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ABSTRACT

Sign languages are well-defined natural languages that convey meaning through
both manual postures and non-manual expressions. While recent methods ef-
fectively transcribe sign language videos into compact textual tokens, they of-
ten overlook the intrinsic subunit-level structures of sign language. In this work,
we explore leveraging the hierarchical structure within lexical descriptions to en-
hance fine-grained sign language understanding. Specifically, we first construct
LexSign, a large-scale dataset comprising both manually curated and automati-
cally generated lexical descriptions of signs. To guarantee the quality of generated
descriptions, we build LexSign-Bench, a benchmark to comprehensively evalu-
ate the sign language understanding capability of Multi-modal Large Language
Models (MLLMs), and further propose a perceive-then-summarize pipeline that
leverages large foundation models to generate high-quality lexical descriptions.
Based on the constructed LexSign, we propose Hierarchical Action-Language In-
teraction (HALI) that conducts hierarchical alignment between lexical descrip-
tions and sign language videos to obtain more distinguishable and generalizable
visual representations. Experimental results on public datasets demonstrate that
incorporating the collected lexical descriptions with the proposed HALI signifi-
cantly improves performance across different sign language understanding tasks.

1 INTRODUCTION

Sign language serves as a primary medium of communication within the Deaf community, but is not
largely known by hearing individuals. To help mitigate this communication barrier, vision-based
sign language understanding (SLU) has emerged and developed rapidly (Camgoz et al., 2018; 2020;
Chen et al., 2022a;b; Zuo et al., 2023; Wong et al., 2024; Jiao et al., 2024; Li et al., 2025c; Guo
et al., 2025), aiming to enable automatic recognition and translation of sign language from video
input into textual or symbolic representations in a non-intrusive manner. However, these methods
often leverage either coarse-grained annotations with limited semantic details and generalizability
(e.g., gloss 1), or highly detailed symbolic systems that demand with extensive expert efforts and are
difficult for non-experts to learn and apply (e.g., SignWriting (Sutton, 2010) and HamNoSys (Hanke,
2004)). These limitations emphasize the need for scalable, fine-grained annotations that can distin-
guish similar signs and recognize unseen ones, vital for both practical SLU applications and deeper
understanding of non-verbal communication (Ong & Ranganath, 2005; Bragg et al., 2019).

As well-defined natural languages, sign languages follow explicit linguistic rules and frequently em-
ploy iconic symbolism to establish body–object and body–body mappings, commonly referred to as
perceptual and pantomimic iconicities (Pyers & Senghas, 2020; Sehyr et al., 2021). As illustrated
in Fig. 1, lexical descriptions from sign language dictionaries (Costello, 2008; China Association of
the Deaf, 2003) provide explicit and detailed performance instructions for individual signs, facili-
tating the construction of such mappings and thereby enhancing generalization. Moreover, Fig. 1c
illustrates that a complex gloss can be decomposed into a combination of finer-grained glosses (e.g.,
Engineer ≈ Size+Person), and distinctions between semantically similar signs often lie in subtle
subunit2 details (e.g., Engineer vs. Player). These intrinsic properties of sign language underscore

1Gloss is a written approximation of a sign, typically reflecting its semantic meaning.
2Sign language subunit is the smallest component that can distinguish different sign, typically containing

five terms: handshape, palm orientation, hand location, hand movement, and non-manual signal.
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Which gloss most accurately represents this sign language video?

(A) Airplane (B) Bird (C) Butterfly (D) Fly

It mimics the act of flying, evoking the imagery of a🦅 bird’s or

🦋 butterfly’s wings. Therefore, this sign corresponds to [Answer]

(a) Gloss with perceptual iconicity

Which gloss most accurately represents this sign language video?

(A) Heavy (B) Baby (C) Hold (D) Lift

It seems like holding or lifting a heavy item. But wait, this also

resembles cradling an👶infant, which suggests the gloss is [Answer]

(b) Gloss with pantomimic iconicity

Which description best matches this sign language video?

(A) With the thumbs of both Y hands touching in front of the chest, right palm

facing forward and left palm facing in, twist the hands in opposite directions.

Then move both open hands, palms facing each other, downward along each

side of the body

(B) Swing both Y hands up and down by twisting the wrists in front of each

side of the body with a repeated movement. Then move both open hands,

palms facing each other, downward along each side of the body

(C) Beginning with the thumbs of both Y hands touching in front of the chest,

palms facing down, bring the hands apart to in front of each side of the chest

(D) Bring both P hands, palms facing each other, downward along the sides of

the body with a parallel movement

Based on the American Sign Language (ASL) sign

performed in the video, the correct option is [Answer]

The sign shown is for [Gloss], which is a compound

sign made of two parts: [Part1] and the [Part2] suffix

(often glossed as -ER or PERSON). The other

options are incorrect, because…

(c) Examples of subunit-level perceptual questions based on lexical descriptions

Figure 1: Illustration of the LexSign-Bench questions and the corresponding answers3, highlighting
sign language iconicity types and the fine-grained structure within lexical descriptions.

the critical importance of capturing subunit-level structures, motivating our exploration of lexical
descriptions to model these relationships. In this work, we broaden the concept of “lexical descrip-
tion” to encompass both lexical definitions provided in sign language dictionaries and automatically
generated descriptive captions.

To better reveal the potential of lexical description, we first construct LexSign, a large-scale dataset
comprising lexical descriptions collected from two ways: manually curated from sign language dic-
tionaries and automatically generated through large foundation models. LexSign augments existing
ISLR datasets using lexical descriptions for about 4,000 lexicons of different languages, broadening
both the scale and scope of existing lexical definition datasets (Bilge et al., 2019; 2022). To guar-
antee the quality of generated descriptions, we build LexSign-Bench, a benchmark to comprehen-
sively evaluate the sign language understanding capability of Multimodal Large Language Models
(MLLMs), covering 300 glosses across different iconicity types. Based on the evaluation results,
we further propose a perceive-then-summarize pipeline that leverages both the perception capability
of MLLMs and the summarizing capability of LLMs to generate high-quality lexical descriptions,
which improves the quality of generated descriptions in LexSign.

Different from general human action, sign language conveys meaning through explicit sequen-
tial and simultaneous composition of sign language subunits (Sandler & Lillo-Martin, 2006). To
fully leverage the collected lexical description for advancing SLU, we propose Hierarchical Action-
Language Interaction (HALI) that semantically aligns hierarchical visual representation with corre-
sponding subunits captured in lexical description, thereby facilitating distinguishable and generaliz-
able visual representation. Specifically, we first propose a multi-granularity contrastive loss to align
visual and textual features of similar granularity, and incorporate a consistency constraint between
visual representations at different levels to leverage the inherent hierarchical structure of sign lan-
guage. Experimental results on public zero-shot and isolated datasets demonstrate the effectiveness
of both the collected lexical descriptions and the proposed HALI framework.

In conclusion, this paper explores the potential of lexical descriptions for advancing SLU. The main
contributions are summarized as follows:

• We construct LexSign, a high-quality and scalable dataset comprising lexical descriptions for
approximately 4,000 sign language glosses.

• We develop LexSign-Bench, a benchmark for comprehensively evaluating the sign language un-
derstanding capability of MLLMs.

3The correct answers for questions (a), (b), and (c) are C, B, and A, respectively. The glosses corresponding
to the choices for question (c) are “Engineer”, “Player”, “Size”, and “Person”.
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• We propose HALI, a multi-granularity hierarchical alignment framework that fully utilizes lexical
descriptions to obtain more distinguishable and generalizable visual representations.

2 RELATED WORK

2.1 ISOLATED SIGN LANGUAGE RECOGNITION

Isolated Sign Language Recognition (ISLR), which aims to recognize individual signs, serves as a
fundamental task in sign language understanding. Recent works can be broadly divided into vision-
based and language-assisted approaches, distinguished by whether language data is incorporated.

Vision-based ISLR. The central challenge of ISLR lies in effectively capturing distinguishable
representations, and recent vision-based ISLR methods have advanced the field by leveraging cross-
domain knowledge (Li et al., 2020b), employing self-supervised pre-training strategies (Hu et al.,
2023; Zhao et al., 2023), and exploiting the intrinsic visual characteristics of sign language (Lin
et al., 2024; Li et al., 2025b). For instance, Li et al. (2020b) promotes domain-invariant features and
suppresses domain-specific features within continuous signs and isolated signs, thereby transferring
cross-domain knowledge to improve ISLR. Inspired by the success of self-supervised learning in
Natural Language Processing (NLP), BEST (Zhao et al., 2023) introduces a BERT-like pre-training
framework tailored for sign language that operates on pose triplet units, demonstrating its effec-
tiveness across various ISLR datasets. Different from these, VSNet (Li et al., 2025b) utilizes the
linguistic characteristics of sign language from skeleton data through a joint fusion strategy and
a self-attention model for visual symbol modeling, achieving significant ISLR performance with-
out complex pre-training. These methods primarily focus on the design of the visual side without
considering the linguistic information, limiting their generalizability and robustness.

Language-assisted ISLR. Linguistic data contains rich semantic information that can facilitate ro-
bust and generalizable visual representation learning, giving rise to recent advancements that incor-
porate linguistic information to improve ISLR (Wong et al., 2023; Zuo et al., 2023; Bilge et al., 2019;
2022). To improve the recognition of visually indistinguishable signs (VISigns), NLA-SLR (Zuo
et al., 2023) proposes a language-aware label smoothing strategy and an inter-modality mixup tech-
nique based on the semantic embedding of glosses. However, they do not leverage finer-grained
information, which can provide richer semantic context and capture subtle distinctions between
VISigns. Several works utilize annotated phonological features to augment ISLR datasets (Tavella
et al., 2022) and improve ISLR performance (Kezar et al., 2023a;b; 2025). Kezar et al. (2023a) and
Kezar et al. (2023b) employ explicit, disentangled phonological features as supervisory signals to
improve the visual representation, thereby boosting ISLR performance. Kezar et al. (2025) builds a
knowledge graph ASLKG based on expert knowledge and trains neuro-symbolic models, yielding
strong performance in ISLR. As revealed in Bilge et al. (2019; 2022), the textual definition of sign
language lexicon can improve the generalization ability of sign language models, enabling zero-shot
sign language recognition (ZSSLR) by grounding visual representation in a manually curated set of
textual definitions. Different from these works, we use the collected lexical descriptions to evalu-
ate MLLMs’ sign language understanding and explore the potential of both manually curated and
automatically generated descriptions in sign language recognition tasks.

