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ABSTRACT

We designed a contextual filtering algorithm for improving the quality of image
segmentation. The algorithm was applied on the task of building the Membrane
Detection Probability Maps (MDPM) for segmenting electron microscopy (EM)
images of brain tissues. To achieve this, we executed supervised training of a con-
volutional neural network to recover the ground-truth label of the masked-out cen-
ter pixel from patches sampled from an un-refined MDPM. Through this training
process the model learns the distribution of the segmentation ground-truth map .
By applying this trained network over MDPMs we are able to integrate contextual
information to obtain with better spatial consistency in the high-level represen-
tation space. By iteratively applying this network over the MDPMs for multiple
rounds, we were able to significantly improve the EM image segmentation results.

1 INTRODUCTION

To further expand our understanding on the structure and the working mechanisms of the human
brain, it is necessary to map the entire neural connections of the nervous system at the micro-scale
level. One main approach is to acquire serial 2-D images of brain tissues at nanometric resolution
with serial-section Transmitted Electron Microscopy (ssTEM). Much effort has been made to de-
velop tools to automatically process those images. Previous approaches Ciresan et al. (2012)Jurrus
et al. (2010)Jain et al. (2007) use the contextual information surrounding a pixel to assign a probabil-
ity value of it representing the cell membrane. Applying those detectors to every pixel of an original
EM image leads to a pixel wise Membrane Detection Probability Map (MDPM). Post-processing on
top of these detection maps is necessary in order to obtain the final region segmentation results. The
post-processing methods can be simply, for example, simple thresholding, or creating a smoother
probability map by using a median filter Ciresan et al. (2012).

In this work, we simply by training an Iterative Convolutional Neural Network (I-CNN) to recover
the masked-out center pixel value of patches sampled from MDPMs, and then iteratively applying
this network over the resultant MDPMs, one can obtain a high quality segmentation map both visu-
ally and measured by the foreground-restrict Rand score Arganda-Carreras et al. (2015); Jain et al.
(2010).

2 RELATED WORKS

Computer vision research on real-world image contour detection and segmentation tasks has come
up with many solutions to ensure the consistency of image segmentation. For the EM image segmen-
tation task, the detection of membrane resembles the contour detection problem in general computer
vision. The quality of membrane detection can be directly measured by the pixels error: but just like
in contour detection, a high quality membrane detection does not guarantee a good segmentation
Arbelaez et al. (2011). A small gap in the contour formed by the detected membrane can lead to
an incorrect merge of two different regions, or a false section of membrane can incorrectly split one
region into two parts.

In a typical MDPM such as the one from Ciresan et al. (2012), the detection probability of every
pixel is made in isolation. In Ciresan et al. (2012), the authors used a simple median filter with
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(a) Original image (b) Original P map (c) Round 8 (d) Ground truth

Figure 1: One sample image processed by I-CNN. Probability map is shown in reverse manner. The
darkest pixel value means that the probability of being membrane is 1. Original image is a raw EM
image; Original P map is the MDPM output from the base CNN network. Round 8 are the maps
processed by I-CNN for 8 rounds. Ground truth is the map labeled by a human expert.

a small radius to smooth out the detection map. However, the limitation of applying a median
filter is its isotropy: if one applies a median filter with an increasing radius to the MDPMs the
performance will quickly deteriorate as the radius becomes larger. Therefore, an algorithm that can
take long-range information and avoid isotropy smoothing was needed. To achieve this goal, we
have developed an Iterative Convolutional Neural Network (I-CNN) that significantly improves the
definition of boundaries. In Jurrus et al. (2010); Pinheiro & Collobert (2013); Lee et al. (2015); Tu
(2008); Tu & Bai (2010), they applied a network that conditioned on both the raw image features and
the previous round label map to recursively refine the label maps. Our approach differs from theirs
in that the probability maps are refined without directly conditioned on the raw image features.

3 SYSTEM DESCRIPTION AND RESULT

The dataset used in this experiment consists of two stacks of EM images used in the ISBI 2012 EM
segmentation challenge. One stack has 30 EM images and their corresponding labels for training.
The other stack also contain 30 images, and their labels are concealed.

