the optimization problem:

$$205 \kappa(\eta; \gamma) := \arg \min_{0 \leq k \leq K} \{ \Psi_\eta(k, \gamma) := I(k > 1) + \lambda k - \eta \cdot \sum_{i=1}^k \gamma_{y_i} \}. \quad (4)$$

208 For a fixed value of η , the optimal index $\kappa(\eta; \gamma)$ can be found in time $O(K)$ by observing that, for
209 $k \geq 3$, the gaps $\delta_k := \Psi_\eta(k, \gamma) - \Psi_\eta(k-1, \gamma) = \lambda - \eta \gamma_{y_k}$ are non-decreasing in k due to the
210 ordering $\gamma_{y_1} \geq \gamma_{y_2} \geq \dots$. Hence, to find the optimum, it is enough to find the smallest index $k^* \geq 3$
211 such that $\delta_{k^*} < 0 \leq \delta_{k^*+1}$, if such an index exists; otherwise setting $k^* = K$. Then, we compare
212 the objective value at k^* with those for $k = 0, 1, 2$ and choose the best. This immediately leads to
213 an $O(K)$ algorithm for computing the prediction set $S_{\eta, \gamma}$.

214 Next, by leveraging the reduced problem (4), the nonconformity score in (3) can be equivalently
215 written as:

$$216 r(x, y_i) = \inf \{ \tau \geq 0 : \kappa(\tau; \hat{p}(\cdot | x)) \geq i \}. \quad (5)$$

216 A direct approach might be to search over values of τ , checking $\kappa(\tau; \hat{p}(\cdot|x)) \geq i$ for each case, until
 217 we find a value that approximates the true value within a certain desired accuracy. However, this
 218 direct approach becomes computationally challenging for large values of K , because computing the
 219 optimal index takes linear time $O(K)$ for each τ . Therefore we propose a fast alternative computa-
 220 tional method, which relies on studying the optimal index for different values of τ simultaneously,
 221 and can be viewed through a geometric perspective.

222 A first step observation is that the nested sets property immediately implies that $\eta \mapsto \kappa(\eta; \gamma)$ is a
 223 monotone step function.

224 **Corollary 2.4** (Properties of optimal index function). *For any $\gamma \in \Delta_{K-1}$, $\kappa(\cdot; \gamma) : [0, \infty] \rightarrow$
 225 $\{0, 1, \dots, K\}$ is a monotonically non-decreasing, left-continuous step function with $\kappa(0; \gamma) = 0$ and
 226 $\kappa(\infty; \gamma) := \lim_{\eta \rightarrow \infty} \kappa(\cdot; \gamma) = K$.*

228 Next, we aim to characterize the specific points where the jumps of κ happen. Denote $\Gamma_k =$
 229 $\sum_{i=1}^k \gamma_{y_i}$ and $g_k = I(k > 1) + \lambda k$ for conciseness. For each $k = 0, 1, \dots$, we consider the point
 230 $P_k = (\Gamma_k, g_k)$ in \mathbb{R}^2 . This yields a set of $K + 1$ points $\mathcal{P} = \{P_0, \dots, P_K\}$. Our algorithm will
 231 leverage the convex hull of \mathcal{P} , i.e., $\{\sum_{i=0}^K \beta_i P_i : \beta_i \geq 0, \sum_{i=0}^K \beta_i = 1\}$, which is a convex polygon
 232 in \mathbb{R}^2 . The *lower convex hull* is the lower boundary of this polygon, starting from $P_0 = (0, 0)$ to
 233 $P_K = (1, 1 + \lambda K)$.

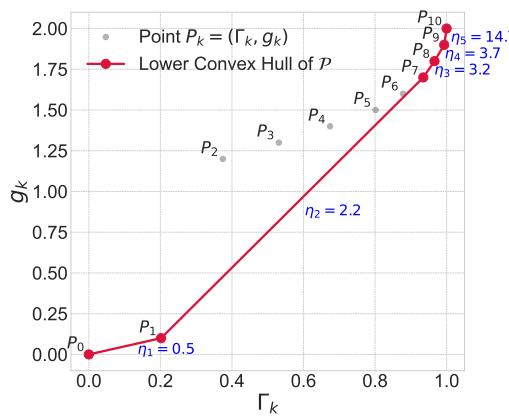
234 Let the ordered sequence of vertices of the lower convex hull of \mathcal{P} be $\{P_{v_0}, P_{v_1}, \dots, P_{v_m}\}$, where
 235 $v_0 < v_1 < \dots < v_m$ are indices from $\{0, \dots, K\}$. By construction, we have $v_0 = 0$ and $v_m = K$,
 236 since Γ_k are strictly increasing and g_k are non-decreasing with k . For $i = 1, \dots, m$, define the slope
 237 of the edge connecting the vertices $P_{v_{i-1}}$ and P_{v_i} as $\eta_i := (g_{v_i} - g_{v_{i-1}})/(\Gamma_{v_i} - \Gamma_{v_{i-1}})$. To unify
 238 the analysis, we define $\eta_0 := 0$ and $\eta_{m+1} := +\infty$. The following theorem (with proof in Appendix
 239 B) characterizes the jumps and slopes of κ . Figure 1 shows an example of a lower convex hull of a
 240 point set \mathcal{P} for a probability vector with $K = 10$.⁶

241 **Theorem 2.5** (Characterizing the optimal index function κ). *The range of $\kappa(\eta; \gamma)$ for $\eta \in [0, \infty)$
 242 is precisely the set $\{v_0, v_1, \dots, v_m\}$ of indices of the vertices of the lower convex hull. Moreover,
 243 the discontinuity points of $\eta \mapsto \kappa(\eta; \gamma)$ are the slopes η_i , $i = 1, \dots, m$ of the edges of the vertices.
 244 Specifically,*

$$\kappa(\eta; \gamma) = \begin{cases} 0, & \text{for } \eta \in [0, \eta_1] \\ v_i, & \text{for } \eta \in (\eta_i, \eta_{i+1}], 1 \leq i \leq m-1 \\ K, & \text{for } \eta \in (\eta_m, \infty). \end{cases}$$

248 Computing the nonconformity score.

249 With Theorem 2.5, we can efficiently compute the
 250 nonconformity scores and the final prediction
 251 sets. The form $r(x, y_i) = \inf\{\eta \geq 0 : y_i \in$
 $S_{\eta, \hat{p}(\cdot|x)}\} = \inf\{\eta \geq 0 : \kappa(\eta; \hat{p}(\cdot|x)) \geq i\}$ is
 252 equivalent to finding the smallest slope η_j that
 253 leads to a prediction set of size $v_j \geq i$. In-
 254 tuitively, the slope η represents the “price” per
 255 unit of coverage relative to the set-size penalty.
 256 Navigating the lower convex hull corresponds to
 257 finding the minimum price required to “purchase”
 258 enough coverage to include the target label y_i in
 259 the set. To compute this, we can first find the
 260 vertices of the lower convex hull (which can be done
 261 with a standard approach, see Algorithm 2), and
 262 identify the correct slope; these can be performed
 263 in a single loop. Having an efficient algorithm to
 264 compute the nonconformity score is useful in a
 265 variety of conformal prediction methods, such as
 266 split conformal prediction (Papadopoulos et al.,
 267 2002), cross-conformal prediction (Vovk, 2015),
 268 Mondrian conformal prediction (Vovk et al., 2005), etc. In this paper, we will focus on split confor-
 269 mal prediction, which is one of the most popular and widely applicable methods.



263 Figure 1: Lower convex hull for a simulated proba-
 264 bility vector with $K = 10$.

266 Mondrian conformal prediction (Vovk et al., 2005), etc. In this paper, we will focus on split confor-
 267 mal prediction, which is one of the most popular and widely applicable methods.

268
 269 ⁶Red points indicate the hull vertices, and η_i denote the corresponding slopes. The nonconformity scores
 are $r(x, y_1) = \eta_1$, $r(x, y_2) = \dots = r(x, y_7) = \eta_2$, $r(x, y_8) = \eta_3$, $r(x, y_9) = \eta_4$, and $r(x, y_{10}) = \eta_5$.

270 To run split conformal prediction given a set of n calibration data points and a desired target coverage
 271 level $1 - \alpha$ in $[0, 1]$, we can compute \hat{q} , the $(1 - \alpha)(1 + 1/n)$ -th quantile of the nonconformity scores
 272 over the calibration set; see Algorithm 3 in the Appendix.

273 **Coverage guarantees.** Naturally, the guarantees of conformal prediction are inherited here. Specifically,
 274 if our calibration and test data point are exchangeable, then we have that $P(Y_{n+1} \in \hat{C}(X_{n+1})) \geq 1 - \alpha$, where the randomness is taken jointly over the calibration and test data.
 275

276 **Computing the prediction set.** Consider a new data point x_{n+1} for which we aim to compute the
 277 prediction set $\hat{C}(x_{n+1})$. The range of $r(x_{n+1}, y_1), \dots, r(x_{n+1}, y_K)$ is the set of the discontinuity
 278 points of $\kappa(\eta; \hat{p}(\cdot|x_{n+1}))$. Therefore, due to the monotonicity of κ in η , we do not need to compute
 279 the score for each candidate label individually. Instead, we can directly search for the maximal slope
 280 along the lower convex hull that falls below the quantile \hat{q} ; see Algorithm 1.
 281

283 **Algorithm 1** SOCOP: Singleton-Optimized (Split) Conformal Prediction; with Singleton-Optimized Score

284 **Require:** Pre-trained model: \hat{p} , test point: X_{n+1} , penalty: $\lambda > 0$, $(1 - \alpha)(1 + 1/n)$ -th quantile of calibration
 285 set nonconformity scores: \hat{q} .

286 **Ensure:** A prediction set $\hat{C}(X_{n+1})$ with coverage $1 - \alpha$.

287 1: Sort $\hat{p}(\cdot|X_{n+1})$ to get $\hat{p}_{\text{sorted}}(\cdot|X_{n+1})$ and associated labels $\text{idx}_{\text{sorted}, n+1}$
 288 2: $(\mathcal{V}, \Gamma, g) \leftarrow$ Find lower convex hull using Algorithm 2 with input $(\hat{p}_{\text{sorted}}(\cdot|X_{n+1}), \lambda)$
 289 3: $k_{\text{final}} \leftarrow 0$
 290 4: **for** $j = 1$ to $|\mathcal{V}| - 1$ **do**
 291 5: $v_- \leftarrow \mathcal{V}[j - 1]$; $v_+ \leftarrow \mathcal{V}[j]$; $\eta_j \leftarrow (g_{v_+} - g_{v_-}) / (\Gamma_{v_+} - \Gamma_{v_-})$
 292 6: If $\eta_j \leq \hat{q}$ then $k_{\text{final}} \leftarrow v_+$, else break from for loop
 293 7: **end for**
 294 8: $\hat{C}(X_{n+1}) \leftarrow \{ \text{idx}_{\text{sorted}, n+1}[k] : 0 \leq k \leq k_{\text{final}} - 1 \}$
 9: **return** $\hat{C}(X_{n+1})$

295 2.4 THE SCOPE OF OUR FRAMEWORK

296 In this section, we discuss certain important special cases and extensions of our methodology.

300 Our nonconformity score was derived starting from a linear combination of the singleton probability
 301 and the expected length. Therefore, it would be reassuring to know that our solution can indeed
 302 provably interpolate between the two by recovering them in certain limiting cases. In the next result,
 303 we show that this is indeed true and that our nonconformity score reduces to the corresponding
 304 nonconformity scores for these two cases. Recall below that we consider the labels to be sorted such
 305 that $\hat{p}(y_1|x) \geq \hat{p}(y_2|x) \geq \dots$

306 **Corollary 2.6** (Recovery of singleton objective optimization and least ambiguous sets). (1) When
 307 $\lambda \rightarrow \infty$, the nonconformity scores have the limit $r_{\text{las}}(x, y_i) = 1/\hat{p}(y_i|x)$. The resulting split confor-
 308 mal prediction sets have the form $\{y \in \mathcal{Y} : \hat{p}(y|x_{n+1}) \geq c\}$, for some quantity c , recovering least
 309 ambiguous set-valued classifiers (Sadinle et al., 2019).

310 (2) When $\lambda = 0$, the nonconformity score becomes $r_{\text{singleton}}(x, y_i) = I(i \geq 2)(1 - \hat{p}(y_1|x))^{-1}$.
 311 The resulting split conformal prediction sets are either the top-1 label $\{y_1\}$ if $\hat{p}(y_1|x_{n+1}) \geq c$, for
 312 some quantity c , or the whole set \mathcal{Y} otherwise.

314 The proof of Corollary 2.6 is provided in Appendix B. The solution to the pure singleton objective
 315 has an intriguing structure. The prediction sets are either the top-label or the full-label set. This
 316 is intuitively reasonable: in the singleton objective, we are not paying any cost for the first label
 317 included in the set, so it makes sense to always include the most confident label. Moreover, we are
 318 paying full cost for any additional label included, and thus to ensure coverage, it is reasonable to
 319 include all labels into the prediction set.

320 However, this dichotomous behavior may not provide enough granularity in practice and may often
 321 output large prediction sets. This motivates our approach of taking a linear combination between
 322 the singleton and the length objectives. Our empirical results demonstrate that the nonconformity
 323 scores derived from this linear combination offer a favorable trade-off, significantly reducing the
 probability of non-singletons compared, while only increasing the length by a little.