2.2 MLLM FOR VISUAL UNDERSTANDING

The field of MLLMs has witnessed significant progress recently, giving rise to numerous state-of-
the-art models that exhibit strong capabilities across various vision-language tasks (Wang et al.,
2023; Yin et al., 2024; Zhang et al., 2024). Some models can accommodate video as an inherent
input modality or in the form of multiple images, thereby enabling video understanding (Lin et al.,
2023; Chen et al., 2024; Li et al., 2025a). For instance, Chen et al. (2024) collects a large-scale video
caption dataset utilizing the proposed differential sliding-window captioning pipeline, and trains an
image MLLM using video data to continually unlock its video understanding capability. Meanwhile,
pre-existing datasets tailored for specific video understanding tasks are insufficient for a holistic and
in-depth evaluation of MLLM’s capabilities. Numerous MLLM evaluation benchmarks have been
proposed (Yue et al., 2024; Xia et al., 2025; Zhou et al., 2025a; Hong et al., 2025) to address this
limitation. For instance, MotionBench (Hong et al., 2025) is proposed to evaluate MLLM’s motion-
level perception capability, while MLVU (Zhou et al., 2025a) is proposed to evaluate MLLM’s long
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video understanding capability across different fields and tasks. Two recent works (Kim et al., 2025;
Asasi et al., 2025) propose to automatically generate sign language descriptions for improving sign
language translation. Different from these works, we improve the quality of generated descriptions
by meticulously selecting the most capable MLLM through comprehensive evaluation, and further
evaluate the quality of generated descriptions with the help of manually curated lexical descriptions.

2.3 LANGUAGE-ASSISTED ACTION RECOGNITION

Due to the greater accessibility of coarse-grained descriptions of human actions, numerous studies
explore the effects of linguistic information in human action recognition (Wang et al., 2021; Ni et al.,
2022; Ju et al., 2022; Pan et al., 2022; Rasheed et al., 2023; Liu et al., 2023) with the help of vision-
language pre-training advances (Radford et al., 2021; Jia et al., 2021; Yao et al., 2022). By utilizing
pre-defined prompt templates, ActionCLIP (Wang et al., 2021) extracts semantic representations of
action labels, which are subsequently used to supervise visual representation learning and facilitate
zero-shot action recognition. To capture subtle and discriminative motions inherent in complex hu-
man activities, which are essential for distinguishing visually similar actions, several studies employ
LLMs to generate fine-grained descriptions of actions (Xiang et al., 2023; Jia et al., 2024; Bosetti
et al., 2024; Liu et al., 2024; Zhu et al., 2024). For example, GAP (Xiang et al., 2023) leverages
GPT-3 to generate textual descriptions of varying granularity through carefully designed prompts
and proposes a multi-part contrastive learning framework to align visual and textual part features.
To enable robust fine-grained alignment, PURLS (Zhu et al., 2024) introduces an adaptive partition-
ing approach that aggregates visual representations associated with local visual concepts extracted
from GPT-3. In this work, we fully leverage the collected lexical description to advance SLU by
conducting fine-grained semantic alignment between visual representation and lexical description,
considering the sequentiality and simultaneity nature of sign language.

3 LEXSIGN

We first propose the lexical description collection method, and the resulting collected dataset
LexSign in Sect. 3.1. Then, we propose the constructed LexSign-Bench for sign language under-
standing capability evaluation for MLLMs in Sect. 3.2.

3.1 CONSTRUCTION OF LEXSIGN

To better reveal the effectiveness of lexical descriptions, we first construct LexSign, a large-scale
lexical description dataset of sign language. LexSign extends the WLASL (Li et al., 2020a) and
DEVISIGN (Chai et al., 2014) datasets with lexical descriptions, resulting in LexSign-ASL and
LexSign-CSL, respectively. As shown in Fig. 2, the lexical descriptions are collected via two data
collection pipelines, the Manual Curation Pipeline (MCP) and the Automated Generation Pipeline
(AGP). The resulting LexSign dataset includes descriptions obtained from both MCP and AGP for
each gloss, enabling sampling from multiple sources to improve generalization. The demonstration
of several examples obtained from MCP and AGP is provided in Supplementary Sect. A.3.

Manual Curation Pipeline (MCP). We manually extract lexical descriptions from sign language
dictionaries, obtaining accurate lexical descriptions annotated by sign language experts. As illus-
trated in Fig. 2, an OCR tool is initially applied to convert the entire dictionary content into text,
which is subsequently refined by a large language model to automatically correct potential OCR-
induced errors. Next, lexical description candidates are retrieved from the processed text, with the
gloss serving as the query. Finally, human annotators carefully verify the retrieved candidates by
comparing them against the sign language video associated with the queried gloss, selecting the
most accurate lexical description. Using the aforementioned method, we collect lexical descriptions
paired with all 2,000 glosses in WLASL from Costello (2008) and 1,878 glosses in DEVISIGN from
China Association of the Deaf (2003), respectively.

Automated Generation Pipeline (AGP). Although MCP produces accurate lexical descriptions cu-
rated by experts, it is inefficient or impractical for human annotators to retrieve signs not included in
existing dictionaries. This highlights the need for an automated method that can effectively generate
lexical descriptions at scale. To address this issue, we propose AGP, a fully automated lexical de-
scription generation pipeline in a perceive-then-summarize manner. As illustrated in Fig. 2, we first
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Gloss: “Birthday”

MLLM LLM

Instance #1

Instance #2

Instance #N
⋯

You are a sign language 
linguistics expert，
describe the action in 

this video …

[Instance #1] ... touch the middle 
fingertip to the chin, then move 
downward to the upper chest and ...

[Instance #2] Starting with the right 1 
hand, palm facing left, fingertip 
touching the chin, move the hand …

[Instance #N] Start with the right 1 hand 
in front of the face, palm facing in; 
touch the index fingertip …

⋯

You are a sign language 

linguistics expert, summarize 

the descriptions of multiple 

instances …



Beginning with the back of the 
right open hand, palm facing in 
and fingers pointing left, 
touching the palm of the left 
open hand, palm facing in ……

With the right open hand with the middle 
finger extended, palm facing in, touch the 
middle fingertip to the chin, then move 
straight downward to the upper chest …

Sign 

Language 

Dictionary

LexSign

Dataset

Manual Curation Pipeline

Automated Generation Pipeline

Figure 2: Illustration of MCP and AGP. For MCP, we first retrieve potential matching lexical de-
scriptions from sign language dictionaries, and then meticulously select the best matching lexical
description by human annotators. For AGP, an LLM summarizes the descriptions generated by
MLLM for different videos associated with the same gloss to ensure consistency.

employ an MLLM to generate descriptions for individual videos corresponding to the same gloss.
An LLM then aggregates these candidate descriptions to produce a final summarized description,
enhancing cross-instance consistency while reducing intra-instance variability. Detailed prompts
for large foundation models are provided in Supplementary Sect. A.14.

3.2 LEXSIGN-BENCH

While existing benchmarks have advanced MLLMs, a comprehensive evaluation of their sign lan-
guage understanding remains limited. To address this, we construct LexSign-Bench. The evaluation
tasks and scope, followed by the video collection and dataset construction process, are as follows.

Tasks of LexSign-Bench. We construct LexSign-Bench following a three-tiered scope: subunit-
level perception, gloss-level recognition, and sentence-level translation. 1) Subunit-level percep-
tion (Fig. 1c) evaluates MLLMs’ ability to identify subunits in a sign language video by selecting
the correct lexical description from multiple-choice options; 2) Gloss-level recognition (Fig. 1a and
Fig. 1b) assesses MLLMs’ capability to recognize the sign language gloss in a sign language video
using a similar multiple-choice setup; 3) Sentence-level translation measures the ability to trans-
late sign language videos directly into natural language sentences. Preliminary experiments show
that current MLLMs struggle with this task, so sentence-level translation is deferred to future work.
Detailed prompts for MLLMs are provided in Supplementary Sect. A.14.

Construction of LexSign-Bench. We select glosses from the constructed LexSign-ASL consider-
ing their iconicity type (denoted as ‘arbitrary’, ‘perceptual’, ‘pantomimic’, and ‘both’, as shown in
Fig. 4) based on the annotations in ASL-LEX (Sehyr et al., 2021). We select 75 glosses for each
iconicity type in LexSign-ASL and collect all their video samples, resulting in a total of 300 glosses
and 3,648 video samples. Two multiple-choice questions are curated per video, one for subunit-
level perception evaluation and another for gloss-level recognition evaluation, resulting in a total of
7,296 multiple-choice questions with four choices per question. The correct answers are distributed
approximately uniformly across all questions. To increase difficulty, we devise a hard-distractor
mining strategy that selects the most confusable distractors identified from an ISLR model. Addi-
tional details are provided in Supplementary Sect. A.10.

