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ABSTRACT

Biclustering is evolving into one of the major tools for analyzing large datasets
given as matrix of samples times features. Biclustering has been successfully ap-
plied in life sciences, e.g. for drug design, in e-commerce, e.g. for internet retailing
or recommender systems.
FABIA is one of the most successful biclustering methods which excelled in dif-
ferent projects and is used by companies like Janssen, Bayer, or Zalando. FABIA
is a generative model that represents each bicluster by two sparse membership vec-
tors: one for the samples and one for the features. However, FABIA is restricted to
about 20 code units because of the high computational complexity of computing
the posterior. Furthermore, code units are sometimes insufficiently decorrelated.
Sample membership is difficult to determine because vectors do not have exact
zero entries and can have both large positive and large negative values.
We propose to use the recently introduced unsupervised Deep Learning approach
Rectified Factor Networks (RFNs) to overcome the drawbacks of FABIA. RFNs
efficiently construct very sparse, non-linear, high-dimensional representations of
the input via their posterior means. RFN learning is a generalized alternating min-
imization algorithm based on the posterior regularization method which enforces
non-negative and normalized posterior means. Each code unit represents a biclus-
ter, where samples for which the code unit is active belong to the bicluster and
features that have activating weights to the code unit belong to the bicluster.
On 400 benchmark datasets with artificially implanted biclusters, RFN signifi-
cantly outperformed 13 other biclustering competitors including FABIA. In bi-
clustering experiments on three gene expression datasets with known clusters that
were determined by separate measurements, RFN biclustering was two times sig-
nificantly better than the other 13 methods and once on second place.

1 INTRODUCTION

Recently biclustering became popular for analyzing large dyadic data given in matrix form, where
one dimension are the samples and the other the features. A matrix entry is a feature value for the
according sample. A bicluster is a pair of a sample set and a feature set for which the samples are
similar to each other on the features and vice versa. Biclustering simultaneously clusters rows and
columns of a matrix. In particular, it clusters row elements that are similar to each other on a subset
of column elements. In contrast to standard clustering, the samples of a bicluster are only similar
to each other on a subset of features. Furthermore, a sample may belong to different biclusters or
to no bicluster at all. Thus, biclusters can overlap in both dimensions. For example, in drug design
biclusters are compounds which activate the same gene module and thereby indicate a side effect.
In this example different chemical compounds are added to a cell line and the gene expression is
measured (Verbist et al., 2015). If multiple pathways are active in a sample, it belongs to different
biclusters and may have different side effects. In e-commerce often matrices of costumers times
products are available, where an entry indicates whether a customer bought the product or not.
Biclusters are costumers which buy the same subset of products. In a collaboration with the internet
retailer Zalando the biclusters revealed outfits which were created by customers which selected
certain clothes for a particular outfit.
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FABIA (factor analysis for bicluster acquisition, (Hochreiter et al., 2010)) evolved into one of the
most successful biclustering methods. A detailed comparison has shown FABIA’s superiority over
existing biclustering methods both on simulated data and real-world gene expression data (Hochre-
iter et al., 2010). In particular FABIA outperformed nonnegative matrix factorization with sparse-
ness constraints and state-of-the-art biclustering methods. It has been applied to genomics, where it
identified in gene expression data task-relevant biological modules (Xiong et al., 2014). In the large
drug design project QSTAR, FABIA was used to extract biclusters from a data matrix that contains
bioactivity measurements across compounds (Verbist et al., 2015). Du to its successes, FABIA has
become part of the standard microarray data processing pipeline at the pharmaceutical company
Janssen Pharmaceuticals. FABIA has been applied to genetics, where it has been used to identify
DNA regions that are identical by descent in different individuals. These individuals inherited an
IBD region from a common ancestor (Hochreiter, 2013; Povysil & Hochreiter, 2014). FABIA is a
generative model that enforces sparse codes (Hochreiter et al., 2010) and, thereby, detects biclus-
ters. Sparseness of code units and parameters is essential for FABIA to find biclusters, since only
few samples and few features belong to a bicluster. Each FABIA bicluster is represented by two
membership vectors: one for the samples and one for the features. These membership vectors are
both sparse since only few samples and only few features belong to the bicluster.