324 **Extension to $P(\text{size} > k_0)$.** Beyond controlling the probability of non-singletons, in some applications it might instead be more desirable to control the probability of sets larger than some other number, such as two, three, or ten. For instance, we might have two employees check one output each, and thus we might tolerate prediction sets of size two. Therefore, it is desirable to extend our framework to control the probability $\mathbb{P}_X[|C(X)| > k_0]$ of sets size larger than $k_0 \in \{1, \dots, K-1\}$.

325 Fortunately, it turns out that our methods extend seamlessly to this case. We now seek to minimize
 326 $\mathbb{P}_X[|C(X)| > k_0] + \lambda \mathbb{E}_X[|C(X)|]$, subject to the same coverage constraint. The corresponding
 327 Lagrangian and separability arguments proceed similarly, with the difference that in the problem (4),
 328 g_k in the cost function becomes $g_k = I(k > k_0) + \lambda k$, $k = 0, 1, \dots, K$. The remaining steps are
 329 identical. The nonconformity score for the case $\lambda = 0$ from Corollary 2.6 becomes $r_{\text{top-}k}(x, y_i) =$
 330 $I(\{i > k_0\}) / (1 - \sum_{j=1}^{k_0} \hat{p}(y_j | x))$. The corresponding sets consist of either the top k_0 indices or
 331 the full set.

332 3 EXPERIMENTS

333 In this section we report experiments comparing our SOCOP method with several prediction sets.
 334 The first one uses the probabilities output by the classifier directly, sorts them in decreasing order,
 335 and outputs the smallest set of classes whose predicted probabilities sum to at least $1 - \alpha$; we
 336 call this the `Plug-In` sets.⁷ We also report results with split conformal prediction sets using a
 337 variety of nonconformity scores such as RAPS (Angelopoulos et al., 2021); Pure Singleton
 338 ($\lambda = 0$); Least Ambiguous Sets (Sadinle et al., 2019), corresponding to the nonconformity
 339 score⁸ $(x, y) \mapsto 1 - \hat{p}(y|x)$, which recovers the case $\lambda \rightarrow \infty$ in our method. We additionally evaluate
 340 the CPL method proposed by Kiyani et al. (2024). This approach employs the same nonconformity
 341 score as Least Ambiguous Sets, but is conceptually different, as it replaces split conformal
 342 prediction with a training procedure to optimize prediction set length. Results for this method are
 343 reported in Table 17 in Appendix D.3.

344 For our proposed SOCOP method, the hyperparameter λ is selected by aiming to find a “knee point”
 345 of the size-singleton probability curve on the tuning subset, as detailed in Section 3.1.1. The evalua-
 346 tion metrics we use are `Coverage`, `Average Size`, and $P(\text{size} > 1)$ ⁹.

347 3.1 IMAGE CLASSIFICATION ON IMAGENET

348 First, we consider image classification on the ImageNet-Val and ImageNet-V2 datasets, with several
 349 models, including `ResNet152-v2`, `EfficientNet-v2-1`, and `ViT-h-14`.

350 **Evaluation on ImageNet-Val.** In this experiment, we randomly sample three subsets of ImageNet-
 351 Val over 100 trials: one tuning subset of size 10K, one conformal calibration subset of size 20K and
 352 one evaluation subset of size 20K. For the RAPS baseline, we employ the hyperparameter tuning
 353 method from Algorithm 4 of Angelopoulos et al. (2021). The details of the hyperparameter grid are
 354 provided in Appendix E.

355 The averaged results for `ResNet152-v2` and `ViT-h-14`, along with standard errors, are reported
 356 in Table 1. Results for `EfficientNet-v2-1`, `ConvNeXt-base`, and `Swin-v2-b` are in Ap-
 357 pendix D.1, and show similar trends. All methods achieve the target coverage of 0.95. Our method
 358 SOCOP outperforms `Plug-In` and RAPS in both `Average Size` and $P(\text{size} > 1)$. Compared
 359 to Least Ambiguous Sets, SOCOP maintains a good balance: it produces sets nearly as small
 360 as Least Ambiguous Sets while significantly reducing the probability of non-singletons.

361 **Evaluation on ImageNet-V2.** We apply the same evaluation pipeline to ImageNet-V2 (Recht et al.,
 362 2019), which is a more challenging test dataset. This dataset was constructed by re-collecting im-
 363 ages with a new sampling pipeline, introducing a natural distribution shift that typically results in
 364 a significant drop in accuracy for models trained on the original ImageNet dataset. Since this is

365 ⁷This strategy is not theoretically guaranteed to attain the nominal level of coverage. However, it can be
 366 viewed as a reasonable empirically motivated baseline that practitioners might use by default.

367 ⁸In Corollary 2.6, we wrote this non-conformity score as $1/\hat{p}(y|x)$; These are equivalent since any strictly
 368 monotone transformation of a nonconformity score induces the same prediction sets.

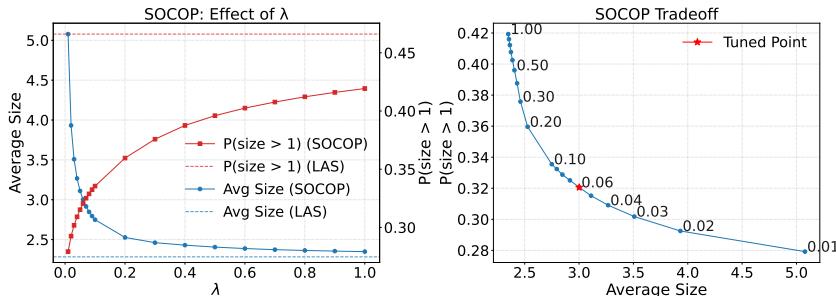
369 ⁹We also evaluated the empty set rate, $P(|C(X)| = 0)$, across all experiments. We observed that empty
 370 sets occur in fewer than 0.01% of test instances for all methods, with the exception of RAPS (where they can
 371 be slightly larger but still insignificant, reaching $\approx 0.1\%$). Consequently, we omit this metric from the results
 372 as its impact is negligible.

378 Table 1: Performance on ImageNet-Val, for a Coverage of $1 - \alpha = 0.95$; Methods compared: Plug-In,
 379 RAPS (Angelopoulos et al., 2021), Pure Singleton ($\lambda = 0$), Least Ambiguous Sets ($\lambda = \infty$)
 380 (Sadinle et al., 2019; Kiyani et al., 2024) and our method SOCOP. Results are averages over 100 random splits.
 381 The smallest values in each column are highlighted in green, while all results worse than our method are
 382 highlighted in red. For our method SOCOP, the Avg Size and $P(\text{size} > 1)$ are highlighted in light green to
 383 facilitate comparison across models.
 384

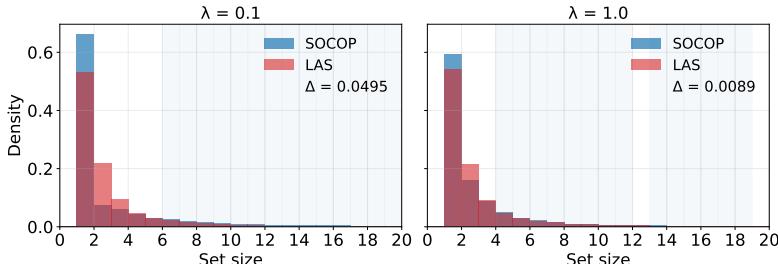
Model	Method	Coverage	Avg Size	$P(\text{size} > 1)$
ResNet152-v2	Plug-In	0.968 ± 0.003	44.955 ± 5.558	0.460 ± 0.019
	RAPS	0.950 ± 0.002	3.158 ± 0.101	0.603 ± 0.154
	Pure Singleton	0.949 ± 0.002	249.453 ± 4.960	0.249 ± 0.005
	Least Ambiguous Sets	0.950 ± 0.002	2.274 ± 0.046	0.466 ± 0.007
	SOCOP (ours)	0.950 ± 0.002	2.477 ± 0.048	0.370 ± 0.006
ViT-h-14	Plug-In	0.976 ± 0.001	8.529 ± 0.805	0.356 ± 0.008
	RAPS	0.950 ± 0.002	1.380 ± 0.020	0.314 ± 0.031
	Pure Singleton	0.950 ± 0.002	136.219 ± 4.980	0.135 ± 0.005
	Least Ambiguous Sets	0.950 ± 0.002	1.291 ± 0.011	0.224 ± 0.006
	SOCOP (ours)	0.950 ± 0.002	1.356 ± 0.017	0.175 ± 0.006

395
 396 a smaller dataset, we randomly sample three subsets of Imagenet-Val over 100 trials: one tuning
 397 subset of size 1K, one conformal calibration subset of size 4K, and one evaluation subset of size 4K.
 398 Table 11 in Appendix D.2 reports the results for all five models. The empirical findings are consis-
 399 tent with those on ImageNet-Val. Notably, the advantages of SOCOP are even more pronounced on
 400 this more challenging dataset. The variance of the coverage is higher due to having less data.
 401

402 3.1.1 EFFECT OF λ AND HYPERPARAMETER TUNING



404 Figure 2: Visualizing the evaluation results of ResNet152-v2 on ImageNet-Val from Table 6. LAS denotes
 405 Least Ambiguous Sets. Left: Average size and $P(\text{size} > 1)$ varying with λ ; Right: visualization of
 406 (Average size, $P(\text{size} > 1)$), each point corresponding to a specific λ . Results corresponding to the hyper-
 407 parameter λ selected by the kneedle algorithm (Satopaa et al., 2011) are highlighted.
 408



409 Figure 3: Set sizes produced with ResNet152-v2 on ImageNet-Val. LAS denotes Least Ambiguous
 410 Sets. Bars indicate empirical probabilities of set sizes, and shaded bins mark non-singleton set sizes where
 411 SOCOP assigns higher mass. Reported Δ values denote the cumulative probability difference on shaded bins.
 412 The x-axis is truncated at 20 for clarity.
 413

414 Next, we study the effect of the regularization parameter λ on Average Size and $P(\text{size} > 1)$.
 415 See Figure 2 for the trade-offs on the ResNet152-v2 model evaluated over ImageNet-Val. Results
 416 are averaged over 100 random splits of Imagenet-Val, each of size 20K for calibration and 20K for
 417

432 evaluation. As λ goes from 0 to ∞ , the Average Size decreases from the level of the Pure
 433 Singleton ($\lambda = 0$) and converges to the Least Ambiguous Sets limit ($\lambda = \infty$); while
 434 $P(\text{size} > 1)$ follows an opposite trajectory.

435 The right panel of Figure 2 summarizes this trade-off by plotting $P(\text{size} > 1)$ against Average
 436 Size. In practice, one can choose λ according to their own preference by drawing the tradeoff
 437 plot (the right panel of Figure 2) on their tuning dataset. For illustration, in our experiments from
 438 Section 3.1 we use the kneedle algorithm (Satopaa et al., 2011), which is a popular method for
 439 choosing points along a trade-off curve that come with favorable trade-offs. All five models exhibit
 440 the same pattern on both ImageNet-Val and ImageNet-V2, see Tables 6-16 in the Appendix.

441 We investigate the effect of regularization in more detail. For two values of λ , we collect the set
 442 sizes produced by SOCOP and Least Ambiguous Sets, and report their histograms in Figure
 443 3. The figure shows that SOCOP yields more singleton sets and fewer small set sets (as desired),
 444 but produces slightly more sets with a large size sets (as expected due to the tradeoff). To quantify
 445 this shift toward larger sets, we calculate the cumulative excess probability mass Δ of SOCOP over
 446 Least Ambiguous Sets on non-singleton sizes, i.e., $\Delta := \sum_{i=2}^K I(f_i^{\text{SOCOP}} > f_i^{\text{LAS}})(f_i^{\text{SOCOP}} -$
 447 $f_i^{\text{LAS}})$, where $f_i^{\text{SOCOP}}, f_i^{\text{LAS}}$ are empirical frequencies of prediction set size i for the two methods.
 448 We observe that this value is small, meaning that our method only leads to slightly more large sets.
 449

450 3.1.2 ADAPTIVENESS ON IMAGENET

451 In this experiment, we evaluate the size-stratified coverage violation (SSCV) introduced by
 452 Angelopoulos et al. (2021) as a measure of adaptiveness and conditional coverage violation. Following
 453 Angelopoulos et al. (2021), we adopt the same set-size strata : 0-1, 2-3, 4- 10, 11-100, and 101-
 454 1000, and to maximize adaptiveness, we choose the hyperparameter λ to minimize SSCV on the
 455 tuning set for RAPS and SOCOP. The details of the hyperparameter grid are provided in Appendix
 456 E. The results are reported in Table 2.

457 Table 2: Evaluation results for the SSCV metric on ImageNet-Val, with the same protocol as in Table 1.

460 Method	Coverage	Avg Size	$P(\text{size} > 1)$	SSCV
462 ResNet152-v2				
463 Plug-In	0.969 ± 0.003	47.362 ± 7.138	0.469 ± 0.025	0.046 ± 0.001
464 RAPS	0.950 ± 0.002	8.568 ± 1.580	0.448 ± 0.012	0.031 ± 0.011
465 Pure Singleton	0.950 ± 0.002	250.539 ± 4.554	0.250 ± 0.005	0.050 ± 0.000
466 Least Ambiguous Sets	0.950 ± 0.002	2.279 ± 0.046	0.467 ± 0.007	0.197 ± 0.026
467 SOCOP (ours)	0.950 ± 0.002	3.372 ± 0.198	0.304 ± 0.008	0.039 ± 0.009
468 ViT-h-14				
469 Plug-In	0.976 ± 0.001	8.529 ± 0.805	0.356 ± 0.008	0.048 ± 0.002
470 RAPS	0.950 ± 0.002	7.652 ± 2.259	0.319 ± 0.007	0.047 ± 0.003
471 Pure Singleton	0.950 ± 0.003	136.219 ± 4.980	0.135 ± 0.005	0.050 ± 0.000
472 Least Ambiguous Sets	0.950 ± 0.002	1.291 ± 0.011	0.224 ± 0.006	0.126 ± 0.119
473 SOCOP (ours)	0.950 ± 0.002	1.519 ± 0.068	0.155 ± 0.006	0.041 ± 0.016

474 Our method SOCOP and RAPS achieve the smallest SSCV among the methods compared. However,
 475 the average size of RAPS increases drastically (from ≈ 3.2 to ≈ 8.6 for Resnet152-v2 and from
 476 ≈ 1.4 to ≈ 7.7 for ViT-h-14), while our SOCOP method maintains a reasonably small average
 477 size and a significantly lower non-singleton probability, demonstrating that SOCOP can achieve
 478 adaptivity without sacrificing efficiency.