4 METHOD

In this section, we present the proposed HALI, which consists of the multi-granularity alignment
loss (Sect. 4.1) and the hierarchical consistency loss (Sect. 4.2).
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Beginning with the back of the right open hand, palm facing in 
and fingers pointing left, touching the palm of the left open hand, 
palm facing in ……

Visual Encoder Text Encoder

Beginning with the back of the right 

open hand, palm facing in and …

Description-level

Fragment-level

Beginning with the back …

touching the palm of the…

bring the right hand down…
⋯

⋯ ⋯
𝒳(𝑣)

Video-level

𝒳(𝑠)

Snippet-level

𝒳(𝑢)

Subunit-level

Negative

Global Feature Space

ℒGlobal

Hierarchical Feature Space

ℒFG

ℒH𝐶

Negative

Figure 3: Illustration of the proposed HALI, which exploits the hierarchical structure of visual and
lexical representations and provides supervision through both alignment and consistency constraints.

4.1 HIERARCHICAL ACTION-LANGUAGE ALIGNMENT

A sign language lexical description dataset D = {(Vi,Si)}Ni=1 contains N paired sign language
video and description pairs. For notational convenience, we omit the subscript i when it is clear
from context. Given a sign language video V = {v1, · · · ,vT } with T frames and its corresponding
lexical description S = {w1, · · · ,wL} with L tokens, we first extract their hierarchical visual and
textual representation based on a vision encoder Ev and a text encoder Et in Equ. 1.

X (v),X (s),X (u) = Ev(V); Y(d),Y(f) = Et(S). (1)

X (v) ∈ R1×D, X (s) ∈ RTs×D, and X (u) ∈ RTu×D are video-, snippet-, and subunit-level visual
features, where Ts and Tu are the length of snippet- and subunit-level visual features, respectively,
and D is the feature dimension. Y(d) ∈ R1×D and Y(f) ∈ RLf×D are description- and fragment-
level textual features, where Lf is the number of fragments. Sign language conveys meaning through
explicit sequential and simultaneous composition of sign language subunits. Therefore, an isolated
sign can be temporally decomposed into a sequence of consecutive sub-actions, each of which can
further be spatially decomposed into multiple subunits. We intend to align the snippet-level repre-
sentation with a sub-action, the subunit-level representation with a subunit, and the fragment-level
representation with either. Notably, each snippet-level feature corresponds to M subunit-level fea-
tures (e.g., left hand and right hand), yielding Tu = M × Ts.

Lexical description can provide supervision through global vision-language alignment (Radford
et al., 2021). For a mini-batch of B sign language video and lexical description pairs {(Vi,Si)}Bi=1,
we calculate the global contrastive loss following Equ. 2, where τ denotes the temperature.

LGlobal = − 1

2B

B∑
i=1

(
log

exp(sv2d(Vi,Si)/τ)∑B
j=1 exp(sv2d(Vi,Sj)/τ)

+ log
exp(sd2v(Si,Vi)/τ)∑B
j=1 exp(sd2v(Si,Vj)/τ)

)
. (2)

The similarity between video- and description-level features is measured by cosine similarity ρ(·, ·):

sv2d(V,S) = ρ(X (v),Y(d)), sd2v(S,V) = ρ(Y(d),X (v)). (3)

Leveraging the constructed LexSign, we can further conduct fine-grained alignment between sign
video and lexical description to obtain more discriminative visual features. Taking snippet-fragment
alignment as an example, we calculate the affinity matrix A(s,f) ∈ RTs×Lf between X (s) and Y(f)

through cosine similarity, where A(s,f)
i,j represents the similarity of the i-th video snippet and the

j-th description fragment. Then, we calculate the fine-grained alignment (Yao et al., 2022) by:

s
(s,f)
v2d (V,S) = 1

Ts

Ts∑
t=1

maxl

(
A(s,f)

t,l

)
; s

(f,s)
d2v (S,V) = 1

Lf

Lf∑
l=1

maxt
(
A(s,f)

t,l

)
. (4)
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Notably, s(s,f)v2d (·, ·) represents the average similarity of each video snippet to its most relevant de-
scription fragment, with s

(f,s)
d2v (·, ·) defined analogously. The snippet-fragment fine-grained con-

trastive loss L(s,f)
FG is computed by applying Equ. 4 within Equ. 2. Similarly, the subunit–fragment

fine-grained loss L(u,f)
FG can be obtained, yielding the multi-grained contrastive loss, where the loss

weights of the fine-grained loss are wFG,s and wFG,u:

LMG = LGlobal + wFG,sL(s,f)
FG + wFG,uL(u,f)

FG . (5)

4.2 ACTION-LANGUAGE INTERACTION CONSTRAINT

We further propose an alignment constraint loss that exploits the triplet relationship inherent in hi-
erarchical structures (see Supplementary Sect. A.2) to directly encourage the consistency between
the two fine-grained alignment results. Specifically, we first interpolate the subunit-fragment align-
ment matrix to match the shape of the snippet-fragment alignment matrix, respecting the inherent
hierarchy between subunits and snippets, and then compute the hierarchical consistency loss as:

LHC =
1

Ts

Ts∑
t=1

(
DKL(P

(s,f)
t ∥P (u,f)

t ) +DKL(P
(u,f)
t ∥P (s,f)

t )
)
, (6)

where P (s,f) and P (u,f) are similarity distributions derived from the corresponding alignment ma-
trices, and DKL(·∥·) calculates the KL divergence. The final HALI loss is calculated following
Equ. 7, where the loss weight of the hierarchical consistency loss is wHC.

LHALI = LMG + wHCLHC. (7)

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Datasets for ZSSLR Task. We evaluate the proposed method on ASL-Text (Bilge et al., 2019),
LexSign-ASL, and LexSign-CSL for the ZSSLR task under both zero-shot learning (ZSL) and
generalized zero-shot learning (GZSL) settings in line with the protocol proposed by Xian et al.
(2018a). ASL-Text comprises 250 American Sign Language glosses with a total of 1598 video
samples. LexSign-ASL and LexSign-CSL contain 21,083 and 22,536 video samples with 2,000
and 1,878 glosses, respectively. For LexSign-ASL (and LexSign-CSL), we propose three different
settings LexSign-ASL1000/300/100 (and LexSign-CSL1000/300/100) with a decreasing number of
seen classes 1000/300/100 (and 983/299/100) and identical validation/test partitions with 400/600
(and 344/551) classes, enabling evaluation of the method’s scalability.

Datasets for ISLR Task. We utilize WLASL (Li et al., 2020a) for the ISLR task, as the lexical an-
notations in LexSign-ASL are aligned with WLASL. WLASL is a large-scale, signer-independent
resource for the ISLR task, comprising 21,083 video samples spanning 2,000 sign classes collected
from educational platforms and YouTube tutorials. This dataset includes four progressively chal-
lenging subsets (WLASL-100/300/1000/2000), designed to evaluate model scalability.

Implementation Details. We perform pyramidal aggregation on the 1/2- and 1/4-scale frame fea-
tures, producing a snippet-level representation of length 6 (=2+4) for each isolated sign. We also ag-
gregate the left-hand, right-hand, and body features captured at these scales to construct the subunit-
level representation, resulting in a subunit-level representation of length 18 (=3*6) for each isolated
sign. We use most of the naturally occurring punctuation marks in the lexical descriptions, such as
commas and periods, to segment each lexical description into fragments. Models trained solely with
LGlobal are the baseline for the ZSSLR task, while those trained solely with cross-entropy loss are the
baseline for the ISLR task. The visual encoder is implemented as the CoSign-1s (Jiao et al., 2023).
The text encoder is implemented as the BERT model (Devlin et al., 2019). All models are trained
using the AdamW optimizer with a cosine annealing schedule. The learning rate and the number
of training epochs for each task are provided in Supplementary Sect. A.1. We use a consistent
experimental setup across datasets for the same task.
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Table 1: Performance comparison (%) on ASL-Text. The best performance is highlighted in bold.
Results marked with † are reproduced by (Bilge et al., 2022), while ⋆ indicates our reimplementation.
As for GZSL, only the last six rows are comparable due to unavailable splits (Bilge et al., 2022).
GZSL-S, GZSL-U, and GZSL-H represent the accuracies on seen classes, unseen classes, and their
harmonic mean, respectively, in the GZSL setting.

ZSL GZSL-S GZSL-U GZSL-H
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

SAE† (Kodirov et al., 2017) 8.0 16.0 - - - - - -
ESZSL† (Romera-Paredes & Torr, 2015) 17.1 43.0 - - - - - -
f-CLSWGAN† (Xian et al., 2018b) - - 33.3 64.6 6.7 20.7 11.1 31.3
TF-VAEGAN† (Narayan et al., 2020) - - 35.2 66.8 7.1 23.5 11.8 34.7
LLE (Bilge et al., 2019) 20.9 51.4 - - - - - -
LLEAttr (Bilge et al., 2022) 23.7 59.2 - - - - - -
LLEAttr+Text (Bilge et al., 2022) 31.3 66.0 37.0 72.4 5.5 20.3 9.5 31.7
LLE (I3D)⋆ (Bilge et al., 2019) 21.8 52.9 20.0 47.0 2.3 15.3 4.2 23.1
LLE (CoSign)⋆ (Bilge et al., 2019) 24.7 54.6 81.9 95.5 2.1 18.4 4.1 30.7
DVTA (CoSign)⋆ (Kuang et al., 2025) 17.0 47.2 19.6 61.0 2.6 12.4 4.6 20.4
PGFA (CoSign)⋆ (Zhou et al., 2025b) 26.8 51.9 62.2 86.9 2.1 11.2 4.1 19.9
Baseline 29.9 68.3 76.3 95.1 5.4 31.0 10.1 46.7
Ours 40.1 74.3 81.1 95.8 6.4 33.0 11.9 49.0

Table 2: Performance comparison (%) on LexSign-ASL. S, U, and H denote the accuracies on seen
classes, unseen classes, and their harmonic mean, respectively.

