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ABSTRACT

This paper proposes a new deep convolutional neural network (DCNN) architec-
ture that learns pixel embeddings, such that pairwise distances between the em-
beddings can be used to infer whether or not the pixels lie in the same region.
That is, for any two pixels on the same object, the embeddings are trained to be
similar; for any pair that straddles an object boundary, the embeddings are trained
to be dissimilar. Experimental results show that when the embeddings are used
in conjunction with a DCNN trained on semantic segmentation, there is a sys-
tematic improvement in per-pixel classification accuracy. These contributions are
integrated in the popular Caffe deep learning framework, and consist in straight-
forward modifications to convolution routines. As such, they can be exploited for
any task involving convolution layers.

1 INTRODUCTION

Deep convolutional neural networks (DCNNs) (LeCun et al., 1998) are the method of choice for a
variety of high-level vision tasks (Razavian et al., 2014). Fully-convolutional DCNNs have recently
been a popular approach to semantic segmentation, because they can be efficiently trained end-to-
end for pixel-level classification (Sermanet et al., 2014; Chen et al., 2014; Long et al., 2014).

A weakness of DCNNs is that they tend to produce smooth and low-resolution predictions, partly
due to the subsampling that is a result of cascaded convolution and max-pooling layers. Many
different strategies have been explored to overcome this issue. One popular strategy is to add a
dense conditional random field (CRF) to the end of the DCNN, introducing contextual information
to the segmentation via long-range dependencies in the CRF (Chen et al., 2014; Lin et al., 2015).
Another strategy is to reduce the subsampling effected by convolution and pooling, by using the
“hole” algorithm for convolution (Chen et al., 2014). A third strategy is to add trainable up-sampling
stages to the network via “de-convolution” layers in the DCNN (Noh et al., 2015; Long et al., 2014).

This paper’s strategy, which is complementary to those previously explored, is to train the network
to produce segmentation-like information, so that foreground pixels and background pixels within
local patches can be treated differently. For instance, as can be seen in Figure 1, if a DCNN is
centered on a “boat” pixel, but the surrounding patch includes some pixels from the background, the
DCNN’s final prediction will typically reflect the presence of the distractors by outputting a mix of
“boat” and “background”. The approach of this paper is to learn and use semantic affinities between
pixels, so that the DCNN output centered at a “boat” pixel can be strengthened by using information
from other “boat” pixels within the patch. More generally, the approach allows the prediction at any
pixel to be replaced with a weighted average of similar neighboring predictions. This has the effect
of sharpening the predictions made at object boundaries, while smoothing in region interiors.

The key to accomplishing this is to have the network produce internal representations that lend
themselves to pairwise comparisons, such that any pair that lies on the same object will produce a
high affinity measure, and pairs that straddle a boundary produce a low affinity measure. Prior work
has investigated the use of affinity cues in similar contexts (Ren & Malik, 2003; Dai et al., 2014),
but required handcrafted algorithms for computing the affinity information. This would typically be
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Figure 1: Given an input image (left), a DCNN produces a smooth prediction map (middle top), and
an embedding network produces dense segmentation cues (middle bottom). Filtering the predictions
via the learned embeddings produces a sharp prediction map (right).

pre-computed in a separate process. The current work is unique for learning the cues directly from
image data, and for computing the affinities densely and “on the fly” within a DCNN.

The learned embeddings and their distance functions are implemented efficiently as convolution-
like layers in Caffe (Jia et al., 2014). The embedding layers can either be trained independently,
or integrated in the full DCNN pipeline and trained end-to-end (with or without per-pixel labels).
Source code is publicly available at https://github.com/aharley/embeddings.

2 TECHNICAL APPROACH

The goal of this work is to train a set of convolutional layers to create dense “embeddings”, which
can be used to calculate pixel affinities relating to the semantic similarity of the underlying regions.
Pixel pairs that share a semantic category should produce similar embeddings (i.e., a high affinity),
and pairs with different categories should produce dissimilar embeddings (i.e., a low affinity).

This goal is represented in a loss function, L, which accumulates the quality of embedding pairs
sampled across the image. In this work, pairwise comparisons are made between each pixel i and its
spatial neighbours, j ∈ N(i). Collecting pairs within a fixed window lends simplicity and tractabil-
ity to the approach, although in general the pairs can be collected at any range. Denoting the quality
of a particular pair of embeddings with `ij , the overall loss is defined as L =

∑
i∈I

∑
j∈N(i) `ij .