480 3.2 IMAGE CLASSIFICATION ON TISSUEMNIST

481 We further evaluate on a medical image classification problem. We use the TissueMNIST dataset, a
 482 subset of MedMNIST (Yang et al., 2023), which contains microscopy images of human kidney cor-
 483 tex cells categorized into eight classes. We use a ResNet-50 (224) model released by the dataset
 484 authors. We perform 100 random splits into 10K/15K/15K for tuning, calibration, and evaluation.
 485 The results are summarized in Table 3. As in previous experiments, we observe that our method can

486 significantly reduce the non-singleton probability (by about 15%), while increasing the average size
 487 only slightly. This again validates the efficiency of our method.
 488

489 Table 3: Evaluation results on **TissueMNIST** using **ResNet-50** (224) (Yang et al., 2023), with the same
 490 protocol as in Table 1.

Method	Coverage	Avg Size	$P(\text{size} > 1)$
Plug-In	0.973 ± 0.002	3.294 ± 0.030	0.866 ± 0.005
RAPS	0.950 ± 0.003	2.844 ± 0.031	0.844 ± 0.006
Pure Singleton	0.950 ± 0.003	4.931 ± 0.053	0.562 ± 0.008
Least Ambiguous Sets	0.950 ± 0.003	2.647 ± 0.028	0.788 ± 0.005
SOCOP (ours)	0.950 ± 0.003	2.847 ± 0.037	0.638 ± 0.009

3.3 MULTIPLE CHOICE QUESTION ANSWERING

499 We also evaluate on **MMLU** (Hendrycks et al., 2021), a multiple-choice question answering dataset.
 500 Following the same evaluation pipeline, we perform 100 random splits into 4K/5K/5K for tuning,
 501 calibration, and evaluation. We use **Llama-3.1-8B-Instruct** (Dubey et al., 2024), and following
 502 Kiyani et al. (2024), we input the fixed prompt: “*This is a 4-choice question that you should answer: {question}{choices} The correct answer to this question is:*”. We then extract the logits of the first
 503 output token corresponding to the answer options A, B, C, and D. Applying the softmax function
 504 yields probabilities over the four choices. The results are summarized in Table 4. As in previous
 505 experiments, we observe that our method can reduce the probability that the set size is greater than
 506 one by a significant amount (about 10%), while only increasing the average size by a negligible
 507 amount. This further reinforces that our approach provides a favorable trade-off between size and
 508 non-singleton probability.
 509

510 Table 4: Evaluation on **MMLU** using **Llama-3.1-8B-Instruct**, with the same protocol as in Table 1.

Method	Coverage	Avg Size	$P(\text{size} > 1)$
Plug-In	0.965 ± 0.002	2.648 ± 0.013	0.745 ± 0.005
RAPS	0.950 ± 0.004	2.601 ± 0.032	0.779 ± 0.025
Pure Singleton	0.950 ± 0.004	2.633 ± 0.029	0.544 ± 0.010
Least Ambiguous Sets	0.950 ± 0.004	2.426 ± 0.030	0.675 ± 0.008
SOCOP (ours)	0.950 ± 0.004	2.477 ± 0.034	0.587 ± 0.016

3.4 DISCUSSION

520 SOCOP reframes efficiency in conformal classification around the goal of producing singletons, de-
 521 riving a nonconformity score from a geometric analysis of a Lagrangian relaxation of the singleton
 522 objective. This yields an $O(K)$ per-instance algorithm, enabling split conformal sets that preserve
 523 marginal coverage while substantially increasing singleton frequency with minimal impact on aver-
 524 age size. Empirically, over image classification and LLM multiple-choice benchmarks, this reduces
 525 non-singleton rates significantly relative to length-optimized baselines at near-identical set sizes;
 526 suggesting that our method could be broadly useful in practice.

527 In future work, it would be of interest to extend this method to more advanced conformal pre-
 528 diction methods, such as label-conditional or Mondrian conformal prediction (Vovk et al., 2005).
 529 Furthermore, a challenging but interesting theoretical direction is to design a nonconformity score
 530 intrinsically targeted for conditional coverage. This would likely entail retracing the derivation of
 531 SOCOP starting from a conditional-aware optimization objective, such as the one from Gibbs et al.
 532 (2025). Finally, while our current protocol uses a separate tuning set to maintain validity, future
 533 work could investigate data-dependent selection of λ using the calibration set directly to improve
 534 data efficiency, while accounting for the resulting tuning bias (Zeng et al., 2025).

535
 536
 537
 538
 539

540 REPRODUCIBILITY STATEMENT
541542 All experimental details, including dataset information and evaluation protocols, are provided in
543 Section 3 and appendix D. An anonymous GitHub repository, containing the implementation of
544 SOCOP, baseline methods, and code to reproduce all experiments, is available at this repository.
545 All theoretical results and assumptions are stated in Section 2.1, with complete proofs provided in
546 Appendix B.
547548 LLM USAGE
549550 LLMs did not play a significant role in this work and were only used for grammar polishing in
551 writing.
552553 REFERENCES
554555 Alex M Andrew. Another efficient algorithm for convex hulls in two dimensions. *Information*
556 *processing letters*, 9(5):216–219, 1979.557 Anastasios N Angelopoulos and Stephen Bates. Conformal prediction: A gentle introduction. *Found-*
558 *ations and Trends® in Machine Learning*, 16(4):494–591, 2023.559 Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jitendra Malik. Uncertainty
560 sets for image classifiers using conformal prediction. In *International Conference on Learning*
561 *Representations*, 2021. URL https://openreview.net/forum?id=eNdiU_DbM9.562 Meshi Bashari, Roy Maor Lotan, Yonghoon Lee, Edgar Dobriban, and Yaniv Romano. Synthetic-
563 powered predictive inference. *arXiv preprint arXiv:2505.13432*, 2025.564 Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan.
565 Distribution-free, risk-controlling prediction sets. *Journal of the ACM (JACM)*, 68(6):1–34, 2021.566 Arash Behboodi, Alvaro HC Correia, Fabio Valerio Massoli, and Christos Louizos. Fundamental
567 bounds on efficiency-confidence trade-off for transductive conformal prediction. *arXiv preprint*
568 *arXiv:2509.04631*, 2025.569 Sacha Braun, Liviu Aolaritei, Michael I Jordan, and Francis Bach. Minimum volume conformal sets
570 for multivariate regression. *arXiv preprint arXiv:2503.19068*, 2025.571 Kwan Ho Ryan Chan, Yuyan Ge, Edgar Dobriban, Hamed Hassani, and René Vidal. Con-
572 formal information pursuit for interactively guiding large language models. *arXiv preprint*
573 *arXiv:2507.03279*, 2025.574 Rafael Correa, Abderrahim Hantoute, and Marco A López. *Fundamentals of convex analysis and*
575 *optimization*. Springer, 2023.576 Edgar Dobriban. Statistical methods in generative ai. *arXiv preprint arXiv:2509.07054*, 2025.577 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
578 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
579 *arXiv e-prints*, pp. arXiv–2407, 2024.580 A Gammerman, V Vovk, and V Vapnik. Learning by transduction. In *Proceedings of the Fourteenth*
581 *conference on Uncertainty in artificial intelligence*, 1998.582 Seymour Geisser. *Predictive inference: an introduction*. Chapman and Hall/CRC, 2017.583 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guar-
584 antees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008,
585 2025.586 Chirag Gupta, Arun K Kuchibhotla, and Aaditya Ramdas. Nested conformal prediction and quantile
587 out-of-bag ensemble methods. *Pattern Recognition*, 127:108496, 2022.

594 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 595 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-*
 596 *tional Conference on Learning Representations (ICLR)*, 2021.

597

598 Eliahu Horwitz and Yedid Hoshen. Conffusion: Confidence intervals for diffusion models. *arXiv*
 599 *preprint arXiv:2211.09795*, 2022.

600 Sunay Joshi, Shayan Kiyani, George Pappas, Edgar Dobriban, and Hamed Hassani. Conformal in-
 601 ference under high-dimensional covariate shifts via likelihood-ratio regularization. *arXiv preprint*
 602 *arXiv:2502.13030*, 2025.

603

604 Shayan Kiyani, George J Pappas, and Hamed Hassani. Length optimization in conformal prediction.
 605 *Advances in Neural Information Processing Systems*, 37:99519–99563, 2024.

606 Batiste Le Bars and Pierre Humbert. On volume minimization in conformal regression. In *Forty-*
 607 *second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=f21nwmDR4g>.

608

609 Yonghoon Lee, Edgar Dobriban, and Eric Tchetgen Tchetgen. Conditional predictive inference for
 610 missing outcomes, 2025. URL <https://arxiv.org/abs/2403.04613>.

611

612 Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
 613 *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1):71–96, 2014.

614

615 Jing Lei, James Robins, and Larry Wasserman. Distribution-free prediction sets. *Journal of the*
 616 *American Statistical Association*, 108(501):278–287, 2013.

617

618 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
 619 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 620 (523):1094–1111, 2018.

621

622 Ruiting Liang, Wanrong Zhu, and Rina Foygel Barber. Conformal prediction after efficiency-
 623 oriented model selection. *arXiv preprint arXiv:2408.07066*, 2024.

624

625 Ruiting Liang, Wanrong Zhu, and Rina Foygel Barber. Conformal prediction after data-dependent
 626 model selection, 2025. URL <https://arxiv.org/abs/2408.07066>.

627

628 Ziyi Liang, Yanfei Zhou, and Matteo Sesia. Conformal inference is (almost) free for neural networks
 629 trained with early stopping. In *International Conference on Machine Learning*, pp. 20810–20851.
 630 PMLR, 2023.

631

632 Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guaran-
 633 tees. In *Forty-first International Conference on Machine Learning*, 2024.

634

635 Joseph o’Rourke. *Computational geometry in C*. Cambridge university press, 1998.

636

637 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 638 machines for regression. In *Machine learning: ECML 2002: 13th European conference on ma-*
 639 *chine learning Helsinki, Finland, August 19–23, 2002 proceedings 13*, pp. 345–356. Springer,
 640 2002.

641

642 Sangdon Park, Edgar Dobriban, Insup Lee, and Osbert Bastani. PAC prediction sets under covariate
 643 shift. In *International Conference on Learning Representations*, 2022a.

644

645 Sangdon Park, Edgar Dobriban, Insup Lee, and Osbert Bastani. PAC prediction sets for meta-
 646 learning. In *Advances in Neural Information Processing Systems*, 2022b.

647

648 Hongxiang Qiu, Edgar Dobriban, and Eric Tchetgen Tchetgen. Prediction sets adaptive to unknown
 649 covariate shift. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp.
 650 qkad069, 07 2023.

651

652 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S Jaakkola, and Regina
 653 Barzilay. Conformal language modeling. In *The Twelfth International Conference on Learning*
 654 *Representations*, 2024.

648 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 649 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 650 2019.

651

652 R Tyrrell Rockafellar. *Convex Analysis*. Princeton University Press, 1997.

653

654 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
 655 age. *Advances in neural information processing systems*, 33:3581–3591, 2020.

656

657 Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
 658 bounded error levels. *Journal of the American Statistical Association*, 114(525):223–234, 2019.

659

660 Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a ”kneedle” in a
 661 haystack: Detecting knee points in system behavior. In *2011 31st international conference on*
662 distributed computing systems workshops, pp. 166–171. IEEE, 2011.

663

664 Craig Saunders, Alexander Gammerman, and Volodya Vovk. Transduction with confidence and
 665 credibility. In *IJCAI*, 1999.

666

667 Henry Scheffe and John W Tukey. Non-parametric estimation. I. Validation of order statistics. *The*
668 Annals of Mathematical Statistics, 16(2):187–192, 1945.

669

670 Matteo Sesia, Stefano Favaro, and Edgar Dobriban. Conformal frequency estimation using discrete
 671 sketched data with coverage for distinct queries. *Journal of Machine Learning Research*, 24(348):
 672 1–80, 2023.

673

674 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning*
675 Research, 9(Mar):371–421, 2008.

676

677 Yuanjie Shi, Hooman Shahrokhi, Xuesong Jia, Xiongzh Chen, Janardhan Rao Doppa, and Yan
 678 Yan. Direct prediction set minimization via bilevel conformal classifier training. *arXiv preprint*
679 arXiv:2506.06599, 2025.

680

681 Wenwen Si, Sangdon Park, Insup Lee, Edgar Dobriban, and Osbert Bastani. PAC prediction sets
 682 under label shift. *International Conference on Learning Representations*, 2024.

683

684 David Stutz, Krishnamurthy Dj Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet. Learning opti-
 685 mal conformal classifiers. In *International Conference on Learning Representations*, 2022. URL
 686 <https://openreview.net/forum?id=t8O-4LKFXx>.