LexSign-ASL100 LexSign-ASL300 LexSign-ASL1000

ZSL GZSL ZSL GZSL ZSL GZSL
S U H S U H S U H

LLE (S3D (Xie et al., 2018)) 2.3 10.7 2.9 4.6 5.2 12.9 3.6 5.7 14.8 14.8 5.2 7.7
LLE (I3D (Carreira & Zisserman, 2017)) 2.0 10.2 3.0 4.6 5.8 14.5 3.6 5.8 15.6 14.7 5.8 8.3
LLE (I3D (Varol et al., 2021)) 3.2 36.6 4.5 8.0 7.5 40.0 5.3 9.4 20.3 37.0 7.7 12.8
LLE (CoSign (Jiao et al., 2023)) 3.1 49.6 5.4 9.8 8.2 50.2 6.1 10.9 21.4 46.7 8.5 14.4
Baseline 4.1 33.1 6.1 10.4 9.2 33.4 7.0 11.6 21.0 28.0 7.6 11.9
Ours 4.7 43.3 7.2 12.3 13.6 45.0 9.0 15.0 27.6 41.3 11.2 17.6

Evaluation Metrics. Unless stated otherwise, experiments use lexical descriptions extracted via
MCP. For ISLR, we report per-class and per-instance top-1 accuracy. For ZSSLR, we report per-
class top-1/top-5 accuracy in the ZSL setting, and per-class top-1/top-5 accuracy for seen and unseen
classes, along with their harmonic mean, in the GZSL setting.

5.2 RESULTS

Evaluation Results on LexSign-Bench We evaluate three closed-source MLLMs (GPT-5 (Ope-
nAI, 2025), Gemini 2.5 Pro (Comanici et al., 2025), Qwen-VL-Max (Bai et al., 2023)), and three
open-source MLLMs (InternVL3.5 (Wang et al., 2025), Qwen2.5-VL (Bai et al., 2025), LLaVA-
OneVision (Li et al., 2025a)), which are representative state-of-the-art models and therefore provide
reasonable and reliable baselines for LexSign-Bench. The results across evaluation tasks and iconic-
ity types are shown in Fig. 4, and the detailed numbers are provided in Supplementary Sect. A.10.
Among all the evaluated MLLMs, GPT-5 achieves the best performance (average 65.0% accuracy),
surpassing the second-ranked Gemini by 6.2%. Closed-source MLLMs consistently outperform
7/8B open-source models, suggesting that the latter lack sufficient sign language expertise, likely
due to limitations in training data and model size. Except for InternVL3.5, all evaluated MLLMs
achieved higher accuracy on iconic signs than on arbitrary ones, corroborating our hypothesis that
iconicity is positively correlated with comprehensibility. Notably, for the two leading MLLMs, GPT-
5 and Gemini 2.5 Pro, their performance on gloss-level tasks surpasses that on subunit-level tasks,
which stands in contrast to the conclusions drawn for other evaluated models. This observation sug-
gests that GPT-5 and Gemini 2.5 Pro can correctly recognize glosses without precisely capturing
fine-grained articulatory details. In summary, recent MLLMs demonstrate a degree of sign language
expertise and show potential for use in sign language understanding tasks.

User Study for LexSign-Bench. To provide a baseline for MLLM performance on LexSign-Bench,
we conduct a user study. Specifically, 10 signers and 10 non-signers completed a subset of LexSign-
Bench through a questionnaire consisting of 32 questions, resulting in two separate benchmark re-
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Table 3: Performance comparison (%) on LexSign-CSL. S, U, and H denote the accuracies on seen
classes, unseen classes, and their harmonic mean, respectively.

LexSign-CSL100 LexSign-CSL300 LexSign-CSL1000

ZSL GZSL ZSL GZSL ZSL GZSL
S U H S U H S U H

LLE (S3D (Xie et al., 2018)) 1.6 31.9 2.6 4.8 4.4 31.9 3.6 6.5 11.1 30.7 4.7 8.1
LLE (I3D (Carreira & Zisserman, 2017)) 1.7 28.6 2.9 5.3 4.6 27.3 3.6 6.3 11.9 26.8 5.7 9.3
LLE (I3D (Varol et al., 2021)) 2.4 61.6 4.6 8.5 6.4 63.0 5.8 10.7 16.1 58.9 7.3 12.9
LLE (CoSign (Jiao et al., 2023)) 2.8 79.5 5.7 10.6 7.3 76.9 7.2 13.2 18.2 70.2 10.5 18.3
Baseline 4.1 70.1 11.1 19.2 16.1 66.8 14.4 23.6 30.7 60.8 18.9 28.9
Ours 5.4 74.7 12.8 21.8 18.4 72.4 16.7 27.1 36.2 68.2 21.3 32.5

Table 4: Top-1 accuracy (%) on WLASL. P-I / P-C correspond to per-instance / per-class results.
WLASL100 WLASL300 WLASL1000 WLASL2000
P-I P-C P-I P-C P-I P-C P-I P-C

RGB-based
SignBERT+ (Hu et al., 2023) 84.11 85.05 78.44 79.12 - - 55.59 53.33
NLA-SLR (Zuo et al., 2023) 92.64 93.08 86.98 87.33 75.64 75.72 61.26 58.31
Uni-Sign (Li et al., 2025c) 92.25 92.67 88.47 88.92 - - 63.52 61.32
Pose-based
BEST (Zhao et al., 2023) 77.91 77.83 67.66 68.31 - - 46.25 43.52
VSNet (Li et al., 2025b) 85.66 86.25 80.09 80.85 - - 55.98 53.54
MSLU (Zhou et al., 2025c) 88.76 89.25 82.04 82.71 - - 56.29 53.29
Baseline 85.27 85.28 82.14 82.53 72.47 72.46 57.59 54.95
Baseline + LGlobal 86.31 86.47 83.08 83.29 74.00 73.92 60.01 57.47
Baseline + LHALI 86.43 86.89 83.73 84.19 74.07 73.86 60.68 58.32

sults, as listed in Supplementary Sect. A.10. It can be observed that, except for gloss-level questions
where non-signers score lower than GPT-5, humans consistently score well above the MLLMs. In
general, the human scores, particularly those from the signers, serve as the performance upper bound
for MLLMs on LexSign-bench, showing that the models still have significant room to improve.

ZSSLR Result. As demonstrated in Table 1, in ASL-Text, introducing the HALI loss leads to a
10.2% performance improvement over the baseline, and outperforms LLEAttr+Text (Bilge et al., 2022)
by 8.8% without requiring extra attribute annotations. Similar trends can be observed in LexSign,
as demonstrated in Table 2 and Table 3. These results demonstrate HALI’s effectiveness in utiliz-
ing hierarchical semantic structure within lexical descriptions. Besides, in LexSign, the proposed
method consistently improves the recognition accuracy as the training classes increase, highlighting
its scalability. It’s worth noting that as the number of classes in the training set increases, the dif-
ficulty of the GZSL setting also rises and may lead to a decrease in seen class accuracy. Overall,
HALI achieves state-of-the-art performance across all evaluated datasets on the ZSSLR task.

ISLR Result. We evaluate our method on the ISLR task to further assess the potential of lexical
descriptions for advancing sign language understanding tasks. We leverage a strong baseline where
the visual encoder is pre-trained on OpenASL and How2Sign datasets. As presented in Table 4,
incorporating the HALI loss into the baseline improves top-1 per-instance and per-class accuracy
by 3.09% and 3.37% on WLASL2000, respectively. Most of the performance gain comes from
LGlobal, highlighting the quality of the collected lexical descriptions and their effectiveness under
the supervised setting. The additional improvement from HALI on the challenging WLASL2000
highlights the benefit of modeling the subunit-level structure of sign language.

5.3 ABLATION STUDY

Ablation on the Quality of Generated Lexical Descriptions with MLLMs. We use MLLMs to
generate descriptions for all glosses in LexSign-ASL, pairing each gloss with a single video. This
process relies solely on the MLLMs’ perception and captioning capabilities. To evaluate description
quality, we train a ZSSLR model on the automatically generated descriptions and test it using manu-
ally collected lexical descriptions from sign language dictionaries. As shown in Table 5, experiments
on LexSign-ASL1000 show that GPT-5-generated descriptions yield the best generalization, outper-
forming Qwen-VL-Max by 2.6% (top-1) and 8.2% (top-5), and substantially surpasses open-source
models, consistent with the evaluation results on LexSign-Bench.
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Arbitrary
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Figure 4: Evaluation results of MLLMs
on the LexSign-Bench. Sign language dia-
grams are adapted from Sternberg (1995).

Table 5: Ablation (%) of MLLMs for lexical descrip-
tion acquisition on LexSign-ASL1000.

Val Test
Top-1 Top-5 Top-1 Top-5

InternVL3.5-8B 0.9 4.7 1.3 4.1
Qwen2.5-VL-7B 1.5 6.8 1.1 4.6
Qwen-VL-Max 2.9 10.2 2.1 8.5
GPT-5 6.1 20.8 4.7 16.7

Table 6: Ablation (%) of summary strategy for lexical
description acquisition on LexSign-ASL1000.

#Instances Qwen-VL-Max GPT-5
Top-1 Top-5 Top-1 Top-5

1 w/o Summarizing 2.1 8.5 4.7 16.7
2 2.2 7.4 4.6 16.3
3 2.5 9.2 5.9 18.4
3 w/ Sampling 2.3 9.3 6.7 22.1

Table 7: Ablation (%) of HALI on LexSign. T-1 / T-5 denote Top-1 / Top-5 accuracies, respectively.
LexSign-ASL1000 LexSign-CSL1000

Val Test Val Test
(s,f) (u,f) LHC T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5

26.5 54.2 21.0 44.2 39.9 68.7 30.7 59.7
✓ 32.4 59.8 24.6 49.7 42.3 67.9 33.4 58.7

✓ 29.7 57.1 22.8 48.5 42.8 69.6 33.7 60.4
✓ ✓ 34.2 61.1 25.7 51.3 43.8 70.6 35.2 60.3
✓ ✓ ✓ 35.3 63.8 27.6 53.1 44.9 72.6 36.2 62.0

Ablation on Summarizing Multiple Descriptions with LLMs. As mentioned in Sect. 3.1, we
use LLMs to aggregate MLLM-generated descriptions from multiple videos of the same gloss. To
evaluate summarization, we conduct experiments on LexSign-ASL1000, replacing training descrip-
tions with the summarized versions. We also evaluate the simple random sampling strategy from
multi-source generated results, including before and after summarizing. As presented in Table 6, ag-
gregating multiple generated descriptions yields a substantial improvement in quality, highlighting
the LLM’s capability to capture common patterns while accommodating individual variations. Ad-
ditionally, for GPT-5, the proposed sampling strategy delivers a notable performance enhancement.
We adopt GPT-5 as the default MLLM in AGP, considering its superior performance. However,
the performance gap with descriptions from the dictionary still exists (6.7% vs. 27.6%), indicating
considerable room for generating high-quality descriptions with an automatic pipeline.