However, FABIA has shortcomings, too. A disadvantage of FABIA is that it is only feasible with
about 20 code units (the biclusters) because of the high computational complexity which depends
cubically on the number of biclusters, i.e. the code units. If less code units were used, only the
large and common input structures would be detected, thereby, occluding the small and rare ones.
Another shortcoming of FABIA is that units are insufficiently decorrelated and, therefore, multiple
units may encode the same event or part of it. A third shortcoming of FABIA is that the membership
vectors do not have exact zero entries, that is the membership is continuous and a threshold have to
be determined. This threshold is difficult to adjust. A forth shortcoming is that biclusters can have
large positive but also large negative members of samples (that is positive or negative code values).
In this case it is not clear whether the positive pattern or the negative pattern has been recognized.

Rectified Factor Networks (RFNs; (Clevert et al., 2015)) RFNs overcome the shortcomings of
FABIA. The first shortcoming of only few code units is avoided by extending FABIA to thousands
of code units. RFNs introduce rectified units to FABIA’s posterior distribution and, thereby, allow
for fast computations on GPUs. They are the first methods which apply rectification to the posterior
distribution of factor analysis and matrix factorization, though rectification it is well established in
Deep Learning by rectified linear units (ReLUs). RFNs transfer the methods for rectification from
the neural network field to latent variable models. Addressing the second shortcoming of FABIA,
RFNs achieve decorrelation by increasing the sparsity of the code units using dropout from field of
Deep Learning. RFNs also address the third FABIA shortcoming, since the rectified posterior means
yield exact zero values. Therefore, memberships to biclusters are readily obtained by values that are
not zero. Since RFNs only have non-negative code units, the problem of separating the negative
from the positive pattern disappears.

2 IDENTIFYING BICLUSTERS BY RECTIFIED FACTOR NETWORKS

2.1 RECTIFIED FACTOR NETWORKS

We propose to use the recently introduced Rectified Factor Networks (RFNs; (Clevert et al., 2015))
for biclustering to overcome the drawbacks of the FABIA model. RFNs efficiently construct very
sparse, non-linear, high-dimensional representations of the input. RFN models identify rare and
small events in the input, have a low interference between code units, have a small reconstruction
error, and explain the data covariance structure.

RFN learning is a generalized alternating minimization algorithm derived from the posterior reg-
ularization method which enforces non-negative and normalized posterior means. These posterior
means are the code of the input data. The RFN code can be computed very efficiently. For non-
Gaussian priors, the computation of the posterior mean of a new input requires either to numerically
solve an integral or to iteratively update variational parameters. In contrast, for Gaussian priors the
posterior mean is the product between the input and a matrix that is independent of the input. RFNs
use a rectified Gaussian posterior, therefore, they have the speed of Gaussian posteriors but lead to
sparse codes via rectification. RFNs are implemented on GPUs.
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The RFN model is a factor analysis model

v = Wh + ε , (1)

which extracts the covariance structure of the data. The prior h ∼ N (0, I) of the hidden units (fac-
tors) h ∈ Rl and the noise ε ∼ N (0,Ψ) of visible units (observations) v ∈ Rm are independent.
The model parameters are the weight (factor loading) matrix W ∈ Rm×l and the noise covariance
matrix Ψ ∈ Rm×m.

RFN models are selected via the posterior regularization method (Ganchev et al., 2010). For data
{v} = {v1, . . . ,vn}, it maximizes the objective F :

− 1

n
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1

n
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1
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(2)

Maximizing F achieves two goals simultaneously: (1) extracting desired structures and information
from the data as imposed by the generative model and (2) ensuring sparse codes via Q from the set
of rectified Gaussians.

For Gaussian posterior distributions, and mean-centered data {v} = {v1, . . . ,vn}, the posterior
p(hi | vi) is Gaussian with mean vector (µp)i and covariance matrix Σp:

(µp)i =
(
I + W TΨ−1W

)−1
W TΨ−1 vi , Σp =

(
I + W TΨ−1W

)−1
. (3)

For rectified Gaussian posterior distributions, Σp remains as in the Gaussian case, but minimizing
the second DKL of Eq. (2) leads to constrained optimization problem (see Clevert et al. (2015))
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(4)

where “≥” is component-wise. In the E-step of the generalized alternating minimization algorithm
(Ganchev et al., 2010), which is used for RFN model selection, we only perform a step of the gradi-
ent projection algorithm (Bertsekas, 1976; Kelley, 1999), in particular a step of the projected Newton
method for solving Eq. (4) (Clevert et al., 2015). Therefore, RFN model selection is extremely effi-
cient but still guarantees the correct solution.