687

688 Kei Takeuchi. *Contributions on theory of mathematical statistics*. Springer, 2020.

689

690 Jacopo Teneggi, Matthew Tivnan, Web Stayman, and Jeremias Sulam. How to trust your diffusion
 691 model: A convex optimization approach to conformal risk control. In *International Conference*
692 on Machine Learning, pp. 33940–33960. PMLR, 2023.

693

694 John W Tukey. Non-parametric estimation II. Statistically equivalent blocks and tolerance regions–
 695 the continuous case. *The Annals of Mathematical Statistics*, 18(4):529–539, 1947.

696

697 John W Tukey. Nonparametric estimation, III. Statistically equivalent blocks and multivariate toler-
 698 ance regions–the discontinuous case. *The Annals of Mathematical Statistics*, 19(1):30–39, 1948.

699

700 Vladimir Vovk. Conditional validity of inductive conformal predictors. In *Asian Conference on*
Machine Learning, 2013.

701

702 Vladimir Vovk. Cross-conformal predictors. *Annals of Mathematics and Artificial Intelligence*, 74
 703 (1):9–28, 2015.

704

705 Vladimir Vovk, Alex Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
 706 Springer Science & Business Media, 2005.

707

708 Vladimir Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of al-
 709 gorithmic randomness. In *International Conference on Machine Learning*, 1999.

702 Abraham Wald. An extension of wilks’ method for setting tolerance limits. *The Annals of Mathe-*
 703 *matical Statistics*, 14(1):45–55, 1943.

704

705 S. S. Wilks. Determination of sample sizes for setting tolerance limits. *The Annals of Mathematical*
 706 *Statistics*, 12(1):91–96, 1941.

707

708 Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
 709 Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
 710 classification. *Scientific Data*, 10(1):41, 2023.

711

712 Yachong Yang and Arun Kumar Kuchibhotla. Selection and aggregation of conformal prediction
 713 sets. *Journal of the American Statistical Association*, 120(549):435–447, 2025.

714

715 Hao Zeng, Kangdao Liu, Bingyi Jing, and Hongxin Wei. Parametric scaling law of tuning bias in
 716 conformal prediction. *arXiv preprint arXiv:2502.03023*, 2025.

717

718 A ADDITIONAL RELATED WORK

719 The non-parametric techniques which have been studied in conformal prediction belong to a much
 720 broader tradition of predictive inference in statistics which over the years have been developed both
 721 under parametric and non-parametric assumptions. See for instance Geisser (2017) and more recent
 722 works such as Bates et al. (2021); Park et al. (2022a;b); Sesia et al. (2023); Qiu et al. (2023); Si et al.
 723 (2024); Lee et al. (2025); Bashari et al. (2025); Joshi et al. (2025), which concern problems under a
 724 variety of assumptions.

725 Regarding the efficiency and optimality of conformal prediction, early work by Takeuchi in the
 726 1970s—reviewed in Takeuchi (2020)—has established fundamental results, such as the fact that
 727 conformal prediction with a conformity score equal to a particular density f is optimal—in terms of
 728 minimizing the expected length at the distribution with density f —among all methods of predictive
 729 inference that have marginal coverage over all distributions. Modern work has revisited optimality
 730 questions from a variety of different angles, as discussed in the main paper.

731 Conformal-type techniques have been developed to be used beyond standard classification and re-
 732 gression problems, for instance in sampling from large semantic spaces with generative AI models,
 733 see e.g., Horwitz & Hoshen (2022); Teneggi et al. (2023); Quach et al. (2024); Mohri & Hashimoto
 734 (2024); Chan et al. (2025), etc; and see Dobriban (2025) for a review. In our work, we provide an
 735 illustration for language model multiple-choice question answering, which becomes a conventional
 736 classification problem.

737 Recent frameworks (Liang et al., 2024; Yang & Kuchibhotla, 2025) optimize efficiency by *selecting*
 738 a nonconformity score from a pre-specified candidate set that minimizes a target loss. This differs
 739 fundamentally from our approach, which uses the loss to *derive* the score directly. Applying our
 740 composite loss within these selection frameworks faces two practical difficulties: (1) the resulting
 741 performance is strictly bounded by the pre-defined candidate pool; and (2) this would introduce
 742 the additional difficulty of selecting the hyperparameter λ , and their framework would have to be
 743 potentially extended to allow the selection of not just non-conformity scores but also loss functions.

744 B AUXILIARY RESULTS AND PROOFS

745 B.1 PROOF OF LEMMA 2.1

746

747 *Proof.* Clearly, $S_{0,\gamma} = \emptyset = \mathcal{F}_0$. Now let $\eta > 0$. If $S_{\eta,\gamma}$ is empty, then the claim holds; therefore,
 748 we only need to consider the case where $S_{\eta,\gamma}$ is non-empty. Assume $S_{\eta,\gamma}$ includes y_{i_1} but not y_{i_2}
 749 where $\gamma_{y_{i_2}} > \gamma_{y_{i_1}}$. Then we can construct $S' = (S_{\eta,\gamma} \setminus \{y_{i_1}\}) \cup \{y_{i_2}\}$ such that

$$750 \quad \ell_\gamma(S'; \eta) = \ell_\gamma(S_{\eta,\gamma}; \eta) + \eta \sum_{y \in S_{\eta,\gamma}} \gamma_y - \eta \sum_{y \in S'} \gamma_y = \ell_\gamma(S_{\eta,\gamma}; \eta) + \eta (\gamma_{y_{i_1}} - \gamma_{y_{i_2}}) < \ell(S_{\eta,\gamma}; \eta),$$

751 which contradicts with the optimality of $S_{\eta,\gamma}$. Therefore, $S_{\eta,\gamma}$ must be the set of top- j labels for
 752 some j that depends on η and γ . \square

756 B.2 PROOF OF LEMMA 2.2
757

758 *Proof.* For any set $S \in [K]$, we define $g(S) = I(|S| > 1) + \lambda |S|$ and $\Gamma(S) = \sum_{y \in S} \gamma_y$. We will
759 first prove that for $\eta_1 < \eta_2$, $\Gamma(S_{\eta_1, \gamma}) \leq \Gamma(S_{\eta_2, \gamma})$. Then by Lemma 2.1, we must have $S_{\eta_1, \gamma} \subseteq S_{\eta_2, \gamma}$.
760 By the optimality of each set, we have
761

- 762 • $\ell(S_{\eta_1, \gamma}, \eta_1) \leq \ell(S_{\eta_2, \gamma}, \eta_1)$, i.e., $g(S_{\eta_1, \gamma}) - \eta_1 \Gamma(S_{\eta_1, \gamma}) \leq g(S_{\eta_2, \gamma}) - \eta_1 \Gamma(S_{\eta_2, \gamma})$,
763
- 764 • $\ell(S_{\eta_2, \gamma}, \eta_2) \leq \ell(S_{\eta_1, \gamma}, \eta_2)$, i.e., $g(S_{\eta_2, \gamma}) - \eta_2 \Gamma(S_{\eta_2, \gamma}) \leq g(S_{\eta_1, \gamma}) - \eta_2 \Gamma(S_{\eta_1, \gamma})$.
765

766 Combining these inequalities gives
767

$$768 \eta_2(\Gamma(S_{\eta_1, \gamma}) - \Gamma(S_{\eta_2, \gamma})) \leq g(S_{\eta_1, \gamma}) - g(S_{\eta_2, \gamma}) \leq \eta_1(\Gamma(S_{\eta_1, \gamma}) - \Gamma(S_{\eta_2, \gamma})).$$

769 Since $\eta_2 - \eta_1 > 0$, we have $\Gamma(S_{\eta_1, \gamma}) - \Gamma(S_{\eta_2, \gamma}) \leq 0$. By Lemma 2.1, for any $\eta \geq 0$ and $\gamma \in \Delta_{K-1}$,
770 $S_{\eta, \gamma}$ is the set of top- j labels for some j . Then $\Gamma(S_{\eta_1, \gamma}) \leq \Gamma(S_{\eta_2, \gamma})$ implies that $S_{\eta_1, \gamma} \subseteq S_{\eta_2, \gamma}$. \square
771

772 B.3 PROOF OF THEOREM 2.5:
773

774 To simplify notation, let us denote $\ell_\gamma^{(k)}(\eta) := \ell_\gamma(\mathcal{F}_k; \eta) = g_k - \eta \Gamma_k$. Then the minimization
775 problem in (4) can be rewritten as $\kappa(\eta; \gamma) = \arg \min_k \ell_\gamma^{(k)}(\eta)$. The optimal value of the objective is
776 given by

$$777 \ell_\gamma^*(\eta) := \min_{0 \leq k \leq K} \ell_\gamma^{(k)}(\eta).$$

778 This problem can be analyzed from two viewpoints, see also Figure 4.
779

- 780 • **Dual Space** (η, ℓ) : For each $k \in \{0, \dots, K\}$, we can view $\ell_\gamma^{(k)}(\eta) = g_k - \eta \Gamma_k$ as a linear
781 function of η for $(\eta, \ell) \in \mathbb{R}^2$. For a fixed value η , the optimal value $\ell_\gamma^*(\eta)$ corresponds to
782 finding the lowest point among the intersections of the $K + 1$ lines with the vertical line
783 $\ell = \eta$. As shown in the left plot of Figure 4, the function ℓ_γ^* forms the lower envelope of
784 this family of $K + 1$ lines. The vertices of this lower envelope correspond to the values of
785 η where the optimal index $\kappa(\eta; \gamma)$ transitions from one value to another.
- 786 • **Primal Space** (Γ, g) : Since $g_k = \eta \Gamma_k + \ell_\gamma^{(k)}(\eta)$, $\ell_\gamma^{(k)}(\eta)$ can be viewed as the intercept of
787 a line with slope η that passes through the point $P_k = (\Gamma_k, g_k)$. For a fixed η , in the space
788 of (Γ, g) , $\{g = \eta \Gamma + \ell, \ell \in \mathbb{R}\}$ is a family of parallel lines. Minimizing $\ell_\gamma^{(k)}(\eta)$ over k
789 amounts to finding the first point in $\{P_0, \dots, P_K\}$ that is “hit” by such a line as the intercept
790 ℓ raises from $-\infty$.
791

792 Mathematically, the duality between these two perspectives can be formalized using convex conju-
793 gacy. Define a primal function $\phi : [0, 1] \rightarrow [0, \infty]$ based on the point set $\mathcal{P} = \{P_0, \dots, P_K\}$:

$$794 \phi(\Gamma) = \begin{cases} g_k & \text{if } \Gamma = \Gamma_k, 0 \leq k \leq K \\ +\infty & \text{otherwise.} \end{cases}$$

795 The convex conjugate (see e.g., Rockafellar, 1997) of ϕ is
796

$$797 \phi^*(\eta) = \sup_{\Gamma \in \mathbb{R}} \{\eta \Gamma - \phi(\Gamma)\} = \max_{0 \leq k \leq K} \{\eta \Gamma_k - g_k\} = -\ell_\gamma^*(\eta). \quad (6)$$

800 Furthermore, the biconjugate of ϕ , defined as the conjugate of ϕ^* is
801

$$802 \phi^{**}(\Gamma) = \sup_{\eta \in \mathbb{R}} \{\eta \Gamma - \phi^*(\eta)\} = \sup_{\eta \in \mathbb{R}} \{\eta \Gamma + \ell_\gamma^*(\eta)\}. \quad (7)$$

803 By the Fenchel-Moreau-Rockafellar theorem (see e.g. Theorem 3.2.2 in Correa et al. (2023)), ϕ^{**}
804 is the closed convex hull of the original function ϕ : $\phi^{**} = \overline{\text{co}}(\phi)$, where $\overline{\text{co}}(\phi)$ denotes the closed
805 convex hull of ϕ . Thus, it suffices to characterize $\overline{\text{co}}(\phi)$, which we will do through its epigraph.
806 Let $\text{epi}(\phi)$ denote the epigraph of ϕ , defined as $\text{epi}(\phi) = \bigcup_{k=1}^K \{(\Gamma_k, \omega) \mid \omega \geq g_k\}$. Using that
807 $\text{epi}(\overline{\text{co}}(\phi)) = \overline{\text{co}}(\text{epi}(\phi))$, any point $(\Gamma, \omega) \in \overline{\text{co}}(\phi)$ can be expressed as:

$$808 809 (\Gamma, \omega) = \sum_{k=1}^K \beta_k (\Gamma_k, \omega_k) \text{ for some } \beta_k \geq 0, \sum \beta_k = 1, \text{ and } (\Gamma_k, \omega_k) \in \text{epi}(\phi).$$

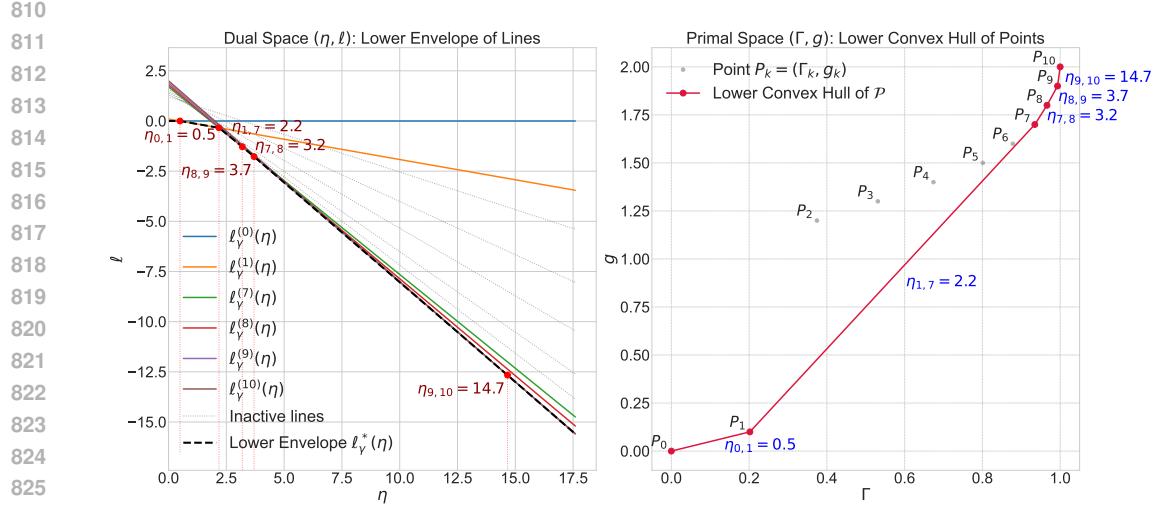


Figure 4: Primal and dual views, for $\lambda = 0.1$ and the example probability vector γ is $[0.202, 0.172, 0.157, 0.143, 0.127, 0.077, 0.057, 0.031, 0.027, 0.007]$.