Ablation on Hierarchical Action-language Interaction. As shown in Table 7, both snippet-
fragment and subunit-fragment alignment yield significant performance gains, and combining multi-
granularity alignments provides further improvements, highlighting their complementary roles. The
proposed hierarchical consistency loss additionally boosts performance across datasets, underscor-
ing the importance of high-quality alignment.

6 CONCLUSION

This paper focuses on collecting, generating, and leveraging lexical descriptions for advancing Sign
Language Understanding (SLU) by capturing the subunit structure of sign language. Specifically,
we first construct LexSign, a large-scale dataset that extends existing resources with high-quality
lexical descriptions. Next, we introduce LexSign-Bench to comprehensively evaluate the sign lan-
guage understanding capabilities of MLLMs, showing that recent models exhibit a degree of sign
language expertise and potential for SLU tasks. Based on the collected data, we propose Hierarchi-
cal Action-Language Interaction (HALI), which performs multi-granularity hierarchical alignment
between lexical descriptions and sign language videos. Experimental results verify the effectiveness
of both the constructed lexical datasets and the proposed method. We hope that our dataset and ap-
proach will inspire future research in leveraging MLLMs for SLU and in designing more generalized
models guided by linguistic information.
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7 ETHICS STATEMENT

This research on sign language understanding is conducted with a deep commitment to ethical prin-
ciples, prioritizing respect for the Deaf and Hard of Hearing communities. This work is intended
to be a positive contribution to the field, fostering greater accessibility and understanding of sign
language, such as open-vocabulary sign language translation. The LexSign dataset involves copy-
righted sign language dictionaries, and we plan to provide the corresponding page numbers and
locations in the dictionaries for all the collected lexical descriptions. All sign language videos are
obtained from the existing datasets (Li et al., 2020a; Chai et al., 2014), and we leverage the esti-
mated skeleton as input to ensure signer privacy by excluding personally identifiable information.
We have taken care to ensure our methods and results are unbiased, with the goal of supporting and
benefiting the Deaf community.

8 REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our research, we will make all key components of this work
publicly available upon paper acceptance. As for the submitted version, we provide a detailed de-
scription of the experimental setup in Sect. 5.1 and Supplementary Sect. A.1. To guarantee the
reproducibility of the data collection process, we thoroughly describe the data collection pipeline in
Sect. 3.1 and Supplementary Sect. A.14. We will release LexiSign, encompassing LexSign-ASL,
LexSign-CSL, and LexSign-Bench, with careful attention to copyright considerations.
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Table 8: Learning rate and training epochs in the ZSSLR and ISLR tasks. Visual, Text, and Other
denote the parameters of visual encoder, text encoder, and all remaining components, respectively.

Learning rate EpochVisual Text Other
ISLR 1× 10−4 1× 10−4 1× 10−3 80

ZSSLR 3× 10−5 1× 10−5 6× 10−5 40

Touch the bent middle finger of the right 5 hand, palm 

facing in, first to the chin and then to the center of the 

upper chest.

With the right open hand with the middle finger 

extended, palm facing in, touch the middle fingertip to 

the chin, then move straight downward to the upper 

chest and tap once, maintaining palm-in orientation.

Tap the index-finger side of the right W hand, palm 

facing left, against the chin with a double movement. 

Then, with a double movement, flick the middle finger of 

the right 8 hand, palm facing down, off the back of the 

left S hand, palm facing down, bouncing the right hand 

up slightly each time.

With the right C hand, palm facing left, contact the back 

of the left S hand, palm facing down, held in front of the 

chest. Move the right hand in small circular motions on 

the left hand with a repeated movement.

Gloss: Watermelon

Gloss: World

Gloss: Birthday

Beginning with both W hands in front of the body, palms 

facing each other, move the hands in alternating forward 

circles, ending with the little-finger side of the right hand 

on the index-finger side of the left hand.

With the left open hand in front of the torso, palm facing 

up, move the extended index-middle fingers of the right 

V hand, palm facing down, downward across the center 

of the left palm with small, repeated side-to-side motions.

Result of MCP Result of AGP

Figure 5: Illustration of the collected descriptions generated by different pipelines.

A APPENDIX

A.1 OTHER IMPLEMENTATION DETAILS

Through experiments on ZSSLR with the LLE approach, we evaluated various visual encoders and
observed that CoSign-1s (Jiao et al., 2023) generally yields better performance. Thus, in our base-
line, we use CoSign-1s pre-trained on PHOENIX14T (Camgoz et al., 2018) as the visual encoder
for the ZSSLR task, and pre-trained on OpenASL (Shi et al., 2022) and How2Sign (Duarte et al.,
2021) for the ISLR task. Notably, PHOENIX14T is a DGS dataset, ensuring that no data leakage
occurs when transferring CoSign-1s pre-trained on PHOENIX14T to an ASL or CSL task.

The learning rate and the number of training epochs for each task are provided in Table 8. The
temperature τ used in Equ. 2 is set to 0.03. We trained skeleton-based models on ASL-Text (Bilge
et al., 2019) and WLASL (Li et al., 2020a) three times and averaged their results.

A.2 THE ASSUMPTION OF A HIERARCHICAL RELATIONSHIP AMONG MULTI-GRAINED
VISUAL REPRESENTATIONS

While multi-grained action-language interaction proposed in Equ. 5 facilitates fine-grained align-
ment, it overlooks the potential hierarchical relationship between multi-grained visual representa-
tions. Specifically, we can assume that the same fragment of lexical description should attend to
visual representations within the same snippet, which can be formulated as:

ρ(Y(f)
i ,X (s)

j ) ≈ 1

M

M∑
m=1

ρ(Y(f)
i ,X (u)

m ), (8)

A.3 QUALITATIVE RESULTS

Examples for Collected Lexical Descriptions. We provide three examples of glosses Birthday, Wa-
termelon, and World to demonstrate the lexical descriptions collected through the Manual Curation
Pipeline (MCP) and Automated Generation Pipeline (AGP), as shown in Fig. 5.

Example for LexSign-Bench. LexSign-Bench covers both subunit-level and gloss-level questions.
For clarity, we provide a precise gloss-level question example, along with the output produced by
GPT-5, as shown in Fig. 6. The original WLASL video is shown on the left, while the right videos
are under temporal or spatial perturbations from the original video, refer to Supplementary Sect. A.8.
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Which gloss most accurately represents this sign language video?

(A) First      (B) Temperature      (C) Only       (D) Perspective

Which gloss most accurately represents this sign language video?

(A) First      (B) Temperature      (C) Only       (D) Perspective

Original Video Video with Replaced Person and Background 

Which gloss most accurately represents this sign language video?

(A) First      (B) Temperature      (C) Only       (D) Perspective

w/o Video (Blind Test)

I can’t see the video …… 

Please upload the video (or a short GIF/frame) or 

describe the handshape, movement, and location, and 

I’ll pick A, B, C, or D. 

Please provide the video (or a frame from the middle) 

so I can identify the sign.

It looks like the gesture resembles giving a thumbs-

up …… The person raises both thumbs near the 

chest …… The movement from frames 7 to 18 might 

represent ‘first’ or ‘perspective’ ……

Thus, my answer is D. 

Video with Temporal Perturbation

Which gloss most accurately represents this sign language video?

(A) First      (B) Temperature      (C) Only       (D) Perspective

I need to parse the video, analyze the gestures, and 

find the corresponding gesture signs …… Based on the 

previous information, the gesture in the video could be 

“only,” “first,” or “perspective” ......

Thus, my answer is A. 

…… Reviewing frames 25 to 31, I observed a potential 

'thumb-up close to the chest' gesture by the individual. 

Compared with the ASL sign for “first,” it usually has 

the thumb pointing upwards ……

Thus, my answer is A. 

Figure 6: An example of a gloss-level question in LexSign-Bench and the corresponding output
generated by GPT-5 with reasoning. GPT-5 answers correctly on the original WLASL video (left),
but fails on the generated version with a replaced signer and background (right).

With the right C hand, palm facing 

left, contact the back of the left S 

hand, palm facing down, held in 

front of the chest. Move the right 

hand in small circular motions on 

the left hand with a repeated 

movement.

MLLM

Bring the right V hand, palm facing 

in, to touch the lips; then move it 

downward to the back of the left A 

hand held near the midline at the 

lower chest, palm facing down, and 

execute a small circular rubbing 

motion on the left hand with a 

repeated movement.

Begin with the right R hand, palm 

facing left, fingertips touching the 

corner of the mouth, and tap twice. 

Then change to a right 1 hand, palm 

facing down, and tap the back of the 

left S hand, palm facing down, at 

the wrist in front of the torso with a 

single movement.

With the right C hand, palm facing 

left, contacting the back of the left S 

hand, palm facing down, in front of 

the chest, move the right hand in 

small clockwise circles across the 

stationary left hand.