2.2 RFN BICLUSTERING

For a RFN model, each code unit represents a bicluster, where samples, for which the code unit
is active, belong to the bicluster and features with activating weights to the code unit belong to the
bicluster. The vector of activations of a unit across all samples is the sample membership vector. The
weight vector which activates the unit is the feature membership vector. The un-constraint posterior
mean vector is computed by multiplying the input with a matrix according to Eq. (3). The constraint
posterior of a code unit is obtained by multiplying the input by a vector and subsequently rectifying
and normalizing the code unit (Clevert et al., 2015).

To keep feature membership vector sparse, we introduce a Laplace prior on the parameters. There-
fore only few features contribute to activating a code unit, that is, only few features belong to a
bicluster. In order to enforce more sparseness of the sample membership vectors, we introduce
dropout of code units. Dropout means that during training some code units are set to zero at the
same time as they get rectified. Dropout avoids co-adaptation of code units and reduces correlation
of code units — a problem of FABIA which is solved.

RFN biclustering does not require a threshold for determining sample memberships to a bicluster
since rectification sets code units to zero. Further crosstalk between biclusters via mixing up negative
and positive memberships is avoided, therefore spurious biclusters do less often appear.
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3 EXPERIMENTS

3.1 METHODS COMPARED

To assess the performance of rectified factor networks (RFNs) as unsupervised biclustering methods,
we compare following 14 biclustering methods:
(1) RFN: rectified factor networks (Clevert et al., 2015),
(2) FABIA: factor analysis with Laplace prior on the hidden units (Hochreiter et al., 2010),
(3) FABIAS: factor analysis with sparseness projection (Hochreiter et al., 2010),
(4) MFSC: matrix factorization with sparseness constraints (Hoyer, 2004),
(5) plaid: plaid model (Lazzeroni & Owen, 2002),
(6) ISA: iterative signature algorithm (Ihmels et al., 2004),
(7) OPSM: order-preserving sub-matrices (Ben-Dor et al., 2003),
(8) SAMBA: statistical-algorithmic method for bicluster analysis (Tanay et al., 2002),
(9) xMOTIF: conserved motifs (Murali & Kasif, 2003),
(10) Bimax: divide-and-conquer algorithm (Prelic et al., 2006),
(11) CC: Cheng-Church δ-biclusters (Cheng & Church, 2000),
(12) plaid t: improved plaid model (Turner et al., 2003),
(13) FLOC: flexible overlapped biclustering, a generalization of CC (Yang et al., 2005), and
(14) spec: spectral biclustering (Kluger et al., 2003).

For a fair comparison, the parameters of the methods were optimized on auxiliary toy data sets. If
more than one setting was close to the optimum, all near optimal parameter settings were tested. In
the following, these variants are denoted as method variant (e.g. plaid ss).

3.2 SIMULATED DATA SETS WITH KNOWN BICLUSTERS

3.2.1 DATA WITH MULTIPLICATIVE BICLUSTERS

We assumed n = 1000 genes and l = 100 samples and implanted p = 10 multiplicative biclusters.
The bicluster datasets with p biclusters are generated by following model:

X =

p∑
i=1

λi z
T
i + Υ , (5)

where Υ ∈ Rn×l is additive noise; λi ∈ Rn and zi ∈ Rl are the bicluster membership vectors
for the i-th bicluster. The λi’s are generated by (i) randomly choosing the number Nλ

i of genes in
bicluster i from {10, . . . , 210}, (ii) choosing Nλ

i genes randomly from {1, . . . , 1000}, (iii) setting
λi components not in bicluster i to N (0, 0.22) random values, and (iv) setting λi components that
are in bicluster i to N (±3, 1) random values, where the sign is chosen randomly for each gene.
The zi’s are generated by (i) randomly choosing the number Nzi of samples in bicluster i from
{5, . . . , 25}, (ii) choosing Nzi samples randomly from {1, . . . , 100}, (iii) setting zi components not
in bicluster i to N (0, 0.22) random values, and (iv) setting zi components that are in bicluster i to
N (2, 1) random values. Finally, we draw the Υ entries (additive noise on all entries) according to
N (0, 32) and compute the data X according to Eq. (5). Using these settings, noisy biclusters of
random sizes between 10×5 and 210×25 (genes×samples) are generated. In all experiments, rows
(genes) were standardized to mean 0 and variance 1.