Since $\omega = \sum_{k=1}^K \beta_k \omega_k \geq \sum_{k=1}^K \beta_k g_k$, and the minimum is attained, we know that

$$\phi^{**}(\Gamma) = \inf \left\{ \sum_{k=1}^K \beta_k g_k \mid \Gamma = \sum_{k=1}^K \beta_k \Gamma_k, \beta_k \geq 0, \sum \beta_k = 1 \right\} \quad (8)$$

which is precisely the lower convex hull of the point set \mathcal{P} .

We now continue with the proof of Theorem 2.5.

Lemma B.1. *An index k is in the set of optimal solutions for some η_0 (i.e., $\ell_\gamma^{(k)}(\eta_0) = \ell_\gamma^*(\eta_0)$) if and only if its corresponding point P_k lies on the graph of the lower convex hull function $\phi^{**}(\Gamma)$ (i.e., $g_k = \phi^{**}(\Gamma_k)$).*

Proof. (\implies) Assume $\ell_\gamma^{(k)}(\eta_0) = \ell_\gamma^*(\eta_0)$. By definition, this implies $g_k - \eta_0 \Gamma_k = \ell_\gamma^*(\eta_0)$. From the biconjugate (7), $\phi^{**}(\Gamma_k) = \sup_\eta \{\Gamma_k \eta + \ell_\gamma^*(\eta)\} \geq \Gamma_k \eta_0 + \ell_\gamma^*(\eta_0) = g_k$. Since ϕ^{**} is the lower convex hull function of \mathcal{P} , we must also have $\phi^{**}(\Gamma_k) \leq g_k$. Therefore, $g_k = \phi^{**}(\Gamma_k)$.

(\impliedby) Assume that the point $P_k = (\Gamma_k, g_k)$ lies on the graph of the lower convex hull, i.e., $g_k = \phi^{**}(\Gamma_k)$. By the Supporting Hyperplane Theorem (Rockafellar, 1997), P_k being on the lower boundary of convex hull implies that there exists a supporting line to the function ϕ^{**} at the point $\Gamma = \Gamma_k$. Let the slope of this supporting line be η_k . Then for all Γ in the domain, we have $\phi^{**}(\Gamma) \geq \phi^{**}(\Gamma_k) + \eta_k(\Gamma - \Gamma_k)$.

For any $j \in \{0, \dots, K\}$, $P_j = (\Gamma_j, g_j)$ must lie on or above the lower convex hull, i.e., $g_j \geq \phi^{**}(\Gamma_j)$. Applying this to the inequality above for $\Gamma = \Gamma_j$, we find:

$$g_j \geq \phi^{**}(\Gamma_j) \geq \phi^{**}(\Gamma_k) + \eta_k(\Gamma_j - \Gamma_k).$$

By our initial assumption $\phi^{**}(\Gamma_k) = g_k$, then we have $g_j \geq g_k + \eta_k(\Gamma_j - \Gamma_k)$. This inequality holds for all $j \in \{0, \dots, K\}$. Thus, $g_j - \eta_k \Gamma_j \geq g_k - \eta_k \Gamma_k$, that is, $\ell_\gamma^{(j)}(\eta_k) \geq \ell_\gamma^{(k)}(\eta_k)$ for all $j \in \{0, \dots, K\}$. Therefore, $\ell_\gamma^{(k)}(\eta_k) = \ell_\gamma^*(\eta_k)$, i.e., k is an optimal index for $\eta = \eta_k$. \square

Recall that the vertices of the lower convex hull of \mathcal{P} are $\{P_{v_0}, P_{v_1}, \dots, P_{v_m}\}$, where $0 = v_0 < v_1 < \dots < v_m = K$ are indices from $\{0, \dots, K\}$. Recall from Section 2.3 that for $i = 1, \dots, m$, the slope of the edge connecting vertex $P_{v_{i-1}}$ and P_{v_i} is defined as $\eta_i := \frac{g_{v_i} - g_{v_{i-1}}}{\Gamma_{v_i} - \Gamma_{v_{i-1}}}$ where we define $\eta_0 := 0$ and $\eta_{m+1} := +\infty$. From the definition of convexity, it follows that these slopes are strictly increasing: $0 < \eta_1 < \eta_2 < \dots < \eta_m < \infty$. Our next result is the following:

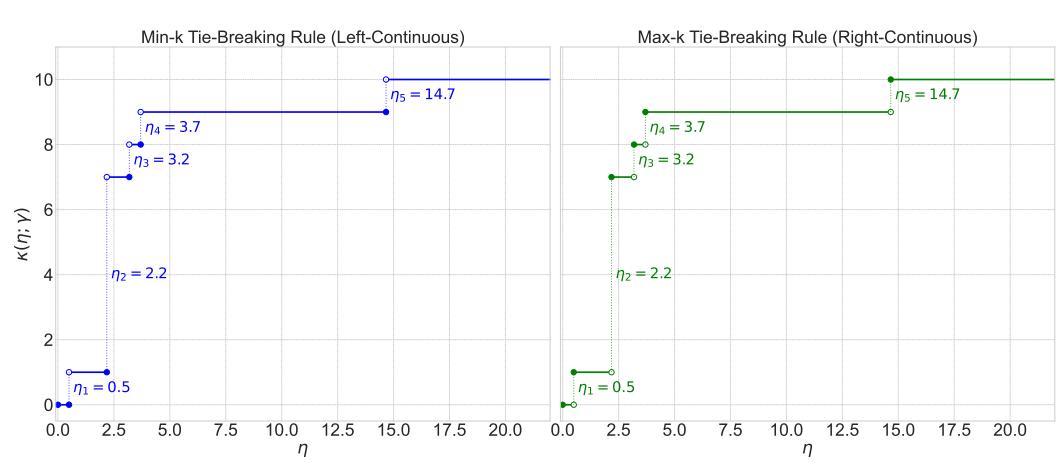


Figure 5: Optimal Set Size $\kappa(\eta; \gamma)$ with the same parameters as Figure 4. The tie-breaking rule does not affect the value of nonconformity score.

Lemma B.2 (Unique Optimality on Vertex Intervals). *For any $\eta \in (\eta_i, \eta_{i+1})$, we have $\ell_\gamma^{(v_i)}(\eta) < \ell_\gamma^{(k)}(\eta)$ for all $k \neq v_i$.*

Proof. Let $\eta \in (\eta_i, \eta_{i+1})$ for a given $i \in \{0, 1, \dots, m-1\}$. We need to show that $g_k - g_{v_i} > \eta(\Gamma_k - \Gamma_{v_i})$ for any $k \neq v_i$. By Lemma B.1, any point not on the lower convex hull cannot be optimal, so it suffices to check this for other vertices P_{v_j} where $j \neq i$.

Case 1: $j > i$ (i.e., $\Gamma_{v_j} > \Gamma_{v_i}$). Since ϕ^{**} is convex, for any $j > i$, we have

$$\eta_{i+1} = \frac{g_{v_{i+1}} - g_{v_i}}{\Gamma_{v_{i+1}} - \Gamma_{v_i}} \leq \frac{g_{v_j} - g_{v_i}}{\Gamma_{v_j} - \Gamma_{v_i}}.$$

By our choice of η , we have $\eta < \eta_{i+1}$. Combining these gives $\eta < \frac{g_{v_j} - g_{v_i}}{\Gamma_{v_j} - \Gamma_{v_i}}$. As $\Gamma_{v_j} - \Gamma_{v_i} > 0$, we have $\eta(\Gamma_{v_j} - \Gamma_{v_i}) < g_{v_j} - g_{v_i}$, so that $\ell_\gamma^{(v_i)}(\eta) < \ell_\gamma^{(v_j)}(\eta)$.

Case 2: $j < i$ (i.e., $\Gamma_{v_j} < \Gamma_{v_i}$). Similarly, for any $j < i$, by the convexity of ϕ^{**} , we have:

$$\frac{g_{v_i} - g_{v_j}}{\Gamma_{v_i} - \Gamma_{v_j}} \leq \frac{g_{v_i} - g_{v_{i-1}}}{\Gamma_{v_i} - \Gamma_{v_{i-1}}} = \eta_i,$$

which implies $\ell_\gamma^{(v_i)}(\eta) < \ell_\gamma^{(v_j)}(\eta)$ as above.

This finishes the proof. \square

Proof of Theorem 2.5. From Lemma B.2, for any η in the open interval (η_i, η_{i+1}) , the unique minimizer is v_i , so $\kappa(\eta; \gamma) = v_i$. At the boundary points $\eta = \eta_i$ for $i \in \{1, \dots, m\}$, we have $\ell_\gamma^{(v_{i-1})}(\eta_i) = \ell_\gamma^{(v_i)}(\eta_i)$ by definition. The proofs in Lemma B.2 show that for any other vertex v_j , $\ell_\gamma^{(v_j)}(\eta_i)$ is strictly greater. Thus, the set of optimal indices is $\{v_{i-1}, v_i\}$. By the tie-breaking rule¹⁰, we have $\kappa(\eta_i; \gamma) = v_{i-1}$.

Combining these observations, for $i = 1, \dots, m-1$, and for any $\eta \in (\eta_i, \eta_{i+1}]$, the optimal index is $\kappa(\eta; \gamma) = v_i$. It is clear that $\kappa(0; \gamma) = 0$. Therefore, for $\eta \in [0, \eta_1]$, $\kappa(\eta; \gamma) = 0$. By Lemma B.2, for $\eta \in (\eta_m, \eta_{m+1}) = (\eta_m, \infty)$, $\kappa(\eta; \gamma) = v_m$. This finishes the proof. \square

¹⁰When there are multiple solutions, we choose any set that has minimal size, which corresponds to choosing the smallest index for $\kappa(\eta; \gamma)$

918 B.4 PROOF OF COROLLARY 2.6
919920 Let $\gamma = \hat{p}(\cdot|x)$ be the probability prediction from some pre-trained model. We order the probabilities
921 such that $\hat{p}(y_1|x) \geq \hat{p}(y_2|x) \geq \hat{p}(y_K|x)$.922 (1) When dividing the Lagrangian (1) by λ , the problem remains equivalent by changing variables
923 from η to $\tilde{\eta} := \eta/\lambda$. The resulting $\kappa(\tilde{\eta}; \hat{p}(\cdot|x))$ becomes:
924

925
$$\kappa(\tilde{\eta}; \hat{p}(\cdot|x)) := \arg \min_{0 \leq k \leq K} \left\{ \frac{I(k > 1)}{\lambda} + k - \tilde{\eta} \cdot \sum_{i=1}^k \hat{p}(y_i|x) \right\}.$$

926

927 The corresponding set of points \mathcal{P} becomes $P_k = \left(\sum_{i=1}^k \hat{p}(y_i|x), \frac{I(k > 1)}{\lambda} + k \right)$. We first consider the simpler case where $\hat{p}(y_1|x) > \hat{p}(y_2|x) > \dots > \hat{p}(y_K|x)$. When $\lambda \rightarrow \infty$, $P_k \rightarrow \left(\sum_{i=1}^k \hat{p}(y_i|x), k \right) := \tilde{P}_k$. The slope between two consecutive points is: $1/\hat{p}(y_{k+1}|x)$, which is strictly increasing in k . Hence, every point \tilde{P}_k is a vertex of the lower convex hull. Thus $\kappa(\tilde{\eta}; \hat{p}(\cdot|x))$ becomes:
928

929
$$\kappa(\tilde{\eta}; \hat{p}(\cdot|x)) = \begin{cases} 0, & \text{for } \eta \in \left[0, \frac{1}{\hat{p}(y_1|x)} \right] \\ i, & \text{for } \eta \in \left(\frac{1}{\hat{p}(y_i|x)}, \frac{1}{\hat{p}(y_{i+1}|x)} \right], 1 \leq i \leq K-1 \\ K, & \text{for } \eta \in \left(\frac{1}{\hat{p}(y_K|x)}, \infty \right). \end{cases}$$