LLM

MLLM

MLLM

Figure 7: An example of a lexical description of gloss Watermelon collected from the Automated
Generation Pipeline (AGP) using GPT-5. Red marks denote incorrect hand shapes, and green marks
denote correct ones.
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Table 9: Results (%) of ZSSLR on the LexSign-ASL1000 dataset using various fragment settings.
Val Test

Top-1 Top-5 Top-1 Top-5
Fragments generated by Gemini 2.5 Flash 34.4 63.2 26.4 52.4
Fragments generated by Qwen-Plus 35.3 62.6 26.5 52.0
Punctuation-based fragments 35.3 63.8 27.6 53.1

Move the right F hand, palm facing forward

to the right in front of the right shoulder

Body

Left hand

Right hand

Body

Left hand

Right hand

Move the right F hand, palm facing forward to the right in front of the right shoulder

Figure 8: Qualitative results of fine-grained action–language alignments. Each horizontal bar illus-
trates the cosine similarity between the visual features and the textual features, with deeper colors
indicating higher semantic similarity.

Example for Description Collected from Automated Generation Pipeline. We provide an exam-
ple of a lexical description of gloss Watermelon collected from the Automated Generation Pipeline
(AGP) using GPT-5, as demonstrated in Fig. 7. The generated descriptions are generally accurate,
with most errors arising from the depiction of hand shapes. Overall, GPT-5 is capable of recognizing
general hand movements related to the semantics of the sign.

Qualitative Result for HALI. To qualitatively evaluate the hierarchical action-language alignment
quality, Fig. 8 depicts the predicted cosine similarity between visual features and textual features for
an example in the validation set of LexSign-ASL. The upper part of Fig. 8 illustrates the alignment
between fragment-level textual features and snippet-level visual features, while the lower left and
right part of Fig. 8 visualizes the alignment between two fragments and subunit-level visual features,
respectively. It can be observed that the first fragment attends primarily to the earlier snippet-level
visual features, particularly the subunit-level feature of the right hand, whereas the second fragment
focuses on the later snippet-level visual features. These results are consistent with their semantic
content and the intrinsic hierarchical structure of the sign, which demonstrates the effectiveness of
the proposed method.

A.4 THE SEMANTIC SIGNIFICANCE OF FRAGMENT

By looking at examples from the dataset, we find clear evidence that fragments produced mainly
through simple punctuation-based segmentation from lexical descriptions still carry meaningful se-
mantic significance. In addition, we conduct a dimensionality-reduction visualization to inspect the
clustering patterns of all fragments, as shown in Fig. 9. Specifically, we extract sentence embeddings
for all fragments using BERT and apply t-SNE for dimensionality reduction. The resulting clusters
show that similar fragments group together and describe similar sub-actions, further supporting the
claim that these fragments contain semantic significance.

Moreover, we conduct an experiment in which we used an LLM to extract potential sub-action de-
scriptions from the original lexical descriptions to replace the punctuation-based fragments. We then
performed ZSSLR experiments on LexSign-ASL1000 using different fragments, and the results are
shown in Table 9. It is observed that the fragments generated by the LLM lead to inferior perfor-
mance compared to our simple punctuation-based fragments, further demonstrating the effectiveness
of our rule-based splitting approach.
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Table 10: Per-instance accuracy (%) of ISLR with CoSign-1s pretrained on different datasets.
PHOENIX14T How2Sign OpenASL+How2Sign
T-1 T-5 T-1 T-5 T-1 T-5

Baseline 51.58 83.43 52.21 84.33 57.59 88.0
Baseline + LGlobal 55.64 86.84 55.54 86.91 60.01 90.34
Baseline + LHALI 55.85 88.05 56.03 88.12 60.68 90.93

touch the extended right index finger to the 

right side of the nose, palm facing down

to close around the extended left index finger 

held up in front of the chest, palm facing right

tap the right palm on the extended left index 

finger pointing up in front of the chest

bring both hands back toward the chest

bring the hand forward and down

bring the hands toward each other

bring the hands outward to each side

bring the hands downward in small

move the right hand forward in a small arc

move the right H hand, palm facing forward

move the right U hand, palm facing forward

move the right C hand, palm facing down

move the right W hand, palm facing left

Figure 9: A t-SNE visualization of the embeddings extracted by BERT from all fragments ob-
tained by splitting all lexical descriptions in LexSign-ASL. Representative examples from each
color-matched cluster are shown in the boxes on the right.

A.5 ABLATION ON THE PRETRAINED DATASET FOR THE VISUAL ENCODER

In the experiments presented in Table 4, the implemented CoSign-1s is pretrained on the Ope-
nASL+How2Sign dataset. We further report the ISLR results for CoSign-1s pretrained on
PHOENIX14T and How2Sign, as shown in Table 10. It can be observed that replacing the pre-
train dataset from PHOENIX14T to How2Sign yields a modest performance improvement, which
can be attributed to the fact that How2Sign and WLASL are based on the same language. Pretrain-
ing on How2Sign as well as on the large-scale dataset OpenASL leads to a significant performance
boost. Notably, HALI consistently yields performance gains, demonstrating its generalizability.

A.6 THE GENERALIZABILITY OF HALI

The global contrastive loss LGlobal in HALI is flexible and can be substituted with other ZSL
losses. We additionally experimented with two ZSL losses (Zhou et al., 2025b; Kuang et al., 2025)
on LexSign-ASL1000 and LexSign-CSL1000, and observed that incorporating the proposed fine-
grained loss LFG and hierarchical consistency loss LHC consistently and significantly boosts perfor-
mance, highlighting the generalizability of HALI. Detailed results are presented in Table 11.

A.7 FINETUNE THE MLLM WITH THE LEXSIGN DATASET

We finetune the MLLM using the LexSign dataset and observed that the resulting finetuned model
produced substantially higher-quality descriptions. Specifically, we finetune Qwen2.5-VL using the
video-description pairs of 700 glosses, which are present in LexSign-ASL1000 but absent from
LexSign-ASL300, thereby ensuring that no data leakage occurs for the downstream task. We then
apply AGP with the finetuned MLLM to generate descriptions for the training set of LexSign-
ASL300. Based on these automatically generated descriptions, we trained a ZSSLR model and
evaluated it using manually collected lexical descriptions from sign language dictionaries. All down-
stream evaluations are carried out on LexSign-ASL300, with results summarized in Table 12.

It is observed that the ZSSLR model trained with descriptions generated by the finetuned Qwen2.5-
VL achieves a substantial performance improvement over the model trained with descriptions gen-
erated by the original model. This result confirms that LexSign is a valuable resource for finetuning
MLLMs to improve their sign language understanding capability.
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Table 11: Performance comparison (%) with different baselines on LexSign.
LexSign-ASL1000 LexSign-CSL1000

Val Test Val Test
LFG + LHC T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5

DVTA (Kuang et al., 2025) 21.3 46.8 16.1 37.6 16.8 43.2 10.8 33.5
DVTA (Kuang et al., 2025) ✓ 32.5 60.8 25.2 51.0 37.9 65.8 29.1 56.8
PGFA (Zhou et al., 2025b) 32.1 53.3 25.1 43.2 39.4 59.1 29.8 48.3
PGFA (Zhou et al., 2025b) ✓ 34.8 56.2 28.1 46.8 42.0 61.7 31.9 50.6

Table 12: Ablation (%) of MLLMs for lexical description acquisition on LexSign-ASL300.
Val Test

Top-1 Top-5 Top-1 Top-5
Closed-source MLLMs
GPT-5 9.7 29.0 6.7 22.1
Qwen-VL-Max 2.9 13.1 2.3 9.3
Open-source MLLMs
Qwen2.5-VL-7B 1.6 6.0 0.9 4.3
Qwen2.5-VL-7B (Finetuned) 2.9 10.2 1.6 6.5

Table 13: Results (%) for evaluating potential data leakage of MLLMs on LexSign-Bench. AVG
(S) and AVG (G) correspond to the mean performance on subunit-level and gloss-level questions.
Temp. Pert. and Spat. Pert. denote the results on sign videos under temporal perturbation and spatial
perturbation, respectively.
MLLM Blind Test Temp. Pert. Spat. Pert.

AVG AVG (S) AVG (G) AVG AVG (S) AVG (G) AVG AVG (S) AVG (G)
Closed-source MLLMs
GPT-5 25.2 26.7 23.7 57.0 54.3 59.7 58.0 55.7 60.3
Open-source MLLMs
InternVL3.5-8B 27.0 27.4 26.6 36.2 39.3 33.0 34.0 38.2 29.8
Qwen2.5-VL-7B 27.6 27.6 27.7 35.4 39.3 31.5 33.8 37.7 30.0
LLaVA-OneVision-7B 24.9 24.5 25.2 37.2 39.9 34.6 34.7 37.8 31.6

A.8 POTENTIAL DATA LEAKAGE RISKS IN LEXSIGN-BENCH

To further validate LexSign-Bench and exclude potential data leakage effects, we introduce three
additional tests: (1) a blind test, where only the text is provided without the corresponding video;
(2) a temporal perturbation test, which manipulates the video sequence by randomly dropping or
repeating a small number of frames with a probability of 0.2; and (3) a spatial perturbation test,
where the signer and background are replaced by Wan2.2-Animate (Wan et al., 2025). Examples
of the perturbed video instances are provided in Supplementary Sect. A.3. As shown in Table 13,
blind-test results remain close to the 25% random-chance accuracy (each question has 4 choices),
indicating that our benchmark is unbiased at the text-level. As for the video side, introducing tem-
poral or spatial perturbations leads to a slight performance drop, which we attribute to the injected
noise by temporal augmentation and diffusion models. However, the overall trend remains largely
consistent, suggesting that current MLLMs do not benefit from prior exposure to the public datasets.
GPT-5 maintains a clear advantage over all open-source MLLMs.