The network is trained to minimize this loss through stochastic gradient descent.

The inner loss, `ij , represents how well a pair of embeddings, ei and ej , respect the affinity goal.
Pixel-wise labels are a convenient resource for quantifying this loss, since they can indicate whether
or not pairs of pixels share a semantic label. Using this information, the distance between embed-
dings can be optimized according to label parity. That is, same-label pairs can be optimized to have
a small distance, and different-label pairs can be optimized to have a large distance. Denoting the
label of pixel i with li, and the embedding at that pixel with ei, the inner loss is defined as

`ij =

{
max (|ei − ej | − α, 0) if li = lj
max (β − |ei − ej |, 0) if li 6= lj

, (1)

where α and β are design parameters that specify the “near” and “far” thresholds against which the
embedding distances are compared. The embedding distances can be computed with any distance
function. Figure 2 shows visualizations of L1-based learned embeddings, with α = 0.5, and β = 2.

Once the embeddings are learned, they can be used to create segmentation masks. For a pixel i and
a neighbour pixel j ∈ N(i), one can define

mi = exp(−λ|ei − ej |) (2)

to be the weight applied to pixel j in a mask centered on i, where λ is a parameter specifying the
hardness of the mask. This parameter can be learned inside a DCNN. When the masks are applied
convolutionally, the effect is to replace each input with a weighted average of its similar neighbours.
Note that if the mask were a Gaussian that jointly captured RGB and geometric distance between
pixels i and j, it would be equivalent to the bilateral filter (Tomasi & Manduchi, 1998), which is a
well-known technique in signal processing for smoothing while preserving edges. The current ap-
proach represents a generalization of the bilateral filter. The Krähenbühl & Koltun (2011) algorithm
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Figure 2: Embeddings and local masks are computed densely for input images. For four locations
in the image shown on the left, the figure shows the extracted patch, embeddings (compressed to
three dimensions by PCA, for visualization purposes), and embedding-based mask (left-to-right).
For comparison, the mask generated by photometric color distances is shown on the far right.

Table 1: VOC 2012 test results (IOU %)

Method Without embeddings With embeddings

DeepLab 70.31 71.54
DeepLab-CRF 73.60 74.00

for dense CRFs is also related to the bilateral filter, in the sense that the inference step, through mean
field approximation, accomplishes a repeated application of a non-linear filter. This shared connec-
tion is appropriate, since CRFs and embedding-based segmentation masks have common goals: to
sharpen predictions at object boundaries while smoothing the interior.

3 EVALUATION

The baseline for the evaluation is the current best publicly-released DeepLab network (“Deep-MSc-
Coco-LargeFOV”; Chen et al., 2014), which is a strong baseline for semantic segmentation. The
current work augments this network with embeddings learned on COCO (Lin et al., 2014) and
PASCAL VOC 2012 (Everingham et al., 2012), which interact with DeepLab by filtering layer FC8.

Validation experiments explored the effects of two design parameters: filter window size, and the
number of times to apply the filter. A wider window improves performance by allowing informa-
tion from a wider radius to contribute to each prediction. Similarly, running the masking process
repeatedly strengthens the contribution from similar neighbours, and also effectively increases the
number of contributing neighbours. The best embedding configuration (9 × 9 filters applied seven
times recursively) was fine-tuned together with DeepLab, and submitted to the VOC test server. As
shown in Table 1, performance improved 1.2% over the baseline. Finally, a dense CRF (Krähenbühl
& Koltun, 2011) was trained on top of the sharpened FC8 outputs, to test whether or not the embed-
dings would still contribute an improvement (despite the similarity of the CRF approach). As shown
in Table 1, the improvement added in this context was 0.4%.

4 CONCLUSION

This paper proposed a new deep convolutional neural network architecture for learning embed-
dings. Results showed that integrating the embeddings into a strong DCNN baseline systematically
improved results by a noticeable margin on the PASCAL VOC 2012 test set. Although semantic
segmentation is the target application of the current work, the overall approach does not depend on
pixel-wise labels, and the embedding and masking layers can be used in any task involving DCNNs.
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