930

931 Therefore, the nonconformity score is $r_{\text{las}}(x, y_i) = 1/\hat{p}(y_i|x)$.
932933 Now, suppose there is a tie, e.g., $\hat{p}(y_k|x) = \hat{p}(y_{k+1}|x) = \dots = \hat{p}(y_{k+m}|x)$ for some $k \geq 1, m \geq 1$. Then, the points $\tilde{P}_{k-1}, \tilde{P}_k, \dots, \tilde{P}_{k+m}$ are collinear, with vertices \tilde{P}_{k-1} and \tilde{P}_{k+m} and slope $\frac{1}{\hat{p}(y_k|x)}$. The function $\kappa(\cdot; \hat{p}(\cdot|x))$ exhibits a single jump from $k-1$ to $k+m$ as $\tilde{\eta}$ crosses this slope value. For any label y_i with $k \leq i \leq k+m$, the nonconformity score is

934
$$r_{\text{las}}(x, y_i) = \inf\{\tilde{\eta} \geq 0 : \kappa(\tilde{\eta}; \hat{p}(\cdot|x)) \geq i\} = 1/\hat{p}(y_k|x) = 1/\hat{p}(y_i|x),$$

935

936 as desired.
937938 (2) When $\lambda = 0$, the set of points $\mathcal{P} = \{P_0, \dots, P_K\}$ becomes
939

940
$$P_0 = (0, 0), P_1 = (\hat{p}(y_1|x), 0), P_k = \left(\sum_{i=1}^k \hat{p}(y_i|x), 1 \right) (k \geq 2), P_K = (1, 1).$$

941

942 As Γ_k is strictly increasing in k , the vertices of the lower convex hull are $\{P_0, P_1, P_K\}$. The corresponding slopes are $\eta_1 = \frac{0-0}{\hat{p}(y_1|x)-0} = 0$ and
943

944
$$\eta_2 = \frac{g_K - g_1}{\sum_{i=1}^K \hat{p}(y_i|x) - \hat{p}(y_1|x)} = \frac{1}{1 - \hat{p}(y_1|x)}.$$

945

946 Hence, $\kappa(\eta; \hat{p}(\cdot|x))$ becomes:
947

948
$$\kappa(\eta; \hat{p}(\cdot|x)) := \begin{cases} 0, & \text{for } \eta = 0 \\ 1, & \text{for } \eta \in \left(0, \frac{1}{1 - \hat{p}(y_1|x)} \right], \\ K, & \text{for } \eta \in \left(\frac{1}{1 - \hat{p}(y_1|x)}, \infty \right). \end{cases}$$

949

950 Therefore, by definition of the nonconformity score $r(x, y_i) = \inf\{\eta \geq 0 : \kappa(\eta; \hat{p}(\cdot|x)) \geq i\}$, we
951 have $r_{\text{singleton}}(x, y_i) = I(i \geq 2)(1 - \hat{p}(y_1|x))^{-1}$. \square
952953 C ADDITIONAL ALGORITHMS
954955 We leverage the monotone chain algorithm (Andrew, 1979; o'Rourke, 1998) to find the vertices of
956 lower convex hull, as detailed in Algorithm 2.
957958 For calibration, we adopt standard split conformal prediction, see Algorithm 3.
959

Algorithm 2 Compute Lower Convex Hull via Monotone Chain Algorithm

Require: Sorted probability vector p , penalty $\lambda > 0$.

Ensure: A tuple (\mathcal{V}, Γ, g) where \mathcal{V} is the list of vertex indices of lower convex hull, Γ are cumulative sums, and g are objective values.

```

1: Compute cumulative sums  $\Gamma_k \leftarrow \sum_{j=1}^k p_j$  for  $k = 0, \dots, K$  ▷  $S_0 = 0$ 
2: Compute objective values  $g_k \leftarrow I(k > 1) + \lambda k$  for  $k = 0, \dots, K$ 
3: Define  $\text{CrossProduct}(j, i, k; \Gamma, g) = (\Gamma_i - \Gamma_j)(g_k - g_i) - (g_i - g_j)(\Gamma_k - \Gamma_i)$ .
4: Initialize an empty list of indices  $\mathcal{V}$ .
5: for  $k = 0$  to  $K$  do ▷ Monotone Chain
6:   while  $|\mathcal{V}| \geq 2$  and  $\text{CrossProduct}(\mathcal{V}[-2], \mathcal{V}[-1], k; \Gamma, g) \leq 0$  do ▷ Last two points
7:     Remove the last index from  $\mathcal{V}$ .
8:   end while
9:   Append index  $k$  to  $\mathcal{V}$ .
10: end for
11: return  $(\mathcal{V}, \Gamma, q)$ .

```

Algorithm 3 SOCOP Conformal Calibration

Require: Pre-trained model \hat{p} , calibration data $\{(X_i, Y_i)\}_{i=1}^n$, level $\alpha \in (0, 1)$, penalty $\lambda > 0$.

Ensure: Calibrated threshold \hat{q} .

```

1: for  $i = 1$  to  $n$  do
2:   Sort  $\hat{p}(\cdot | X_i)$  to get  $\hat{p}_{\text{sorted}}(\cdot | X_i)$ 
3:   Let  $i_{\text{rank}}$  be the 1-based rank of the true label  $Y_i$ 
4:    $(\mathcal{V}, \Gamma, g) \leftarrow \text{Algorithm 2}(\hat{p}_{\text{sorted}}(\cdot | X_i), \lambda)$ 
5:   Find the smallest index  $j \in \{1, \dots, |\mathcal{V}| - 1\}$  such that  $\mathcal{V}[j] \geq i_{\text{rank}}$ 
6:    $v_- \leftarrow \mathcal{V}[j - 1]; \quad v_+ \leftarrow \mathcal{V}[j]$ 
7:    $r_i \leftarrow (g_{v_+} - g_{v_-}) / (\Gamma_{v_+} - \Gamma_{v_-})$ 
8: end for
9:  $\hat{q} \leftarrow \text{the } \lceil (1 - \alpha)(1 + n) \rceil \text{ largest value in } \{r_i\}_{i=1}^n$ 
10: return  $\hat{q}$ 

```

D ADDITIONAL EXPERIMENTS RESULTS

D.1 IMAGENET-VAL

Results for EfficientNet-v2-1, ConvNeXt-base, and Swin-v2-b on the ImageNet-Val dataset are reported in Table 5.

For this dataset, the effect of λ on our SOCOP across all five models are reported in Table 6-10, respectively.

Table 5: Continuation of the results in Table 1 with the same protocol used.

Model	Method	Coverage	Avg Size	$P(\text{size} > 1)$
EfficientNet-v2-l	Plug-In	0.970 ± 0.002	16.606 ± 2.023	0.401 ± 0.013
	RAPS	0.950 ± 0.002	1.909 ± 0.077	0.769 ± 0.076
	Pure Singleton	0.950 ± 0.002	188.942 ± 4.836	0.188 ± 0.005
	Least Ambiguous Sets	0.950 ± 0.002	1.542 ± 0.018	0.329 ± 0.007
	SOCOP (ours)	0.950 ± 0.002	1.659 ± 0.023	0.262 ± 0.006
ConvNeXt-base	Plug-In	0.967 ± 0.003	27.137 ± 5.790	0.444 ± 0.030
	RAPS	0.950 ± 0.003	2.546 ± 0.096	0.843 ± 0.234
	Pure Singleton	0.950 ± 0.002	226.991 ± 4.935	0.226 ± 0.005
	Least Ambiguous Sets	0.950 ± 0.002	1.897 ± 0.034	0.398 ± 0.007
	SOCOP (ours)	0.950 ± 0.002	2.086 ± 0.046	0.316 ± 0.007
Swin-v2-b	Plug-In	0.968 ± 0.003	19.646 ± 3.701	0.423 ± 0.023
	RAPS	0.950 ± 0.002	2.314 ± 0.062	0.477 ± 0.121
	Pure Singleton	0.950 ± 0.002	225.685 ± 4.909	0.225 ± 0.005
	Least Ambiguous Sets	0.950 ± 0.002	1.881 ± 0.033	0.396 ± 0.007
	SOCOP (ours)	0.950 ± 0.002	2.068 ± 0.038	0.316 ± 0.007

1026 **Table 6:** Performance of ResNet152-v2 on ImageNet-Val with different λ values ($\alpha = 0.05$). Results are
 1027 averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.949 \pm 0.002	249.453 \pm 4.960	0.249 \pm 0.005
0.01	SOCOP (ours)	0.950 \pm 0.002	5.078 \pm 0.200	0.279 \pm 0.005
0.02	SOCOP (ours)	0.950 \pm 0.002	3.932 \pm 0.125	0.293 \pm 0.005
0.03	SOCOP (ours)	0.950 \pm 0.002	3.508 \pm 0.103	0.302 \pm 0.006
0.04	SOCOP (ours)	0.950 \pm 0.002	3.267 \pm 0.104	0.309 \pm 0.006
0.05	SOCOP (ours)	0.950 \pm 0.002	3.110 \pm 0.092	0.315 \pm 0.006
0.06	SOCOP (ours)	0.950 \pm 0.002	3.002 \pm 0.081	0.321 \pm 0.006
0.07	SOCOP (ours)	0.950 \pm 0.002	2.916 \pm 0.074	0.325 \pm 0.006
0.08	SOCOP (ours)	0.950 \pm 0.002	2.847 \pm 0.071	0.329 \pm 0.006
0.09	SOCOP (ours)	0.950 \pm 0.002	2.795 \pm 0.069	0.332 \pm 0.006
0.10	SOCOP (ours)	0.950 \pm 0.002	2.749 \pm 0.068	0.336 \pm 0.006
0.20	SOCOP (ours)	0.950 \pm 0.002	2.527 \pm 0.061	0.360 \pm 0.006
0.30	SOCOP (ours)	0.949 \pm 0.002	2.461 \pm 0.058	0.376 \pm 0.006
0.40	SOCOP (ours)	0.950 \pm 0.002	2.430 \pm 0.059	0.388 \pm 0.007
0.50	SOCOP (ours)	0.950 \pm 0.002	2.406 \pm 0.054	0.396 \pm 0.006
0.60	SOCOP (ours)	0.950 \pm 0.002	2.388 \pm 0.051	0.403 \pm 0.006
0.70	SOCOP (ours)	0.950 \pm 0.002	2.373 \pm 0.051	0.408 \pm 0.006
0.80	SOCOP (ours)	0.950 \pm 0.002	2.364 \pm 0.051	0.412 \pm 0.006
0.90	SOCOP (ours)	0.950 \pm 0.002	2.355 \pm 0.053	0.416 \pm 0.007
1.00	SOCOP (ours)	0.950 \pm 0.002	2.349 \pm 0.054	0.419 \pm 0.007
∞	Least Ambiguous Sets	0.950 \pm 0.002	2.274 \pm 0.046	0.466 \pm 0.007

1044 **Table 7:** Performance of EfficientNet-v2-1 on ImageNet-Val with different λ values ($\alpha = 0.05$).
 1045 Results are averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 \pm 0.002	188.942 \pm 4.836	0.188 \pm 0.005
0.01	SOCOP (ours)	0.950 \pm 0.002	2.873 \pm 0.091	0.205 \pm 0.005
0.02	SOCOP (ours)	0.950 \pm 0.002	2.326 \pm 0.060	0.212 \pm 0.005
0.03	SOCOP (ours)	0.950 \pm 0.002	2.122 \pm 0.053	0.217 \pm 0.006
0.04	SOCOP (ours)	0.950 \pm 0.002	2.012 \pm 0.042	0.221 \pm 0.005
0.05	SOCOP (ours)	0.950 \pm 0.002	1.946 \pm 0.038	0.226 \pm 0.005
0.06	SOCOP (ours)	0.950 \pm 0.002	1.898 \pm 0.035	0.229 \pm 0.005
0.07	SOCOP (ours)	0.950 \pm 0.002	1.859 \pm 0.034	0.232 \pm 0.006
0.08	SOCOP (ours)	0.950 \pm 0.002	1.828 \pm 0.033	0.234 \pm 0.006
0.09	SOCOP (ours)	0.950 \pm 0.002	1.802 \pm 0.031	0.236 \pm 0.006
0.10	SOCOP (ours)	0.950 \pm 0.002	1.782 \pm 0.028	0.238 \pm 0.005
0.20	SOCOP (ours)	0.950 \pm 0.002	1.678 \pm 0.023	0.255 \pm 0.005
0.30	SOCOP (ours)	0.950 \pm 0.002	1.640 \pm 0.022	0.265 \pm 0.006
0.40	SOCOP (ours)	0.950 \pm 0.002	1.621 \pm 0.021	0.274 \pm 0.006
0.50	SOCOP (ours)	0.950 \pm 0.002	1.608 \pm 0.023	0.279 \pm 0.006
0.60	SOCOP (ours)	0.950 \pm 0.002	1.596 \pm 0.023	0.283 \pm 0.007
0.70	SOCOP (ours)	0.950 \pm 0.002	1.587 \pm 0.022	0.286 \pm 0.007
0.80	SOCOP (ours)	0.950 \pm 0.002	1.581 \pm 0.022	0.289 \pm 0.006
0.90	SOCOP (ours)	0.950 \pm 0.002	1.575 \pm 0.022	0.291 \pm 0.007
1.00	SOCOP (ours)	0.950 \pm 0.002	1.571 \pm 0.022	0.293 \pm 0.007
∞	Least Ambiguous Sets	0.950 \pm 0.002	1.542 \pm 0.018	0.329 \pm 0.007