A.9 PERFORMANCE OF CONVENTIONAL DEEP LEARNING MODEL ON LEXSIGN-BENCH

To provide a reference for MLLM’s performance on LexSign-Bench, we evaluate conventional deep
learning models trained on LexSign on this benchmark. Specifically, we adopt two setups. At the
subunit level, a ZSSLR model is initially trained on a dataset comprising 1,500 glosses (which do
not overlap with the 300 glosses in the LexSign-Bench), and is subsequently tasked with selecting
the most similar lexical description from four candidates for each video in LexSign-Bench. At the
gloss level, an ISLR model is first trained on WLASL2000, and then evaluated on the 300 glosses
included in LexSign-Bench to identify the most confident choice among the four options. Note
that for the gloss-level setting, only the video samples that occur in the WLASL val/test sets are
counted, which amounts to 1,154 questions. For each setup, we report the results of models trained
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Table 14: Evaluation results (%) on the subunit-level questions in LexSign-Bench. AR, PE, PA, and
BO denote the results for arbitrary, perceptual, pantomimic, and combined perceptual–pantomimic
glosses, respectively. AVG indicates the average results across different iconicity types.

MLLMs AVG AR PE PA BO
Conventional Models
ZSSLR Model (full training set) 51.3 46.9 53.1 54.4 50.8
ZSSLR Model (2/3 training set) 51.6 48.9 52.8 55.3 49.6
ZSSLR Model (1/3 training set) 51.0 49.1 52.2 52.8 50.0
Closed-source MLLMs
GPT-5 62.6 55.8 61.9 60.8 71.9
Gemini 2.5 Pro 58.0 52.0 60.3 59.7 59.8
Qwen-VL-Max 48.3 44.6 50.2 44.7 53.5
Open-source MLLMs
InternVL3.5-8B 38.7 37.9 35.3 36.0 45.4
Qwen2.5-VL-7B 40.5 35.4 37.1 40.6 48.9
LLaVA-OneVision-7B 39.3 36.2 37.8 38.0 45.2

Table 15: Evaluation results (%) on the 1,154 gloss-level questions in LexSign-Bench. AR,
PE, PA, and BO denote the results for arbitrary, perceptual, pantomimic, and combined percep-
tual–pantomimic glosses, respectively. AVG indicates the average results across all iconicity types.

MLLMs AVG AR PE PA BO
Conventional Models
ISLR Model (full training set) 72.1 70.5 69.4 73.6 75.0
ISLR Model (2/3 training set) 71.0 68.0 68.7 72.2 75.0
ISLR Model (1/3 training set) 65.9 61.9 64.6 69.8 67.0
ISLR Model (1/6 training set) 53.0 48.4 51.5 53.5 58.7
Closed-source MLLMs
GPT-5 65.7 56.2 63.6 70.1 72.6
Gemini 2.5 Pro 60.0 54.4 59.6 65.6 60.1
Qwen-VL-Max 39.9 27.0 31.0 49.7 52.1
Open-source MLLMs
InternVL3.5-8B 34.3 27.0 28.3 36.8 45.1
Qwen2.5-VL-7B 34.4 25.6 23.6 44.4 44.1
LLaVA-OneVision-7B 35.5 22.8 33.0 47.6 38.5

on one-third, two-thirds, and the full amount of training data, in order to assess the capability of
MLLM relative to conventional deep learning models trained with varying data sizes. The results
are presented in Table 14 and Table 15.

Our results show that GPT-5 performs similarly to an ISLR model trained on one-third of WLASL
training data for gloss-level questions, and it outperforms the ZSSLR model on subunit-level ques-
tions. Note that the ZSSLR model was trained without access to any of the 300 glosses included
in LexSign-Bench. However, it had seen a large number of distractor options during training. As
a result, ZSSLR is making predictions under a GZSL setting, which explains its suboptimal per-
formance. In summary, comparisons with conventional models reveal that state-of-the-art MLLMs
contain rich sign language knowledge, enabling their application in sign language understanding.

A.10 DETAILS OF LEXSIGN-BENCH

Detailed Result of LexSign-Bench. The detailed evaluation results on LexSign-Bench are pre-
sented in Table 16.

Hard-distractors Mining Strategy. To construct a more challenging multiple-choice benchmark,
we first generate the most confusable classes for the ground-truth glosses predicted by an ISLR
model. The lexical descriptions or glosses of these confusable classes are then used as distractors in
the multiple-choice options. We perform an ablation study on LLaVA-OneVision-7B to evaluate the
effectiveness of this strategy, as summarized in Table 17. Incorporating the hard-distractor mining
strategy leads to a substantial drop in evaluation scores, thereby validating its efficacy.
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Table 16: Evaluation Results (%) of MLLMs on LexSign-Bench. AR, PE, PA, and BO represent
results on arbitrary, perceptual, pantomimic, and combined perceptual-pantomimic sign glosses,
respectively. AVG (S) and AVG (G) denote the average evaluation results at the subunit level and
gloss level, respectively. AVG is the average of the evaluation results. It should be noted that the
user study included only 20 participants, each responding to 32 questions.

Subunit-level Perception Gloss-level Recognition
MLLMs AVG AVG (S) AR PE PA BO AVG (G) AR PE PA BO
Human
Signers 85.3 85.0 82.5 82.5 92.5 82.5 85.6 77.5 87.5 95.0 82.5
Non-signers 70.3 78.1 77.5 70.0 75.0 90.0 62.5 27.5 87.5 62.5 72.5
Closed-source MLLMs
GPT-5 65.0 62.6 55.8 61.9 60.8 71.9 67.4 59.9 65.9 69.3 74.2
Gemini 2.5 Pro 58.8 58.0 52.0 60.3 59.7 59.8 59.6 54.0 60.4 66.0 58.0
Qwen-VL-Max 43.7 48.3 44.6 50.2 44.7 53.5 39.2 27.7 30.5 47.8 50.7
Open-source MLLMs
InternVL3.5-8B 36.1 38.7 37.9 35.3 36.0 45.4 33.5 27.6 26.0 39.9 40.6
Qwen2.5-VL-7B 37.3 40.5 35.4 37.1 40.6 48.9 34.1 24.0 25.1 44.4 42.8
LLaVA-OneVision-7B 36.8 39.3 36.2 37.8 38.0 45.2 34.3 22.7 33.9 45.3 35.3

Table 17: Ablation (%) on FPS, input frames, and the sampling strategy on LLaVA-OneVision.
AVG (S) and AVG (G) denote the average evaluation results at the subunit level and gloss level,
respectively. AVG is the average of the evaluation results.

FPS Frames Sampling strategy AVG AVG (S) AVG (G)
10 whole frm Random 42.7 47.1 38.2
10 central 32 frm Random 43.4 49.2 37.7
5 central 16 frm Random 46.8 52.9 40.7

10 whole frm Hard 34.8 36.4 33.3
10 central 32 frm Hard 36.0 38.5 33.5
5 central 16 frm Hard 36.8 39.3 34.3

Impact of FPS and Frames of Input Video. We input the entire video at 10 FPS into closed-source
MLLMs. In contrast, since most open-source MLLMs are trained to process videos as sequences of
individual frames, we provide them with centrally cropped videos consisting of 16 frames sampled
at 5 FPS. We conduct an ablation study on LLaVA-OneVision-7B to investigate the effects of input
FPS and the number of frames on evaluation results. It can be observed that providing the MLLM
with more input frames led to a decrease in the evaluation result, thereby validating the validity of
our experimental setup on FPS and input frames.

Impact of Prompt Complexity. To further investigate the impact of prompt complexity on bench-
mark results, we evaluated three open-source MLLMs using two alternative prompts of differing
complexity levels from the original prompt. Detailed prompts are provided in Supplementary
Sect. A.14. For simple prompts, MLLMs are not provided with any additional information. For
complex prompts, MLLMs are explicitly guided to focus on specific details, such as hand shapes.
As shown in Table 18, the complexity of prompts has little effect on outcomes of the benchmark
evaluations. Since the goal of LexSign-Bench is to guide model selection, we recommend using
fixed prompts and reporting the average performance across the three prompts described above to
minimize the influence of prompt engineering on the LexSign-Bench and ensure fairer comparisons.

A.11 ABLATION ON HYPERPARAMETERS

Ablation on Loss Weights. We conduct an ablation study on the loss weights wFG,s, wFG,u (in
Equ. 5) and wHC (in Equ. 7) in the ZSSLR experiments on LexSign-ASL1000, as shown in Table 19.

Ablation on Batch Size and Temperature. We conduct an ablation study on the batch size B and
temperature τ in the ZSSLR experiments on LexSign-ASL1000, as shown in Table 20.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 18: Results (%) across different prompts for subunit-level and gloss-level questions. AVG de-
notes the overall average accuracy across the three prompts of varying complexity (simple, normal,
and complex) under the two levels (subunit level and gloss level).