The network we used in this stage is analogous to the convolutional network implemented by Ciresan
et al. (2012). To differentiate the base network and the iterative secondary network, we call this base
network CNN and the secondary Network I-CNN. All detail about both CNN and I-CNN networks
training will be released with the code very soon. Next, we will describe our approach to refine the
probability map. For this task, we generated an non-overfitted MDPM training set through cross
training.

The pixel-wise probability map generated from the network described in the last section shows high
pixel-wise accuracy yet it was short of local consistency in certain areas (see Figure1, 2 ), which is
inconsistent with the spatial continuity of the cell membrane. In the approach described in the last
two sections, although contextual information is used to generate the pixel detection probability val-
ues, those probability values are generated independently. Here we propose a simple convolutional
network (I-CNN) which directly learns the statistics of segmentation maps to significantly improve
the segmentation quality. The main difference between I-CNN network and the previous CNN is
input. In the CNN network, the input to the network is the raw EM image. In I-CNN, the input
image patches are replaced by the patches extracted from MDPM, while the label of the center pixel
is masked out.

4 RESULT

As shown in Figure1, when we iteratively applied the I-CNN to the MDPM, the first thing we notice
is that by iteratively refining the probability, we removed the noise in the map. After 8 rounds, the
map turned out to be a map with rather clear boundaries as opposed to the fuzzy boundaries in the
original MDPM. If we zoom into areas where the CNN was unable to make an affirmative inference
about pixels, as shown in Figure2, we can see that the I-CNN is able to integrate the information in

2



Workshop track - ICLR 2016

EM images Initial MDPM Final probability map Ground truth

Figure 2: Examples of patches where the model closes gaps and removes uncertain membrane sec-
tions. Blue arrows indicate where the model adds or solidifies a section of link between membrane
parts; red arrows indicate where the model removes sections of uncertain membrane.

a neighbourhood to recognize (blue arrows) a section of membrane shown with low probability but
with good spatial continuity, and eventually label the section with high confidence and closes gaps
at the boundary. At the same time, the I-CNN was able to identify noise pixel and areas (Red arrow)
that do not appear like a section of membrane and eventually completely removed it.

We then measured the segmentation result by the Rand score used by the ISBI 2012 chal-
lengeArganda-Carreras et al. (2015). For this part of experiment, trained I-CNNs were applied to
left-out validation MDPM set; their segmentation error scores were then measured for every round
by the Rand score. We observed that by iteratively applying the I-CNNs on the membrane detection
map one can dramatically reduce the Rand error of the segmentation result at the beginning of the
iteration. This reduction in the Rand error disappears only after about 6 rounds of iterations and
afterwards deteriorates. We also applied the I-CNN to the test image stack submitted the result to
the ISBI 2012 challenge website obtaining a Rand error score of 0.0263, which is much better than
the score of 0.0551 obtained from the original CNN result before refining.

We also applied our secondary network to a set of MDPMs of better qualify from Chen et al. (2016).
Even though our network was not trained to process the exact same kind of data, the refine process
still managed to significantly reduce the Rand error from 0.0351 to 0.0255. Furthermore, according
to a recent update from the organizer of the ISBI 2012 Arganda-Carreras et al. (2015), with their
new evaluation method (thinned rand score), our post-processing obtained a thinned Rand score
of 0.9765, which is just very small fraction behind 0.9768, the score of Chen et al. (2016). This
indicates that our approach performed in par with the water-shed algorithm used by Chen et al.
(2016) when measured with the new Rand score.

5 CONCLUSION AND DISCUSSION

The new algorithm presented in this work learns the manifold of membrane morphology distribution;
it enforces these constraints through iteration on a MDPM, refining it to fit a membrane morphol-
ogy distribution learned from the training data. From another perspective, instead of generating a
membrane detection probability of every pixel in isolation, we congregated information in the local
neighbourhood through applying the I-CNN iteratively to the MDPMs and obtained significantly
better consistency in neighbouring pixels. A significant improvement, measured by the Rand error,
was achieved over the original MDPM result. It is also important to point out that training with
the ground-truth map directly provided no benefit in improving the segmentation quality. It seems
to be essential to learn the gradient field that can guide a raw MDPM toward the manifold of the
ground-truth maps by train from un-refined MDPM.
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