1063 **Table 8:** Performance of ConvNeXt-base on ImageNet-Val with different λ values ($\alpha = 0.05$). Results are
 1064 averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 \pm 0.002	226.991 \pm 4.935	0.226 \pm 0.005
0.01	SOCOP (ours)	0.950 \pm 0.002	4.074 \pm 0.155	0.244 \pm 0.005
0.02	SOCOP (ours)	0.950 \pm 0.002	3.194 \pm 0.097	0.254 \pm 0.005
0.03	SOCOP (ours)	0.950 \pm 0.002	2.866 \pm 0.081	0.262 \pm 0.005
0.04	SOCOP (ours)	0.950 \pm 0.002	2.683 \pm 0.068	0.268 \pm 0.005
0.05	SOCOP (ours)	0.950 \pm 0.002	2.567 \pm 0.067	0.274 \pm 0.005
0.06	SOCOP (ours)	0.950 \pm 0.002	2.485 \pm 0.065	0.278 \pm 0.006
0.07	SOCOP (ours)	0.950 \pm 0.002	2.429 \pm 0.062	0.283 \pm 0.006
0.08	SOCOP (ours)	0.950 \pm 0.002	2.383 \pm 0.063	0.287 \pm 0.006
0.09	SOCOP (ours)	0.950 \pm 0.002	2.344 \pm 0.060	0.290 \pm 0.006
0.10	SOCOP (ours)	0.949 \pm 0.002	2.307 \pm 0.056	0.293 \pm 0.006
0.20	SOCOP (ours)	0.950 \pm 0.002	2.121 \pm 0.045	0.310 \pm 0.006
0.30	SOCOP (ours)	0.950 \pm 0.002	2.044 \pm 0.036	0.321 \pm 0.006
0.40	SOCOP (ours)	0.950 \pm 0.002	2.008 \pm 0.036	0.330 \pm 0.006
0.50	SOCOP (ours)	0.950 \pm 0.002	1.983 \pm 0.035	0.336 \pm 0.006
0.60	SOCOP (ours)	0.950 \pm 0.002	1.964 \pm 0.033	0.341 \pm 0.005
0.70	SOCOP (ours)	0.950 \pm 0.002	1.951 \pm 0.035	0.345 \pm 0.006
0.80	SOCOP (ours)	0.950 \pm 0.002	1.943 \pm 0.035	0.349 \pm 0.006
0.90	SOCOP (ours)	0.950 \pm 0.002	1.937 \pm 0.034	0.352 \pm 0.006
1.00	SOCOP (ours)	0.950 \pm 0.002	1.932 \pm 0.033	0.355 \pm 0.006
∞	Least Ambiguous Sets	0.950 \pm 0.002	1.897 \pm 0.034	0.398 \pm 0.007

1080
1081
1082
1083
10841085 Table 9: Performance of Swin-v2-b on ImageNet-Val with different λ values ($\alpha = 0.05$). Results are
1086 averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 \pm 0.002	225.685 \pm 4.909	0.225 \pm 0.005
0.01	SOCOP (ours)	0.949 \pm 0.002	3.844 \pm 0.121	0.245 \pm 0.004
0.02	SOCOP (ours)	0.949 \pm 0.002	3.089 \pm 0.087	0.256 \pm 0.005
0.03	SOCOP (ours)	0.949 \pm 0.002	2.775 \pm 0.070	0.262 \pm 0.005
0.04	SOCOP (ours)	0.949 \pm 0.002	2.610 \pm 0.060	0.268 \pm 0.005
0.05	SOCOP (ours)	0.949 \pm 0.002	2.502 \pm 0.054	0.273 \pm 0.005
0.06	SOCOP (ours)	0.949 \pm 0.002	2.426 \pm 0.052	0.278 \pm 0.005
0.07	SOCOP (ours)	0.949 \pm 0.002	2.369 \pm 0.056	0.281 \pm 0.005
0.08	SOCOP (ours)	0.949 \pm 0.002	2.324 \pm 0.053	0.284 \pm 0.005
0.09	SOCOP (ours)	0.949 \pm 0.002	2.285 \pm 0.051	0.287 \pm 0.005
0.10	SOCOP (ours)	0.949 \pm 0.002	2.253 \pm 0.051	0.289 \pm 0.006
0.20	SOCOP (ours)	0.949 \pm 0.002	2.096 \pm 0.045	0.309 \pm 0.006
0.30	SOCOP (ours)	0.949 \pm 0.002	2.030 \pm 0.038	0.320 \pm 0.006
0.40	SOCOP (ours)	0.949 \pm 0.002	1.997 \pm 0.036	0.329 \pm 0.006
0.50	SOCOP (ours)	0.949 \pm 0.002	1.976 \pm 0.035	0.336 \pm 0.006
0.60	SOCOP (ours)	0.950 \pm 0.002	1.961 \pm 0.035	0.341 \pm 0.006
0.70	SOCOP (ours)	0.950 \pm 0.002	1.949 \pm 0.036	0.345 \pm 0.006
0.80	SOCOP (ours)	0.950 \pm 0.002	1.942 \pm 0.037	0.349 \pm 0.007
0.90	SOCOP (ours)	0.950 \pm 0.002	1.935 \pm 0.037	0.352 \pm 0.007
1.00	SOCOP (ours)	0.950 \pm 0.002	1.931 \pm 0.037	0.355 \pm 0.007
∞	Least Ambiguous Sets	0.950 \pm 0.002	1.881 \pm 0.033	0.396 \pm 0.007

1102
1103
1104
1105
1106
1107
1108
1109
1110
11111112 Table 10: Performance of ViT-h-14 on ImageNet-Val with different λ values ($\alpha = 0.05$). Results are
1113 averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 \pm 0.002	136.219 \pm 4.980	0.135 \pm 0.005
0.01	SOCOP (ours)	0.950 \pm 0.003	2.061 \pm 0.062	0.141 \pm 0.005
0.02	SOCOP (ours)	0.950 \pm 0.003	1.761 \pm 0.040	0.145 \pm 0.005
0.03	SOCOP (ours)	0.950 \pm 0.002	1.641 \pm 0.030	0.148 \pm 0.005
0.04	SOCOP (ours)	0.950 \pm 0.002	1.572 \pm 0.025	0.151 \pm 0.005
0.05	SOCOP (ours)	0.950 \pm 0.002	1.529 \pm 0.023	0.153 \pm 0.005
0.06	SOCOP (ours)	0.950 \pm 0.002	1.498 \pm 0.023	0.155 \pm 0.005
0.07	SOCOP (ours)	0.950 \pm 0.002	1.474 \pm 0.022	0.156 \pm 0.005
0.08	SOCOP (ours)	0.950 \pm 0.002	1.457 \pm 0.021	0.158 \pm 0.005
0.09	SOCOP (ours)	0.950 \pm 0.002	1.444 \pm 0.021	0.159 \pm 0.005
0.10	SOCOP (ours)	0.950 \pm 0.002	1.432 \pm 0.022	0.161 \pm 0.005
0.20	SOCOP (ours)	0.950 \pm 0.002	1.368 \pm 0.016	0.171 \pm 0.005
0.30	SOCOP (ours)	0.950 \pm 0.002	1.344 \pm 0.015	0.177 \pm 0.005
0.40	SOCOP (ours)	0.950 \pm 0.002	1.332 \pm 0.014	0.183 \pm 0.005
0.50	SOCOP (ours)	0.950 \pm 0.002	1.324 \pm 0.014	0.187 \pm 0.005
0.60	SOCOP (ours)	0.950 \pm 0.002	1.319 \pm 0.013	0.190 \pm 0.005
0.70	SOCOP (ours)	0.950 \pm 0.002	1.315 \pm 0.012	0.193 \pm 0.005
0.80	SOCOP (ours)	0.950 \pm 0.002	1.312 \pm 0.013	0.195 \pm 0.006
0.90	SOCOP (ours)	0.950 \pm 0.002	1.309 \pm 0.014	0.197 \pm 0.006
1.00	SOCOP (ours)	0.950 \pm 0.002	1.307 \pm 0.014	0.198 \pm 0.006
∞	Least Ambiguous Sets	0.950 \pm 0.002	1.291 \pm 0.011	0.224 \pm 0.006

1130
1131
1132
1133

Table 11: Performance on ImageNet-V2, with a protocol identical to that in Table 1

Model	Method	Coverage	Avg Size	$P(\text{size} > 1)$
ResNet152-v2	Plug-In	0.975 ± 0.004	190.453 ± 23.837	0.839 ± 0.035
	RAPS	0.950 ± 0.004	11.524 ± 0.793	1.000 ± 0.000
	Pure Singleton	0.950 ± 0.005	432.673 ± 12.869	0.432 ± 0.013
	Least Ambiguous Sets	0.949 ± 0.005	9.067 ± 0.677	0.798 ± 0.011
EfficientNet-v2-l	SOCOP (ours)	0.950 ± 0.005	10.212 ± 1.099	0.655 ± 0.031
	Plug-In	0.963 ± 0.004	70.999 ± 7.761	0.661 ± 0.022
	RAPS	0.950 ± 0.005	5.947 ± 0.485	0.920 ± 0.069
	Pure Singleton	0.950 ± 0.005	369.726 ± 14.194	0.369 ± 0.014
ConvNeXt-base	Least Ambiguous Sets	0.950 ± 0.004	4.157 ± 0.231	0.718 ± 0.016
	SOCOP (ours)	0.950 ± 0.004	4.736 ± 0.354	0.571 ± 0.024
	Plug-In	0.971 ± 0.005	161.625 ± 22.907	0.845 ± 0.030
	RAPS	0.950 ± 0.005	10.380 ± 0.819	1.000 ± 0.000
Swin-v2-b	Pure Singleton	0.950 ± 0.004	428.852 ± 14.761	0.428 ± 0.015
	Least Ambiguous Sets	0.950 ± 0.005	6.810 ± 0.492	0.787 ± 0.016
	SOCOP (ours)	0.950 ± 0.005	7.578 ± 0.558	0.629 ± 0.016
	Plug-In	0.981 ± 0.004	166.462 ± 26.307	0.941 ± 0.032
ViT-h-14	RAPS	0.951 ± 0.005	9.306 ± 0.860	1.000 ± 0.000
	Pure Singleton	0.950 ± 0.005	414.604 ± 13.283	0.414 ± 0.013
	Least Ambiguous Sets	0.950 ± 0.004	6.673 ± 0.472	0.777 ± 0.017
	SOCOP (ours)	0.950 ± 0.005	7.634 ± 0.703	0.626 ± 0.021
	Plug-In	0.965 ± 0.003	33.017 ± 3.027	0.540 ± 0.013
	RAPS	0.951 ± 0.005	3.259 ± 0.264	0.979 ± 0.092
	Pure Singleton	0.950 ± 0.004	304.159 ± 13.851	0.304 ± 0.014
	Least Ambiguous Sets	0.950 ± 0.005	2.378 ± 0.105	0.539 ± 0.018
	SOCOP (ours)	0.950 ± 0.005	2.695 ± 0.165	0.421 ± 0.024

Table 12: Performance of ResNet152-v2 on ImageNet-V2 with different λ values ($\alpha = 0.05$). Results are averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 ± 0.005	432.673 ± 12.869	0.432 ± 0.013
0.01	SOCOP (ours)	0.950 ± 0.006	25.474 ± 3.292	0.502 ± 0.013
0.02	SOCOP (ours)	0.950 ± 0.005	16.743 ± 1.657	0.531 ± 0.013
0.03	SOCOP (ours)	0.950 ± 0.005	14.088 ± 1.270	0.550 ± 0.012
0.04	SOCOP (ours)	0.950 ± 0.005	13.112 ± 1.138	0.567 ± 0.012
0.05	SOCOP (ours)	0.950 ± 0.005	12.527 ± 1.047	0.581 ± 0.013
0.06	SOCOP (ours)	0.950 ± 0.005	12.091 ± 1.020	0.592 ± 0.013
0.07	SOCOP (ours)	0.950 ± 0.005	11.732 ± 0.974	0.601 ± 0.013
0.08	SOCOP (ours)	0.950 ± 0.005	11.432 ± 0.931	0.609 ± 0.013
0.09	SOCOP (ours)	0.950 ± 0.005	11.171 ± 0.876	0.615 ± 0.012
0.10	SOCOP (ours)	0.950 ± 0.005	10.920 ± 0.826	0.620 ± 0.012
0.20	SOCOP (ours)	0.950 ± 0.005	9.949 ± 0.685	0.660 ± 0.011
0.30	SOCOP (ours)	0.950 ± 0.005	9.745 ± 0.661	0.684 ± 0.011
0.40	SOCOP (ours)	0.950 ± 0.005	9.616 ± 0.623	0.699 ± 0.010
0.50	SOCOP (ours)	0.950 ± 0.005	9.555 ± 0.609	0.711 ± 0.010
0.60	SOCOP (ours)	0.950 ± 0.005	9.508 ± 0.579	0.720 ± 0.010
0.70	SOCOP (ours)	0.950 ± 0.005	9.427 ± 0.543	0.726 ± 0.010
0.80	SOCOP (ours)	0.950 ± 0.005	9.344 ± 0.554	0.730 ± 0.010
0.90	SOCOP (ours)	0.950 ± 0.005	9.290 ± 0.564	0.735 ± 0.010
1.00	SOCOP (ours)	0.950 ± 0.005	9.262 ± 0.578	0.739 ± 0.011
∞	Least Ambiguous Sets	0.949 ± 0.005	9.067 ± 0.677	0.798 ± 0.011

D.2 IMAGENET-V2

Results for all five models on the ImageNet-V2 dataset are reported in Table 11.

For this dataset, the effect of λ on our SOCOP across all five models are reported in Table 12-16, respectively.