Subunit-level Perception Gloss-level Recognition
MLLM AVG Simple Normal Complex Simple Normal Complex
InternVL3.5-8B 36.6 43.0 38.7 38.0 34.2 33.5 32.0
Qwen2.5-VL-7B 38.5 44.2 40.5 41.2 33.3 34.1 37.4
LLaVA-OneVision-7B 36.3 42.3 39.3 35.6 32.5 34.3 33.4

Table 19: Ablation (%) on loss weights in the ZSSLR experiments on LexSign-ASL1000.
Val Test

wFG,s wFG,u wHC Top-1 Top-5 Top-1 Top-5
0.5 1.0 1.0 34.3 62.0 26.2 52.7
2.0 1.0 1.0 35.1 63.2 27.1 53.4
1.0 0.5 1.0 33.8 62.6 26.7 53.2
1.0 2.0 1.0 35.0 62.6 26.8 53.1
1.0 1.0 1.0 35.3 63.8 27.6 53.1
1.0 1.0 0.5 35.0 63.3 27.2 53.0
1.0 1.0 2.0 35.0 61.8 27.3 52.9

Table 20: Ablation (%) on batch size and temperature on LexSign-ASL1000.
Val Test

B τ Training Loss Top-1 Top-5 Top-1 Top-5
12 0.01 LGlobal 30.9 58.1 23.1 48.6
12 0.01 LHALI 37.1 64.3 28.5 54.3
12 0.1 LGlobal 17.7 42.2 13.8 33.9
12 0.1 LHALI 30.7 57.9 24.2 48.7
12 0.03 LGlobal 26.5 54.2 21.0 44.2
12 0.03 LHALI 35.3 63.8 27.6 53.1
4 0.03 LGlobal 24.6 53.8 19.8 44.1
4 0.03 LHALI 31.0 60.1 23.3 49.7

32 0.03 LGlobal 26.4 54.0 20.1 43.7
32 0.03 LHALI 34.7 63.1 27.5 53.1

Table 21: Ablation (%) on the number of selected subunit-level features on LexSign-ASL1000.
Val Test

Training Loss M Top-1 Top-5 Top-1 Top-5
LHALI 2 33.3 61.0 26.8 52.5
LHALI 3 35.3 63.8 27.6 53.1
LHALI 5 34.6 62.4 26.6 52.9

Chosen video: 

Computer: 

Move the thumb side of the right C hand, 

palm facing left, from touching the lower 

part of the extended left arm ……

Editable text boxes: 

Computer: 

The thumb of the right "C" hand is 

placed on the back of the left hand and 

moves up the left arm in an arc.

Previous Next Save

Chosen gloss: 

Random House ASL
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Figure 10: Illustration of the user interface of the designed annotation tool.
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Ablation on the Number of Selected Subunit-level Features. We conduct an ablation study on
the number of selected subunit-level features M (in Equ. 8) in the ZSSLR experiments on LexSign-
ASL1000, as shown in Table 21. For M = 2, the selected features are the left hand and right hand.
For M = 3, the selected features are the body, left hand, and right hand. For M = 5, the selected
features are the body, left hand, right hand, mouth, and face.

A.12 DEMONSTRATION OF THE INTERFACE OF THE DESIGNED ANNOTATION TOOL

An illustration of the user interface of our designed annotation tool in MCP is shown in Fig. 10.

A.13 LLM USAGE STATEMENT

In this paper, we use LLMs solely for text refinement and for generating the icons shown in Fig. 4
to address copyright considerations.

A.14 PROMPTS FOR LEXSIGN-BENCH AND AGP

The original prompt for subunit-level evaluation in the LexSign-Bench is as follows:

In the middle of the input video, a person is performing American Sign Language
(ASL). Each of the following options describes how a sign is performed, possi-
bly using fingerspelled letters from American Fingerspelled Alphabet to indicate
handshapes (e.g., A hand, F hand). Please select the option that best corresponds
to the sign being performed:
A) [Option A];
B) [Option B];
C) [Option C];
D) [Option D].
Respond only with the selected option: A, B, C or D.

The simple prompt for subunit-level evaluation in the LexSign-Bench is as follows:

Describe the sign performed in the video from the following options:
A) [Option A];
B) [Option B];
C) [Option C];
D) [Option D].
Respond only with the selected option: A, B, C or D.

The complex prompt for subunit-level evaluation in the LexSign-Bench is as follows:

You are tasked with analyzing a video segment where an individual is using Amer-
ican Sign Language (ASL). Your primary goal is to meticulously describe the pro-
duction of a specific sign. To ensure a comprehensive and accurate analysis, you
must consider all five fundamental parameters of ASL: handshape, palm orien-
tation, location, movement, and non-manual markers. For clarity, you may use
fingerspelled letters from the American Fingerspelled Alphabet to specify hand-
shapes (e.g., A hand, F hand).
Your description should be detailed and structured, addressing each of the follow-
ing components:
1. Handshape: Describe the specific shape of the hand or hands used to form the
sign. Note if the handshape corresponds to a letter from the American Finger-
spelled Alphabet (e.g., a ”C” handshape, a ”5” handshape). Detail the configu-
ration of the fingers and thumb. For instance, are the fingers extended, bent, or
closed? Is the thumb tucked or extended?
2. Palm Orientation: Specify the direction the palm is facing. Is it oriented
upwards, downwards, forwards (away from the signer), backwards (towards the
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signer), or to the side? If the orientation changes during the execution of the sign,
describe this change.
3. Location: Identify the location on or near the body where the sign is produced.
This could be in front of the chest, near the forehead, on the chin, or in neutral
space in front of the signer. Be precise about the starting and ending locations if
the sign involves movement between two points.
4. Movement: Detail the action of the hand or hands. Is the movement a straight
line, a circular motion, a tapping motion, or a wrist twist? Describe the direction-
ality of the movement (e.g., upward, downward, forward, side-to-side). If there
are repeated movements, specify the number of repetitions.
Please select the option that best corresponds to the sign being performed:
A) [Option A];
B) [Option B];
C) [Option C];
D) [Option D].
Respond only with the selected option: A, B, C or D.

The original prompt for gloss-level evaluation in the LexSign-Bench is as follows:

In the middle of the input video, a person is performing American Sign Language
(ASL). Choose the sign being performed from the following options:
A) [Option A];
B) [Option B];
C) [Option C];
D) [Option D].
Respond only with the selected option: A, B, C or D.

The simple prompt for gloss-level evaluation in the LexSign-Bench is as follows:

Identify the sign in the video from the following options:
A) [Option A];
B) [Option B];
C) [Option C];
D) [Option D].
Respond only with the selected option: A, B, C or D.

The complex prompt for gloss-level evaluation in the LexSign-Bench is as follows:

Your task is to perform a precise visual analysis of the provided input video. You
must focus your attention specifically on the temporal midpoint of the clip. In this
middle section of the video, an individual is demonstrating a specific sign from
American Sign Language (ASL).
Your objective is to accurately identify this sign. Carefully observe the performer’s
handshape, palm orientation, location, and the specific movement of the sign.
Compare these visual components against the list of candidate options provided
below.
Choose the sign being performed from the following options:
A) [Option A];
B) [Option B];
C) [Option C];
D) [Option D].
Respond only with the selected option: A, B, C or D.

The prompt for generating lexical description for MLLMs is as follows:
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You are a linguist and lexicographer with expertise in American Sign Language
(ASL). Your task is to analyze an ASL sign from a video and compose an authori-
tative, dictionary-style description.
[Objective]
Analyze the provided video of a single American Sign Language (ASL) sign and
generate a formal, descriptive entry suitable for an authoritative sign language
dictionary. The description must be a single, elegant paragraph that precisely
integrates the sign’s core linguistic parameters: Handshape, Palm Orientation,
Location, and Movement.
[Output Requirements]
Your description must be a single, polished paragraph that cohesively integrates
the four core articulatory parameters:
1. Handshape: The form of the dominant and non-dominant hands (e.g., open
hand, 5 hand, 10 hand, A hand, B hand, F hand, I hand, L hand, V hand, Y hand,
curved 5 hand, modified X hand).
2. Location: The position of the hands in signing space (e.g., in front of the chest,
at the chin, at the temple).
3. Palm Orientation: The direction the palm faces (e.g., palm facing in, palm
facing out, palm facing left, palm facing right, palm facing up, palm facing down).
4. Movement: The path and quality of the action.
Maintain a rigorous, objective, and clinical tone. Use precise, non-colloquial
language and avoid metaphors. Do not describe handshapes using terms such
as “5-hand”, “‘A’ hand”, “hand in a B handshape”, or “hand in an ‘A’ hand-
shape”. As shown in the examples in the [Output Requirements], use “A hand”,
“open hand”, etc., to describe the handshape, and use “palm facing in”, etc., to
describe the palm orientation. For example: “A hand, palm facing in”. Follow
the style, structure, and level of detail found in the [Examples]. Directly output the
description of the sign, not to exceed 50 words, without any additional preamble
or explanation.
[Examples]
1. [Example 1].
2. [Example 2].
3. [Example 3].

The prompt for summarizing lexical description for LLMs is as follows:

You are a linguist and lexicographer with expertise in American Sign Language
(ASL). Your task is to synthesize multiple written descriptions of a single ASL sign
into one authoritative definition for an official dictionary. This definition must be
clear, precise, and serve as the standard for learners.
[Process]
1. Analyze Core Components: Begin by carefully reading and comparing all pro-
vided descriptions. For each description, you must identify the four core compo-
nents of the sign: Handshape, Palm Orientation, Location, and Movement.
2. Synthesize Common Features: Distinguish the core, consistent features of the
sign from any individual variations. Compare the components identified in the
previous step and isolate the recurring patterns that are present across the vast
majority of descriptions. You must discard details that are unique to a single
source, as these likely represent personal signing habits, pauses, or recording
artifacts rather than the sign’s essential structure.
3. Construct the Final Description: Using the synthesized common features, gen-
erate the final dictionary entry. The description must be crafted with precise,
professional terminology, yet remain simple and clear enough for a beginner to
understand and accurately replicate the sign. Maintain an objective, rigorous,
and formal tone suitable for an authoritative dictionary entry, avoiding any col-
loquialisms or metaphors.
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4. Output the Final Description: Deliver the dictionary entry directly, without
any introductory or concluding phrases. Do not describe handshapes using terms
such as “5-hand”, “‘A’ hand”, “hand in a B handshape”, or “hand in an ‘A’
handshape”. Use “A hand”, “open hand”, etc., to describe the handshape, and
use “palm facing in”, etc., to describe the palm orientation. For example: “A
hand, palm facing in”. The entry must be under 50 words and adhere to the style,
structure, and level of detail found in the [Examples].
[Examples]
1. [Example 1].
2. [Example 2].
3. [Example 3].
Original Sign Descriptions (from multiple videos):
Description 1: [Description 1]
Description 2: [Description 2]
Description 3: [Description 3]
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