3.2.2 DATA WITH ADDITIVE BICLUSTERS

In this experiment we generated biclustering data where biclusters stem from an additive two-way
ANOVA model:

X =

p∑
i=1

θi � (λi z
T
i ) + Υ , θikj = µi + αik + βij , (6)

where � is the element-wise product of matrices and both λi and zi are binary indicator vectors
which indicate the rows and columns belonging to bicluster i. The i-th bicluster is described by
an ANOVA model with mean µi, k-th row effect αik (first factor of the ANOVA model), and j-
th column effect βij (second factor of the ANOVA model). The ANOVA model does not have
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Table 1: Results are the mean of 100 instances for each simulated data sets. Data sets M1 and A1-
A3 were multiplicative and additive bicluster, respectively. The numbers denote average consensus
scores with the true biclusters (standard deviations in parentheses). The best results are printed bold
and the second best in italics (“better” means significantly better according to both a paired t-test
and a McNemar test of correct elements in biclusters).

multiplicative model additive model

Method M1 A1 A2 A3

RFN 0.643±7e-4 0.475±9e-4 0.640±1e-2 0.816±6e-7
FABIA 0.478±1e-2 0.109±6e-2 0.196±8e-2 0.475±1e-1
FABIAS 0.564±3e-3 0.150±7e-2 0.268±7e-2 0.546±1e-1
SAMBA 0.006±5e-5 0.002±6e-4 0.002±5e-4 0.003±8e-4
xMOTIF 0.002±6e-5 0.002±4e-4 0.002±4e-4 0.001±4e-4
MFSC 0.057±2e-3 0.000±0e-0 0.000±0e-0 0.000±0e-0
Bimax 0.004±2e-4 0.009±8e-3 0.010±9e-3 0.014±1e-2
plaid ss 0.045±9e-4 0.039±2e-2 0.041±1e-2 0.074±3e-2
CC 0.001±7e-6 4e-4±3e-4 3e-4±2e-4 1e-4±1e-4
plaid ms 0.072±4e-4 0.064±3e-2 0.072±2e-2 0.112±3e-2
plaid t ab 0.046±5e-3 0.021±2e-2 0.005±6e-3 0.022±2e-2
plaid ms 5 0.083±6e-4 0.098±4e-2 0.143±4e-2 0.221±5e-2
plaid t a 0.037±4e-3 0.039±3e-2 0.010±9e-3 0.051±4e-2
FLOC 0.006±3e-5 0.005±9e-4 0.005±1e-3 0.003±9e-4
ISA 0.333±5e-2 0.039±4e-2 0.033±2e-2 0.140±7e-2
spec 0.032±5e-4 0.000±0e-0 0.000±0e-0 0.000±0e-0
OPSM 0.012±1e-4 0.007±2e-3 0.007±2e-3 0.008±2e-3

interaction effects. While the ANOVA model is described for the whole data matrix, only the effects
on rows and columns belonging to the bicluster are used in data generation. Noise and bicluster
sizes are generated as in previous Subsection 3.2.1.

Data was generated for three different signal-to-noise ratios which are determined by distribution
from which µi is chosen: A1 (low signal) N (0, 22), A2 (moderate signal) N (±2, 0.52), and A3
(high signal) N (±4, 0.52), where the sign of the mean is randomly chosen. The row effects αki are
chosen from N (0.5, 0.22) and the column effects βij are chosen from N (1, 0.52).

3.2.3 RESULTS ON SIMULATED DATA SETS

For method evaluation, we use the previously introduced biclustering consensus score for two sets
of biclusters (Hochreiter et al., 2010), which is computed as follows:
(1) Compute similarities between all pairs of biclusters by the Jaccard index, where one is from the
first set and the other from the second set;
(2) Assign the biclusters of one set to biclusters of the other set by maximizing the assignment by
the Munkres algorithm;
(3) Divide the sum of similarities of the assigned biclusters by the number of biclusters of the larger
set.
Step (3) penalizes different numbers of biclusters in the sets. The highest consensus is 1 and only
obtained for identical sets of biclusters.

Table 1 shows the biclustering results for these data sets. RFN significantly outperformed all other
methods (t-test and McNemar test of correct elements in biclusters).