D.3 CPL METHOD

We report the performance of the CPL method (Kiyani et al., 2024) under the same experimental protocol as in the main text. Following Kiyani et al. (2024), we implement \mathcal{H} as a linear head on top of the pre-trained model, mapping the final hidden-layer representations to a real-valued scalar. The results, shown in Table 17, indicate that this method exhibits slight undercoverage, while

1188
 1189 Table 13: Performance of EfficientNet-v2-l on ImageNet-V2 with different λ values ($\alpha = 0.05$).
 Results are averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 ± 0.005	369.726 ± 14.194	0.369 ± 0.014
0.01	SOCOP (ours)	0.951 ± 0.005	12.243 ± 1.247	0.422 ± 0.014
0.02	SOCOP (ours)	0.950 ± 0.004	8.506 ± 0.744	0.448 ± 0.015
0.03	SOCOP (ours)	0.950 ± 0.004	7.266 ± 0.505	0.466 ± 0.013
0.04	SOCOP (ours)	0.950 ± 0.004	6.643 ± 0.433	0.480 ± 0.013
0.05	SOCOP (ours)	0.950 ± 0.004	6.216 ± 0.413	0.491 ± 0.014
0.06	SOCOP (ours)	0.950 ± 0.004	5.910 ± 0.398	0.500 ± 0.015
0.07	SOCOP (ours)	0.950 ± 0.004	5.718 ± 0.397	0.509 ± 0.016
0.08	SOCOP (ours)	0.950 ± 0.004	5.559 ± 0.399	0.516 ± 0.016
0.09	SOCOP (ours)	0.950 ± 0.004	5.429 ± 0.405	0.522 ± 0.017
0.10	SOCOP (ours)	0.950 ± 0.004	5.304 ± 0.385	0.528 ± 0.016
0.20	SOCOP (ours)	0.950 ± 0.004	4.751 ± 0.302	0.565 ± 0.016
0.30	SOCOP (ours)	0.950 ± 0.004	4.586 ± 0.285	0.590 ± 0.016
0.40	SOCOP (ours)	0.950 ± 0.004	4.496 ± 0.290	0.606 ± 0.016
0.50	SOCOP (ours)	0.950 ± 0.004	4.418 ± 0.273	0.617 ± 0.016
0.60	SOCOP (ours)	0.950 ± 0.004	4.372 ± 0.258	0.626 ± 0.015
0.70	SOCOP (ours)	0.950 ± 0.004	4.335 ± 0.251	0.634 ± 0.015
0.80	SOCOP (ours)	0.950 ± 0.004	4.305 ± 0.248	0.639 ± 0.015
0.90	SOCOP (ours)	0.950 ± 0.004	4.284 ± 0.250	0.644 ± 0.015
1.00	SOCOP (ours)	0.950 ± 0.004	4.272 ± 0.249	0.649 ± 0.016
∞	Least Ambiguous Sets	0.950 ± 0.004	4.157 ± 0.231	0.718 ± 0.016

1206
 1207 Table 14: Performance of ConvNeXt-base on ImageNet-V2 with different λ values ($\alpha = 0.05$). Results
 are averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 ± 0.004	428.852 ± 14.761	0.428 ± 0.015
0.01	SOCOP (ours)	0.950 ± 0.004	19.963 ± 2.012	0.465 ± 0.012
0.02	SOCOP (ours)	0.950 ± 0.004	14.093 ± 1.081	0.498 ± 0.011
0.03	SOCOP (ours)	0.950 ± 0.004	11.929 ± 0.907	0.518 ± 0.012
0.04	SOCOP (ours)	0.950 ± 0.004	10.687 ± 0.818	0.531 ± 0.012
0.05	SOCOP (ours)	0.950 ± 0.004	9.976 ± 0.750	0.543 ± 0.012
0.06	SOCOP (ours)	0.950 ± 0.004	9.448 ± 0.682	0.552 ± 0.012
0.07	SOCOP (ours)	0.950 ± 0.004	9.104 ± 0.634	0.560 ± 0.012
0.08	SOCOP (ours)	0.950 ± 0.004	8.830 ± 0.599	0.568 ± 0.011
0.09	SOCOP (ours)	0.950 ± 0.004	8.649 ± 0.577	0.574 ± 0.011
0.10	SOCOP (ours)	0.950 ± 0.004	8.493 ± 0.561	0.580 ± 0.012
0.20	SOCOP (ours)	0.950 ± 0.005	7.668 ± 0.525	0.622 ± 0.013
0.30	SOCOP (ours)	0.950 ± 0.005	7.386 ± 0.494	0.647 ± 0.013
0.40	SOCOP (ours)	0.950 ± 0.005	7.245 ± 0.505	0.665 ± 0.014
0.50	SOCOP (ours)	0.950 ± 0.005	7.182 ± 0.503	0.677 ± 0.014
0.60	SOCOP (ours)	0.950 ± 0.005	7.148 ± 0.513	0.688 ± 0.015
0.70	SOCOP (ours)	0.950 ± 0.005	7.135 ± 0.510	0.697 ± 0.015
0.80	SOCOP (ours)	0.950 ± 0.005	7.111 ± 0.519	0.704 ± 0.016
0.90	SOCOP (ours)	0.950 ± 0.005	7.108 ± 0.512	0.711 ± 0.016
1.00	SOCOP (ours)	0.950 ± 0.005	7.104 ± 0.509	0.717 ± 0.016
∞	Least Ambiguous Sets	0.950 ± 0.005	6.810 ± 0.492	0.787 ± 0.016

1224
 1225 Table 15: Performance of Swin-v2-b on ImageNet-V2 with different λ values ($\alpha = 0.05$). Results are
 averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0	Pure Singleton	0.950 ± 0.005	414.604 ± 13.283	0.414 ± 0.013
0.01	SOCOP (ours)	0.951 ± 0.004	20.127 ± 1.710	0.478 ± 0.011
0.02	SOCOP (ours)	0.950 ± 0.005	13.318 ± 1.226	0.501 ± 0.013
0.03	SOCOP (ours)	0.950 ± 0.005	11.647 ± 1.024	0.522 ± 0.014
0.04	SOCOP (ours)	0.950 ± 0.004	10.768 ± 0.875	0.537 ± 0.013
0.05	SOCOP (ours)	0.950 ± 0.004	10.036 ± 0.794	0.547 ± 0.013
0.06	SOCOP (ours)	0.950 ± 0.004	9.507 ± 0.706	0.556 ± 0.013
0.07	SOCOP (ours)	0.950 ± 0.004	9.113 ± 0.620	0.564 ± 0.013
0.08	SOCOP (ours)	0.950 ± 0.004	8.834 ± 0.548	0.571 ± 0.012
0.09	SOCOP (ours)	0.950 ± 0.004	8.640 ± 0.548	0.579 ± 0.013
0.10	SOCOP (ours)	0.950 ± 0.004	8.450 ± 0.529	0.585 ± 0.013
0.20	SOCOP (ours)	0.950 ± 0.004	7.625 ± 0.596	0.624 ± 0.015
0.30	SOCOP (ours)	0.950 ± 0.005	7.337 ± 0.583	0.646 ± 0.016
0.40	SOCOP (ours)	0.950 ± 0.004	7.183 ± 0.570	0.662 ± 0.016
0.50	SOCOP (ours)	0.950 ± 0.005	7.093 ± 0.563	0.674 ± 0.017
0.60	SOCOP (ours)	0.950 ± 0.005	7.049 ± 0.568	0.684 ± 0.017
0.70	SOCOP (ours)	0.950 ± 0.005	7.004 ± 0.551	0.692 ± 0.017
0.80	SOCOP (ours)	0.950 ± 0.005	6.971 ± 0.549	0.699 ± 0.017
0.90	SOCOP (ours)	0.950 ± 0.005	6.954 ± 0.538	0.705 ± 0.017
1.00	SOCOP (ours)	0.950 ± 0.005	6.929 ± 0.527	0.710 ± 0.017
∞	Least Ambiguous Sets	0.950 ± 0.004	6.673 ± 0.472	0.777 ± 0.017

1242 Table 16: Performance of ViT-h-14 on ImageNet-V2 with different λ values ($\alpha = 0.05$). Results are
 1243 averaged over 100 data splits.

λ	Method	Coverage	Avg Size	$P(\text{size} > 1)$
0.00	Pure Singleton	0.950 ± 0.004	304.159 ± 13.851	0.304 ± 0.014
0.01	SOCOP (ours)	0.950 ± 0.004	6.672 ± 0.461	0.323 ± 0.012
0.02	SOCOP (ours)	0.950 ± 0.004	4.803 ± 0.258	0.336 ± 0.011
0.03	SOCOP (ours)	0.950 ± 0.004	4.145 ± 0.213	0.346 ± 0.011
0.04	SOCOP (ours)	0.950 ± 0.004	3.747 ± 0.200	0.352 ± 0.012
0.05	SOCOP (ours)	0.950 ± 0.004	3.493 ± 0.186	0.357 ± 0.012
0.06	SOCOP (ours)	0.950 ± 0.004	3.329 ± 0.176	0.361 ± 0.013
0.07	SOCOP (ours)	0.950 ± 0.004	3.223 ± 0.162	0.367 ± 0.013
0.08	SOCOP (ours)	0.950 ± 0.005	3.147 ± 0.160	0.372 ± 0.013
0.09	SOCOP (ours)	0.950 ± 0.005	3.084 ± 0.165	0.377 ± 0.014
0.10	SOCOP (ours)	0.950 ± 0.005	3.027 ± 0.167	0.381 ± 0.015
0.20	SOCOP (ours)	0.950 ± 0.005	2.743 ± 0.142	0.411 ± 0.016
0.30	SOCOP (ours)	0.950 ± 0.005	2.636 ± 0.141	0.429 ± 0.016
0.40	SOCOP (ours)	0.950 ± 0.005	2.575 ± 0.141	0.441 ± 0.017
0.50	SOCOP (ours)	0.950 ± 0.005	2.539 ± 0.135	0.450 ± 0.017
0.60	SOCOP (ours)	0.951 ± 0.005	2.516 ± 0.127	0.458 ± 0.017
0.70	SOCOP (ours)	0.950 ± 0.005	2.496 ± 0.123	0.464 ± 0.017
0.80	SOCOP (ours)	0.950 ± 0.005	2.480 ± 0.117	0.469 ± 0.016
0.90	SOCOP (ours)	0.950 ± 0.005	2.471 ± 0.116	0.474 ± 0.016
1.00	SOCOP (ours)	0.950 ± 0.005	2.461 ± 0.116	0.478 ± 0.016
∞	Least Ambiguous Sets	0.950 ± 0.005	2.378 ± 0.105	0.539 ± 0.018

1262 Table 17: Performance of CPL (Kiyani et al., 2024) on ImageNet-Val, ImageNet-V2, TissueMNIST and
 1263 MMLU with the same protocol used ($\alpha = 0.05$).

Model	Coverage	Avg Size	$P(\text{size} > 1)$
ResNet152-v2	0.950 ± 0.002	2.297 ± 0.059	0.463 ± 0.006
EfficientNet-v2-1	0.949 ± 0.003	1.542 ± 0.044	0.327 ± 0.011
ConvNeXt-base	0.948 ± 0.003	1.866 ± 0.050	0.392 ± 0.011
Swin-v2-b	0.948 ± 0.003	1.841 ± 0.039	0.386 ± 0.009
ViT-h-14	0.949 ± 0.004	1.292 ± 0.030	0.221 ± 0.017

(a) ImageNet-Val

Model	Coverage	Avg Size	$P(\text{size} > 1)$
ResNet152-v2	0.950 ± 0.006	9.295 ± 1.167	0.797 ± 0.016
EfficientNet-v2-1	0.940 ± 0.006	3.394 ± 0.400	0.675 ± 0.017
ConvNeXt-base	0.949 ± 0.005	6.677 ± 0.615	0.773 ± 0.019
Swin-v2-b	0.949 ± 0.005	6.493 ± 0.673	0.764 ± 0.024
ViT-h-14	0.948 ± 0.005	2.400 ± 0.154	0.489 ± 0.019

(b) ImageNet-V2

Model	Coverage	Avg Size	$P(\text{size} > 1)$
ResNet-50 (224)	0.950 ± 0.003	2.640 ± 0.040	0.791 ± 0.008

(c) TissueMNIST

Model	Coverage	Avg Size	$P(\text{size} > 1)$
Llama3.1-8B-Instruct	0.948 ± 0.006	2.400 ± 0.046	0.644 ± 0.012

(d) MMLU

1287 attaining similar performance to Least Ambiguous Sets. Notably, these results are different
 1288 from the ones reported by (Kiyani et al., 2024), where the CPL method reduced average set sizes.
 1289 However, the experimental settings considered in the two papers are different, which may explain the
 1290 experimental differences. In particular, their results use older large language models which perform
 1291 quite poorly on MMLU, such that the original average set sizes are very large, being for instance
 1292 equal to approximately 3.5 out of 4 in one example. This leaves ample opportunity for improving
 1293 the set sizes by the CPL method. In contrast, in our setting, the language models have a higher
 1294 performance (leading to smaller set sizes with the default least ambiguous set sizes method, around
 1295 2.5 out of 4), which may leave less opportunity for improvement.

1296
1297

E HYPERPARAMETER GRID

1298
1299
1300
1301
1302
1303

For RAPS, we follow Angelopoulos et al. (2021), using the grid $\lambda \in \{0.001, 0.01, 0.1, 0.2, 0.5\}$ to optimize set size and a grid with smaller values $\lambda \in \{0.00001, 0.0001, 0.0008, 0.001, 0.0015, 0.002\}$ to optimize SSCV. For our SOCOP method, we use a linearly spaced grid of 15 values over [0.05, 1.0] to optimize the balance between set size and non-singleton rate, and a linearly spaced grid of 15 values over [0.005, 0.1] to optimize SSCV.

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349