3.3 GENE EXPRESSION DATA SETS

In this experiment we test the biclustering methods on gene expression data sets, where the biclusters
are gene modules. The genes that are in a particular gene module belong to the according bicluster
and samples for which the gene module is activated belong to the bicluster. We consider three gene
expression data sets which have been provided by the Broad Institute and were previously clustered
by Hoshida et al. (2007) using additional data sets. Our goal was to study how well biclustering
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Table 2: Results on the (A) breast cancer, (B) multiple tissue samples, (C) diffuse large-B-cell
lymphoma (DLBCL) data sets measured by the consensus score. An “nc” entry means that the
method did not converge for this data set. The best results are in bold and the second best in italics
(“better” means significantly better according to a McNemar test of correct samples in clusters).
The columns “#bc”, “#g”, “#s” provide the numbers of biclusters, their average numbers of genes,
and their average numbers of samples, respectively. RFN is two times the best method and once on
second place.

(A) breast cancer (B) multiple tissues (C) DLBCL

method score #bc #g #s score #bc #g #s score #bc #g #s

RFN 0.57 3 73 31 0.77 5 75 33 0.35 2 59 72
FABIA 0.52 3 92 31 0.53 5 356 29 0.37 2 59 62
FABIAS 0.52 3 144 32 0.44 5 435 30 0.35 2 104 60
MFSC 0.17 5 87 24 0.31 5 431 24 0.18 5 50 42
plaid ss 0.39 5 500 38 0.56 5 1903 35 0.30 5 339 72
plaid ms 0.39 5 175 38 0.50 5 571 42 0.28 5 143 63
plaid ms 5 0.29 5 56 29 0.23 5 71 26 0.21 5 68 47
ISA 1 0.03 25 55 4 0.05 29 230 6 0.01 56 26 8
OPSM 0.04 12 172 8 0.04 19 643 12 0.03 6 162 4
SAMBA 0.02 38 37 7 0.03 59 53 8 0.02 38 19 15
xMOTIF 0.07 5 61 6 0.11 5 628 6 0.05 5 9 9
Bimax 0.01 1 1213 97 0.10 4 35 5 0.07 5 73 5
CC 0.11 5 12 12 nc nc nc nc 0.05 5 10 10
plaid t ab 0.24 2 40 23 0.38 5 255 22 0.17 1 3 44
plaid t a 0.23 2 24 20 0.39 5 274 24 0.11 3 6 24
spec 0.12 13 198 28 0.37 5 395 20 0.05 28 133 32
FLOC 0.04 5 343 5 nc nc nc nc 0.03 5 167 5

methods are able to recover these clusters without any additional information.
(A) The “breast cancer” data set (van’t Veer et al., 2002) was aimed at a predictive gene signature
for the outcome of a breast cancer therapy. We removed the outlier array S54 which leads to a data
set with 97 samples and 1213 genes. In Hoshida et al. (2007), three biologically meaningful sub-
classes were found that should be re-identified.
(B) The “multiple tissue types” data set (Su et al., 2002) are gene expression profiles from human
cancer samples from diverse tissues and cell lines. The data set contains 102 samples with 5565
genes. Biclustering should be able to re-identify the tissue types.
(C) The “diffuse large-B-cell lymphoma (DLBCL)” data set (Rosenwald et al., 2002) was aimed at
predicting the survival after chemotherapy. It contains 180 samples and 661 genes. The three classes
found by Hoshida et al. (2007) should be re-identified.

For methods assuming a fixed number of biclusters, we chose five biclusters — slightly higher than
the number of known clusters to avoid biases towards prior knowledge about the number of actual
clusters. The performance was assessed by comparing known classes of samples in the data sets
with the sample sets identified by biclustering using the consensus score defined in Subsection 3.2.3
— here the score is evaluated for sample clusters instead of biclusters. The biclustering results are
summarized in Table 2. RFN biclustering yielded in two out of three datasets significantly better
results than all other methods and was on second place for the third dataset (significantly according
to a McNemar test of correct samples in clusters).

4 CONCLUSION

We have introduced rectified factor networks (RFNs) for biclustering and benchmarked it with 13
other biclustering methods on artificial and real-world data sets. On 400 benchmark data sets with
artificially implanted biclusters, RFN significantly outperformed all other biclustering competitors
including FABIA. On three gene expression data sets with previously verified ground-truth, RFN
biclustering yielded twice significantly better results than all other methods and was once the second
best performing method.

6



Workshop track - ICLR 2016

RFN biclustering is geared to large data sets, sparse coding, many coding units, and distinct mem-
bership assignment. Thereby RFN biclustering overcomes the shortcomings of FABIA and has the
potential to become the new state of the art biclustering algorithm.
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